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EXTENSIONS OF MONOTONE OPERATOR
FUNCTIONS

J. D. CHANDLER, JR.1

Abstract. It is shown that a monotone operator function / defined on an

open subset A of the real numbers may be extended to a monotone operator

function on the convex hull of A.

Let / be a bounded real-valued Borel-measurable function denned on a

Borel subset A of the real numbers. Let A be a bounded selfadjoint operator

on a separable complex Hilbert space H such that the spectrum a{A) of A is

contained in A. Thtn j\A) is the selfadjoint operator on H defined by

(fiA)^} = f    fiX)(EidX)<j>,d,y,       4, + g H,
Ja(A)

where E is the resolution of the identity corresponding to A.

The function/is said to be a monotone operator function on A if/(^4) < /(fi)

whenever A and B are bounded selfadjoint operators on a Hilbert space H

such that oiA) C A, a(fi) C A, and A < B. If / satisfies this monotonicity

condition for the totality of finite-dimensional complex Hilbert spaces, then /

is said to be a monotone matrix function on A.

The following characterization of monotone operator functions is essentially

due to Loewner [5]. Loewner proved the theorem for monotone matrix

functions; Bendat and Sherman [1] proved that a function / is monotone

matrix on an open interval ia,b) if and only if /is monotone operator on (a,Zz).

Theorem 1. A real-valued function f defined on an open interval ia,b) is a

monotone operator function on ia,b) if and only if f is analytic on ia,b), can be

analytically continued onto the upper half-plane, and represents there a holomor-

phic function with nonnegative imaginary j irt.

It will be shown that there is a similar characterization of monotone

operator functions denned on an arbitrary open subset A of the real numbers.

Let / be a monotone operator function on an open subset A of the real

numbers. By Theorem 1,/is continuously differentiable on A; see also [4, p.

73]. Associated with / is the kernel K, defined on A X A by

(1) Ki\,p)=mx~J^)   (*#M).       Ki\,\) = f'iK).

Loewner made extensive use of this kernel in his study of monotone matrix
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functions. The following theorem is essentially due to Loewner [5]; see also [1]

and [4],

Theorem 2. Let f be a monotone operator function on an open subset A of the

real numbers. Then K is a positive matrix; that is,

2   2  K(Xj,\k)c:Ck > 0
j—\ k=\

whenever Ai, ... ,X„ belong to A and c,, ..., cn are complex numbers, for

n= 1, 2, 3, ....

Proof. Let A and B be self adjoint operators on an «-dimensional Hilbert

space H, and let A and B have spectral representations

n n

A =  2 XjEj,        B =   2  PkFk,
]=\ k=\

where Xx, ... ,X„ and px, ..., pn belong to A. An easy computation shows that

(2) f(B)-f(A)=  2   2   K(Xj,pk)Ej(B-A)Fk.
j=\ k=\

Let B = A + t/° be a one-dimensional perturbation of A, say P = (,-,tb}<p for

some tb in H, such that e > 0 and a(A + cP) C A. Then B has a spectral

representation

B=   2   \fc(e)3fc(e),
Zc=l

where Xk(t) —> Xk as e 4 0 (/c = 1,..., n). Equation (2) shows that, for any \p

inH,

0< ((l/e)[f(B)-f(AM4,)

= 22  K(\j(e),\kKEjPEk(e)W>;
j=\ k=\ J J

take e 4 0 to show that

2   2  ^(Ay, h) <Ek +, <» <<?, Ej xp) > 0.
j=\ k=\       J J

Now choose tb = 2j"=i Cj^j and ^ = 2£=i ezi' where £^-e7- = ej and ||e-||

= 1 (j = 1,... ,n), to show that

2   2  K(Xj,Xk)Cjck > 0.
j=\ k= 1

Loewner [5] proved that the converse of Theorem 2 is true if A is an open

interval (a,b). This result, together with Theorem 1, shows that a real-valued

continuously differentiable function / denned on an open interval (a,b),

admits  an  analytic  continuation  F onto  the  upper  half-plane  n+  with
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Im(F) > 0 on n+, if and only if the kernel K associated with/is a positive

matrix.

This aspect of Loewner's work was generalized by Rosenblum and Rovnyak

[6, Theorem 8]; the following theorem is an immediate consequence of their

generalization.

Theorem 3.    Let f be a real-valued continuously differentiable function on an

open subset A of the real numbers, and let K be the kernel associated with f, as in

(1). If K is a positive matrix, then there exists a function F such that

(i) F is separately holomorphic on the upper and lower half-planes,

(ii)  F has nonnegative imaginary part on the upper half-plane, and

(iii) F may be analytically continued by reflection across A so that

f(x) = F(x + iO) = F(x - iO),       x G A.

The next theorem is due to Smul'jan [7]; it depends heavily on the work of

Davis [2], [3] on convex operator functions.

Theorem 4. Let f be a monotone operator function on {a} U (b, c), where

— oo < a < b < c < oo. Then there exists a unique monotone operator function

g defined on (a,c) such that g = f on (b,c) and g(a + 0) > f(a).

Smul'jan proved this theorem for the special case a = 0, b = 1, and c = 2.

As noted in [7], the general case follows by considering f ° h, where h is the

unique linear fractional transformation such that /z(0) = a, h(\) = b, and

h(2) = c.
Theorems 3 and 4 are now combined to yield a characterization of

monotone operator functions denned on arbitrary open subsets of the real

numbers.

Theorem 5. Let f be a monotone operator function defined on an open subset

A of the real numbers. Then there exists a monotone operator function h defined

on the convex hull D of A such that f = h on A.

Proof. If / is a monotone operator function on A, then / is continuously

differentiable on A. By Theorem 2, the kernel K associated with/is a positive

matrix. By Theorem 3, / admits an analytic continuation F onto the upper

half-plane that satisfies (i)—(iii) of that theorem.

Let a and c be arbitrary points in A with a < c. Since A is open, there is a

point b in A such that a < b < c and (b, c) Q A. By Theorem 4, there exists

a monotone operator function g on (a,c) such that/ = g on (b,c). By Theorem

3, g admits an analytic continuation G onto the upper half-plane that satisfies

(i)—(iii) of that theorem, with A replaced by (a,c).

Let F and G be analytically continued by reflection across A and (a,c),

respectively, as in Theorem 3(iii). But F = f on A, G = g on (a,c), and f = g

on (b,c); since the holomorphic functions F and G coincide on (b,c), they

coincide on the intersection of their domains. Thus F = G on n+, and so F

may be analytically continued across A U (a, c) by reflection. Since a and c

are arbitrary points in A, it follows that F may be analytically continued across

the convex hull D of A by reflection.
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Let H be this extension of F to the complex plane slit along (-00, 00) - D,

and let h be the restriction of H to D. Since H has nonnegative imaginary part

in the upper half-plane and since h is real-valued and analytic on D, h is a

monotone operator function on D, by Theorem 1. Since h = f on A, h is the

desired extension of / to D.

The converse of Theorem 5 follows directly from the definition of "mono-

tone operator function": if g is a monotone operator function on an interval

D and if A is an open subset of D, then g|A is a monotone operator function

on A.

Note that Theorem 3 was essential to the proof of Theorem 5; Loewner's

original theorem (Theorem 1 above) does not provide the necessary single

analytic continuation of / onto the upper half-plane.

The author is grateful to Professors Marvin Rosenblum and James Rovnyak

for suggesting this problem.
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