
EXTENSIONS OF SEMIGROUPS

BY

A. H. CLIFFORD

By the term semigroup we shall mean a system consisting of a class 2

of elements, a, b, c, ■ ■ -in which there is defined an associative binary opera-

tion: a(bc) = (ab)c. An ideal of S is a subset 5 of S such that if a is in S and

b is in 5, then both products ab and ba are in 5. Rees(1) defines the difference

semigroup 7* = 2 — S to be essentially that obtained by collapsing 5 into a

single zero element 0, while the remaining elements of 2 retain their identity.

Thus the 7"-product of two nonzero elements is defined to be 0 if their

2-product lies in 5, and otherwise to be the same as defined in 2(2). As in the

Schreier theory of group extensions, let us consider the problem of construct-

ing, for given semigroup 5 and given semigroup T with zero, every possible

semigroup 2 containing 5 as an ideal, such that 2 —5 is isomorphic with T.

Such a 2 will be called an extension of 5 by T.

If 5 has a two-sided identity element, every extension of 5 by T can be

obtained by means of a "ramified homomorphism" of T into 5 (Theorem 2).

If 5 satisfies the mild "Condition A," stated in §1, every extension of 5 by T

can be obtained by means of a pair of "linked" ramified homomorphisms of T

into the semigroups of left and right translations of 5 (Theorem 3). Condition

A is satisfied if 5 is what Rees (loc. cit. p. 393) calls a completely simple semi-

group without zero. This case is of interest because 5 is then the "Suschke-

witsch kernel" of 2, originally described by Suschkewitsch(3) for finite semi-

groups, shown by Rees (loc. cit. p. 392) to be the intersection of all the ideals

of 2, and further studied by Schwarz(4) and the author(8). In a previous

paper(6) the author gave an extension theorem for such an 5 by a semigroup T

having no divisors of zero. Theorem 5 below extends this to arbitrary T.
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1. Notation and preliminary considerations.  In the sequel, the semi-

group 5 will sometimes be subject to one of the following conditions.

Condition A. If as = bs and sa = sb for all s in S then a = b.

Condition B. To each a in S correspond u and v in S such that ua = av = a.

Lemma 1. Condition A is a consequence of Condition B.

Proof. Assume Condition B and suppose that a and b are elements of 5

such that as = bs and sa = sb for all s in 5. By Condition B there exist u and v

in 5 such that ua=a and bv = b. Then

a = ua = ub = ubv = av = bv = b.

Every completely simple semigroup 5 satisfies Condition B (and hence

also A). For one of the defining conditions thereof (Rees, loc. cit. p. 393, con-

dition (ii)) is simply (B) with the added requirement that u and v be idem-

potent.

To save repetition, we shall adhere throughout the paper to the following

notation. 5 will denote any semigroup, possibly satisfying Condition A or B,

and in §5 it will be a completely simple semigroup without zero. F will denote

any semigroup with zero element 0, having no elements in common with 5.

F* will denote the set of nonzero elements of T. Except in §5, the small letters

a, b, c, e, s, t, u, v will always denote elements of 5. The capitals A, B, C will

always denote elements of T*, even in §5. Expressions like "for all A, B in F*

and all s in 5" will be omitted unless necessary for emphasis.

2 will denote the class sum of 5 and F*. The construction of an extension

of 5 by F requires firstly the definition of a binary operation o in S subject

to the conditions (P 1-4) :

(=AB   if   AB y¿ 0,
(PI) AoB{

ÍES       if   AB = 0.

(P2)      AosES (P3)       so A ES (P4)       sot = st.

The resulting system S( o ) will be an extension of 5 by F if and only if

the associative law holds. This breaks down into 23 = 8 cases according to

whether each of the three factors is in 5 or in T*. The case 555 where all

three factors are in 5 is naturally immediate from (P 4) and associativity in

5. The most troublesome case in practise is T*T*T*, namely (A o B) o C

=A o (B o C). If ABC^O this reduces to associativity in T by (P 1), but if

ABC = 0 we have four subcases according to whether AB and BC are =0 or

?¿0.

Theorem X. If S satisfies Condition A, the associativity cases T*ST* and

T*T*T* are consequences of the remaining ones.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1950] EXTENSIONS OF SEMIGROUPS 167

Proof.

(T*T*S   if   AB 5¿ 0,
((A o B) oC) o s = (A o B) o (Co s)    by    \

\ST*S      if   AB = 0;

((AoB)oC)os = Ao(Bo(Cos))    by    T*T*S;

((AoB)oC)os = Ao((BoC)os)    by    r*T*5;

(r*r*s if  Be ¿¿ o,
(04 o B) oC) os = (Ao(BoC))os    by    <

\t*SS      if    5C = 0.

Similarly we can show that

s o ((A o B) o C) = so (A o (Bo C))

without using the cases T*ST* or T*T*T*. From Condition A we conclude

(A o B) o C = (A o (B o C). The proof of case T*ST* is exactly the same as

above, if we replace B by an element b of 5.

2. Extensions defined by ramified homomorphisms. By a ramified homo-

morphism of T into 5 we shall mean a single-valued mapping A—>A of T*

into 5 such that if AB ¿¿Q then AB = AB. The reason for the term "ramified"

is that, in a sense, the zero element of T corresponds to a whole set of elements

of 5, namely that of all products A B with AB = 0.

Theorem 2. A ramified homomorphism A-^>A of T into S determines an

extension 2( o ) of S by T as follows:

CAB   if   AB 5¿ 0,
(Ml) AoB = {_

AB = 0;

l AB   if

™   (IB   if
(M2)        ^oí = Jí; (M 3)        ío.4=¿4; (M 4)        sot = st.

If S has a two-sided identity element, then every extension of S by T is found in

this fashion.

Proof. The proof of the first half of the theorem is simply a routine verifica-

tion of the associative law, so we shall give only the most troublesome case

T*T*T*. If ABC = 0, then

{(AB)oC = (AB)C = (ÄB)C   if   AB j¿ 0,
(AoB) oC = <_ _

\(AB) oC = (AB)C if   .45 = 0;

(A o (BO = 1(BC) = A~(BC)    if    BC * 0,
Ao (BoC) = {_

U o (BO = A(BC) if   BC = 0.

In all four subcases, associativity follows from that in 5.

Proceeding to the converse, let e be the identity element of 5. From

(P 2-4) and associativity in 2(o) we have
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A o e = e(A o e) = eo (Ao e) = (eo A) o e = (eo A)e = eo A.

Define A =A o e (=e o A). Then from the above and (P 1),

AB = Ao eo Bo e = A o Bo eo e = Ao Bo e

i(AB)oe = AB if   AB j£ 0,

\(AoB)e = AoB       if   AB = 0.

The first of these shows that A -^>A is a ramified homomorphism of F into 5.

The second establishes the second part of (M 1). To show (M 2) we have

Aos = Aoeos = Aos = As

and the proof of (M 3) is dual thereto. (M 4) and the first part of (M 1) do

not of course require proof.

The referee raises the pertinent question of how to tell, for given 5 and T,

whether an extension of 5 by F exists, and gives the following example where

no extension exists: 5 the infinite cyclic semigroup a, a2, • • • and F the

multiplicative semigroup of the ring of integers modulo 15. The author is not

able to answer this question. At least Theorem 2 shows that an extension of

5 by F always exists if 5 contains an idempotent element, which is the case,

for example, if 5 is completely simple.

3. Left and right translations of a semigroup. Let 2(o) be an exten-

sion of 5 by T. By associativity in 2(o), the mapping s—>A o s=~hAs (for

fixed A in F*) of 5 into itself has the property ~Ka(sI) = (Xas)1. Any mapping

X of 5 into itself with this property, \(st) =(\s)t, we shall call a left transla-

tion of 5. Similarly s—*s o A =spa is a right translation of 5, that is, (sí)pa

= s(tpA).

If c is a fixed element of 5, the mapping s—>cs will be called the special

left translation induced by c, and will be denoted by Xc. If 5 has a left identity

element e then every left translation of 5 is special, for \s=\(es) =(ke)s = cs

with c=\e.

If Xi and X2 are left translations of 5, so also is their product XiX2. For

(XiX,)(sO = \x(\2(st)) = Xi((X2i)0 = (\i(\is))t = ((XxX2)s)i.

The identity mapping s—>s is clearly a left translation. Thus the set A of all

left translations of a semigroup 5 is a semigroup with two-sided identity ele-

ment. Since X0X& =X0¡, the subset Ao of all special left translations is a subsemi-

group of A, and the mapping a—>Xa is a homomorphism of 5 onto A0. (Since

XXa =Xxa, Ao is in fact a left ideal of A.) If 5 has a two-sided identity element,

then A=Ao^5.
Similarly the set P of all right translations of 5 is a semigroup containing

the subsemigroup (in fact right ideal) P0 of special right translations

pe: s—*spc = sc (c fixed in 5), and c^>pc is a homomorphism of 5 onto Po.

A product XiX2 of left translations means first X2, then Xi, while a product
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pip2 of right translations means first pi, then p2. This will not lead to confusion

since we shall avoid writing a product Xp.

Incidentally, it is not always true that every left translation commutes

with every right translation, but it is true at least in the following two cases:

(1) S2 = S; (2) S satisfies Condition A, every left translation of 5 is linked

with some right translation of 5, and vice-versa. We say that X and p are

linked if

s(\t) = (sp)t for all s.tES.

The following lemma will be used only for the more or less incidental

Theorem 4.

Lemma 2. Let S satisfy Condition B. 7/X0 and pb are linked special left and

right translations of S, that is, sat = sbt for all s and t in S, then there exists c in

S such that XC=X0 and pc=pb.

Proof. By Condition B (see §1) there exist u and » in 5 such that ua = a

and bv = b. Let c=av. Then c = uav = ubv — ub, and

cs = ubs = uas = as,    that is,    Xc = X„,

sc = sav «= sbv = sb,    that is,    pc = pb.

4. Extensions defined by translations. Equations (P 1-4) may be written

in the equivalent form

AB ?¿ 0,(AB if

' \[A,B]    if
(Nl) AoB

AB = 0;

(N2)      Aos = \As; (N 3)        soA=spA; (N4)        sot=st.

Here [.4,7?] denotes what we shall call a ramification set of T* in S, namely a

function defined for pairs A, B of elements of T* such that .42? =0, and

having values in 5. X^ and pa denote, for each fixed A in F*, single-valued

mappings of 5 into itself.

Case F*55[55F*] of the associative law is equivalent to the assertion

that Xa[p¿] is a left [right] translation of 5 (see §3). Cases T*T*S, ST*T*,

and ST*S are equivalent respectively to the following conditions on the func-

tions XA, Pa, and [.4,2?]:

(C 1) X¿XS
n    if   ,42? = 0

if   ¿2? 5¿ 0,

if   ,12? = 0.

PAB       if   AB ¿¿ 0,

(Xab

lX[A,£

(pAB

\P[A
(C 2) paPb

,,b]    if   AB = 0.

(C 3) s(\aI) = (spA)t,    that is,    X¿ and pa are linked.

If 5 satisfies Condition A, Theorem 1 assures us that the remaining two cases,
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T*ST* and T*T*T*, are consequences of the foregoing. Hence we have the

following restatement of Theorem 1.

Theorem 3. Let S satisfy Condition A. Then every extension 2(o) of S by T

is found as follows. Let A —>Xa and A -^>pa be mappings of T* into the semi-

groups A and P of left and right translations of S, respectively, and let [A, B ]

be a ramification set of T* in S, such that Conditions (C 1-3) are satisfied. Then

the class sum 2 of S and T* becomes an extension of S by T if product o therein is

defined by the equations (N 1^4).

We may express this theorem in the following way. If 5 satisfies Condition

A, then every extension of 5 by T is obtained by means of linked left and

right ramified representations of T* by left and right translations of 5, having

a ramification set in common. Suppose now that A—*\A and A—>pa are linked

left and right representations of 7"* by left and right translations of 5, but

possibly having different ramification sets [A, B]i and [A, B]2 respectively.

Theorem 4. If S satisfies Condition B there exists a unique ramification set

[A, B]z common to \a and pa-

Proof. By (C 3) the translations Ala.bii and pia.bw are linked. By Lemma 2

there exists [A, B]3 such that X[A,s]i=XtA,B]a and P\.a,b\í=P\.a,b]í- The unicity

of [A, B]z follows from Condition A, which holds by Lemma 1.

5. Extensions of a completely simple semigroup without zero. Through-

out this section 5 will denote a completely simple semigroup without zero,

represented (Rees, loc. cit. p. 399) as a JXK matrix semigroup over a group

G* with defining matrix P = (pKi). As in Rel. Inv.(6), the elements of 5 will

be written (a; i, k), aEG*, iEJ, «-EK, and the product of two such is defined

as follows:

(a; i, K)P(b;j, X) = (apKib; i, X).

Let G be G* with a zero adjoined. Then we may think of (a; i, k) as a matrix

with a in the ith row and Kth column, and zeros elsewhere. The above product

law is then the usual matrix product, but with a constant "sandwich" matrix

P.
We shall make the following changes in the notation used in §4 of Rel. Inv.

5 will be replaced by 2, Sa by T*, Sß by 5, G by G*, and product in 2 will be
denoted by o. As in Rel. Inv., we shall assume that P is normalized: pKi = pu

= e for all iEJ, kEK, e being the identity element of G*.

Theorem 5. An extension 2(o) of S by T determines the following three

things :

(1) a ramified left representation of T by mappings of the index class J into

itself, that is, to each A in T* corresponds a mapping i—*Ai such that

l(AB)i   if   AB j¿ 0,
(5.1) A(Bi)= {)     '     I

(iA,B       if   AB = 0,
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where ía,b is an element of J depending on A and B but not on i;

(2) a ramified right representation of T by mappings of the index class K into

itself, that is, to each A in T* corresponds a mapping k—>kA such that

,     s (k(AB)   if   AB ¿¿0,
(5.2 (kA)B = \K J

\ka.b        if   AB = 0,

where ka.b is an element of K depending on A and 2? but not on k;

(3) a mapping A—*A<p of F* into the structure group G* of S satisfying the

two conditions

,»>(5-3) p,,Al(A<t>)pKA,i =  p,,Ai(Atp)piA.

(5.4) (AB)<p = (A<p)piA,Bi(B<t>)    if   AB ?± 0.

The connection between the mappings i^Ai, k—»k4, 4—>4<£ and product o in'S

is given by (Q 1-4) :

(AB if   AB y* 0,
(Q1) AoB= { J

\(A<ppiA,Bi-B<f>; iA,B, ka,b)   if   AB = 0.

(Q 2) A o (a; i, k) = (A<¡>-piA.ia; Ai, k).

(Q3) (a;i,K)oA = (apK,Ai-A<j>;i,icA).

(Q 4)     (a; i, k) o (b; j, X) = (apKJb; i, X).

Conversely, if we are given mappings i^>Ai, k—>kA, A^>A<f> as described in

(1), (2), (3), and define product o in the class sum 2 of S and T* by (Q 1-4),

then 2(o) is an extension of S by T.

Proof. All equations in §4 of Rel. Inv. remain valid so long as we assume

that the product of two elements of T* occurring therein are not equal to 0.

Hence the first part of equations (5.1) and (5.2) are already established by

(4.3). Likewise (5.3) is just (4.7), while (5.4) is just (4.8) with the restriction

that AB^O. (Q2) and (Q 3) are the same as (4.9) and (4.10). Hence all we

need to show is the second parts of (5.1), (5.2), and (Q 1).

By a double application of (Q 2) we have

(5.5) A o (B o (a; i, k)) = (A<p-pvi.Bi-B<p-p1B.i-a; A(Bi), k).

Let the ramification set determined by 2(o) be

(5.6) [A, B] = (gA,B; Ía,b, k-a.b).

If AB =0 then A o B = [4, 2?] and hence

(A o B) o (a; i, k) = (gA.B; Ía,b, ka,b)P(<i; i, k)

(5-7) t      j. ï= (gA,Bp<AiBia; ia,b, k).

Equating the /-component of this and (5.5) we obtain the second part of
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(5.1); the proof of (5.2) is dual. Equating the G*-component, setting » = 1,

and using the normalization of P, we obtain

(5.8) gA,B   =  AfaPlA.Bl-Bfa

This and (5.6) give (Q 1).
To prove the converse, we remark that all cases of the associative law

for o have been established in Rel. Inv. except when adjacent factors in T*

have vanishing product. Theorem 1 dispenses with the unpleasant case

T*T*T*, since (§1) 5 satisfies Condition A. This leaves only the dual cases

T*T*S and ST*T*, and naturally we need only show one of them. All that

remains, therefore, is to show that

A o (B o (a; i, k)) = (A o B) o (a; i, k)

for the subcase -4.5=0. The left side has been calculated in (5.5). The right

side has been calculated in (5.7) with gA,B given by (5.8). The /-components

are equal by (5.1), and their Ti-components are identical. The equality of

their G*-components will follow if we can show that

plA.Bl(B(b)pKABi  =   plA.Bi(B<j})plB,i-

But this follows from (5.3) on replacing A by B and «by ÍA, and noting from

(5.2) that ka,b = (IA)B.

Theorem 5 has been proved without using the notion of a translation of 5.

In spite of this, it may be of some interest to determine the translations of 5,

and to phrase Theorem 3 accordingly.

We shall say that a JXJ matrix L over G is column-restricted if in each

column of L there is exactly one nonzero element of G. If we multiply an

element of 5 on the left by L we see that the product lies in 5. From associa-

tivity for matrices, this yields a left translation of 5. But the converse of this

is contained implicitly in equation (4.1) of Rel. Inv. Hence the semigroup A

of left translations of S can be represented as the semigroup of all JXJcolumn-

restricted matrices over G. Similarly the semigroup P of right translations of 5

can be represented as the semigroup of all KXK row-restricted matrices over

G. The following is an immediate consequence of Theorems 3 and 4.

Theorem 6. Every extension 2(o) of S by T can be obtained as follows.

Let A-^La[Ra] be a ramified representation of T by JXJ column-[KXK

row-] restricted matrices, that is,

(Lab if   AB j¿ 0,
(D 1) LaLb = |

(Rab        if   AB fíO,
(D 2) RaRb = \ D

\R[A

L[A,Bh    if   AB = 0;

if   AB ?¿ 0,

Bl2    if   AB = 0;
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(AB
«ri) A°s-\lA,

where [A, 7?]i and [A, B]2 are ramification sets of F* in S. Let these matrices

La and Ra be linked by the defining matrix P of 5:

(D 3) PLa = RaP.

Then there exists a unique ramification set [A, 2?]3 common to La and Ra

satisfying (D 1) and (D 2), and the product o defined in 2 = 5UF* by the equa-

tions (Q' 1-4) is associative.

if   AB ?¿ 0,

B],    if   AB = 0;

(Q' 2) A o (a; i, k) = LA(a; i, k),

(Q' 3) (a; i, k)oA = (a; i, k)Ra,

(Q' 4) (a; i, k) o (b; j, X) = (a; i, K)P(b;j, X).

Note added by the referee. Given 5, consider the semigroup 5' of all pairs

(X, p) of linked left and right translations of 5, that is,

s(\t) = (sp)t all s, t in 5.

If 5 satisfies Condition A, 5' contains an isomorphic replica 5o' of 5, namely

the set of all (X,,, pc) with c in 5. If we identify 50' with 5, then 5' is an exten-

sion of 5 with the properties

(X, p)s = Xs,        s(\, p) = sp.

With any extension 2(o) of 5 by F we can associate a ramified homo-

morphism .4—>-4 of F* into 5', namely A = (\A, Pa), where X¿s=4 05,

spA=s o 4. It ramifies within 5 ( = 50') in the sense that 42?£5 if ^12?=0.

Consequently, by Theorem 2 applied to 5', to any 2(o) corresponds an exten-

sion 2'(o) of 5' by F containing 2(o). Since 5' contains a two-sided identity

element, every extension of 5' is obtained this way, by Theorem 2. Thus, to

construct all extensions 2 of 5 by F, we may construct all extensions 2' of 5'

by F by finding all ramified homomorphisms of F into 5' (at least one always

exists) and then examine these to see which ones have the property that

lBES = S¿) whenever 42? =0 in F.

The Johns Hopkins University,
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