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Abstract

We prove extensions of Menchoff’s inequality and the Menchoff-Rademacher theorem
for sequences {fn} ⊂ Lp, based on the size of the norms of sums of sub-blocks of the
first n functions.

The results are applied to the study of a.e. convergence of series
∑

n

anT
ng

nα
when T

is an L2-contraction, g ∈ L2, and {an} is an appropriate sequence.
Given a sequence {fn} ⊂ Lp(Ω, µ), 1 < p ≤ 2, of independent centered random vari-

ables, we study conditions for the existence of a set of x of µ-probability 1, such that for
every contraction T on L2(Y, π) and g ∈ L2(π), the random power series

∑

n fn(x)T
ng

converges π-a.e. The conditions are used to show that for {fn} centered i.i.d. with
f1 ∈ L log+ L, there exists a set of x of full measure such that for every contraction T

on L2(Y, π) and g ∈ L2(π), the random series
∑

n
fn(x)Tng

n converges π-a.e.

1 Introduction

Motivated by the problem of almost everywhere convergence of Fourier series, Plancherel
[37] studied the a.e. convergence of orthogonal series (for earlier work see the introduc-
tion of [38]). Rademacher [38] and Menchoff1 [31] proved (independently) the following
improvement of Plancherel’s result (which for Fourier series had been observed by Hobson
[22] to be equivalent to a result of Hardy [54, Theorem III.4.4]).

Theorem 1.1. Let (Ω, µ) be a probability space, and let {fn} ⊂ L2(µ) be an orthogonal
sequence. If

∑∞
n=1 ||fn||22(logn)2 <∞, then the series

∑∞
n=1 fn converges a.e.

When (Ω, µ) is a σ-finite measure space, let µ̃ be a probability equivalent to µ.
The order preserving isometry between Lp(µ) and Lp(µ̃) (e.g., [27, p. 189]) preserves
pointwise convergence, so all statements concerning one Lp space proved for probability
spaces, like Theorem 1.1, are valid also in σ-finite measure spaces. We therefore deal in
this paper only with (Ω, µ) a probability space.

Menchoff [31, Part III] extended Theorem 1.1 to the following.

Theorem 1.2. Let {fn} be a sequence in L2(µ), and let {ρn} be positive numbers such
that

∥

∥

∥

l
∑

k=j+1

fk

∥

∥

∥

2

2
≤

l
∑

k=j+1

ρ2
k for every l > j ≥ 0. (1)

If
∑∞

n=1 ρ
2
n(logn)2 <∞, then the series

∑∞
n=1 fn converges a.e.

1We use Menchoff’s own spelling of his name in the papers he wrote in French.
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A sequence {fn} ⊂ L2(µ) satisfying (1), for {ρn} with
∑∞

n=1 ρ
2
n <∞, was called quasi

orthogonal in [31, Part III]; this term is defined differently in [24], where an application
of Theorem 1.2 is given.

An important step in the proof of Theorem 1.1 is the following inequality for n
orthogonal functions (see Salem [41] for a different proof):

∥

∥

∥
max
1≤l≤n

|
l

∑

k=1

fk|
∥

∥

∥

2

2
≤ (2 + log2 n)2

n
∑

k=1

||fk||22 . (2)

In the proof of Theorem 1.1 in Zygmund [54, §XIII.10] it is also proved that under the

theorem’s assumptions we have
∥

∥

∥
supn≥1 |

∑n
k=1 fk|

∥

∥

∥

2

2
≤ A

∑∞
k=1(log k)2||fk||22 .

Khintchine and Kolmogorov [26] proved that if {fn} ⊂ L2 is a sequence of centered
independent random variables, then convergence of

∑

n ||fn||22 implies a.e. convergence
of

∑

n fn. Marcinkiewicz and Zygmund [30] obtained results for series of centered inde-
pendent random variables in Lp, 1 < p < 2.

Remark. Note that for any sequence {fn} ⊂ Lp(µ), 1 ≤ p < ∞, convergence
of

∑

n ||fn||p implies a.e. absolute convergence of
∑

n fn (we may assume that µ is a
probability, and obtain convergence of

∑

n ||fn||1).
Tandori [48] (for a detailed proof see also [49]) proved for {fn} orthogonal that if

∑∞
n=1 ||fn||22 logn log+( 1

||fn||22
) < ∞, then

∑

n fn converges a.e., which strictly improves

Theorem 1.1 (see [34] and [49]). This condition is necessary in the following sense [46]:
If {an} is a sequence such that

∑∞
n=1 anφn converges a.e. for every orthonormal se-

quence {φn}, then
∑∞
n=1 |an|2 logn log+( 1

|an|2 ) < ∞. If {|an|} is non-increasing, then
∑∞

n=1 |an|2(log n)2 < ∞ [47]. For additional information see [35]. Weber [51] extended
Theorem 1.2 by the method of majorizing measures, replacing

∑

n ρ
2
n(logn)2 < ∞ by

∑∞
n=1 ρ

2
n(logn)1−δ

(

log+( 1
ρ2n

)
)1+δ

<∞ for some 0 ≤ δ < 1.

In [31, Theorem 12] Menchoff proved that for {fn} orthogonal, convergence of the
series

∑∞
n=1 ||fn||α2 for some α < 2 implies a.e convergence of

∑

n fn. The inequality
|| · ||`2 ≤ || · ||`α for 1 ≤ α < 2 allows to deduce this result from the following Billinglsey-
Stechkin theorem (see [6, p. 102, problem 6]; a proof for p > 2, based upon ideas of
Stechkin, is given in Gaposhkin [15, Theorem 1.3.5]; Weber [53] has recently proved the
theorem by the metric entropy method).

Theorem 1.3. Let {fn}∞n=1 ⊂ Lp(µ) with 1 < p < ∞. Let {mn}∞n=1 be a sequence of
non-negative numbers, such that for some q > 1 we have

∥

∥

∥

l
∑

k=j+1

fk

∥

∥

∥

p

p
≤ (

l
∑

k=j+1

mk)
q for l > j ≥ 0.

If
∑∞

n=1mn <∞, then
∑∞

n=1 fn converges a.e.

Remarks. 1. For q = 1 Theorem 1.3 is no longer true (e.g., Menchoff’s example [31,
Theorem 3]).

2. From [32, Theorem 1] we obtain
∥

∥

∥
supn≥1 |

∑n
k=1 fk|

∥

∥

∥

p

p
≤ Cp,q(

∑∞
n=1mn)q.

2 Extensions of the Menchoff-Rademacher theorem

In this section we use strong maximal inequalities of Móricz [32] to obtain extensions of
of Theorem 1.1 for sequences in Lp, and discuss their connection with previously known
results.
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Definition 2.1. A triangular sequence of real numbers {d(j, l) : 0 ≤ j < l ≤ n}, is said
to be super additive if

d(j, k) + d(k, l) ≤ d(j, l) for any 0 ≤ j < k < l ≤ n. (3)

Remark. If {d(j, l)} is a non-negative super additive sequence and q > 1, then
{(d(j, l))q : 0 ≤ j < l ≤ n}, denoted by dq, is also super additive, since αq+βq ≤ (α+β)q

for every α, β ≥ 0 (in fact || · ||`q ≤ || · ||`1).

Example 2.1. Let {mk}∞k=1 be a sequence of non-negative numbers, and let q ≥ 1. For

any n and 0 ≤ j < l ≤ n, define d(j, l) =
∑l

k=j+1mk, which is obviously super additive.

By the previous remark, {(∑l
k=j+1 mk)

q} is a super additive sequence.

Remark. [29] Let d(j, l) be a non-negative super additive sequence defined for every
l > j ≥ 0. Then by (3) d(0, n) is non-decreasing, and the sequence {mn} defined by
m1 = d(0, 1) and mn = d(0, n) − d(0, n− 1) for n > 1 satisfies, by (3),

d(j, l) ≤ d(0, l) − d(0, j) =

l
∑

k=j+1

mk for l > j ≥ 0. (4)

Definition. Let {d(j, l) : 0 ≤ j < l ≤ n} be a non-negative super additive sequence,
and for {fk : 1 ≤ k ≤ n} ⊂ Lp(µ) put

A(d)
n = inf







A :
∥

∥

∥

l
∑

k=j+1

fk

∥

∥

∥

p

p
≤ A · d(j, l) for every 0 ≤ j < l ≤ n







. (5)

Clearly A
(d)
n1 ≤ A

(d)
n for n1 < n. Note that when A

(d)
n <∞, we must have

∑l
k=j+1 fk = 0

whenever d(j, l) = 0, so

A(d)
n = max

{

||∑l
k=j+1 fk||pp
d(j, l)

: d(j, l) 6= 0, 0 ≤ j < l ≤ n

}

.

If d(j, l) > 0 for 0 ≤ j < l ≤ n, then A
(d)
n is finite, by the above formula.

The following lemma (and proposition) can be deduced from Theorem 3 of Móricz
[32], which was proved by the method of [42] (see [33, Theorem 3.1] for a more general
form). For the sake of completeness we include a different proof, based on the proof
of Menchoff’s inequality as given in Doob [12, Ch. IV, Lemma 4.1, p. 156] (see also
Zygmund [54, Ch. XIII, §10]).

Lemma 2.1. Let {fk}nk=1 ⊂ Lp(µ), 1 < p <∞. Let {d(j, l) : 0 ≤ j < l ≤ n} be a super

additive sequence of non-negative numbers with A
(d)
n <∞. Then

∥

∥

∥
max
1≤l≤n

|
l

∑

k=1

fk|
∥

∥

∥

p

p
≤ A(d)

n (2 + log2 n)pd(0, n).

Proof. Let 0 ≤ r be an integer with 2r < n ≤ 2r+1. Put gk = fk if 1 ≤ k ≤ n; for
n < k ≤ 2r+1 put gk = 0. Also, put d̃(j, l) = d(j, l) if 0 ≤ j < l ≤ n; put d̃(j, l) = 0 if
l > j ≥ n; for j < n ≤ l put d̃(j, l) = d(j, n). Clearly {d̃(j, l) : 0 ≤ j < l ≤ 2r+1} is a
super additive sequence.

By the definitions of {gk} and d̃, for any 0 ≤ j < l ≤ 2r+1 we have

∣

∣

∣

∣

∣

∣

l
∑

k=j+1

gk

∣

∣

∣

∣

∣

∣

p

p
≤ A(d)

n d̃(j, l) (∗)
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with the same A
(d)
n as above.

For any 0 ≤ i ≤ r + 1 and 1 ≤ m ≤ 2r+1−i, define Sm,i =
∑m2i

k=(m−1)2i+1 gk and

S∗
i = max

1≤m≤2r+1−i
|Sm,i|. Clearly, |S∗

i |p ≤
∑2r+1−i

m=1 |Sm,i|p. Integration, (*), and super

additivity of d̃ yield

||S∗
i ||pp ≤

2r+1−i
∑

m=1

||Sm,i||pp ≤
2r+1−i
∑

m=1

A(d)
n d̃((m− 1)2i,m2i) ≤ A(d)

n d̃(0, 2r+1) = A(d)
n d(0, n).

Using the binary expansion of j, the sum
∑j
k=1 gk can be represented as a sum of

disjoint blocks of different sizes Sm,i for suitable m’s and i’s. By this we have that

max
1≤j≤2r+1

|
j

∑

k=1

gk| ≤
r+1
∑

i=0

S∗
i .

Hence

∥

∥

∥
max

1≤j≤n
|
j

∑

k=1

fk|
∥

∥

∥

p
=

∥

∥

∥
max

1≤j≤2r+1
|
j

∑

k=1

gk|
∥

∥

∥

p
≤

r+1
∑

i=0

‖S∗
i ‖p ≤ (r + 2)[A(d)

n d(0, n)]
1
p

and the result follows.

Remarks. 1. For p = 2 and {fk}nk=1 orthogonal, Menchoff’s inequality (2) follows

by taking d(j, l) =
∑l

k=j+1 ||fk||22.
2. For p = 1 we easily conclude

∥

∥

∥
max
1≤l≤n

|
l

∑

k=1

fk|
∥

∥

∥

1
≤

n
∑

k=1

||fk||1 ≤
n

∑

k=1

A(d)
n d(k − 1, k) ≤ A(d)

n d(0, n).

3. Billingsley [6, p. 102, problem 5] outlines a proof of the lemma for the special case

of A
(d)
n = 1 for d(j, l) as in Example 2.1. In any case, defining d′(i, j) = A

(d)
n d(i, j) we

obtain A
(d′)
n = 1, so for fixed n the assumption A

(d)
n = 1 is not a restriction.

4. The use of sequences satisfying (3) in the context of Menchoff’s inequality is
implicit in [42], and explicit in [44]. More general sequences were used in [33].

5. Also other authors, like Hannan [21, Lemma], Gaposhkin [16],[17, Theorem 3], and
Houdré [23, e.g., Theorem 3.1], considered various extensions of Menchoff’s inequality,
or new applications of it, all beyond the scope of orthogonal functions.

6. An inspection of the proof of the lemma shows that the result is true for an
arbitrary Banach lattice of functions.

Proposition 2.2. Let {fk}nk=1 ⊂ Lp(µ) with 1 < p < ∞. Let {d(j, l) : 0 ≤ j < l ≤ n}
be a super additive sequence of non-negative numbers with A

(d)
n finite. Then for any

0 ≤ n1 < n, we have

∣

∣

∣

∣

∣

∣
max
n1<l≤n

|
l

∑

k=n1+1

fk|
∣

∣

∣

∣

∣

∣

p

p
≤ A(d)

n (2 + log2(n− n1))
pd(n1, n).

Proof. For n1 = 0 this is Lemma 2.1, so we assume n1 > 0. Put gk = fk+n1 for any
1 ≤ k ≤ n− n1, and put d̃(j, l) = d(j + n1, l + n1) for any 0 ≤ j < l ≤ n− n1; clearly d̃
is a super additive sequence on {0 ≤ j < l ≤ n− n1}.

For 0 ≤ j < l ≤ n− n1 we have

‖
l

∑

k=j+1

gk‖pp = ‖
l+n1
∑

k=j+1+n1

fk‖pp ≤ A(d)
n d(j + n1, l + n1) = A(d)

n d̃(j, l),

4



which yields that Ã
(d̃)
n−n1

, defined by (5) for d̃ and {gk}, satisfies Ã
(d̃)
n−n1

≤ A
(d)
n < ∞.

Using Lemma 2.1 we obtain

∣

∣

∣

∣

∣

∣
max

n1<j≤n
|

j
∑

k=n1+1

fk|
∣

∣

∣

∣

∣

∣

p

p
=

∣

∣

∣

∣

∣

∣
max

1≤j≤n−n1

|
j

∑

k=1

gk|
∣

∣

∣

∣

∣

∣

p

p
≤

Ã
(d̃)
n−n1

(2 + log2(n− n1))
pd̃(0, n− n1) ≤ A(d)

n (2 + log2(n− n1))
pd(n1, n).

Remark. A tighter inequality than that formulated in the proposition, which de-

pends only on n− n1, is given in the last line of the proof, using Ã
(d̃)
n−n1

instead of A
(d)
n .

Proposition 2.3. Let {fk}nk=1 ⊂ Lp(µ), 1 < p <∞, and let {d(j, l) : 0 ≤ j < l ≤ n} be

a super additive sequence of non-negative numbers, such that A
(dq)
n <∞ for some q > 1.

Then for any 0 ≤ n1 < n we have

∥

∥

∥
max
n1<l≤n

|
l

∑

k=n1+1

fk|
∥

∥

∥

p

p
≤ Cp,qA

(dq)
n dq(n1, n), (6)

where Cp,q =
(

1 − 2(1−q)/p)−p.

Proof. We extend d to all pairs l > j, by putting d(j, l) = d(j, n) for l > n > j and
d(j, l) = 0 for j ≥ n. It is easy to check that d(j, l) is super additive for all l > j ≥ 0.

For k > n define fk = 0, and let d̃(j, l) = (A
(dq)
n )1/qd(j, l). It is easy to check that

‖∑l
k=j+1 fk‖pp ≤ (d̃(j, l))q for l > j ≥ 0. We can now apply Theorem 1 of Móricz

[32].

Remark. A different value for Cp,q was obtained by Longnecker and Serfling [29].

Notation. Unless otherwise specified, all logarithms in the sequel are to the base 2.

Theorem 2.4. Let {fn}∞n=1 ⊂ Lp(µ) with 1 < p < ∞. Let {d(j, l), l > j ≥ 0} be a
non-negative super additive sequence. and let 1 ≤ q < ∞. Put m1 = d(0, 1), mn =

d(0, n)−d(0, n−1) for n > 1, and define A
(dq)
n as in (5). If

∑∞
n=1(A

(dq)
2n )1/q(logn)p/qmn

converges, then
∑∞

n=1 fn converges a.e. and in Lp-norm. Furthermore,

∥

∥

∥
sup
n≥1

|
n

∑

k=1

fk|
∥

∥

∥

p
≤ 2

[

||f1||p + ||f2||p + p(p−1)/p
(

∞
∑

n=1

(A
(dq)
2n )1/q(logn)p/qmn

)q/p]

. (7)

Proof. By the remark following Example 2.1, (4) yields d̂(j, l) :=
∑l

k=j+1mk ≥ d(j, l)

for any l > j ≥ 0. Hence A
(d̂q)
n ≤ A

(dq)
n for every n, so it is enough to prove the theorem

for d̂, i.e., we may assume d(j, l) =
∑l

k=j+1mk.

(a) Using the following facts: (i) the definitions of dq and A
(dq)
n ; (ii) A

(dq)
n non-

decreasing, so for k ≥ 2v + 1, we have A
(dq)
2v+1 ≤ A

(dq)
2k ; (iii) || · ||`q ≤ || · ||`1 , we obtain

∞
∑

v=1

∫

vp
∣

∣

∣

2v+1
∑

k=2v+1

fk

∣

∣

∣

p

dµ ≤
∞
∑

v=1

vpA
(dq)
2v+1

(

2v+1
∑

k=2v+1

mk

)q

≤

∞
∑

v=1

(

2v+1
∑

k=2v+1

(A
(dq)
2k )1/q(log k)p/qmk

)q

≤
(

∞
∑

v=1

2v+1
∑

k=2v+1

(A
(dq)
2k )1/q(log k)p/qmk

)q

=

5



(

∞
∑

n=1

(A
(dq)
2n )1/q(logn)p/qmn

)q

<∞.

Hence (by Beppo Levi) the integrand
∑∞

v=1 v
p
∣

∣

∣

∑2v+1

k=2v+1 fk

∣

∣

∣

p

converges a.e.

(b) For any naturals r and m we obtain, using Hölder’s inequality,

∣

∣

∣

2m+r
∑

k=2m+1

fk

∣

∣

∣

p

=
∣

∣

∣

m+r−1
∑

v=m

2v+1
∑

k=2v+1

fk

∣

∣

∣

p

≤
(

m+r−1
∑

v=m

v
∣

∣

∣

2v+1
∑

k=2v+1

fk

∣

∣

∣

1

v

)p

≤

(

m+r−1
∑

v=m

vp
∣

∣

∣

2v+1
∑

k=2v+1

fk

∣

∣

∣

p)(

m+r−1
∑

v=m

1

vp/(p−1)

)p−1

≤

(

∞
∑

v=m

1

vp/(p−1)

)p−1( ∞
∑

v=1

vp
∣

∣

∣

2v+1
∑

k=2v+1

fk

∣

∣

∣

p)

.

The first factor in the last line converges to zero (as m→ ∞) as the tail of a convergent

series (since 1 < p < ∞), while the last factor converges a.e. by (a), so {
∑2m

k=1 fk} is a
Cauchy sequence a.e., and hence converges a.e. By taking integrals of the above inequal-

ity, and considering the convergence proved in (a), {∑2m

k=1 fk} is a Cauchy sequence in
Lp-norm, and hence converges in norm.

(c) Using Proposition 2.2, and the inequality || · ||`q ≤ || · ||`1 , we have

∞
∑

m=1

∫

max
2m<n≤2m+1

∣

∣

∣

n
∑

k=2m+1

fk

∣

∣

∣

p

dµ ≤
∞
∑

m=1

A
(dq)
2m+1m

p
(

2m+1
∑

k=2m+1

mk

)q

≤

∞
∑

m=1

(

2m+1
∑

k=2m+1

(A
(dq)
2k )1/q(log k)p/qmk

)q

≤
(

∞
∑

m=1

2m+1
∑

k=2m+1

(A
(dq)
2k )1/q(log k)p/qmk

)q

=

(

∞
∑

n=1

(A
(dq)
2n )1/q(logn)p/qmn

)q

<∞ .

The above inequality clearly yields that max
2m<n≤2m+1

|∑n
k=2m+1 fk| → 0 asm→ ∞, almost

evrywhere and in Lp-norm.

Now, (b) and (c) imply that
∑∞

n=1 fn converges a.e. to g := lim
m→∞

∑2m

n=1 fn, since for

2m < n ≤ 2m+1, we have

|
n

∑

k=1

fk − g| ≤ |
2m
∑

k=1

fk − g| + |
n

∑

k=2m+1

fk| ≤ |
2m
∑

k=1

fk − g| + max
2m<n≤2m+1

|
n

∑

k=2m+1

fk| .

By considering the norm convergence proved in (a) and (b), the Lp-norm convergence
follows by taking the Lp-norm in the above inequality.

Proof that the maximal function is in Lp: The inequality in (b) with m = 1 yields

sup
r≥1

∣

∣

∣

2r+1
∑

k=3

fk

∣

∣

∣

p

≤
(

∞
∑

v=1

1

vp/(p−1)

)p−1( ∞
∑

v=1

vp
∣

∣

∣

2v+1
∑

k=2v+1

fk

∣

∣

∣

p)

.

Integration of the above inequality and application of (a) yield

∥

∥

∥
sup
r≥1

∣

∣

∣

2r+1
∑

k=3

fk

∣

∣

∣

∥

∥

∥

p

p
≤ pp−1

(

∞
∑

n=1

(A
(dq)
2n )1/q(log n)p/qmn

)q

(∗)
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The inequality in (c) yields

∥

∥

∥
sup
m≥1

max
2m<n≤2m+1

∣

∣

∣

n
∑

k=2m+1

fk

∣

∣

∣

∥

∥

∥

p

p
≤

∫ ∞
∑

m=1

max
2m<n≤2m+1

∣

∣

∣

n
∑

k=2m+1

fk

∣

∣

∣

p

dµ ≤

(

∞
∑

n=1

(A
(dq)
2n )1/q(log n)p/qmn

)q

<∞ . (∗∗)

Since

sup
n≥1

|
n

∑

k=1

fk| ≤ |f1| + |f2| + sup
n≥3

|
n

∑

k=1

fk| ,

combining (*) and (**) with

∥

∥

∥
sup
n≥3

|
n

∑

k=1

fk|
∥

∥

∥

p
≤ ||f1||p + ||f2||p +

∥

∥

∥
sup
m≥2

|
2m
∑

k=3

fk|
∥

∥

∥

p
+

∥

∥

∥
sup
m≥1

max
2m<n≤2m+1

|
n

∑

k=2m+1

fk|
∥

∥

∥

p

we obtain inequality (7) for the maximal function.

Remarks. 1. The proof of the a.e. convergence is based on the proof of the
Menchoff-Rademacher theorem as given in Alexits [1, p. 80].

2. Let p = 2 and {fn}∞n=1 orthogonal in L2. By taking q = 1 and d(j, l) =
∑l

k=j+1 ‖fk‖2
2 in the above theorem, we simply get the Menchoff-Rademacher theorem.

3. Zygmund’s proof of the Menchoff-Rademacher theorem [54, Theorem XIII.10.21] is
different from Alexits’s, and gives also the square-integrability of the maximal function.
Our proof that the maximal function is in Lp is different from Zygmund’s (which uses
the Riesz-Fischer theorem).

4. Clearly ||fn||pp ≤ A
(dq)
n mq

n for every n. For p = 1 this yields
∑

n ||fn||1 ≤
∑

nA
(dq)
2n mq

n. The condition of the theorem for p = 1 implies
∑

n(A
(dq)
2n )1/qmn < ∞,

which yields
∑

nA
(dq)
2n mq

n <∞. Hence
∑

n ||fn||1 <∞, so
∑

n |fn| <∞ a.e.

In the Menchoff-Rademacher theorem q = 1, and A
(dq)
n = 1 for every n. When q > 1

much more can be said, by using Proposition 2.3.

Theorem 2.5. Let {fn}∞n=1 ⊂ Lp(µ) with 1 < p < ∞. Let {d(j, l) : l > j ≥ 0} be

a non-negative super additive sequence, and assume that {A(dq)
n } is bounded for some

1 < q <∞. If {d(0, n)} is bounded (i.e., converges), then
∑∞
n=1 fn converges a.e and in

Lp-norm. Furthermore,

∥

∥

∥
sup
n

|
n

∑

k=1

fk|
∥

∥

∥

p

p
≤ Cp,q sup

n
A(dq)
n lim

n→∞
d(0, n).

Proof. Let A = supnA
(dq)
n . Put mn = d(0, n)−d(0, n−1). Since d(n1, n) ≤ ∑n

k=n1+1mk

by (4), letting n→ ∞ in (6) yields

∥

∥

∥
sup
l>n1

|
l

∑

k=n1+1

fk|
∥

∥

∥

p

p
≤ ACp,q

(

∞
∑

k=n1+1

mk

)q −→
n1→∞

0.

This shows all the assertions.

Remark. Theorem 1.3 is the case where d(j, l) =
∑l

k=j+1mk for l > j ≥ 0.

Notation. For a non-negative function g(u) and α real we denote [g(u)]α by gα(u).

We will show that when q > 1 Theorem 2.4 can be improved, even without bound-

edness of {A(dq)
n }, by assuming convergence of a smaller numerical series.
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Theorem 2.6. Let {fn}∞n=1 ⊂ Lp(µ) with 1 < p <∞. Let {d(j, l), l > j ≥ 0} be a non-
negative super additive sequence, and let 1 < q <∞. Put m1 = d(0, 1), mn = d(0, n) −
d(0, n−1) for n > 1, and define A

(dq)
n as in (5). Let ψ(u) be a positive increasing function

such that
∑∞

n=1
1

ψp/(p−1)(n)
converges. If

∑∞
n=1(A

(dq)
2n )1/qψp/q(logn)mn converges, then

∑∞
n=1 fn converges a.e. and in Lp-norm. Furthermore, supn≥1 |

∑n
k=1 fk| ∈ Lp, and if

ψ(0) ≥ 1 there exist C > 0 such that

∥

∥

∥
sup
n≥1

|
n

∑

k=1

fk|
∥

∥

∥

p
≤ 2

[

||f1||p + ||f2||p + C(p−1)/p
(

∞
∑

n=1

(A
(dq)
2n )1/qψp/q(logn)mn

)q/p]

(8)

Proof. The proof proceeds along the same lines as that of Theorem 2.4, Here we use
Proposition 2.3 instead of Proposition 2.2. As in Theorem 2.4, it is enough to prove the
theorem when d(j, l) =

∑l
k=j+1mk.

(a) Using the monotonicity of ψ, we obtain

∞
∑

v=1

∫

ψp(v)
∣

∣

∣

2v+1
∑

k=2v+1

fk

∣

∣

∣

p

dµ ≤
∞
∑

v=1

ψp(v)A
(dq)
2v+1

(

2v+1
∑

k=2v+1

mk

)q

≤

∞
∑

v=1

(

2v+1
∑

k=2v+1

(A
(dq)
2k )1/qψp/q(log k)mk

)q

≤
(

∞
∑

v=1

2v+1
∑

k=2v+1

(A
(dq)
2k )1/qψp/q(log k)mk

)q

=

(

∞
∑

n=1

(A
(dq)
2n )1/qψp/q(logn)mn

)q

<∞.

Hence (by Beppo Levi) the integrand
∑∞

v=1 ψ
p(v)

∣

∣

∣

∑2v+1

k=2v+1 fk

∣

∣

∣

p

converges a.e.

(b) For any naturals r and m we obtain, using Hölder’s inequality,

∣

∣

∣

2m+r
∑

k=2m+1

fk

∣

∣

∣

p

=
∣

∣

∣

m+r−1
∑

v=m

2v+1
∑

k=2v+1

fk

∣

∣

∣

p

≤
(

m+r−1
∑

v=m

ψ(v)
∣

∣

∣

2v+1
∑

k=2v+1

fk

∣

∣

∣

1

ψ(v)

)p

≤

(

m+r−1
∑

v=m

ψp(v)
∣

∣

∣

2v+1
∑

k=2v+1

fk

∣

∣

∣

p)(

m+r−1
∑

v=m

1

ψp/(p−1)(v)

)p−1

≤

(

∞
∑

v=m

1

ψp/(p−1)(v)

)p−1( ∞
∑

v=1

ψp(v)
∣

∣

∣

2v+1
∑

k=2v+1

fk

∣

∣

∣

p)

.

Using (a) and (b) we conclude that {∑2m

k=1 fk} is a Cauchy sequence a.e. and in Lp-norm,
hence converges a.e. and in norm.

(c) Using Proposition 2.3, we have

∞
∑

m=1

∫

max
2m<n≤2m+1

∣

∣

∣

n
∑

k=2m+1

fk

∣

∣

∣

p

dµ ≤ Cp,q

∞
∑

m=1

A
(dq)
2m+1

(

2m+1
∑

k=2m+1

mk

)q

≤

Cp,q

∞
∑

m=1

(

2m+1
∑

k=2m+1

(A
(dq)
2k )1/qmk

)q

≤ Cp,q

(

∞
∑

m=1

2m+1
∑

k=2m+1

(A
(dq)
2k )1/qmk

)q

=

Cp,q

(

∞
∑

n=1

(A
(dq)
2n )1/qmn

)q

≤ Cp,q

(

∞
∑

n=1

(A
(dq)
2n )1/qψp/q(logn)mn

)q

<∞ .

The above inequality yields that max
2m<n≤2m+1

|∑n
k=2m+1 fk| → 0 as m → ∞, almost

everywhere and in Lp-norm.
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Now, (b) and (c) imply that
∑∞

n=1 fn converges a.e. and in Lp-norm.

Proof that the maximal function is in Lp: The inequality in (b) with m = 1 yields

sup
r≥1

∣

∣

∣

2r+1
∑

k=3

fk

∣

∣

∣

p

≤
(

∞
∑

v=1

1

ψp/(p−1)(v)

)p−1( ∞
∑

v=1

ψp(v)
∣

∣

∣

2v+1
∑

k=2v+1

fk

∣

∣

∣

p)

.

Integration of the above inequality and application of (a) yield

∥

∥

∥
sup
r≥1

∣

∣

∣

2r+1
∑

k=3

fk

∣

∣

∣

∥

∥

∥

p

p
≤ Kp−1

(

∞
∑

n=1

(A
(dq)
2n )1/qψp/q(log n)mn

)q

(∗)

By assumption ψ(n) → ∞, so ψ(x) ≥ 1 for x ≥ N . The inequality in (c) yields

∥

∥

∥
sup
m≥1

max
2m<n≤2m+1

∣

∣

∣

n
∑

k=2m+1

fk

∣

∣

∣

∥

∥

∥

p

p
≤

∫ ∞
∑

m=1

max
2m<n≤2m+1

∣

∣

∣

n
∑

k=2m+1

fk

∣

∣

∣

p

dµ ≤

Cp,q

(

∞
∑

n=1

(A
(dq)
2n )1/qmn

)q

≤ Cp,q

(

∞
∑

n=1

(A
(dq)
2n )1/qψp/q(log n)mn

)q

+B <∞ , (∗∗)

Where B is 0 if ψ(0) ≥ 1, and is otherwise a finite sum without ψ(logn) of the terms
having ψ(logn) < 1. When ψ(0) ≥ 1 we use (*) and (**), and obtain (8) for the maximal
function with C = K(p−1)/q + (Cp,q)

1/q.

Corollary 2.7. Let {fn}∞n=1 ⊂ Lp(µ) with 1 < p < ∞. Let {mn}∞n=1 be a sequence of

non-negative numbers, and put d(j, l) =
∑l

k=j+1mk for 0 ≤ j < l. Fix 1 < q <∞, and

define A
(dq)
n as in (5). If

∑∞
n=2(A

(dq)
2n )1/q(log n)(p−1)/q(log logn)(p−1)/q+εmn converges

for some ε > 0, then
∑∞

n=1 fn converges a.e. and in Lp-norm. Furthermore,

∥

∥

∥
sup
n≥1

|
n

∑

k=1

fk|
∥

∥

∥

p
≤

2
[

||f1||p + ||f2||p + C
(

∞
∑

n=2

(A
(d)
2n )1/q(logn)(p−1)/q(log log n)(p−1)/q+εmn

)q/p]

for some C > 0.

When q ≥ p, Theorem 2.4 (and Corollary 2.7) can be improved as follows.

Theorem 2.8. Assume that in Theorem 2.4 q ≥ p > 1. If
∑∞

n=1

(

A
(dq)
n

)1/q
mn < ∞,

then
∑∞
n=1 fn converges a.e. and in Lp-norm, with supn≥1 |

∑n
k=1 fk| ∈ Lp.

Proof. As in the proof of Theorem 2.6, we may assume d(j, l) =
∑l

k=j+1mk. For

brevity denote A
(dq)
n by An. By definition, ||fn||pp ≤ Anm

q
n. By induction on l we

prove ‖∑l
k=j+1 fk‖pp ≤ (

∑l
k=j+1 A

1/q
k mk)

q for 0 ≤ j < l, using αq/p+βq/p ≤ (α+β)q/p,
as follows.

∥

∥

∥

l+1
∑

k=j+1

fk

∥

∥

∥

p
≤

(

l
∑

k=j+1

A
1/q
k mk

)q/p

+
(

A
1/q
l+1ml+1

)q/p

≤
(

l+1
∑

k=j+1

A
1/q
k mk

)q/p

.

Hence the assertions of the theorem follow from Theorem 2.5; see also Theorem 1.3.
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Theorem 2.9. Let {fn}∞n=1 ⊂ Lp(µ) with 1 < p < ∞. Let {mn}∞n=1 be a sequence of
non-negative numbers, and let 1 ≤ q <∞. Assume that for any n > 0 there is a constant
An <∞ such that

∥

∥

∥

l
∑

k=j+1

fk

∥

∥

∥

p

p
≤ An(

l
∑

k=j+1

mk)
q for 0 ≤ j < l ≤ n. (9)

Then
∑∞
n=1 fn converges a.e. and in Lp-norm, with supn≥1 |

∑n
k=1 fk| ∈ Lp(µ), if one

of the following sets of conditions holds:
(i) q = 1 and

∑∞
n=1 A2n(logn)pmn <∞.

(ii) q > 1, {An} is bounded, and
∑∞
n=1mn <∞.

(iii) p > q > 1 and
∑∞

n=2A
1/q
2n (logn)(p−1)/q(log logn)(p−1)/q+εmn <∞.

(iv) q ≥ p > 1 and
∑∞

n=1A
1/q
n mn <∞.

Proof. The previous results apply to d(j, l) =
∑l

k=j+1mk, since A
(dq)
n ≤ An.

Proposition 2.10. Let {an} be a sequence of complex numbers, and let 1 < p <∞ and
1 ≤ t <∞. Let {fn} ⊂ Lp(µ) such that for some constant C > 0 we have

∥

∥

∥

l
∑

k=j+1

akfk

∥

∥

∥

p
≤ C

(

l
∑

k=j+1

|ak|t
)1/t

for every l > j ≥ 0 (10)

If either
(i) p ≤ t and

∑∞
n=1 |an|p(logn)p <∞,

or
(ii) p > t and

∑∞
n=1 |an|t <∞,

then
∑∞
n=1 anfn converges a.e. Furthermore, supn≥1 |

∑n
k=1 akfk| is in Lp(µ).

Proof. (i) Since t/p ≥ 1, condition (10) and the inequality || · ||`t/p
≤ || · ||`1 yield

∥

∥

∥

l
∑

k=j+1

akfk

∥

∥

∥

p

p
≤ Cp

(

l
∑

k=j+1

|ak|p·t/p
)p/t

≤ Cp
l

∑

k=j+1

|ak|p

so condition (9) is satisfied by the sequence {akfk}, withmk = |ak|p, q = 1, and An = Cp.
Now Theorem 2.9(i) applies when

∑∞
n=1 |an|p(logn)p <∞.

(ii) Condition (10) yields
∥

∥

∥

∑l
k=j+1 akfk

∥

∥

∥

p

p
≤

(

∑l
k=j+1 |Cak|t

)p/t

for every l >

j ≥ 0, and since p > t we obtain the a.e. convergence of
∑

k akfk from Theorem 1.3.
Proposition 2.3 yields

∥

∥

∥
max

1≤l≤n
|
l

∑

k=1

akfk|
∥

∥

∥

p

p
≤ Cp,p/t

(

n
∑

k=1

|Cak|t
)p/t

.

Letting n→ ∞ we obtain that supn≥1 |
∑n
k=1 akfk| is in Lp(µ).

Remarks. 1. When p < t, convergence of
∑

n |an|p(log n)p implies convergence of
∑

n |an|t. When p > t, convergence of
∑

n |an|t implies that of
∑

n |an|p.
2. Theorem 1.2 follows by applying Proposition 2.10(i) to { 1

ρk
fk}, with p = t = 2

and ak = ρk, since (10) follows from (1).

In the sequel we will denote the unit circle by Γ, and the normalized Haar (Lebesgue)
measure by dλ.

10



Proposition 2.11. Let {an} be a sequence of complex numbers, and let 1 ≤ p <∞ and
q ≥ 2 with dual index q′ = q/(q − 1). Let {fn} ⊂ Lp(µ) such that for some constant
C > 0 we have

∥

∥

∥

l
∑

k=j+1

akfk

∥

∥

∥

p
≤ C

∥

∥

∥

l
∑

k=j+1

akλ
k
∥

∥

∥

Lq(dλ)
for any l > j ≥ 0. (11)

Then: (i) (10) holds with t = q′. (ii) when q′ ≤ p, for every l > j ≥ 0 we have

∥

∥

∥

l
∑

k=j+1

akfk

∥

∥

∥

p
≤ C

(

l
∑

k=j+1

|ak|q
′
)1/q′

≤ C(l − j)
p−1

p − 1
q

(

l
∑

k=j+1

|ak|p
)1/p

. (12)

Proof. Note that (11) implies ||fn||p ≤ C when an 6= 0. For q = ∞ we have q′ = 1, and
we combine (11) with

∥

∥

∥

l
∑

k=j+1

akλ
k
∥

∥

∥

L∞(dλ)
≤

l
∑

k=j+1

|ak| ≤ (l − j)
( 1

l − j

l
∑

k=j+1

|ak|p
)1/p

.

(i) Assume 2 ≤ q <∞. Then 1 < q′ ≤ 2, so by the Hausdorff-Young theorem we obtain

(

∫

Γ

|
l

∑

k=j+1

akλ
k|qdλ

)1/q

≤
(

l
∑

k=j+1

|ak|q
′
)1/q′

.

(ii) When 1 < q′ ≤ p, the inequality || · ||q′ ≤ || · ||p in probability spaces yields

(

l
∑

k=j+1

|ak|q
′
)1/q′

= (l−j)1/q′
( 1

l − j

l
∑

k=j+1

|ak|q
′
)1/q′

≤ (l−j)1/q′
( 1

l− j

l
∑

k=j+1

|ak|p
)1/p

.

Using (11) the result follows.

Remarks. 1. When supn ‖fn‖p < ∞ and all an are non-negative, (11) holds with
q = ∞.

2. By Proposition 2.11, (11) implies (10) with t = q′, so Proposition 2.10 can be
applied.

3. Recall the following definition (see [23] and the references therein): Let 1 ≤
p, q ≤ ∞. A sequence of random variables {fn} is said to be (p, q)-bounded, if there
is a universal constant C > 0 such that for any finite sequence of complex numbers
aj+1, . . . , al, 0 ≤ j < l, (11) holds.

In Proposition 2.11 we assume that we are given only one sequence of complex num-
bers {an} such that the pair ({an}, {fn}) satisfies (11) for some q ≥ 2 and obtain (10)
with t = q′.

4. Houdré [23, Theorem 3.1] proved that if (11) holds for q ≥ p = 2 and

∞
∑

n=−∞
|an|2|n|(q−2)/q(log(1 + |n|)2 <∞ (13)

then
∑

n anfn converges a.e. (the proof in [23] does not need for {fn} to be (2, q)-
bounded). When q = 2 this convergence follows from Proposition 2.10(i), and when
q > 2 we can use Proposition 2.10(ii) with t = q′, since Hölder’s inequality in `2/q′ yields

∞
∑

n=1

|an|q
′

=
∞
∑

n=1

|an|q
′ n(q−2)/(2q−2)(log(1 + n))q

′

n(q−2)/(2q−2)(log(1 + n))q′
≤

(

∞
∑

n=1

|an|2n(q−2)/q(log(1 + n))2
)q′/2( ∞

∑

n=1

1

n(log(1 + n))2q′/(2−q′)

)(2−q′)/2
<∞.
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Note that convergence of
∑∞

n=1 |an|q
′

does not imply (13). Specifically, for q > 2 define
an = n−(q−2)/2q for n = 2k, and an = 2−n otherwise. We then have

∞
∑

n=1

|an|2n(q−2)/q(log n)2 ≥
∑

n∈{2k}
|an|2n(q−2)/q(log n)2 =

∞
∑

k=1

k2 = ∞ .

On the other hand, it is easy to check that
∑∞

n=1 |an|q
′

<∞.
5. For a (p, q)-bounded sequence {fn}n∈Z with p < 2 ≤ q, a.e. convergence of

∑∞
k=−∞ akfk is proved in [23] for any {an} satisfying (13). The (p, q)-boundedness is

used there to obtain that {fn} is a projection of a (2, q)-bounded sequence.
We deal here only with one pair ({an}, {fn}) that satisfies (11), rather than (p, q)-

boundedness of {fn}; for q′ < p, condition (13) implies the a.e. convergence of
∑

n anfn
by Proposition 2.10(ii) (see the previous remark). For p ≤ q′ < 2, we obtain the con-
vergence from

∑∞
n=1 |an|p(log n)p <∞, by Proposition 2.10(i). This last condition does

not imply (13); for the sequence defined in remark 5 above,

∞
∑

n=1

|an|p(logn)p ≤
∞
∑

k=1

kp

2kp(q−2)/2q
+

∞
∑

n=1

2−np(logn)p <∞.

6. Let {fn} ⊂ Lp(µ), 1 < p < ∞, satisfy supn ||fn||p < ∞, and let {an} satisfy
∑∞

n=1 |an|pnp−1(log n)p < ∞. Then
∑

n |an| < ∞, since putting p′ = p
p−1 and using

Hölder’s inequality we have

N
∑

n=2

|an| =

N
∑

n=2

1

n
p−1

p logn
|an|n

p−1
p logn ≤

[

N
∑

n=2

1

n(logn)p′

]
1
p′

[

N
∑

n=2

|an|pnp−1(logn)p
]

1
p

.

Hence
∑∞

n=1 |anfn| converges a.e. For p = 2 this convergence was proved (using deeper
results) by Houdré [23, Remark 3.4(iv)].

7. Let p > 1, define an = 1
n(log n)(log logn)(p+1)/2p , and put fn ≡ 1. Clearly, the

series
∑∞

n=1 anfn everywhere diverges, but since p > 1, for any “rate” 0 ≤ bn ≤
Cnp−1(log n)p−1 we have

1

C

∞
∑

n=2

|an|pbn ≤
∞
∑

n=2

|an|pnp−1(log n)p−1 =

∞
∑

n=2

1

n(logn)(log logn)(p+1)/2
<∞.

Thus the power of n in the condition of the previous remark is optimal, and the logarithm
should be with power greater than p− 1.

Theorem 2.12. Let {fn}∞n=1 ⊂ Lp(µ) with 1 ≤ p <∞. Let {d(j, l) : 0 ≤ j < l <∞} be

a super additive sequence of non-negative numbers, and define A
(d)
n as in (5).

(i) If ϕ(n) is a sequence decreasing to zero with 0 < ϕ(n) ≤ Cϕ(2n), such that

∞
∑

n=1

A
(d)
n ϕp(n)(logn)pd(0, n)

n
<∞,

then ϕ(n)

n
∑

k=1

fk → 0 a.e. and in Lp-norm. Furthermore, sup
n>0

|ϕ(n)

n
∑

k=1

fk| ∈ Lp(µ).

(ii) If in addition
∑∞

n=1[ϕ(n) − ϕ(n + 1)]
(

A
(d)
n d(0, n)

)
1
p

< ∞, then
∞
∑

n=1

ϕ(n)fn

converges a.e. and in Lp-norm. Furthermore, sup
n>0

|
n

∑

k=1

ϕ(k)fk| ∈ Lp(µ).

12



Proof. We may and do assume that µ is a probability measure. Denote Sn =
∑n

k=1 fk.

By the definition of A
(d)
n , we have ||S2m ||pp ≤ A

(d)
2md(0, 2m).

By Proposition 2.2

∣

∣

∣

∣

∣

∣
max

2m<n≤2m+1
|

n
∑

k=2m+1

fk|
∣

∣

∣

∣

∣

∣

p

p
≤ 3pA

(d)
2m+1m

pd(2m, 2m+1).

Since d is a non-negative super additive sequence we have d(2m, 2m+1) ≤ d(0, 2m+1) and

d(0, 2m) ≤ d(0, 2m+1). By using this and the monotonicity of A
(d)
n , we have

∞
∑

m=1

[

∣

∣

∣

∣

∣

∣
ϕ(2m)S2m

∣

∣

∣

∣

∣

∣

p

p
+

∣

∣

∣

∣

∣

∣
ϕ(2m) max

2m<n≤2m+1
|

n
∑

k=2m+1

fk|
∣

∣

∣

∣

∣

∣

p

p

]

≤ (∗)

2 · 3pCp
∞
∑

m=1

A
(d)
2m+1m

pϕp(2m+1)d(0, 2m+1).

The convergence of the right hand side above will imply the convergence to zero of

{ϕ(n)
∑n

k=1 fk}n, a.e. and in Lp-norm. Indeed, by monotonicity of A
(d)
n , ϕ(n), and

d(0, n), term by term estimation and the inequality ϕ(n) ≤ Cϕ(2n) yield

2m+1
∑

n=2m+1

A
(d)
n ϕp(n)(log n)pd(0, n)

n
≥

2m · A
(d)
2mϕp(2m+1)mp

2m+1
d(0, 2m) ≥ 1

2Cp
A

(d)
2mϕp(2m)(m− 1)pd(0, 2m).

By summing on m, and considering the assumption of the theorem, the convergence of
the right hand side of (*) follows, which implies convergence to zero (a.e. and in Lp-

norm) of {ϕ(2m)
∑2m

k=1 fk}m and {ϕ(2m)max2m<n≤2m+1 |
∑n
k=2m+1 fk|}m. The claimed

convergence to zero (a.e. and in norm) of {ϕ(n)
∑n

k=1 fk} is now deduced as in Theo-
rem 2.4.

Because the series in (*) converges, we can integrate the inequalities

sup
m≥1

|ϕ(2m)S2m |p ≤
∞
∑

m=1

|ϕ(2m)S2m |p,

and

sup
m≥1

[

ϕ(2m) max
2m<n≤2m+1

|
n

∑

k=2m+1

fk|
]p

≤
∞
∑

m=1

[

ϕ(2m) max
2m<n≤2m+1

|
n

∑

k=2m+1

fk|
]p

.

This implies the integrability of the maximal function.
Using Abel’s summation by parts,

n
∑

k=1

ϕ(k)fk = ϕ(n)Sn +

n−1
∑

k=1

[ϕ(k) − ϕ(k + 1)]Sk. (∗∗)

The first term on the right converges to zero, a.e. and in Lp-norm, as shown above.
Since µ is a probability, the assumption yields

∞
∑

k=1

[ϕ(k) − ϕ(k + 1)]||Sk||1 ≤ (∗ ∗ ∗)

∞
∑

k=1

[ϕ(k) − ϕ(k + 1)]||Sk||p ≤
∞
∑

k=1

[ϕ(k) − ϕ(k + 1)]
(

d(0, k)A
(d)
k

)
1
p

<∞.

13



Hence the series on the right of (**) converges, absolutely a.e. by the convergence of
the left term of (***), and in Lp-norm by the convergence of the middle term of (***).
Hence {∑n

k=1 ϕ(k)fk} converges a.e. and in Lp-norm.
For the maximal function we have

sup
n>0

|
n

∑

k=1

ϕ(k)fk| ≤ sup
n>0

|ϕ(n)Sn| +
∞
∑

k=1

[ϕ(k) − ϕ(k + 1)]|Sk|.

The first term is in Lp as shown before. The second term is in Lp by (***).

Remarks. 1. Let j be the first integer with fj 6= 0, so A
(d)
j > 0. By definition, A

(d)
n

and d(0, n) are non-decreasing, so we have

∞
∑

n=j

ϕp(n)(log n)pA
(d)
j d(0, 1)

n
≤

∞
∑

n=j

A
(d)
n ϕp(n)(log n)pd(0, n)

n
.

Hence for the convergence of the majorizing series, {ϕ(n)} must decrease to zero faster
than { 1

(logn)1+1/p }. On the other hand, the condition 0 < ϕ(n) ≤ Cϕ(2n) does not allow

ϕ to decrease to zero too fast: ϕ(n) ≥ ϕ(1)/nlog2 C .

2. In contrast with Theorem 2.4, Theorem 2.12 gives conditions for a specific rate
of convergence. It can happen that for given {fn} and d, the series

∑

n fn does not
converge (so the condition of Theorem 2.4 does not hold); in that case Theorem 2.12
allows to evaluate the rate of growth of the partial sums.

3. In order to obtain the a.e. convergence of
∑∞
n=1 ϕ(n)fn from Theorem 2.4, one

must be able to compute (or estimate) the corresponding A
(d)
n .

The proof of the following theorem proceeds along the same lines as that of Theo-
rem 2.12. Here we use Proposition 2.3 instead of Proposition 2.2.

Theorem 2.13. Let {fn}∞n=1 ⊂ Lp(µ) with 1 ≤ p < ∞. Let {d(j, l) : 0 ≤ j < l < ∞}
be a super additive sequence of non-negative numbers, and let q > 1. Define A

(dq)
n as in

(5).

(i) If ϕ(n) is a sequence decreasing to zero with 0 < ϕ(n) ≤ Cϕ(2n), such that

∞
∑

n=1

A
(dq)
n ϕp(n)dq(0, n)

n
<∞,

then ϕ(n)
n

∑

k=1

fk → 0 a.e. and in Lp-norm. Furthermore, sup
n>0

|ϕ(n)
n

∑

k=1

fk| ∈ Lp(µ).

(ii) If in addition
∑∞
n=1[ϕ(n) − ϕ(n + 1)]

(

A
(dq)
n dq(0, n)

)
1
p

< ∞, then

∞
∑

n=1

ϕ(n)fn

converges a.e. and in Lp-norm. Furthermore, sup
n>0

|
n

∑

k=1

ϕ(k)fk| ∈ Lp(µ).

Remarks. 1. The following condition was considered in Gaposhkin [17]:
There exists a positive non-decreasing sequence {Ψ(n)}, satisfying Ψ(2n) ≤ CΨ(n)

for some positive constant C, such that for any nonnegative integers n and m

∣

∣

∣

∣

∣

∣

m+n
∑

k=m+1

akfk

∣

∣

∣

∣

∣

∣

2

2
≤ Ψ(n)

m+n
∑

k=m+1

|ak|2. (14)

If the pair ({an}, {fn}) satisfies (14), then A
(2,1,2)
n ≤ Ψ(n).

14



2. Condition (14) can fail even for orthogonal sequences. Take an ≡ 1 and {fn}
orthogonal with {||fn||2} unbounded; (14) does not hold, since Ψ(1) < ∞ implies
supn ||fn|| <∞.

Let b·c and d·e denote the lower and the upper integral parts. For a given positive

non-decreasing sequence {Ψ(n)}∞n=1 define Λ(1) = Ψ(1) and Λ(n) =
∑blognc

k=0 Ψ(d n
2k+1 e).

The following theorem is simply Theorem 4 of [32]. The above explicit formula for Λ(n)
is given in [33] with Q = 1 there.

Proposition 2.14. Let {fn}∞n=1 ⊂ Lp(µ), 1 < p < ∞, and let {d(j, l)} be a super
additive sequence of non-negative numbers. Assume that there exists a positive non-
decreasing sequence {Ψ(n)}∞n=1 such that

∥

∥

∥

l
∑

k=j+1

fk

∥

∥

∥

p

p
≤ Ψp(l − j)d(j, l) for l > j ≥ 0. (15)

Then for any 0 ≤ n1 < n, we have

∥

∥

∥
max
n1<l≤n

|
l

∑

k=n1+1

fk|
∥

∥

∥

p

p
≤ Λp(n− n1)d(n1, n).

Example 2.2. The following can be verified by the above formula for Λ(n). If Ψ(n) =
(logn)β with β ≥ 0, then Λ(n) ≤ (2 + logn)β+1. If Ψ(n) = nα(log n)β with α > 0 and
β any real, then Λ(n) ≤ Kα,βn

α(logn)β .

Remarks. 1. Since {Ψ(n)} is non-decreasing, condition (15) yields A
(d)
n ≤ Ψp(n).

2. The above example shows that when Ψ(n) = (logn)β with β ≥ 0, Proposition 2.14
gives no more than Proposition 2.2, although the assumption in Proposition 2.14 is
stronger.

Theorem 2.15. Let {fn}∞n=1 ⊂ Lp(µ) with 1 < p < ∞. Let {d(j, l), l > j ≥ 0} be a
non-negative super additive sequence, and put m1 = d(0, 1), mn = d(0, n) − d(0, n− 1)
for n > 1. Assume that for some α > 0 and β real, condition (15) holds with Ψ(n) =
nα(log n)β. If

∑∞
n=2 n

αp(log n)p(β+1)−1(log logn)p−1+εmn converges for some ε > 0,
then

∑∞
n=1 fn converges a.e. and in Lp-norm, with supn≥1 |

∑n
k=1 fk| ∈ Lp(µ).

Proof. The proof proceeds along the same lines as that of Theorem 2.6, with q = 1 and
ψ(u) = u(p−1)/p(log u)(p−1)/p+ε. We use Proposition 2.14 instead of Proposition 2.3,
where the estimation of Λ(n) is taken from Example 2.2.

3 Applications to ergodic theory

In this section we look at the problem of a.e. convergence of series
∑

n n
−αanT nf , α < 1,

for power-bounded operators on Lp. We apply the previous results in order to obtain
conditions on {an} and on the function f ∈ Lp, which ensure the a.e. convergence for an
appropriate α. For contractions on L2 we obtain conditions on f in terms of {〈T nf, f〉}.

Theorem 3.1. Let T be a power bounded operator on Lp(µ), 1 < p <∞, and f ∈ Lp(µ)
such that for some 0 < β ≤ 1, we have

K := sup
n>0

|| 1

n1−β

n
∑

k=1

T kf ||p <∞ . (16)

Let {bn} be a sequence of complex numbers such
∑∞
n=1 |bn − bn+1| <∞.
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(i) When 0 < β < p−1
p , for every ε > 0 the series

∞
∑

n=2

bnT
nf

n1−β(logn)1+ε
converges a.e.

and in Lp-norm; moreover,
1

n1−β(log n)1/p+ε

n
∑

k=1

bkT
kf → 0 a.e. and in Lp-norm.

(ii) When p−1
p ≤ β ≤ 1, for every ε > 0 the series

∞
∑

n=2

bnT
nf

n1/p(logn)1+
1
p +ε

converges

a.e. and in Lp-norm.

In each of the above cases, the corresponding maximal function is in Lp.

Proof. Since {bn} is of bounded variation, it converges. Put V =
∑∞

n=1 |bn − bn+1|.
Inspection of the proof of Lemma 1 in [10] shows that if (16) holds, then also

sup
n>0

|| 1

n1−β

n
∑

k=1

bkT
kf ||p ≤ K ′ := KV +K sup

n
|bn| <∞. (∗)

For any j ≥ 0 the sequence {bj+n}∞n=1 is also of bounded variation, and clearly
∑∞

n=1 |bj+n− bj+n+1| ≤ V . Applying (*) to the sequence {bj+n}∞n=1, and noting that K
and V , hence K ′, are independent of j, we obtain

||
l

∑

k=j+1

bkT
kf ||pp = ||T j

l−j
∑

k=1

bj+kT
kf ||pp ≤ (sup

k≥0
||T k||p)(K ′)p(l − j)p(1−β). (∗∗)

For positive α and γ let ϕ(u) = 1
uα(log u)γ . Using the derivative we obtain that

ϕ(n) − ϕ(n + 1) ≤ α+γ/ loge 2
nα+1(logn)γ for n ≥ 2. Put fn = bnT

nf , and for l > j ≥ 0 define

d(j, l) = l − j.

(i) Put q = p(1 − β) > 1. From (**) we obtain that A
(dq)
n ≤ (K ′)p supk≥0 ||T k||p.

Theorem 2.13 applies, with the appropriate α and γ.

(ii) Since p(1 − β) ≤ 1, using (**) we have that A
(d)
n ≤ (K ′)p supk≥0 ||T k||p. So,

Theorem 2.12 applies.

Remarks. 1. The estimate (**) in the proof allows us to use the results of Gál and
Koksma [14], which yield the same “strong laws of large numbers with rates” as in the
above theorem; in case (i) we use [14, Theorem 5], and in case (ii) we use [14, Theorem
3].

2. The case bn ≡ 1 was treated in Gaposhkin [18, Theorem 3] when p = 2 and T is
unitary on L2, in Derriennic and Lin [11, Corollary 3.7] when T is a Dunford-Schwartz
operator, and in Weber [52, Proposition 1.6] in the general case treated here. Applying
Kronecker’s lemma to the series in (i) (with bn ≡ 1) yields the same ”strong law with
rate” as Weber for β > (p − 1)/p, but our rate obtained directly in (i) is better; the
rate in the ”strong law of large numbers” obtained from (ii) by Kronecker’s lemma is
the same as Weber’s when β = (p− 1)/p, but worse than Weber’s (in the power of the
logarithm) when β < (p− 1)/p. For T Dunford-Schwartz, our result is better than [11]
when β ≤ (p− 1)/p. For T unitary, Gaposhkin’s results are better than ours.

3. Sublinear growth conditions on the norms {||∑n
k=1 T

kf ||} were used also in [10]
and [9] to obtain for f the pointwise ergodic theorem with rate, as well as a.e. convergence
of the one-sided ergodic Hilbert transform. Our present results are more precise.

For an L2(µ)-bounded sequence {fj}∞j=1 and any integer n ≥ 0 we define

Φ(n) := sup
j≥1

|
∫

fjfj+ndµ| <∞.

Clearly, Φ(n) ≤ sup
j≥1

||fj||22.
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Remarks. 1. L2(µ)-bounded sequences {fj}, with
∫

fjdµ = 0 and
∑∞

n=0 Φ(n) <∞,
were considered in Gaposhkin [19], and were called weakly correlated sequences.

3. For an isometry operator V , f ∈ L2(µ), and fn := V nf (i.e., {fn} is wide sense
stationary) we have Φ(n) = |

∫

fnf0dµ|.
The following lemma appears in Gaposhkin [16, Lemma 1] (see also Serfling [43,

Lemma 2.1], Weber [51, Lemma 14]).

Lemma 3.2. Let {an} be a sequence of complex numbers, and let {fn} be an L2(µ)-
bounded sequence. Then for any n,m ≥ 1

∣

∣

∣

∣

∣

∣

m+n
∑

k=m+1

akfk

∣

∣

∣

∣

∣

∣

2

2
≤ [Φ(0) + 2

n−1
∑

k=1

Φ(k)]

m+n
∑

k=m+1

|ak|2. (17)

Corollary 3.3. Let {fn} be an L2(µ)-bounded sequence, and put σn = Φ(0)+2
∑n
k=1 Φ(k).

Let {an} be a sequence of complex numbers. The series
∑∞

n=1 anfn converges a.e. and
in L2-norm, with supn>0 |

∑n
k=1 akfk| in L2(µ), in either of the following cases:

(i) σn = O(nα(logn)β) for some α > 0 and β real, and the series
∑∞

n=2 |an|2nα(log n)β+1(log logn)1+ε converges for some ε > 0.

(ii) σn = O((log n)β) with β ≥ 0, and
∑∞
n=1 |an|2 (logn)β+2 converges,

Proof. Put d(j, l) =
∑l
k=j+1 |ak|2 and p = 2.

(i) By Lemma 3.2 we obtain (15) for {anfn}, with Ψ2(n) = σn = O(nα(logn)β). The
result follows by applying Theorem 2.15.

(ii) By Lemma 3.2 we obtain (9) for {anfn}, with q = 1, mn = |an|2, and An = σn.
Theorem 2.9(i) yields the result.

Remarks. 1. Obviously σn = O(n), but convergence of
∑

n |an|2n logn(log logn)1+ε

implies
∑

n |an| <∞ by Cauchy’s inequality, so the interest in (i) is when α < 1.
2. Without refering to the order of σn, Theorem 2.9(i) yields the desired conver-

gence when
∑

n |an|2σ2n(logn)2 < ∞. This, with σ2n replaced by σn, was obtained by
Gaposhkin [16, Theorem 1]. Note that this is not important for the classes of {Φ(n)}
considered there.

3. Part (ii) was proved in [16, Corollaries 1 and 2]. A better result (smaller power of
logn) for part (i) was obtained in [16, Corollary 3], under a mild additional additional
condition on Φ(n).

4. In the stationary case, Gaposhkin [16] proved that under a given rate of decay
to zero of {Φ(n)}, the convergence of

∑∞
n=1 |an|2σ2

n(logn)2 is an optimal condition for
the a.e. convergence of

∑∞
n=1 anfn. Note that for {fn} orthonormal, Corollary 3.3(ii)

becomes the Menchoff-Rademacher theorem.

Let T be a contraction of a Hilbert space H. Define Tn := T n for n ≥ 0 and
Tn := (T ∗)|n| for n < 0. Then {〈Tnf, f〉} is a positive semi-definite sequence [39,
Appendix, §9] (see also [27, Proposition 3.1, p. 94]), so by Herglotz’s theorem it is the
Fourier coefficients of a positive measure νf on the unit circle Γ. By the unitary dilation
theorem of B. Sz. Nagy [39, Theorem III, p.469] (the proof of which uses the positive
semi-definiteness of {〈Tnf, f〉}), there exist a larger Hilbert space H′, an orthogonal
projection PH on H, and unitary operator U on H′ such that for every g ∈ H′ and every
integer n we have TnPHg = PHUng. For f ∈ H, the above identity yields

〈Tnf, f〉 = 〈PHU
nf, f〉 = 〈Unf, P ∗

Hf〉 = 〈Unf, PHf〉 = 〈Unf, f〉.

By the spectral representation theorem for unitary operators, νf is the spectral measure
of f with respect to U , with Fourier coefficients {〈Tnf, f〉}.
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Definition 3.1. For a contraction T on H and f ∈ H, we call νf the unitary spectral
measure of f (with respect to T ). When νf is absolutely continuous, we say that f has

spectral density, which is
dνf

dλ .

Remark. There are cases where all that is needed is to extend T to an isometry,
i.e., we need an isometry dilation. If V is an isometry dilation of T , then we still have
〈T nf, f〉 = 〈V nf, f〉 for all nonnegative n and f ∈ H.

Proposition 3.4. Let {an} be a sequence of complex numbers. Let T be a contraction
of L2(µ) and f ∈ L2(µ). For any integers m,n ≥ 1 we have the following:

(i)
∣

∣

∣

∣

∣

∣

m+n
∑

k=m+1

akT
kf

∣

∣

∣

∣

∣

∣

2

2
≤ [||f ||22 + 2

n−1
∑

k=1

|〈T kf, f〉|]
m+n
∑

k=m+1

|ak|2.

(ii) For 1 < u <∞ and v := u
u−1 ,

∣

∣

∣

∣

∣

∣

m+n
∑

k=m+1

akT
kf

∣

∣

∣

∣

∣

∣

2

2
≤

[

||f ||22 + 2n
1
u (
n−1
∑

k=1

|〈T kf, f〉|v) 1
v

]

m+n
∑

k=m+1

|ak|2 .

(iii) If f has spectral density in Lu(dλ), 1 < u <∞, then

∥

∥

∥

m+n
∑

k=m+1

akT
kf

∥

∥

∥

2

2
≤

∥

∥

∥

dνf
dλ

∥

∥

∥

Lu(dλ)

(

m+n
∑

k=m+1

|ak|
2u

u+1

)

u+1
u ≤ n1/u

∥

∥

∥

dνf
dλ

∥

∥

∥

Lu(dλ)

m+n
∑

k=m+1

|ak|2 .

(iv) If f has bounded spectral density, then

∣

∣

∣

∣

∣

∣

m+n
∑

k=m+1

akT
kf

∣

∣

∣

∣

∣

∣

2

2
≤

∥

∥

∥

dνf
dλ

∥

∥

∥

L∞(dλ)

m+n
∑

k=m+1

|ak|2.

Proof. (i) We first prove it when T = V is isometry. We take Φ(n) = |〈V nf, f〉| and
fn = V nf , hence (i) follows (for V ) by Lemma 3.2.

Now for T a contraction, let V be the isometry dilation of T , and let PH be the
corresponding projection. By the discussion preceeding the proposition, 〈T nf, f〉 =
〈V nf, f〉, so we have

∣

∣

∣

∣

∣

∣

m+n
∑

k=m+1

akT
kf

∣

∣

∣

∣

∣

∣

2

2
=

∣

∣

∣

∣

∣

∣
PH

(

m+n
∑

k=m+1

akV
kf

)∣

∣

∣

∣

∣

∣

2

2
≤

∣

∣

∣

∣

∣

∣

m+n
∑

k=m+1

akV
kf

∣

∣

∣

∣

∣

∣

2

2
≤

[||f ||22 + 2

n−1
∑

k=1

|〈V kf, f〉|]
m+n
∑

k=m+1

|ak|2 = [||f ||22 + 2

n−1
∑

k=1

|〈T kf, f〉|]
m+n
∑

k=m+1

|ak|2.

(ii) Using Hölder’s inequalty

n−1
∑

k=1

|〈T kf, f〉| ≤ n
1
u (

n−1
∑

k=1

|〈T kf, f〉|v) 1
v ,

hence (ii) follows from (i).
(iii) In the proof of (i) we could use the unitary dilation U of T instead of using the

isometry dilation, so it suffices to prove for U . Denote the spectral density h =
dνf

dλ ∈
Lu(dλ). When u <∞, the spectral theorem and Hölder’s inequality yield

∥

∥

∥

m+n
∑

k=m+1

akU
kf

∥

∥

∥

2

2
=

∫

Γ

∣

∣

∣

m+n
∑

k=m+1

akλ
k
∣

∣

∣

2

h(λ)dλ ≤ ||h||Lu(dλ)

(

∫

Γ

∣

∣

∣

m+n
∑

k=m+1

akλ
k
∣

∣

∣

2u
u−1

)
u−1

u

dλ.
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Hence
∥

∥

∥

m+n
∑

k=m+1

akU
kf

∥

∥

∥

2
≤ ||h||1/2Lu(dλ)

∥

∥

∥

m+n
∑

k=m+1

akλ
k
∥

∥

∥

Lq(dλ)
with q = 2u/(u− 1). We now

apply Proposition 2.11(i-ii) with p = 2.

(iv) Again we prove only for U unitary. Put h(λ) =
dνf

dλ . The spectral theorem now
yields

∣

∣

∣

∣

∣

∣

m+n
∑

k=m+1

akU
kf

∣

∣

∣

∣

∣

∣

2

2
=

∫

∣

∣

∣

m+n
∑

k=m+1

akλ
k
∣

∣

∣

2

h(λ)dλ ≤ ||h||∞
m+n
∑

k=m+1

|ak|2.

Remark. For T unitary, (i) and (iv) appear (without proof) in Gaposkin [17].

Proposition 3.5. Let {an} be a sequence of complex numbers, and let 1 < u <∞ with
dual index v := u/(u − 1). Let T be a contraction of L2(µ) and f ∈ L2(µ). For any
integers m,n ≥ 1 we have the following:

(i)
∥

∥

∥

m+n
∑

k=m+1

akT
kf

∥

∥

∥

2

2
≤ n1/v(

m+n
∑

k=m+1

|ak|u)2/u
(

||f ||2v2 + 2

n−1
∑

k=1

|〈T kf, f〉|v
)1/v

.

(ii) If 1 < u ≤ 2, and f has spectral density in Lu(dλ), then

∥

∥

∥

m+n
∑

k=m+1

akT
kf

∥

∥

∥

2

2
≤ 21/v

∥

∥

∥

dνf
dλ

∥

∥

∥

Lu(dλ)
n1/v(

m+n
∑

k=m+1

|ak|u)2/u. (18)

Proof. (i) We first prove the proposition when T = U is a unitary operator. Using
Hölder’s inequality

‖
m+n
∑

k=m+1

akU
kf‖2

2 =

m+n
∑

k,i=m+1

akāi〈Ukf, U if〉 ≤ (

m+n
∑

k=m+1

|ak|u)2/u(
m+n
∑

k,i=m+1

|〈Uk−if, f〉|v)1/v =

(

m+n
∑

k=m+1

|ak|u)2/u(
n

∑

k,i=1

|〈Uk−if, f |v)1/v ≤ n1/v(

m+n
∑

k=m+1

|ak|u)2/u(
n−1
∑

k=−(n−1)

|〈Ukf, f〉|v)1/v =

n1/v(

m+n
∑

k=m+1

|ak|u)2/u(||f ||2v2 + 2

n−1
∑

k=1

|〈Ukf, f〉|v)1/v.

Now for T a contraction, let U be the unitary dilation of T , and let PH be the corre-
sponding projection. By the discussion preceeding Proposition 3.4 〈T nf, f〉 = 〈Unf, f〉
for n ≥ 0, so using the previous calculation we have

∥

∥

∥

m+n
∑

k=m+1

akT
kf

∥

∥

∥

2

2
=

∥

∥

∥
PH

(

m+n
∑

k=m+1

akU
kf

)
∥

∥

∥

2

2
≤

∥

∥

∥

m+n
∑

k=m+1

akU
kf

∥

∥

∥

2

2
≤

n1/v(
m+n
∑

k=m+1

|ak|u)2/u(||f ||2v2 + 2
n−1
∑

k=1

|〈T kf, f〉|v)1/v.

(ii) Follows from (i) by the Hausdorff-Young theorem.

Example 3.1. For f in L2(Γ, dλ), where dλ is the Lebesgue measure on the unit circle
Γ, define Uf(λ) := λf(λ). Then U is unitary on L2(Γ, dλ). Fix 1 ≤ p ≤ ∞ and
0 ≤ g ∈ Lp(dλ), and let f =

√
g ∈ L2; clearly 〈Ukf, f〉 =

∫

λkg(λ)dλ, so the unitary
spectral measure of f with respect to U is absolutely continuous with density g.
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Example 3.2. Let {gk : −∞ < k < ∞} ⊂ H be an orthonormal sequence; then
gn = Ung0, where U is the bilateral shift on the closed subspace generated by {gk}.
For any {ck} ∈ `2(Z) define the moving average sequence fn :=

∑∞
k=−∞ ckgn+k, where

the series is convergent by the Riesz-Fischer theorem. Clearly fn = Unf0 (so {fn} is
a well defined wide sense stationary process). Denote by ν the spectral measure of f0
with respect to U ; then dν

dλ = |a(λ)|2, where a(λ) :=
∑∞
k=−∞ ckλ

k is defined in L2(dλ)-

norm by Riesz-Fischer, and hence dν
dλ ∈ L1(dλ). If we impose {ck} ∈ `1, then a(λ)

is a continuous function on Γ, so dν
dλ ∈ L2(dλ). When {ck} ∈ `p, 1 < p < 2, then

a(λ) ∈ Lq(dλ) (where q = p
p−1 > 2), by the Hausdorff-Young theorem, so dν

dλ ∈ Lq/2(dλ),

and with u = min{ q2 , 2}, Proposition 3.5(ii) applies to U and f = f0.

Corollary 3.6. Let {an} be a sequence of complex numbers, and let 1 < u < ∞ with
dual index v. Let T be a contraction of L2(µ) and f ∈ L2(µ). The series

∑∞
n=1 anT

nf
converges a.e. and in L2-norm, and supn≥1 |

∑n
k=1 akT

kf | is in L2(µ), if for some ε > 0
any of the following sets of conditions is satisfied:

(i)
∑∞
n=1 |an|2n[1+γ(u−1)]/u logn(log log n)1+ε < ∞ and

∑n
k=1 |〈T kf, f〉|v ≤ Cnγ ,

for some 0 ≤ γ < 1.

(ii)
∑∞

n=1 |an|un(1+γ)(u−1)/2(logn)u/2(log logn)u/2+ε < ∞ and
∑n

k=1 |〈T kf, f〉|v ≤
Cnγ , for some 0 ≤ γ < 1 and 1 < u < 2.

(iii)
∑∞
n=1 |an|2u/(u+1) <∞ and f has spectral density in Lu(dλ).

Proof. (i) Put d(j, l) =
∑l
k=j+1 |ak|2 and p = 2. By Proposition 3.4(ii), (15) holds for

{anT nf} with Ψ2(n) ≤ C′n
1
u + γ

v . Theorem 2.15 yields the result.
(ii) By Proposition 3.5(i), (9) holds with An = C′n(γ+1)/v, p = 2, mn = |an|u, and

q = 2/u. Since 1 < u < 2, we have q > 1 and Theorem 2.9(iii) applies.
(iii) By the first inequality in Proposition 3.4(iii) we obtain (10) with p = 2 and

t = 2u/(u+ 1) < 2. Hence Proposition 2.10(ii) applies.

Remarks. 1. For any u > 1 and γ = 0, the condition on {an} given in (i) or in (ii)
implies the condition in (iii). Indeed, by Hölder’s inequality

∞
∑

n=1

|an|
2u

u+1 ≤
(

∞
∑

n=1

|an|2n
1
u logn(log logn)1+ε

)
u

u+1
(

∞
∑

n=1

1

n(log n)u(log logn)u(1+ε)

)
1

u+1

.

Similarly, the condition in (ii) with γ = 0 implies (iii).
2. If 1 < u ≤ 2 and f has spectral density in Lu(dλ), then, as mentioned before,

∑∞
k=1 |〈T kf, f〉|v converges. The previous remark shows that in this case (iii) yields a

better result (weaker assumptions on {an}) than (i) or (ii).
3. If 2 ≤ u < ∞ and

∑∞
k=1 |〈T kf, f〉|v converges, then by the Hausdorff-Young

theorem f has spectral density in Lu(dλ). By Remark 1 above (iii) yields a better result
than (i). Thus, for u ≥ 2 (i) is relevant only for γ > 0.

4. By the computation in Remark 1 above, the condition on {an} given in [23,
Corollary 3.3(i)] (for unitary operators) when f has spectral density in Lu implies the
condition in (iii).

5. (i) and (ii) are equivalent for u = 2, but for 1 < u < 2 and γ = 0, (ii)
does not imply (i). Specifically, for any 1 < u < 2 there exists a positive sequence
{an} such that the series

∑∞
n=1 |an|un(u−1)/2(log n)u/2(log logn)u/2+ε converges, but

∑∞
n=1 |an|2n1/u logn(log n logn)1+ε diverges.
Define an = (2k)−1/2u for n = 2k, and an = 2−n otherwise. We have

∑

n∈{2k}
|an|2n1/u logn(log logn)1+ε =

∞
∑

k=1

k(log k)1+ε = ∞ ,
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so (i) does not hold. On the other hand,

∑

n∈{2k}
|an|un(u−1)/2(logn)u/2(log logn)u/2+ε =

∞
∑

k=1

(2k)−1/2(2k)(u−1)/2ku/2(log k)u/2+ε =

∞
∑

k=1

ku/2(log k)u/2+ε

(2(2−u)/2)k
.

The last sum converges since for u < 2 the denominator has exponential growth. The
convergence of the series is not affected by adding the convergent series

∑

n6∈{2k}
·, so (ii)

holds.
6. Recall that for any T power-bounded on L2, convergence of

∑∞
n=1 |an|2n(log n)2

implies a.e. convergence of
∑

anT
nf , by Remark 6 to Proposition 2.11. In each case of

Corollary 3.6 the power of n in the series is less than 1.

We next show that when u = ∞, Corollary 3.6(i) remains true (only) when γ > 0.

Corollary 3.7. Let {an} be a sequence of complex numbers. Let T be a contraction of
L2(µ) and f ∈ L2(µ). The series

∑∞
n=1 anT

nf converges a.e. and in L2-norm, and
supn≥1 |

∑n
k=1 akT

kf | is in L2(µ), if any of the following sets of conditions is satisfied:

(i)
∑∞

n=1 |an|2nγ logn(log logn)1+ε < ∞ and
∑n

k=1 |〈T kf, f〉| ≤ Cnγ , for some
ε > 0 and 0 < γ < 1.

(ii)
∑∞

n=1 |an|2(log n)2 <∞ and f has bounded spectral density.

Proof. (i) Put d(j, l) =
∑l

k=j+1 |ak|2 and p = 2. By Proposition 3.4(i), (15) holds for

{anT nf} with Ψ2(n) ≤ C′nγ . Theorem 2.15 yields the result.
(ii) By Proposition 3.4(iv), (9) holds with An = C′, p = 2, q = 1, and mn = |an|2, so

Theorem 2.9(i) applies.

Remarks. 1. If
∑∞

n=1 |〈T nf, f〉| < ∞, then the unitary spectral measure of f is
absolutely continuous with continuous Radon-Nikodym derivative. Hence the spectral
density of f is in Lu(dλ) for any 1 < u ≤ ∞, and we can use either Corollary 3.7(ii),
or Corollary 3.6(iii) with some u < ∞ large. These two results are not comparable.
When an = 1/(

√
n log2 n), only Corollary 3.7(ii) applies; if we define a2k = 1/k and

an = 0 for n not a power of 2, then Corollary 3.6(iii) applies with any u > 1, while
∑

n |an|2 log2 n = ∞.
2. Let {fn} ⊂ L2(µ) be orthonormal, and let T be induced on L2 by the shift, i.e.,

Tg = 0 for g ∈ {fn}⊥ and Tfn = fn+1 for n ≥ 1. Applying part (ii) to T with f = f1
yields the Menchoff-Rademacher theorem. Menchoff’s example in this context shows
that when γ = 0 (i) is no longer sufficient for a.e. convergence of

∑

n anfn. Applying
Corollary 3.6(iii) yields Menchoff’s [31, Theorem 12].

Example 3.3. On L2(Γ, ν) define Uf(λ) = λf(λ). Then
∫

|Uf |2dν =
∫

|f |2dν, and
hence U is a unitary operator (with U∗f(λ) = λ̄f(λ)). The sequenceXn(λ) := Un1 = λn

is wide sense stationary with 〈Xn, X0〉 =
∫

λndν, so its spectral measure is ν.
This example exhibits a wide sense stationary process with any pre-assigned spectral

measure. It is a concretization of (the general) Example 4 in Doob [12, p. 479].

Definition 3.2. Let {an} be a sequence of (complex) numbers, and let 1 ≤ t < ∞;
we say that {an} ∈ Wt if supn>0

1
n

∑n
k=1 |ak|t < ∞. If {an} is bounded we say that

{an} ∈ W∞. For t > s ≥ 1 we have Wt ⊂Ws ⊂W1.

Corollary 3.8. Let {an} ∈ Wt, 1 < t ≤ 2 be a sequence of complex numbers, and let
1 < u < ∞ with dual index v. Let T be a contraction of L2(µ) and f ∈ L2(µ). The

21



series
∞
∑

n=2

anT
nf

nα(log n)β(log logn)δ
converges a.e. and in L2-norm, with

sup
n≥2

∣

∣

∣

n
∑

k=2

akT
kf

kα(log k)β(log log k)δ

∣

∣

∣
in L2(µ), for α, β, and δ determined according to the

following conditions:

(i) If
∑n
k=1 |〈T kf, f〉|v ≤ Cnγ for some 0 ≤ γ < 1, then α = [1 + γ(u− 1)]/2u+ 1/t,

β = 1, and δ > 1.

(ii) If
∑n

k=1 |〈T kf, f〉| ≤ Cnγ for some 0 < γ < 1, then α = γ/2 + 1/t, β = 1, and
δ > 1.

(iii) If
∑n

k=1 |〈T kf, f〉| ≤ C(log n)η for some η > 0, then α = 1/t, β = (3 + η)/2,
and δ > 1/2.

(iv) If f has bounded spectral density, then α = 1/t, β = 3/2, and δ > 1/2.

Proof. The method of proof of [10, Lemma 2], can be used to show that if {an} ∈ Wt then
∑∞

n=1
|an|2

n2/t log n(log logn)1+ε <∞ for every ε > 0. Put bn = an

nα(logn)β(log logn)δ , and obtain

the values of α, β, and δ by applying to {bn} Corollary 3.6(i) for (i), Corollary 3.7(i) for
(ii), Corollary 3.3(ii) for (iii), and Corollary 3.7(ii) for (iv).

Remarks. 1. Under the assumption
∑

n |〈T nf, f〉|/(logn)η < ∞, Gaposhkin [16,

Theorem 5] showed, for an ≡ 1, that
∑

n
Tnf√

n(logn)(3+η)/2 converges a.e. The assumption

is stronger than our assumption in (iii), and the convergence statement is better.
2. In Example 3.1 take 0 ≤ g ∈ L2(dλ) unbounded. Then f :=

√
g satisfies

∑∞
k=1 |〈T kf, f〉|2 ≤ ||g||2L2(dλ), but since g is unbounded,

∑∞
k=1 |〈T kf, f〉| = ∞.

3. Let T be a symmetric (i.e., T ∗ = T ) contraction on L2. If f ∈ L2 satisfies
∑∞

n=1 |〈T nf, f〉| <∞, then
∑

n ‖T nf‖2 <∞, so
∑

n |T nf(x)|2 <∞ a.e. For {an} ∈Wt,
1 < t ≤ 2, and any δ > 1/2 Cauchy’s inequality yields

∞
∑

n=2

|anT nf(x)|
n1/t(log n)1/2(log logn)δ

≤
(

∞
∑

n=2

|an|2
n2/t logn(log log n)1+ε

)
1
2
(

∞
∑

n=2

|T nf(x)|2
)

1
2

<∞,

which gives a better rate than the general result in (iv).

Lemma 3.9. Let θ be one-sided shift of an ergodic Markov chain {ξn} with invariant
initial distribution µ and Markov operator T . For f ∈ L2 define Xn = f(ξn). Then
{Xn} is strictly stationary and E(XnX0) = 〈T nf, f〉.

Proof. Since Xn = f(ξn) = X0 ◦ θn, the sequence {Xn} is strictly stationary. Since
f ∈ L2(µ), we have {Xn} ⊂ L2(Pµ). We have

E(XnX0) =

∫

f(ξn)f(ξ0)dPµ =

∫
[
∫

f(ξn)f(ξ0)dPx

]

dµ =

∫

T nf(x)f(x)µ(dx) = 〈T nf, f〉,

and the result follows.

Remarks. 1. With the help of the lemma, we can make assumptions on {〈T nf, f〉}
and apply the previous results to the operator induced by the shift.

2. The Lemma applies also to the 2-sided shift.

Example 3.4. On (−π, π] there exists a finite measure ν, singular with respect to the
Lebesgue measure , such that its Fourier coefficients {ν̂(k)} tend to zero Zygmund [54,
Theorem 10.12, vol. II, p. 146]. It is not hard to modify ν to be defined on the unit
circle Γ, and concentrated on π

2 ≤ argλ ≤ π.
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On L2(Γ, ν) we define Uf(λ) = λf(λ). For ν-almost every λ we have |1−λ| ≥
√

2, so
clearly I − U is invertible on L2(ν), and g(λ) := 1

1−λ ∈ L2(ν). As in Example 3.3,
we take the stationary sequence Un1 = λn, which has spectral measure ν. Since
〈Un1,1〉 = ν̂(n) → 0, we have Un1 → 0 weakly by Foguel [13]. Since (I − U)g = 1,
and g is in the closed subspace generated by {Un1} (see Lin-Sine [28]), also Ung → 0
weakly. Hence

∑n
k=0 U

k1 → g weakly, so
∑∞

k=0〈Uk1,1〉 converges, but since ν is sin-
gular,

∑∞
k=0 |〈Uk1,1〉|2 = ∞. The example shows that the following conditions can live

together:
(i) f ∈ (I − U)L2(ν).
(ii) The spectral measure of f is singular, so

∑∞
k=0 |〈Ukf, f〉|2 = ∞.

(iii)
∑∞

k=0〈Ukf, f〉 converges, but only conditionally, and in particular 〈Ukf, f〉 → 0.

4 Random power series of L2-contractions

In this section we treat a.e. convergence of random power series of contractions in L2

spaces. Norm convergence of such series was considered in [36]. Let {fn} be independent
random variables on the probability space (Ω, µ). For a contraction T on L2(Y, π) of
some measure space, we define the (formal) random power series of T by

∑∞
k=1 fk(x)T

kg,
g ∈ L2(π). We are interested in having for a.e. x the a.e. convergence of all random
power series of L2-contractions. To be more precise, we want a universal null set in
Ω, such that when x ∈ Ω is outside this null set, for every contraction T on L2(π)
and g ∈ L2(π) the series

∑∞
k=1 fk(x)T

kg converges π-a.e. and, in particular, for every
orthonormal sequence {gk} ⊂ L2(π) the series

∑∞
k=1 fk(x)gk converges π-a.e. By [46]

we must have
∑∞
n=1 |fn(x)|2 logn log+(1/|fn(x)|) < ∞ a.e., and if |fn(x)| is a.e. non-

increasing (e.g., fn(x) = cnen(x) with |en(x)| ≡ 1 a.e. and |cn| decreasing) then [47]
necessarily

∑∞
n=1 |fn(x)|2(logn)2 <∞ a.e.

Given complex numbers a0, a1, . . . , an and a unitary operator U on a Hilbert space,

the spectral theorem yields that ||
∑n
k=0 akU

k|| ≤ max|λ|=1

∣

∣

∣

∑n
k=0 akλ

k
∣

∣

∣
. The unitary

dialtion theorem yields that for every contraction T on a complex Hilbert space we have

∥

∥

∥

n
∑

k=0

akT
k
∥

∥

∥
≤ max

|λ|=1

∣

∣

∣

n
∑

k=0

akλ
k
∣

∣

∣
(19)

As (19) suggests, application of the previous methods requires good estimates on
C(Γ)-norms of blocks of the generating random Fourier series

∑

n fn(x)λ
k . Throughout

this section our (complex valued) random coefficients {fn} will be independent.

Proposition 4.1. Let {fn} be symmetric independent complex valued random variables
on (Ω, µ). Then (with 0/0 interpreted as 1)

∥

∥

∥

∥

∥

sup
j≥0

sup
l>j

exp

{

max|λ|=1 |
∑l

k=j+1 fkλ
k|2

log(l + 1)(
∑l
k=j+1 |fk|2)

}∥

∥

∥

∥

∥

L1(µ)

<∞ .

Hence for a.e. x ∈ Ω we have

sup
l>j≥0

max|λ|=1 |
∑l

k=j+1 fk(x)λ
k|

√

log(l + 1)(
∑l

k=j+1 |fk(x)|2)1/2
< ∞. (20)

The proposition was proved by Weber [50] (using the metric entropy method).

Theorem 4.2. Let 1 < p ≤ 2, and let {fn} ⊂ Lp(Ω, µ) be a sequence of independent
centered random variables. If

∞
∑

n=1

‖fn‖2
2(logn)3 <∞ (p = 2), (21)
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or

∞
∑

n=2

‖fn‖pp(log n)p(log log n)p/2+ε <∞ for some ε > 0 (1 < p < 2), (22)

then there exists a subset Ω∗ ⊂ Ω with µ(Ω∗) = 1, such that when x ∈ Ω∗, for every
contraction T on a space L2(π) and any g ∈ L2(π), the series

∞
∑

n=1

fn(x)T
ng converges π a.e. (23)

When {fn} are symmetric, for x ∈ Ω∗ there is a constant Kx < ∞, determined only by
{fn(x)} (and p), such that

∥

∥

∥
sup
n≥1

|
n

∑

k=1

fk(x)T
kg|

∥

∥

∥

2
≤ Kx‖g‖2 (24)

In the general case, if π is a probability, then for x ∈ Ω∗ we have supn≥1|
∑n
k=1 fk(x)T

kg|
in Lp(π).

Proof. We first prove the case that each fn is symmetric. By Beppo Levi’s theorem,
conditions (21) or (22) imply, respectively, that for µ a.e. x ∈ Ω we have

∞
∑

n=1

|fn(x)|2(logn)3 <∞ (∗)

or ∞
∑

n=1

|fn(x)|p(logn)p(log logn)p/2+ε <∞ (∗∗)

By symmetry of {fn}, Proposition 4.1 applies. We define Ω∗ as the set of x for which
either (*) or (**) (according to p = 2 or 1 < p < 2), together with (20), hold. Fix
x ∈ Ω∗. Given a contraction T on L2(π) and g ∈ L2(π), (19), (20), and ‖ · ‖`2 ≤ ‖ · ‖`p
yield

‖
l

∑

k=j+1

fk(x)T
kg‖2 ≤ ‖g‖2 max

|λ|=1

∣

∣

∣

l
∑

k=j+1

fk(x)λ
k
∣

∣

∣
≤ ‖g‖2Cx

√

log(l + 1)(

l
∑

k=j+1

|fk(x)|p)1/p.

Hence for x ∈ Ω∗, (9) is satisfied by {fn(x)T ng} ⊂ L2(π), withmn = |fn(x)|p, q = 2
p ≥ 1,

and An = ‖g‖2
2C

2
x log(n+ 1). When p = 2, using (*) we have

∞
∑

n=1

A2n(logn)2mn ≤ C‖g‖2
2C

2
x

∞
∑

n=1

(logn)3|fn(x)|2 <∞.

Hence Theorem 2.9(i), applied to {fn(x)T ng} ⊂ L2(π), yields the π-a.e. convergence of
the series

∑∞
n=1 fn(x)T

ng and the estimate (24) for the maximal function of the partial
sums.

When 1 < p < 2, using (**) and q = 2/p we obtain

∞
∑

n=1

A
1/q
2n (logn)1/q(log logn)1/q+εmn ≤ C‖g‖p2Cpx

∞
∑

n=1

(logn)p(log logn)p/2+ε|fn(x)|p <∞,

and now Theorem 2.9(iii) applies. This concludes the proof when {fn} are symmetric.

We now prove the general case of {fn} centered. Let {f ′
n} defined on (Ω′, µ′) be an

independent copy of {fn}, and put hn(x, x
′) = fn(x)− f ′

n(x
′) on (Ω×Ω′, µ× µ′). Then
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hn is symmetric with ‖hn‖p ≤ 2‖fn‖p, so applying to {hn} the result for the symmetric
case proved above, we obtain a set E ⊂ Ω × Ω′ with µ× µ′(E) = 1, such that for fixed
(x, x′) ∈ E and any contraction T of L2(π) and g ∈ L2(π), the series

∑∞
n=1 hn(x, x′)T ng

converges π a.e. Define Ex = {x′ ∈ Ω′ : (x, x′) ∈ E} and put Ω∗ = {x ∈ Ω : µ′(Ex) = 1}.
By Fubini’s theorem, for µ a.e. x we have µ′(Ex) = 1, so µ(Ω∗) = 1.

Now fix x ∈ Ω∗. Let T be a contraction on L2(Y, π) and g ∈ L2(π). In order to show
that

∑∞
n=1 fn(x)T

ng converges π-a.e., take any x′ ∈ Ex and consider the identity

N
∑

n=1

fn(x)T
ng =

N
∑

n=1

hn(x, x
′)T ng +

N
∑

n=1

f ′
n(x

′)T ng (∗ ∗ ∗)

As N → ∞, the first sum on the right hand side converges π-a.e., since (x, x′) ∈ E. We
show that x′ ∈ Ex can be chosen such that the second sum is also π-a.e. convergent.

As mentioned in the introduction, we may assume that π is a probability, so for p ≤ 2
we have ‖T ng‖Lp(π) ≤ ‖T ng‖L2(π) ≤ ‖g‖L2(π). The appropriate condition (21) or (22)
yields

∫ ∞
∑

n=1

||f ′
n||pp|T ng|pdπ ≤ ‖g‖pL2(π)

∞
∑

n=1

||f ′
n||pp <∞ ,

so by Beppo Levi’s theorem we have that the series
∑∞

n=1 ||f ′
n||pp|T ng(y)|p converges π-a.e.

Hence for π almost every fixed y ∈ Y, the Marcinkiewicz-Zygmund theorem [30, Theorem
5’] (see [8, p. 114]), applied to the independent centered sequence {f ′

nT
ng(y)} ⊂ Lp(µ

′),
yields that the series

∑∞
n=1 f

′
nT

ng(y) converges µ′-a.e. By Fubini’s theorem, we have
that for µ′-a.e. x′ the series

∑∞
n=1 f

′
n(x

′)T ng converges π a.e. Since µ′(Ex) = 1, this
shows that we can find x′ ∈ Ex for which also the second term on the right hand side
of (***) converges π-a.e., and the π-a.e. convergence of

∑∞
n=1 fn(x)T

ng when x ∈ Ω∗ is
proved.

Fix x ∈ Ω∗. Let (Y, π) be a probability space, T a contraction on L2(π), g ∈ L2(π),
and y ∈ Y. Since {T ng(y)f ′

n} are centered independent in Lp(µ
′), the inequality of [5]

yields

‖
l

∑

k=j+1

T kg(y)f ′
k‖pp ≤ 2

l
∑

k=j+1

|T kg(y)|p‖f ′
k‖pp for l > j ≥ 0.

Hence for d(j, l) :=
∑l

k=j+1 |T kg(y)|p‖f ′
k‖pp we have A

(d)
n ≤ 2 for every n. By Theo-

rem 2.4, with q = 1, we have

∫

sup
n≥1

∣

∣

∣

n
∑

k=1

f ′
k(x

′)T kg(y)
∣

∣

∣

p

dµ′(x′) ≤ C

∞
∑

k=1

(log k)p‖f ′
k‖pp |T kg(y)|p.

Integrating the above with respect to π and using Fubini’s theroem we obtain

∫

[

∫

sup
n≥1

∣

∣

∣

n
∑

k=1

f ′
k(x

′)T kg(y)
∣

∣

∣

p

dπ(y)
]

dµ′(x′) ≤ C

∞
∑

k=1

‖f ′
k‖pp ‖T kg‖pp(log k)p

Since ‖T kg‖p ≤ ‖g‖2 (for p < 2 because π is a probability), the appropriate condition
(21) or (22) now implies convergence of the last series. Hence for a.e. x′ we have
∫

supn≥1 |
∑n

k=1 f
′
k(x

′)T kg(y)|p dπ(y) <∞, and x′ can be chosen in Ex since µ′(Ex) = 1.
With this x′ the suprema of the sums on the right hand side of (***) are both in Lp(π),
which proves the assertion.

Remarks. 1. When p = 2, we have in the general case supn |
∑n
k=1 fk(x)T

kg| in
L2(π) even if π is not finite.

2. By considering for each λ ∈ Γ the “rotation” it induces and applying the theorem
to g(z) = z, we obtain that (21) or (22) implies that for a.e. x ∈ Ω the random Fourier
series

∑

n fn(x)λ
n converges for every λ. When {fn} are symmetric, Billard’s theorem
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[25, Theorem 3, p. 58] yields a.e. uniform convergence of the series. In this case,
(19) yields that for a.e. x the series

∑∞
n=1 fn(x)T

n converges in operator norm for any
contraction T on L2 (uniformly in all contractions).

3. For p = 2 and fn = cnεn (throughout the paper {εn} is a Rademacher sequence
defined on the unit interval), (21) becomes

∑∞
n=1 |cn|2(log n)3 < ∞. Rosenblatt [40,

Theorem 11] used a stronger assumption, namely
∑∞

n=1 |cn|2
√
n(logn)2+δ <∞ for some

δ > 0, in order to prove the assertion of the theorem.
4. For 1 < p < 2 and fn = cnεn, (22) becomes

∑∞
n=1 |cn|p(log n)p(log logn)p/2+ε <

∞. This condition and
∑∞
n=1 |cn|2(logn)3 < ∞ are not comparable. The sequence

cn = 1/(
√
n log3 n) satisfies only the second condition, while cn = 1/(k2) for n = 2k and

cn = 0 otherwise satisfies only the first one.

Corollary 4.3. Let 1 < p ≤ 2, and let {fn} ⊂ Lp(Ω, µ) be a sequence of independent
centered random variables with supn ||fn||p < ∞. Then there exists a subset Ω∗ ⊂ Ω,
with µ(Ω∗) = 1, such that when x ∈ Ω∗, for every contraction T on a space L2(π) and
any g ∈ L2(π), the series

∞
∑

n=2

fn(x)T
ng

n1/p(logn)β(log logn)γ
converges π a.e., (25)

with β = 2 and γ > 1/2 when p = 2, and with β = 1 + 1/p and γ > 1/2 + 1/p when
1 < p < 2.

Proof. Apply the previous theorem to { fn

n1/p(log n)β(log logn)γ }.

Remarks. 1. The convergence (25) implies (e.g., [11, Lemma 2.19]) that for any
α > 1/p

∞
∑

n=2

fn(x)T
ng

nα
converges π a.e. (26)

2. For p = 2 and under the additional assumption that {fn} are symmetric identically
distributed, Boukhari and Weber [7, Corollary 3.3] proved (26), and also (25) with β > 2
and γ = 0. M. Weber has informed us that when p = 2 the general symmetric case can
be deduced also from the main result of [7].

Theorem 4.4. Let {fn} be a sequence of i.i.d. centered random variables on (Ω, µ). If
∫

|f1| log+ |f1|dµ <∞, then there exists a subset Ω∗ ⊂ Ω with µ(Ω∗) = 1, such that when
x ∈ Ω∗, for every contraction T on a space L2(π) and any g ∈ L2(π), the series

∞
∑

n=1

fn(x)T
ng

n
converges π a.e.. (27)

with supn≥1 |
∑n

k=1
fk(x)Tkg

k | ∈ L2(π).

When {fn} are symmetric, then the above assertions are true if we assume only
∫

|f1| log+ log+ |f1|dµ <∞.

Proof. We start with the general centered case. Since {fn} are assumed identically
distributed with f1 ∈ L1(µ), we have

∑∞
n=1 µ{|fn| > n} <∞, so for a.e. x ∈ Ω we have

|fn(x)| > n only for finitely many n. Hence it is sufficient to prove the assertions for
{fn1{|fn|≤n}} instead of {fn}.

Put h1 := f11{|f1|≤1} and hn := fn1{|fn|≤n/ log3 n} for n ≥ 2. Throughout this proof,

the logarithm is the natural one, and log3 t denotes (log t)3. By definition, {hn} is a
sequence of independent bounded random variables. Put Ehn =

∫

hndµ.

26



For a contraction T on L2(Y, π) and g ∈ L2(π) we have the identity

N
∑

n=1

fn(x)1{|fn|≤n}(x)T
ng

n
=

N
∑

n=1

(hn(x) − Ehn)T
ng

n
+

N
∑

n=1

EhnT
ng

n
+

N
∑

n=1

fn(x)1{n/ log3 n<|fn|≤n}(x)T
ng

n
. (∗)

We have to find a universal set of x (independent of T and g) for which the assertion of
the theorem holds. Note that the second sum does not depend on x.

For the first sum on the right hand side of (*), we want to apply Theorem 4.2 to
{hn−Ehn

n } with p = 2, so we show that {hn−Ehn

n } satisfies (21). Denoting f := f1 and
using ||hn − Ehn||2 ≤ 2||hn||2, we obtain, via Fubini’s theorem on (Ω × N),

∞
∑

n=2

∥

∥

∥

hn
n

∥

∥

∥

2

2
log3 n =

∞
∑

n=2

∫

1

n2
|fn|21{|fn|≤n/ log3 n} log3 ndµ =

∞
∑

n=2

∫

1

n2
|f |21{|f |≤n/ log3 n} log3 ndµ =

∫

|f(x)|2
∑

{n≥2: n
log3 n

≥|f(x)|}

log3 n

n2
dµ ≤

∫

|f(x)|2
∑

{n≥max{2,|f(x)| log3 |f(x)|} }

log3 n

n2
dµ ,

since 0 < a ≤ n/ log3 n =⇒ a log3 a ≤ n. We now estimate the tail of the conver-
gent series

∑∞
n=2 n

−2 log3 n, which has eventually decreasing terms, by the integral test.
Computing d

dt [t
−1 log3 t] we see that there is a constant C such that for t large (i.e.,

t > K) we have t−2 log3 t ≤ C d
dt [−t−1 log3 t]. Since for large values of |f | we have also

log(|f | log3 |f |) ≤ 2 log |f |, the last integral is bounded by

C1 +

∫

1{|f |≥K}|f |2
∑

{n:n≥[|f | log3 |f |]}

log3 n

n2
dµ ≤

C1 + C2

∫

1{|f |≥K}|f |2
(log(|f | log3 |f |))3

|f |(log |f |)3 dµ =

C1 + 8C2

∫

1{|f |≥K}|f |dµ ≤ C1 + 8C2

∫

|f |dµ <∞.

Thus
∑∞
n=2

∥

∥

hn−Ehn

n

∥

∥

2

2
log3 n < ∞. Let Ω∗∗ be the set given by Theorem 4.2, so for

fixed x ∈ Ω∗∗, for any contraction T on L2(π) and g ∈ L2(π) we have π a.e. convergence
of the first sum of (*). Note that only integrability of f was needed.

For the second sum in (*), we show that
∑∞
n=1

|Ehn|
n < ∞. Since fn is centered,

Ehn = −E(fn1{|fn|>n/ log3 n}) for n ≥ 2.

Claim. There exists N such that if n > N and a > n/ log3 n, then n < 2a log3 a.
Proof. Fix N with logn

log(log3 n)
> 10 for n > N . For n > N and a > n

log3 n
we have

a log3 a >
n

log3 n
[logn− log(log3 n)]3 >

n

log3 n
(0.9 logn)3 >

1

2
n.

We return to the second sum in (*). For N given by the claim large enough we have

∞
∑

n=2

|Ehn|
n

≤
∞
∑

n=2

E(|fn|1{|fn|≥n/ log3 n})

n
=

∞
∑

n=2

∫ |f |1{|f |>n/ log3 n}
n

dµ ≤
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N
∑

n=2

∫ |f |1{|f |>n/ log3 n}
n

dµ+

∫

1{|f |≥e}|f |
∑

{N<n≤2|f | log3 |f |}

1

n
dµ ≤

C +

∫

1{|f |≥e}|f |(log 2 + log |f | + 3 log log |f |)dµ <∞,

since the last integral is finite by assumption. Hence
∑∞
n=1

|Ehn|
n converges; thus,

as remarked in the introduction, for any contraction T and g ∈ L2(π), the series
∑∞

n=1
|Ehn T

ng|
n converges π-a.e.

For the third sum in (*) we use the previous computation to obtain

∫ ∞
∑

n=2

|fn|1{n/ log3 n<|fn|≤n}
n

dµ ≤
∫ ∞

∑

n=2

|f |1{n/ log3 n<|f |}
n

dµ <∞.

Hence by Beppo Levi
∑∞
n=1

|fn(x)|1{n/ log3 n<|fn|≤n}(x)

n < ∞ converges on a set Ω′ with

µ(Ω′) = 1. Now it is clear that for x ∈ Ω′ the series
∑∞

n=1

|fn(x)1{n/ log3 n<|fn|≤n}(x)Tng|
n

converges π a.e. We define Ω∗ = Ω′ ∩ Ω∗∗, so for x ∈ Ω∗ we have π a.e. convergence in
(*).

By Theorem 4.2 the maximal function of the first term in (*) is square integrable. For
x ∈ Ω∗ the suprema of the last two terms in (*) are bounded by the corresponding π-a.e.
absolutely convergent series; each series is square integrable by the triangle inequality
and the absolute convergence of the series of coefficients. This yields the desired square
integrability of the maximal function.

When {fn} are symmetric, so are {hn}, and Ehn = 0. Hence the second term in (*)
vanishes identically. To treat the third sum in this case, we give a direct proof of the

a.e. convergence of
∑∞

n=1

|fn(x)|1{n/ log3 n<|fn|≤n}(x)

n < ∞, which uses only the condition
∫

|f | log+ log+ |f |dµ <∞. Indeed, using the claim as before we obtain

∫ ∞
∑

n=2

|fn|1{n/ log3 n<|fn|≤n}
n

dµ =

∫ ∞
∑

n=2

|f |1{n/ log3 n<|f |≤n}
n

dµ ≤

C +

∫

1{|f |≥e}|f |
∑

{|f |≤n≤2|f | log3 |f |}

1

n
dµ ≤

C +

∫

1{|f |≥e}|f |
(

log 2 + log |f | + log log3 |f | − log(|f | − 1)
)

dµ ≤

C +

∫

1{|f |≥e}|f |
(

log 2 + 3 log(log |f |) +
2

|f |
)

dµ <∞.

Since the application of Theorem 4.2 required only integrability of f , we finish the proof
of the assertions as above.

Remarks. 1. When {fn} are centered i.i.d. and we take T the identity, we obtain µ

almost sure convergence of
∑∞

n=1
fn(x)
n . By the discussion following Theorem 6 of [30],

in general there is no weaker integrability condition on f1 that ensures this convergence.
2. When {fn} are symmetric i.i.d. which satisfy the assertion of the theorem, taking

all multiplications by λ (with |λ| = 1) we obtain pointwise convergence of the random

Fourier series
∑∞

n=1
fn(x)λn

n (which is in fact uniform in λ [25, p. 58]). By [45] we must

have f1 ∈ L log+ log+ L.

An inspection of the proof of Theorem 4.2 shows that in fact we prove the following.
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Theorem 4.5. Let {an} be a sequence which satisfies

(i)
∞
∑

n=1

|an|2(logn)3 <∞ for p = 2,

or ∞
∑

n=2

|an|p(logn)p(log logn)p/2+ε <∞ for 1 < p < 2 and ε > 0.

(ii) max
|λ|=1

|
l

∑

k=j+1

akλ
k| ≤ C

√

log(l + 1)
(

l
∑

k=j+1

|ak|p
)1/p

for every l > j ≥ 0.

Then for every contraction T on L2(π) and g ∈ L2(π), the series
∑∞

n=1 anT
ng converges

a.e. and in L2-norm. In particular, the Fourier series
∑∞
n=1 anλ

n converges for every
|λ| = 1.

Remark. By Proposition 4.1, for a.e. x ∈ [0, 1] the sequence an := εn(x)√
n log3(n+1)

satisfies both conditions of the theorem with p = 2. However, we have no specific
example of the appropriate “choice of signs”.

Recall that a Dunford-Schwartz operator on L1(Y, π) is a contraction T which is
also a contraction of L∞(Y, π), and therefore is also a contraction of each Ls(Y, π),
1 < s < ∞, by the Riesz-Thorin theorem (for a simple proof for Markov operators, see
[27, p. 65]). The Dunford-Schwartz theorem gives a.e. convergence of 1

n

∑n
k=1 T

kg for
every g ∈ L1(π).

Our results obviously apply to T Dunford-Schwartz and g ∈ L2(π), and this raises
the question about what happens for g ∈ Ls, 1 ≤ s < 2.

Recently, Assani [4] proved the π-a.e. convergence of
∑∞

k=1
fk(x)Tkg

k for g ∈ Ls(π),
s > 1, when {fn} ⊂ Lp, p > 1, are centered i.i.d. This extends previous results of
Rosenblatt [40, Theorem 18] (for {fn} a Rademacher sequence), Boukhari and Weber [7]
(p = 2 and {fn} symmetric), and Assani [2],[3] (convergence of 1

n

∑n
k=1 fk(x)T

kg). Note
that for g ∈ L2(π) Theorem 4.4 yields Assani’s result under the weaker requirement that
the i.i.d. variables {fn} are in L log+ L.
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(1998), 139-150.

[3] I. Assani, Wiener-Wintner dynamical systems, Ergodic theory and dyn. syst. 23 (2003),
1637-1654.

[4] I. Assani, Duality and the one-sided ergodic Hilbert transform, Contemporary Math., to
appear.

[5] B. von Bahr and C.-G. Esseen, Inequalities for the r-th absolute moment of a sum of
random variables, 1 ≤ r ≤ 2, Ann. Math. Stat. 36 (1965), 299-303.

[6] P. Billingsley, Convergence of probability measures, Wiley, New York, 1968.

29



[7] F. Boukhari and M. Weber, Almost sure convergence of weighted series of contractions,
Illinois J. Math. 46 (2002), 1-21.

[8] Y.-S. Chow and H. Teicher, Probability Theory. Independence, interchangeability, martin-
gales, Springer, New York, 1978.

[9] G. Cohen, R.L. Jones, and M. Lin, On strong laws of large numbers with rates, Contemp.
Math., to appear.

[10] G. Cohen and M. Lin, Laws of large numbers with rates and the one-sided ergodic Hilbert
transform, Illinois. Journal of Math. 47 (2003), 997-1031.

[11] Y. Derriennic and M. Lin, Fractional Poisson equations and ergodic theorems for fractional
coboundaries, Israel J. Math. 123 (2001), 93-130.

[12] J. L. Doob, Stochastic Processes. John Wiley & sons, New York 1953.

[13] S. Foguel, Powers of a contraction in Hilbert space, Pacific J. Math. 13 (1963), 551-562.

[14] I. Gál and J. Koksma, Sur l’ordre de grandeur des fonctions sommables, Indag. Math. 12
(1950), 192-207.

[15] V. F. Gaposhkin, Lacunary series and independent functions, Russian Math. Surveys 21
(1966) no. 6, 1-82.

[16] V.F. Gaposhkin, Convergence of series connected with stationary sequences, Math. USSR
– Izv. 9 (1975) 1297-1321.

[17] V.F. Gaposhkin, Strong consistency of estimates of the trend of a time series, Mathematical
Notes 26 (1979), 812-818.

[18] V.F. Gaposhkin, On the dependence of the convergence rate in the SLLN for stationary
processes on the rate of decay of the correlation function, Theory of Probability and Its
Applications 26 (1981), 706-720.

[19] V.F. Gaposhkin, A remark on strong consistency of LS estimates under weakly correlated
observation errors, Theory of Probability and Its Applications 30 (1985), 177-181.

[20] V.F. Gaposhkin, Spectral criteria for existence of generalized ergodic transforms, Theory
of Probability and Its Applications 41 (1996), 247-264.

[21] E.J. Hannan, Rates of convergence for time series regression, Adv. Appl. Prob. 10 (1978),
740-743.

[22] E. W. Hobson, On certain theorems in the theory of series of normal orthogonal functions,
Proc. London Math. Soc. (2) 14 (1915), 428-439.
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[32] F. Móricz, Moment inequalities and the strong laws of large numbers, Z. Wahrsch. Ver.
Geb. 35 (1976), 299-314.
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