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Editor’s note:

Correlating the statistics of process parameters with the statistics of electrical
performance is a vital task in statistical modeling. This article describes a
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show that overspecifying the electrical
performances to be modeled can
improve overall statistical-modeling
accuracy.

more general form of the backward propagation of variance (BPV) method, a

numerical technique for iteratively solving the statistics of process parameters
from the statistics of electrical performance within the behavior of models

encapsulated in Sprice.

36

—Frank Liu, IBM Austin Research Lab

Il STATISTICAL SIMULATION IS IMPORTANT for the de-
sign of high-yield circuits,' and statistical simulation
requires statistical models. Such models can be gener-
ated using numerical techniques such as principal
component analysis or factor analysis.>® However,
physical models have proven substantially more accu-
rate and efficient than strictly numerical models for
retargeting statistical models (both for mean shifts
and variance shifts in a process), predicting statistical
models for a process based on previous generations of
that process, and capturing unexpected or anomalous
behavior in statistical variations over bias or geometry.

The backward propagation of variance (BPV) tech-
nique is a unified approach for physically based
statistical modeling, for both global and local
(mismatch) statistical variations.™® In this article, we
present recent extensions and enhancements to the
BPV technique. We show how the assumption of a lin-
ear dependence of electrical performance on process
parameters can be relaxed, and that correlations be-
tween different electrical performances can be
explicitly included in the procedure. We include mea-
sures of circuit performance as modeling targets, and
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Backward propagation
of variance

With the BPV approach, we can
formulate statistical models as a set of
independent, normally distributed pro-
cess parameters, expressed as p = (p1, Pa,- - - pr).
These parameters control the variations seen in de-
vice electrical performance, e = (e, es,..., ey,) =
e(p), through the behavior encapsulated in the
Spick models used for device and circuit simulation.

Some process parameters—for example, those
with large variations, such as the current density of
the nonideal component of base current for bipolar
junction transistors (BJTs)—are better represented
as log-normal distributions. Such behavior can still
be modeled using a normally distributed process pa-
rameter by multiplying the parameter’s nominal value
by the exponential of a normally distributed statistical
process parameter. Partial correlations between
parameters of the same or different devices can be
modeled by writing those parameters as functions
of combinations of independent process parameters.®
For example, the channel length variations ALP and
ALN of PMOS and NMOS devices are partially corre-
lated because they depend on the critical dimension
(Cp) of the polysilicon, which can be taken to be the
same for the two device types because the polysilicon
etch step that controls this is common. They also
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depend, however, on the out-diffusions of the p+ and
n+ source-drain regions, Opp and Opy, that can be
considered to be independent between the device
types. We can accurately model partial correlations
between ALP and ALN using only independent
parameters by considering Cp, Opp, and Opy as the
fundamental statistical process parameters, rather
than direct variations in ALP and ALN, and by intro-
ducing the following mappings:®

ALP = Cp + Opp )
ALN = Cp + Opn 2

The more difficult case for correlated parameters is
for BJTs. Appropriate mappings from independent
process parameters into correlated Spiceé BJT model
parameters were first reported by Davis and Ida.” Our
experience is that it is always possible to use physical
analysis to determine a set of independent process
parameters (p), and the mappings from these into
SpicE model parameters, which control device
performance.

The BPV procedure has proven to be robust and
effective in practice; indeed, in some respects it
almost “cheats” because it forces the generation of
statistical variations in p so that the proscribed
variations in the device electrical performances (e)
are matched exactly However, it also has several lim-
itations. First, with BPV, we assume that the e(p) map-
pings are linear. Although the “law of small variations”
(for a semiconductor manufacturing process to be
useful, the variations are necessarily small) means
the assumption of linearity is often reasonable, this
is not always the case. Second, correlations between
the components of e are not fitted explicitly by the
BPV procedure, but fall out of the dependencies
implicit in the SpicE model e(p) mappings.

A highly specific way to unravel these correlations
for some parameters was published,’ but the technique
was not general. Recently, the first limitation—that
e(p) mappings are assumed to be linear—has been
overcome,® and a general procedure for explicitly han-
dling correlations between components of e has been
developed. In this article, we summarize those exten-
sions to the BPV procedure, and give a formulation
that encompasses both nonlinear e(p) mappings
and arbitrary correlations between components of e.

The BPV mathematical formulation is independent
of whether an electrical performance is a measure of
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device or circuit performance, and it does not distin-
guish between whether the electrical performance
depends on process parameters from a single device
type or from more than one device type. Nonetheless,
in practice the BPV process has been applied to mea-
sures of device performance from only a single type of
device. BPV verification based on a combination of
device- and circuit-level performance has been dem-
onstrated recently’ with the latter depending on the
behavior of both PMOS and NMOS transistors. We sum-
marize the results of that investigation here as well.

Extended BPV formalism

Here, we present a comprehensive formulation of
the BPV procedure that both accounts for quadratic
nonlinearities in the e(p) mappings and explicitly
includes correlations between components of e as
targets for modeling. The formalism is a synthesis of
recent BPV extensions (reported elsewhere®) that ad-
dress each of these aspects separately.

The first- and second-order sensitivities of one € com-
ponent, e,,, around the mean p = (p;,Ps, - - - ,ﬁNp)
(which is also the median because the p compo-
nents are independent and normally distributed
parameters) are as follows:

. (1) & en
y omijj = | 5
pP=p 2) 9pi9p; =P

Equation 3, together with a second-order Taylor
expansion of e, around p, gives

P dep,
™ Opy

&)

em(p) ~ en(P) +Zsm,5p,+Zsm,,6p,bp, 0)

= i,j=1

where Jp; = p; — p;. If the p; have mean values p;
and variances 0'12, then the mean,

skewness of e, are, respectively,

variance, and

Hem = €m (l_)) + Zsmﬁa? (5)

Tom = DS ,+2Zsm,, oo (6)

Np
Py Sm,iSm,Sm.ij 0} 0}
_ ij=1
Yem = 3 N, (7)
em
+8 3 SmiSm.jkSmkiC; 0} 0}
i\j k=1

37



38

Compact Variability Modeling for Nanometer CMOS Technology

and the covariance between e, and another
component, e, of e is

No

2 2
Oem,en = g smtsnlo' +2 Z Sm.ijSn,ij0; 0; )
i=1 i,j=

Some p; components, such as oxide thickness (¢.y)
for MOSFETs, can have their variance specified di-
rectly and so must be treated as forward propagation
of variance (FPV) parameters. If n,, of the process
parameters p;, [ € F'= {1, 2,..., n,} are FPV parame-
ters (without loss of generality taken to be the first n,,
process parameters), such that there are N,, — n, BPV
process parameters p;, ie B= {n, + 1,n,+2,..., Ny},
then Equations 5 through 8 must be modified to take
this into account:

Pem — €m(P

Zsmzz(f = Zsmuo' ®)

el ieB

2 2 2 2\ 2
Oom — Z (sm’[ +2 E sm’,-/-oj) o;

el JjeF (10)
_E <m1+4§ sm,] )a +2§ sm,/,
ieB JeF i,jeB
3 2 2 2
OcmYem — Z <65m,i5m,/' + stmjksm,kia;e) Sm,jj0; 0}
i,jeF keF
2 2 2
=6 Z Sm,iSm,j + 4 Zsmﬁjksmk,‘ak Sm,ij0; gy
i,jeB kel
+ 12 Sm.iSm.j + 2 S, ik Sm.pi0% | Sm.iio20°
m,iSm, j m, jkSm,kiOk | Sm,jj0; O;
ieB jeF keF
8 o ) 11
+ Sm jjSm, jkSm ki O} O an
i keB

2 2
Oemen — E (sm,isn,[ +2 E Sm,l'jsrzjjaj>01

el JeF
§ : § : 2 2
= Sm.iSn,i + 4 Smﬁ,'an?,'jO'j g;
ieB JjeF

2 2
+ 2 E Smﬂl'j'Sn‘,'jO'fO'j
i,jeB

(12)

The relations in Equations 9, 10, and 11 give 3N,
equations, supplemented with as many covarian-
ces as are specified in Equation 12, to solve for
the 2(N, — n,) unknowns, the means and varian-
ces of the (N, — n,) BPV process parameters

(Pryos Pryias - -+ Pn,). Target skewness values e,
need not be specified for all (or even for any) com-
ponents of e. The nonlinearity in the e(p) mappings
means that the expected value of e,, is no longer
en(Pp); therefore, p; cannot, in contrast to the linear
BPV case, be calculated via a separate, initial step, in
which p; are adjusted so that e, (p) = p,, for all
components of e. Rather, p; must be included as
unknowns in the overall solution procedure.
Equations 9 through 12 are solved using an itera-
tive nonlinear least-squares approach, with the sensi-
tivities computed at each iteration using +3o
variations in each p; around p;. The procedure is com-
pletely general, and all e(p) are simulated using the
underlying Spice models. The requirements for the
procedure to be numerically stable are as follows:

m The underlying Spice models must be reasonable
so that the sensitivities in Equation 3 are accurate.

m The statistics specified for e must be self-
consistent.

m The p must be observable in the selected e.

With proper physical analysis of the models and
devices, these conditions are not difficult to achieve.

Notice that in the case of linear e(p) mappings,
we have s, ; = 0; consequently, Equations 9 through
12 simplify to

Hem = €m(P) (13)
n =D Snid = D _Snic as
ieF ieB

Vem =0 (15)

Oem,en — X:Sm,isn,ial2 = X:Sm,fsn,iffl2 (16)

ieF ieB
Equation 13 states that, for the linear case, the
expected value of each performance is its value
when p = p; Equation 14 is just the standard linear
BPV formulation; Equation 15 indicates that the
skewness is zero for linear functions of normally
distributed variables, as expected. Equation 16 is the
covariance between e,, and e, when any nonlinea-
rities in the e(p) mappings are negligible.

The quadratic approximation in Equation 3 could
be extended to a higher order for further improved
modeling of nonlinearities; however, so far, we have
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Table 1. Bipolar junction transistor (BJT) statistical-modeling results with the backward propagation of variance
(BPV) technique.
Device performance Statistic Measured data Linear BPV Quadratic BPV
Ratio of collector current to base u 80.0 82.6 79.3
current, 8 o 30.7% 43.8% 28.4%
Base-emitter voltage, Vhes n 0.850 V 0.852V 0.850 V
o 10.083 mV 9.20 mV 9.26 mV
Forward Early voltage, Vi n 46.4 V 493V 456V
o 39.17% 28.88% 37.80%
not found this to be necessary. This would increase
the complexity of the modeling equations and re-
quire reliable estimation of higher-order statistical
moments from experimental data. In fact, because
of the variation in process statistics (statistical design 150
models are required early in the life cycle of a manu-
facturing process when only limited data are avail-
able), then, even for the quadratic model, if the < 100
skewness of some components of e are small, they
should be ignored (i.e., set to 0) and not fitted. In
our experience, the linear BPV procedure is often suf- 50
ficient, the quadratic BPV procedure is only neces-
sary occasionally, and the inclusion of correlation
modeling is more important than handling higher-
order nonlinearities.

Extended BPV results

The extended BPV capabilities we've just described
have been applied to various types of devices in sev-
eral manufacturing technologies. Here, we present
some typical results.

In general, following the “law of small variations,
the assumption of linear e(p) relationships is reason-
able. BJTs often exhibit large variations in some mea-
sures of device performance, notably the base current
(which also then causes large variations in f3, the ratio
of collector current to base current), so we use a ver
tical npn BJT to evaluate the effect of including non-
linearities in e(p).

For BJTs, the fundamental process parameters that
control device behavior are the pinched-base sheet
resistance pqpe, the emitter size variation ALe, and
the normalized ideal component of the base current
density Jye; (which, in turn, depends on the recombi-
nation and generation time constants in the emitter).
These are mapped into the Spice BJT model parame-
ters following the approach first presented by Davis
and Ida.” There are three measures of device
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Figure 1. Bivariate bipolar junction transistor
(BJT) statistical modeling distributions. Dashed
lines are + 30 values, symbols are Monte Carlo
simulations, and shaded curves are marginal
distributions.

performance to fit—that are both key for IC design
and that make pgpe, ALe, and Jy,e; Observable: the
base-emitter voltage Vj,es, which gives a defined col-
lector current (this is equivalent to the collector cur
rent at a fixed base-emitter bias); the forward Early
voltage V¢ (note that this is extracted from measure-
ments, and is not the Spic model parameter); and f.

Table 1 shows measured manufacturing data
along with summary statistics from a 10,000-sample
Monte Carlo simulation using statistical models,
generated from the BPV procedure, based on
both linear and quadratic e(p) formulations. The
improved accuracy of the quadratic form compared
to the linear form for modeling the statistical varia-
tions (i.e., the o values) is apparent. Figure 1 shows
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Table 2. Extracted standard deviations
of AL parameters.

Parameter o (um)
Co 0.017
Obp 0.011
Oon 0.008

the shape of the distributions; the skewness in the
distributions, which arises from the nonlinearity
in the e(p) dependencies (the samples for p are
generated from symmetric normal distributions), is
clear.

To further investigate the capability of the
extended BPV procedure, we have modeled PMOS
and NMOS devices together, and we included as
modeling targets the correlation coefficients between
the peak transconductances, g, max, Of wide and
long devices and the saturated drain currents, fys,
of wide and short devices. The oxide thickness, .,
was considered common between the PMOS and
NMOS device models, and its variance was deter-
mined directly from measured capacitance data—
that is, it was treated as an FPV statistical modeling
parameter. Additional parameters (Cp, Opp, and Opy)
were introduced to model the effective-channel-length
variations, and these were transformed into the appro-
priate Spick model parameters using the mappings in
Equations 1 and 2.

Table 2 shows the computed standard deviations
of the effective-channel-length parameters’ compo-
nents. The largest portion of the variation is in the
common polysilicon critical-dimension Cp variation;
howevey, significant portions of the overall variation
are from the out-diffusion parameters, which are sep-
arate for each device type. Note that the variations in
these individual components of AL variation cannot

Table 3. MOSFET model statistical results.
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Figure 2. Bivariate scatter plot of PMOS vs. NMOS
wide and short saturated drain currents. Symbols
are measured data, ellipses are 10, 20, and 3o
yield curves from 10,000 Monte Carlo samples.

easily be measured directly; they can only be com-
puted using the BPV procedure.

Table 3 shows summary statistics for some key types
of electrical performance from a 10,000-sample Monte
Carlo simulation. The important point is that the corre-
lations are not modeled accurately unless they are
explicitly taken into account in the modeling process:
The correlations between the peak transconductances
are “naturally” fitted because they are for wide and
long devices, and we have taken /. to be perfectly cor-
related between PMOS and NMOS devices. The corre-
lations between the saturated drain currents of the
wide and short devices cannot be fitted accurately
without the model form in Equations 1 and 2 and
the BPV procedure that incorporates fitting of the cor
relations between e components. The accuracy of the
correlation modeling is also visually apparent in the
bivariate results of Figure 2, and individual univariate
distributions are also modeled well (see Figure 3).

Device performance MOSFET type Measured data Correlated BPV
Peak transconductances, gmmaxo PMOS 1.8% 1.8%

NMOS 1.7% 1.7%
Saturated drain currents, lsas & PMOS 3.9% 41%

NMOS 2.4% 2.4%
(G, ) 0596 0594
(s, 1) 0.718 0.719
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BPV modeling including
circuit performance

The theoretical formalism we have presented
makes no assumptions about what are selected as
the components of e. Conventionally, these are
device-level measurements (embodying either global
or local variation). Typically, these device performan-
ces are chosen so that they make the process param-
eters, p, observable and serve as key quantities that
control circuit performance. Nothing, however, tech-
nically prevents some or all components of e from
being measures of circuit performance. Indeed, incor-
porating circuit-level performance as part of the
statistical-modeling process can only improve the
overall accuracy of modeling circuit behavior. Accu-
rate modeling of circuit performance is the ultimate
goal of modeling, not modeling device-level perfor-
mance or parameter variations.

To that end, we have used the PSP MOSFET model to
characterize the statistical variation of PMOS devices,
NMOS devices, and ring oscillators, which are all mea-
sured from the same sample wafers. PSP is the most ac-
curate and physical MOSFET model available,'® and so
should be expected to provide good statistical-modeling
capability while using as few parameters as possible.

Conceptually, the process parameters can be bro-
ken into three groups: those that affect only PMOS de-
vices, pp; those that affect only NMOS devices, py;
and those that are common and affect both types
of devices, p.. Similarly, the different components of
electrical performance can be broken into three cat-
egories: those specific to PMOS devices, e,,; those spe-
cific to NMOS devices, e,; and those that are circuit
performances, €., which depend on the performance
of both the PMOS and NMOS transistors. The propaga-
tion of variance relations in Equation 6, considering
only linear variations, becomes

_ ) .
e, o6
) op, P, .2
ep den\? [en\? P
a2, =10 — — Tpn
2 8pn 8pc 2
Oec 2 9 9 JPC
oe. (aec> <8ec)
| \9Py) \9Py/ \9p:/ |

which has a bordered block-diagonal structure. This

an

structure shows that parameters common to both
types of device can also be made observable by
including one or more circuit-level performance that
depends on the electrical behavior of both types
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Figure 3. Univariate probability density function for wide and

short NMOS saturated drain current. Solid lines are from

measured data; dashed lines are from a 10,000-sample Monte

Carlo simulation.
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Figure 4. Measured and modeled distributions for wide and

short NMOS saturated drain current.

of device, in contrast to explicitly including
correlations between e components, as was done
in the “Extended BPV results” section.

The coupled device-circuit-level statistical BPV
modeling procedure was applied to our measured
data from individual devices and ring oscillators.
Figure 4 shows the measured and modeled results
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Figure 5. Measured and modeled ring oscillator gate delay

variation as a function of supply voltage.
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for the saturated drain current of wide and short
NMOS devices. The accuracy of the statistical
model is clear.

Figure 5 shows the measured and modeled varia-
tion in the ring oscillator gate delay, 74, as a function
of the supply voltage Vpp. The dashed line shows the
model results when the PMOS and NMOS saturated
drain currents and the ring oscillator gate delay are fit-
ted only at the highest value of Vpp. The BPV proce-
dure obviously fits the statistical variation of 74 well,
at the highest supply voltage; however, the accuracy
degrades for lower supply voltages. Even though
PSP is an extremely accurate model, and it fitted the
measured device’s current-voltage and capacitance-
voltage characteristics well, and also perfectly fitted
the variances of I, and 74 at a high Vpp, clearly
there is imprecision in extrapolating the variances
to lower Vpp values.

Besides there being no restriction on what the
components of e are, the BPV technique has no re-
striction on how many components of e can be
included in the modeling procedure (as long as it is
at least the minimum number to make all the process
parameters, p, observable). The solid line in Figure 5
shows the statistical variation in the gate delay when
additional drain currents, at lower supply voltages,
are added to the BPV procedure. Clearly, fitting the
variance of tq over Vpp shows significant improve-
ment, with essentially no loss in modeling accuracy

at the highest Vpp value. We stress that we added
only extra drain currents as modeling targets; we
didn’t explicitly include variances in the gate delays
74 at the lower supply voltages as additional fitting tar
gets, but they follow from the improved fitting of
NMOS and PMOS I,s over Vpp.

THe BPV FormALISM was previously verified to work
well for both global and local (mismatch) statistical
modeling, and has now been verified to be able to han-
dle nonlinearities and correlations, and to be able to
be applied using circuit-level as well as device-level
measures of electrical performance. Remaining chal-
lenges include extension to handle both global and
local variations in a single and unified manner, and
to be able to leverage the analysis of nonlinearities
and correlations to predict optimum corner models
taking both of these effects into account. |
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