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ABSTRACT. In this paper a number of generalizations of the classical Heisenberg-Weyl

uncertainty inequality are given. We prove the n-dimensional Hirschman entropy in-

equality (Theorem 2.1) from the optimal form of the Hausdorff-Young theorem and deduce

a higher dimensional uncertainty inequality (Theorem 2.2). From a general weighted

f.orm of the Hausdorff-Young theorem, a one-dimensional weighted entropy inequality is

proved and some weighted forms of the Heisenberg-Weyl inequalities are given.
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i. INTRODUCTION.

Let be the Fourier transform of f defined by

(x) f e-2ixyf(y)dy, x .
If f e L2()with L2 -norm ilfll2 i, then by Plancherel’s theorem III12 I, so
that If(x) 2

and l(y) 2 are probabilzty frequency functions. The variance of a

ptcbability frequency Junction g is defined by

V[g] f (x-m)2g(x)dx where m / xg(x)dx

is the mean. With these notations, the Heisenberg uncertainty principle of quantum
mechanics can be stated in terms of the Fourier transform by the inequality

V[Ifl2]V[lI 2] (162) -I
(1.1)

In the sequel, we assume without loss of generality that the mean m O. If g is a
probability frequency function, then the entropy of g is defined by

E[g] / g(x)log g(x)dx.

With f as above, Hirschman [i] Droved that

E[Ifl2] + e[l12] EH (1.2)
with EH O, and suggested that (1.2) holds with EH log 2-i. If EH has that form,
then by an inequality of Shannon and Weaver I it follows that (1.2) implies (I.I).
Using the Babenko-Beckner optimal form of the Hausdorff-Young inequality ([3])

Il Ip, A(P) Ilfl Ip, p 2, A(p) [pl/p(p,)-I/p]I/2, (1.3)
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in Hirschman’s proof of (1.2), then as Beckner [] noted, (1.2) holds with EH log 2-I.
A modest extension of (I.i) is obtained as follows: Let f on be differentiable,

such that f(O) 0. Then HSlder’s and Hardy’s inequality [4, Theorem 3.27] yield with

l<p2

flf(x) 12dx (flx f(x) IPdx)I/P(flf(x)/xlP’dx)I/P
0 0 0

P( Ix f(x) IPdx)I/P(Flf’(x)IP’dx)I/P’’0
Applying this estimate also to f(-x), then

llfl12 If(x) 12dx + If(-x)12dx2
P[( Ix f(x) IPdx)i/P(flf’(x)IP0 dx)i/P

+ (flx f(-x) IPdx)i/P(If’(-x)IP’dx)i/P’]
0 0

P( X f(x) IPdx)i/P(flf’(x)l p dx)I/P

where the last inequality follows from HSlder’s inequality. Now by (1.3) and the fact

that ’(y) 2iy (y) we obtain

THEOREM I.I. If f S () and f(O) 0, then for p 2

2 2 p A(p)llxfllpllyllp. (1.4)

Note that the constant in (1.4) is slightly better than that in [4,1.4] but un-

likely best possible.

The purpose of this paper is to give extensions of the Heisenberg-Weyl inequality

(1.1). In the next section a new proof of the entropy inequality (1.2) for functions

on Nn is given and an n-dimensional Heisenberg-Weyl inequality is deduced. The n-

dimensional generalization of inequality (1.4) is also given in the next section. The

two inequaiities are quite different, even in the case p 2, but depend strongly on

the sharp Hausdorff-Young inequality. In the third section a weighted form of the

Heisenberg-Weyl inequality in one dimension is obtained from a weighted form of the

Hausdorff-Young inequality ([5][6][7][8]). Unlike the constant A(p) in (1.3) the con-

stant of the weighted Hausdorff-Young inequality (3.3) of (Theorem 3.1) is far from

sharp. If the constant is not too large, then a weighted form of Hirschman’s entropy

inequality can also be given, from which another uncertainty inequality is deduced.

Throughout, p’ p/(p-1), with p’ if p I, is the conjugate index of p, and

similarly for other letters. S( is the Schwartz class of slowly increasing functions
ron n. We say g is in the weighted Lw -space with weight w, if wg a L r and norm

IIgllr, w llwgllr. If x e n, then x (Xl,X2 Xn) and dx dXl...dxn the n-

dimensional Lebesgue measure, fi(x), x n denotes the partial derivative of with

respect to the ith component and fij (fi)j The letter C denotes a constant which

may be different at different occurrences, but is independent of f.

2. THE HIRSCHMAN INEQUALITY.

The Fourier transform of f on n is given by

(x) n e-2ix’yf(y)dy x e n, x’y xlY +...+ XnYn.
and the entropy of a function on n is defined as before with replaced by n. We
shall need the following well known result (c.f. [9; 13.32 ii]):



EXTENSIONS OF THE HEISENBERG-WEYL INEQUALITY 187

If f d l, then
X

lim (f IflPd)I/P exp / log Ifld. (2.1)
p/o+ X X

Using this fact we obtain easily the n-dimensional form of Hirschman’s inequality (1.2)

THEOREM 2.1. If f e I 2 (An) such that llfl12 II}I12 I, then

e[[fl 2] + E[l}l 2 n[log 2-i], (2.2)

whenever the left side has meaning.

PROOF. Let f e (L1i L2)(An), then LP(An), p 2, and by the n-dimen-

sional form of the sharp Hausdorff-Young inequality 3] (that is,(l.3) with A(p) re-

placed by [A(p)] n) we obtain with p 2-r, r 0 and p’ 2-r’, r’ 0

(nl(y) 12-r’dy)-l/r’ < (2-r) I/2r)

(2_r,)_i/(2r,)]n(nlf(x)12-rdx) I/r"

Now let d l(y) 12dy and d if(x) 12dx, then n d n d I, so that the in-

equality becomes

(Inl(y)l_r,d)-l/ry )/(2_r,)_i/(2r )]n.
(n (I/If(x) l)rd)I/r

[(2-r)-I/(2r

But as r o+, -r’ o+, so that by (2.1)

exp(n log l(y)Id)/
exp(n log(If(x)l-l)d)

n
(2r)

exp(n l()12+/-og](y)Idy +nlf(x) 121glf(x)Idx)llm (2-r)

r+o (2-r’) -n/(2r’)

2n/2e-n/2"
Taking logarithms on both sides we get

nnl(Y) 121gl(y)Idy + nlf(x) 121og]f(x)Idx [log 2-I]

and this implies (2.2) in the case f e (LI L2)(n).
If f e L 2 the result is obtained as in [l] only now one takes for mT, me(x

e-e]X[2’ and for T’ ge (y) e-n/2e-lYl2/e." We omit the details.

If Igl L2() is a probability frequency function, then the relation between
entropy and variance is expressed by E[]g] 2]

2 2 lg(2V[Ig[2])([2; p" 55-56]).
The n-dimensional form of this inequality is given in the following lemma:

LEMMA 2.1. ([2" p. 56-57]). Let g e e2(n) with ][gll 2 I. If B (bij) is
the matrix with entries

bij V[]gl 2] n xixj Ig(x)I 2dx’ i,j 1,2 n;
then

E[]g] 2 n
log (2lbil l/n) n/2

where [bij[=det B.

Using the lemma and Theorem 2.1, we easily establish an n-dimensional extension

of the Heisenberg-Weyl inequality.

THEOREM 2.2. Let f e e2(n) with [If[]2 [[[[2 and

fn xixj [f(x)[2dx, ij f YiYj [(Y) 12dy’bij
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i,j 1,2 n; be the entries of the matrices B and respectively, then

(det B)(det ) (16 2)-n.
PROOF. By (2.2) and Lemma 2.1,

n[log 2-I] > e[Ifl 2] + e[l12!
n i/n n I/n)log(2 Ibij log(2 Ibijl n

so that

2 I/n I/n)log 2 log(4 Ibij lijl
But then

4 > I/[(det B)I/n(det )I/n42],
which implies the result.

Clearly, if n we obtain at once (I.I). If n 2 then

x21fl2dx’ 2 XlX21fl2dx
bl bl 2

2
B (b21 b22) 2 X2Xl Ifl2dx’ 2 x21fl2dx2

with a similar expression for . Applying Theorem 2.2 we obtain

(det B)(det ) [(2 x21fl2dx)(21 x21fl2dx)2 (2 XlX2 Ifl2dx)2]

"[ (f2 YI21I2dy) (f2 YlY2 l12dy)2] > (1672) -2.

If we denote the bracketed terms above by D[Ifl 2] and D[I121, the discrepancy of

Schwarz’s inequality, or the difference between variance and covarlance of

Ifl 2 and II 2, then the two dimensional Heisenberg-Weyl inequality shows that the dis-

crepancies of II 2 and II 2 cannot both be small; D[Ifl 2] D[II 2] > (1672) -2

A different generalization of (I.I) may be obtained along the lines of Theorem I.I.

THEOREM 2.3. Let f g s(n), such that f(xl,x2 xn) 0, whenever xi 0 for

some i. If p 2 and A(p) is the constant of (1.3), then

Iifi122 [p A(p)]nllxl...XnfllpllYl...ynll p"

PROOF. We only give the proof for n 2 since the general case follows in exactly

the same way. Let f21(x,y) g(x,y), then

x y
f(x,y) g(s,t)dtds

by Hider’s and the two dimensional Hardy inequality, with $ (O,)x(O,=),and

2]f(x,y) 12dxdy (f 2]xY f(x,y) IPdxdy)I/P(f 21f(x,y)/xylP’dxdy) I/p’

+ + +
P2(21xY f(x,y) lPdxdy)i/P(2]f21(x,y)IP’dxdy)I/P’"

+ +
On applying this estimate four times we obtain with d dxdy

2]lf]l
2 2(If(x,y)] 2 + If(x,-y) 2 + If(-x,-y)] 2 + lf(-x,y) 12)d

+
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< p2{(f21xY f(x,y)[Pd)I/P(f21f21(x,y)IP’d)l/P’
+ +

+ (f21xyf(x,-Y)IPd)I/P(f21f21(x,-Y)IP’d)I/P’
+ +

+ (f21xyf(-x,-y)IPd)I/P(f21f21(-x,-y)IP’d) I/p’

+ +

+ (f2 Ixyf (-x,y) Pd) i/P(f21 f21 (-x,y) P’d) I/P’
+ +

< p2{(f+21xylP[If(x,y) IP + If(x,-y)IP+ If(-x,-y) p + If(-x,y))P]d)I/P

x(/[R+21f21(x,y) IP’+ If21(x,-y)I p’

+If21(-x,-y) IP’ + If21(-x,y) IP’]d) I/p’}

p2(f21xyf(x,y IPN)I/P(/21f21(x,y)IP’d) I/p’’

where the last inequality follows from HSlder’s inequality. But by the sharp form of
2 [p A(p)]2 Ixyf IIp[ 12111pthe Hausdorff-Young inequality with n 2 we obtain [Ifll
2

Since ( )(s,t) 42st (s,t) the result follows.

3. WEIGHTED HIRSCHMAN ENTROPY INEQUALITY AND WEIGHTED HEISENBERG-WEYL INEQUALITY.

The results of the last section show that the Heisenberg-Weyl inequality is a

consequence of the Hausdorff-Young theorem. Recently a number of weighted Hausdorff-

Young inequalities have been obtained [5], [6], [7] and [8]. We shall use these results

in this section to obtain a weighted Hirschman entropy inequality as well as weighted

form of the Heisenberg-Weyl inequality. Here we consider weighted extensions in !
only.

Recall that if g is a Lebesgue measurable function on , then the equi-measurable

decreasing rearrangement of g is defined by g (t) inf{y > O: l{x g : Ig(x) Y}I t},

where y 0 and IEI denotes Lebesgue measure of the set E. Clearly, if g is an even

function on , decreasing on (0,), then for t O, g (t) g(t/2). We shall use this

fact below.

DEFINITION 3.1. Let u and v be locally integrable functions of . We write

(u,v) e F p 6 p 6 q < =, if,q’

sup (IS[u*(t)]qdt)I/q(fl/s[(I/v)*(t)]P’dt)i/P’< , (3.1)
0 0

where in the case p the second integral is replaced by the essential supremum of

(i/v)*(t) over (0, i/s).

If u and I/v are even and decreasing on (0, =) then (3.1) is equivalent to

sup (/s/2 [u(x) qdx) i/q (/i/(2s) I/p’v(x) -p dx) < (3.2)
s>o 0 0

and in this case we write (u, v) e Fp,q.
The weighted Hausdorff-Young inequality is given in the following theorem:

F*THEOREN 3.1. ([5; Theorem 1.1]). Suppose (u v) p,q, 4 p 4 q < and f e Lp.v
(i) If lim [ifn fllp, v 0 for a sequence of simple functions, then {n con-

n/

verges in L
q

to a function Lq. is independent of the sequence {n and is calledu u
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the Fourier transform of f.

(ii) there is a constant B 0 such that for all f Lp
v

B[IfII lq,u p,v"

(iii) If g e L?/u, q I, then Parseval’s formula

f (y)g(y)dy f f(t)(t)dt

(3.3)

holds.

We note ([5], [6], [8]) that Theorem 3.1 is sharp in the sense that if u and v

are even and satisfy (3.3), then (u, v) satisfies (3.2). The constant B in (3.3) is

not sharp, however it is of the form B k.C where k k(p,q) is independent of u and v

and C is the supremum of (3.1), and in the case u, I/v decreasing and even the supremum

(3.2).

A special case of Theorem 3.1 is the following:
l-2/p’ l-2/p F*COROLLARY 3.1. Suppose f e LPl/2/p, u v e < p < 2 wherev p,p

u and v are even, decreasing as 0, then

(f u(Y)P’-21(y)l p’
< k.C (f v(x)P-21f(x)l Pdx)I/P (3.4)
P

where Cp sup (fs/2 I/ I/(2s) (2-p) ’/ I/p’u(x)P -2dx) P v(x) P Pdx)
s>o 0 0

Utilizing the last result we now give a weighted form of Hirschman’s entropy in-

equality.

PROPOSITION 3.1. Suppose f e L2|-" LI/v, where u and v satisfy the conditions of

Corollary 3.1. If llfl12 and (3.4) holds with 0 < k 2 and Cp remains bounded as

p 2, then

f I(Y)121oglu(y)(y)12dy + If(x) 121g Iv(x)f(x)12dx

< 2 log k + 8 sup (fs/2fl/(2S)log lu(x)v(y)Idxdy).
s>o 0 0

PROOF. Since f E Lp l-2/p, < p < 2, we apply Corollary 3.1 with p 2-r, r > 0,
v

p’ 2-r’, r’ 0 and d(y) l(y) 12dy, dp(x) If(x) 12dx. Then (3.4) has the form

(f lu(y)(y)l-r’dp) I/(2-r’) 4 k sup [fs/2 -r’ I/(2s
u(x) dE f $(x)-r dx]I/(2-r

s>o 0 0

( Iv(x)f(x) l-rd) I/(2-r)

or, on raising the inequality ot the power (2-r’)(-I/r’), equivalently

(f Iu(Y)(Y)l-r’)-I/r’/(f Iv(x)f(x)l-rd) I/r

where

Mr sup [fs/2fl/(2S)[u(x)v(y)]-r’4dxdy]-I/r’
s>o 0 0

Given e > 0 there is an so 0 such that

Mr [fSo/2/I/(2S)[u(x)v(y)]-r’rdxdy]-I/r’ +
0

so that

k()-2/r’Mr,
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(/ lu(y)(Y)l-r’d)-I/r’/
(f Iv(x)f(x)l-rd)I/r

k([fs/2f I/(2s)[u(x)v(y)]-r’4dxdy]-I/r’ + e),
0 0

where we used the fact that k/2 < I. Now as r o+, r’ o-, then on applying (2.1)

to both sides of (3.5) we obtain

exp(f loglu(y)(y)Id)/exp( logll/[v(x)f(x)]Id)

(3.5)

< k[exp ISo’2fl’’2So//(l log[v(y)u(x)]4dxdy + e]
0 0

< k[exp sup /s/2/I/(2s) log[u(x)v(y)]4dxdy + e].
s>o 0 0

But e 0 is arbitrary so that on taking logarithms we have

fo f(y) 121oglu(Y)(Y)12dy + If(x) 121oglv(x)f(x)12dx

k + 4 sup(fS/21og- u(x)dx + fl/(2S)log v(y)dy)log
s>O 0 0

which yields the result.

Note that if u v and if k 2/e we obtain (2.2) with n I.

We can write the conclusion of Proposition 3.1 in the form

E[Ifl 2] + E[ll 2] < 2 log k + S sup (fs/2fl/(2S)loglu(x)v(y)Idxdy)
s>o 0 0

fl(y)121oglu(y)12dy ilf(x) 121oglv(x)12dx.

log(2 V[Ifl2]) and also with f replaced by weBut since ([ 2]) Et,f2j
2 2

obtain another uncertainty inequality

V[Ifl 2] V[II 2] > k-4 exp[-16 sup fs/2fl/(2S)logluvldxdy]
42e2 s>o 0 0

x exp(2 f l121oglul2dy) exp(2 fIfl21oglvl2dx).
If u v and k 2/e in this estimate we obtain (1.1).

THEOREM 3.2. (Heisenberg-Weyl inequality). If (I/u, v) e F p,q, p q

and f e S), then

llfll C( lu(x)xf(x)lq’dx)I/q’(fNlv(y)y(y)Ipdy)I/p" (3.6)

PROOF. Integration by parts and Hider’s inequality show that for q <

Ilfll < 2 lxllf(x)llf’(x)ldx
< 2(f Ixu(x)f(x)lq’dx)I/q’(f If’(x)/u(x)lqdx) I/q

< 2C(f Ixu(x)f(x)lq’dx)I/q’(f Iv(y)’(y)IPdx) I/p,

where the last inequality follows from (3.3). Since ’(y) 2iy (y) the result

follows.

Note that the case p also holds, provided the second integral in the F
P,q,

condition is interpreted as the essential supremum of (I/v) over (0, I/s).
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The same result holds also if we take (i/u, v) g Fp,q.
Observe also that the case u v E and q p’, < p < 2 reduces to (1.4), but

with a different constant.

Weighted inequalities of the form (3.6) were also obtained by Cowling and Price

[3] but by quite different methods.
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