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Extensions of von Neumann's Method for

Generating Random Variables

By John F. Monahan*

Abstract. Von Neumann's method of generating random variables with the exponential

distribution and Forsythe's method for obtaining distributions with densities of the

form e~G(x) are generalized to apply to certain power series representations.   The flex-

ibility of the power series methods is illustrated by algorithms for the Cauchy and geo-

metric distributions.

1. Introduction.   Von Neumann's [7] ingenious algorithm for generating deviates

from the exponential distribution using uniformly distributed deviates was extended by

Forsythe [5]. The novelty of both of these methods is that apparently "transcendental"

distributions can be generated via purely arithmetic operations.   The efficiency of

these methods, due to their avoidance of logarithm computations, has been demon-

strated in implementations for several important distributions [1]—[4].

In Section 2, a generalization of the von Neumann algorithm to a family of dis-

tributions with a power series representation is presented.  The method is not restricted

to absolutely continuous distributions; discrete (or any mixture) distributions are

achievable.  In Section 3, the power series generalization is applied to the Forsythe

algorithm and illustrated in algorithms for the Cauchy and geometric distributions in

Section 4.

2. Generalization of von Neumann's Algorithm.   Let Yx, Y2, ... be iid random

variables from an arbitrary distribution with dfF, i.e. Pr(Y <,y) = F(y).  Let Zx = 1

and Z2, Z3, ...be independent Bernoulli deviates with Pr(Z¡ = 1) = ai/ai_x = p¡ for

i > 1 and given constants I = ax > a2 > ■ • • > 0. Consider the following algorithm:

Algorithm V.

1. Generate Yx, Zx, n <— 1.

2. Generate Yn + X, Zn + X.

3. If Yn + X < Yx and Zn+X = 1, then 77 «— 77 + 1 and go to 2.

4. If n is even, go to 1.

5. Deliver X+— Yx.

Let En be the event max^j, ... , Yn) = Yx and Zx = Z2 = Z3 = • • • = Zn = 1.
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1066 JOHN F. MONAHAN

Then Pr(Yx <y, En) = anF(y)n and since En + X C En,

Pr(Yx<y,En,Ecn + x)=Pr(Yx<y,En)-Pr(Yx <y,En + x)

= anF(y)"-an + xF(y)" + i.

Hence, P< Accept Yx) = pA = Pr(n is odd) = 2~=1a„(-1)" + 1 and X has df

FX(X) = PA.X<x)=¿ anF(x)"(-l)n+1/pA =h(~F(x))/h(-l),
n = l

where h(w) = £~=1anw".  The expected number of Fs needed to produce a single

X, denoted by ENF, can be computed

ENF ^T¿^^.^+i)(« + i)|

^P~Án%i{n + 1)(fl" "a" + l)l   = (1+Èia")/PA

= [l+h(l)]/[-h(-l)].

In the von Neumann algorithm, h(w) = ew - I, F(x) = x, hence Fx(x) =

(1 - e~x)/(l -e~1),pA = l-e~l and ENF = e/(e - 1).  Note that for iid random

variables, the ranks and order statistics are independent; hence, the random variable

Z's can be obtained from the Yj's: Z¡ = 1 if Y, < Yj_x < • • • < Yi which occurs

with probability 1// given Ei_x, hence a¡ = 1//!. This is obviously peculiar to the

exponential distribution.   Note that if F has atoms, the ordering of the Y.'s may no

longer be unique but this tie-breaking scheme TB can adjust and yield a deviate with

df(l - e~F(x))j(l - e"1) for any F.

Algorithm TB.

1. If Yj < Y¡_ x, then Z¡ = 1.

2. If Yf > Yj_x,thenZf = 0.

3. If Yj = Yj_x = - • • = Y¡_k + X, then with probability l/k: Z¡ = 1

with probability (k - l)/k: Z¡ = 0.

If even 77 are accepted (step 4 of Algorithm V) instead of odd, a deviate with

df(F + h(-F))l(l + h(- I)) is obtained and pA = (h(-1) + 1) and ENF =

(1 + h(l))l(h(- 1) + 1).  If a decreasing sequence of Y¡'i is used (change < to > in

step 3), then the output has df 1 - h(F(x) - l)/hi~ I), with pA and ENF unchanged.

To illustrate the method, let the desired df be Fxix) = 1 - cos(tt*/2) for * S

(0, 1) and let

2 4 2 ;_2

hiw) = W + -TT- WZ + -r^z: W* + • • ■  + -w' + ' • • .

48 5760 2*'~3(2A!

Note I = ax > a2> ' • • and let F(u) = u2 which is easily generated as the maximum
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of two independent uniform deviates.  Simple calculations yield pA = 8rr  2 and

ENF « 2.74.

3. Generalizations of Forsythe's Method.   Forsythe's [5] method can also be

generalized for functions with certain power series expansions.  With y.'s and Z's as

before, consider the algorithm

Algorithm F.

1. Generate X with df P, and let YQ = G(X).

2. Generate Yx, Y2, ... ,ZX,Z2, ... as long as max(Yx, ... , Yn) < Y0

and Zx = • ' • = Zn = I.

3. Ifr„ + 1 >YX oxZn + x =0,stop.

4. If n is even, deliver X, else go to 1.

Note that px need not be 1, and the sole condition on G is that it maps the

support of P onto the support of F.   Let En be as before and note the following cal-

culations:

PKX<x, Yx <G(x),En)= Ç   Pr(Yx<G(y),En)dP(y),

Pr(X<x, Yx <G(X),En,Ecn + x)

=  f   [Pr(Yx < G(y), En) - Pr(Yx < G(y), En + X)] dP(y)

=  f    [anF(G(y))n -a„ + xF(G(y))" + l] dP(y).
J   —oo

Again let h(w) = ¿Z™=r)anwn but with l=a0>a1>,,#>0.  Convergence is

implied for w G [—1, 1) by an —► 0.  Summing the last displayed expression over

even n (beginning with 0), X has the df

Ç   h(-F(G(y)))dP(y)/C~ h(-F(G(y)))dP(y).
J   —oo **    —oo

The acceptance probability is the denominator of the df above, and the expected num-

Ç~ h(F(G(y)))dP(y)

bex of y's is

ENF

f~h(-F(G(y)))dP(y)

The expected number of samples from the distribution P, ENP is the reciprocal of the

acceptance probability.  These results correspond precisely to those of Ahrens and

Dieter [4, Lemma 2] for h(w) = ew.

4. Examples.  To illustrate the generalization of Forsythe's method, consider

the following algorithm for the Cauchy distribution.
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h(w) = (l -w/2)-2

=  1 + w + 3w2\4 + • • • + (77 + l)w"/2" + • • • ,

F(u) =«,      u e (0, 1),

P(x) = (l +*)/2,

G(*) = 2[(l + *2)1'2 - 1].

Algorithm C.

0. (Executed only on first entry) Generate u.

1. X<—2u-l;n<—0;y0<—G(X).

2. Generate ux, yn + x *—ux.

3. Uyn + l >pn + xy0,goto 5.

4. n <— 77 + 1 ; go to 2.

5. w—(yH+t -pn + ly0)l(l -Pn + iy0)-

6. If 77 is odd, go to 1.

7. u *— 2«; if u < 1, deliver X,

8. otherwise, u <— u - 1 and deliver X <— l/X.

Here the words "Generate 77 (or i/,)" means to draw an independent uniform (0, 1)

deviate.  Note that the dual check of step 3 of Algorithm F can be done in a single

step, #3 of Algorithm C.  If yn + x >y0, then the sampling of >>'s ceases or if zn+x =

0.  Conditional onyn + x <y0 thenzn+1 = 1 is equivalent to yn + x <pn+xy0;hence,

the algorithm continues only when yn + x <P„+i JV  ^so resulting from F being uni-

form is the "saving" or "reusing" in step 5 due to Brent [3] in his Forsythe-type

algorithm for Gaussian deviates.  Note also that the condition on G is satisfied

G: [-1. + 1] ->[0,2(>/2-l)i Ç[0, 1]
support of P support of F.

Some calculations yield pA = it/4 and ENF » 1.88; the "reusing" eliminates EN .

Because of the square root computation in G, Algorithm C will be slower in most

implementations than the synthetic tangent algorithm [6].  But it requires 1/4 fewer

uniform deviates than the synthetic tangent's 8/77 » 2.56.

To illustrate the flexibility of G, consider the following algorithm for the geo-

metric distribution, i.e., Fx(x) = 1 - (1 - p)x + 1, * = 0, 1, 2, ... . There, P is the

discrete uniform distribution on the integers 0 through n(p) and F is the continuous

uniform distribution, F(x) = x, x £ [0, 1], and G(x) = - x ln(l - p). Let b =

- ln(l - p), then 77(73) must satisfy 0 < bn(p) < 1 in order that G satisfy the require-

ment that the support of P, {0, 1, 2, ... , n(p)}, be mapped into the support of F,

[0, 1].  Here h(w) = ew (Forsythe).

Algorithm G.

0. X = 0; a = (1 -p)"(P)+1; generate u.

1. If u > a, go to 3.

2. X <— X + n(p) + 1, u <— u/a, go to 1.

3. Generate/ with d/ P.
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4. Generate u x, u2, ... from F until ux > lb ox un + x >un.

5. If ti is odd, go to 3.

6. Deliver X <— X + I.

Another algorithm can be written using Algorithm V with

h(w) = (eb"(P)w - l)/(bn(p))

and Fii) = i/n(p), which has nearly the same characteristics as Algorithm G.   If pn(p)

—► 7 as p —*■ 0 (the interesting case), ENF decreases as y decreases; but the number

of checks in steps 1 and 2 above increases, hence a machine dependent tradeoff.

These elegant algorithms are denigrated by the simple method of obtaining a

geometric deviate by taking the greatest integer in Z/b where Z is an exponential

deviate.  The new algorithms were competitive with [Z/b] when implemented on a

CDC 6600 in Fortran using the von Neumann exponential algorithm.  But the sim-

plicity of [Z/b] should be preferred to the slight increase in speed.
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