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�STATISTICAL SIMULATION IS IMPORTANT for the de-

sign of high-yield circuits,1 and statistical simulation

requires statistical models. Such models can be gener-

ated using numerical techniques such as principal

component analysis or factor analysis.2,3 However,

physical models have proven substantially more accu-

rate and efficient than strictly numerical models for

retargeting statistical models (both for mean shifts

and variance shifts in a process), predicting statistical

models for a process based on previous generations of

that process, and capturing unexpected or anomalous

behavior in statistical variations over bias or geometry.

The backward propagation of variance (BPV) tech-

nique is a unified approach for physically based

statistical modeling, for both global and local

(mismatch) statistical variations.4,5 In this article, we

present recent extensions and enhancements to the

BPV technique. We show how the assumption of a lin-

ear dependence of electrical performance on process

parameters can be relaxed, and that correlations be-

tween different electrical performances can be

explicitly included in the procedure. We include mea-

sures of circuit performance as modeling targets, and

show that overspecifying the electrical

performances to be modeled can

improve overall statistical-modeling

accuracy.

Backward propagation
of variance

With the BPV approach, we can

formulate statistical models as a set of

independent, normally distributed pro-

cess parameters, expressed as p ¼ (p1, p2,. . ., pNp
).

These parameters control the variations seen in de-

vice electrical performance, e ¼ (e1, e2,. . ., eNe
) ¼

e(p), through the behavior encapsulated in the

SPICE models used for device and circuit simulation.

Some process parameters��for example, those

with large variations, such as the current density of

the nonideal component of base current for bipolar

junction transistors (BJTs)��are better represented

as log-normal distributions. Such behavior can still

be modeled using a normally distributed process pa-

rameter by multiplying the parameter’s nominal value

by the exponential of a normally distributed statistical

process parameter. Partial correlations between

parameters of the same or different devices can be

modeled by writing those parameters as functions

of combinations of independent process parameters.6

For example, the channel length variations �LP and

�LN of PMOS and NMOS devices are partially corre-

lated because they depend on the critical dimension

(CD) of the polysilicon, which can be taken to be the

same for the two device types because the polysilicon

etch step that controls this is common. They also
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Editor’s note:

Correlating the statistics of process parameters with the statistics of electrical

performance is a vital task in statistical modeling. This article describes a

more general form of the backward propagation of variance (BPV) method, a

numerical technique for iteratively solving the statistics of process parameters

from the statistics of electrical performance within the behavior of models

encapsulated in SPICE.
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depend, however, on the out-diffusions of the p+ and

n+ source-drain regions, ODP and ODN, that can be

considered to be independent between the device

types. We can accurately model partial correlations

between �LP and �LN using only independent

parameters by considering CD, ODP, and ODN as the

fundamental statistical process parameters, rather

than direct variations in �LP and �LN, and by intro-

ducing the following mappings:6

DLP ¼ CD þ ODP (1)

DLN ¼ CD þODN (2)

The more difficult case for correlated parameters is

for BJTs. Appropriate mappings from independent

process parameters into correlated SPICE BJT model

parameters were first reported by Davis and Ida.7 Our

experience is that it is always possible to use physical

analysis to determine a set of independent process

parameters (p), and the mappings from these into

SPICE model parameters, which control device

performance.

The BPV procedure has proven to be robust and

effective in practice; indeed, in some respects it

almost ‘‘cheats’’ because it forces the generation of

statistical variations in p so that the proscribed

variations in the device electrical performances (e)

are matched exactly. However, it also has several lim-

itations. First, with BPV, we assume that the e(p) map-

pings are linear. Although the ‘‘law of small variations’’

(for a semiconductor manufacturing process to be

useful, the variations are necessarily small) means

the assumption of linearity is often reasonable, this

is not always the case. Second, correlations between

the components of e are not fitted explicitly by the

BPV procedure, but fall out of the dependencies

implicit in the SPICE model e(p) mappings.

A highly specific way to unravel these correlations

for someparameterswas published,6but the technique

was not general. Recently, the first limitation��that

e(p) mappings are assumed to be linear��has been

overcome,8 and a general procedure for explicitly han-

dling correlations between components of e has been

developed. In this article, we summarize those exten-

sions to the BPV procedure, and give a formulation

that encompasses both nonlinear e(p) mappings

and arbitrary correlations between components of e.

The BPV mathematical formulation is independent

of whether an electrical performance is a measure of

device or circuit performance, and it does not distin-

guish between whether the electrical performance

depends on process parameters from a single device

type or from more than one device type. Nonetheless,

in practice the BPV process has been applied to mea-

sures of device performance from only a single type of

device. BPV verification based on a combination of

device- and circuit-level performance has been dem-

onstrated recently,9 with the latter depending on the

behavior of both PMOS and NMOS transistors. We sum-

marize the results of that investigation here as well.

Extended BPV formalism
Here, we present a comprehensive formulation of

the BPV procedure that both accounts for quadratic

nonlinearities in the e(p) mappings and explicitly

includes correlations between components of e as

targets for modeling. The formalism is a synthesis of

recent BPV extensions (reported elsewhere8) that ad-

dress each of these aspects separately.

The first- and second-order sensitivities of one e com-

ponent, em, around the mean p ¼ ( p1, p2, . . . , pNp
)

(which is also the median because the p compo-

nents are independent and normally distributed

parameters) are as follows:

sm;i ¼
@em

@pi

�

�

�

�

p¼p

; sm;ij ¼
1

2

� �

@2em

@pi@pj

�

�

�

�

�

p¼p

(3)

Equation 3, together with a second-order Taylor

expansion of em around p, gives

emðpÞ � emðpÞ þ
X

Np

i¼1

sm;idpi þ
X

Np

i; j¼1

sm;ijdpidpj (4)

where dpi ¼ pi � pi. If the pi have mean values pi
and variances s2i , then the mean, variance, and

skewness of em are, respectively,

mem ¼ emðpÞ þ
X

Np

i¼1

sm;iis
2
i (5)
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and the covariance between em and another

component, en, of e is

sem;en ¼
X

Np

i¼1

sm;isn;is
2
i þ 2

X

Np

i; j¼1

sm;ijsn;ijs
2
i s

2
j (8)

Some pi components, such as oxide thickness (tox)

for MOSFETs, can have their variance specified di-

rectly and so must be treated as forward propagation

of variance (FPV) parameters. If np of the process

parameters pi, i [ F ¼ {1, 2,. . ., np} are FPV parame-

ters (without loss of generality taken to be the first np

process parameters), such that there are Np � np BPV

process parameters pi, i [ B¼ {np þ 1, np þ 2,. . ., Np},

then Equations 5 through 8 must be modified to take

this into account:
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X
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The relations in Equations 9, 10, and 11 give 3Ne

equations, supplemented with as many covarian-

ces as are specified in Equation 12, to solve for

the 2(Np � np) unknowns, the means and varian-

ces of the (Np � np) BPV process parameters

( pnpþ1
, pnpþ2

, . . . , pNp
). Target skewness values gem

need not be specified for all (or even for any) com-

ponents of e. The nonlinearity in the e(p) mappings

means that the expected value of em is no longer

em(p ); therefore, pi cannot, in contrast to the linear

BPV case, be calculated via a separate, initial step, in

which pi are adjusted so that em(p ) ¼ mem for all

components of e. Rather, pi must be included as

unknowns in the overall solution procedure.

Equations 9 through 12 are solved using an itera-

tive nonlinear least-squares approach, with the sensi-

tivities computed at each iteration using �3�

variations in each pi around pi . The procedure is com-

pletely general, and all e(p) are simulated using the

underlying SPICE models. The requirements for the

procedure to be numerically stable are as follows:

� The underlying SPICE models must be reasonable

so that the sensitivities in Equation 3 are accurate.

� The statistics specified for e must be self-

consistent.

� The p must be observable in the selected e.

With proper physical analysis of the models and

devices, these conditions are not difficult to achieve.

Notice that in the case of linear e(p) mappings,

we have sm,ij ¼ 0; consequently, Equations 9 through

12 simplify to

mem ¼ emðpÞ (13)

s2em �
X

i[F

s2m;is
2
i ¼

X

i[B

s2m;is
2
i

(14)

gem ¼ 0 (15)

sem;en �
X

i[F

sm;isn;is
2
i ¼

X

i[B

sm;isn;is
2
i (16)

Equation 13 states that, for the linear case, the

expected value of each performance is its value

when p ¼ p; Equation 14 is just the standard linear

BPV formulation; Equation 15 indicates that the

skewness is zero for linear functions of normally

distributed variables, as expected. Equation 16 is the

covariance between em and en when any nonlinea-

rities in the e(p) mappings are negligible.

The quadratic approximation in Equation 3 could

be extended to a higher order for further improved

modeling of nonlinearities; however, so far, we have
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not found this to be necessary. This would increase

the complexity of the modeling equations and re-

quire reliable estimation of higher-order statistical

moments from experimental data. In fact, because

of the variation in process statistics (statistical design

models are required early in the life cycle of a manu-

facturing process when only limited data are avail-

able), then, even for the quadratic model, if the

skewness of some components of e are small, they

should be ignored (i.e., set to 0) and not fitted. In

our experience, the linear BPV procedure is often suf-

ficient, the quadratic BPV procedure is only neces-

sary occasionally, and the inclusion of correlation

modeling is more important than handling higher-

order nonlinearities.

Extended BPV results
The extended BPV capabilities we’ve just described

have been applied to various types of devices in sev-

eral manufacturing technologies. Here, we present

some typical results.

In general, following the ‘‘law of small variations,’’

the assumption of linear e(p) relationships is reason-

able. BJTs often exhibit large variations in some mea-

sures of device performance, notably the base current

(which also then causes large variations in b, the ratio

of collector current to base current), so we use a ver-

tical npn BJT to evaluate the effect of including non-

linearities in e(p).

For BJTs, the fundamental process parameters that

control device behavior are the pinched-base sheet

resistance rsbe, the emitter size variation �Le, and

the normalized ideal component of the base current

density Jbei (which, in turn, depends on the recombi-

nation and generation time constants in the emitter).

These are mapped into the SPICE BJT model parame-

ters following the approach first presented by Davis

and Ida.7 There are three measures of device

performance to fit��that are both key for IC design

and that make rsbe, �Le, and Jbei observable: the

base-emitter voltage Vbes, which gives a defined col-

lector current (this is equivalent to the collector cur-

rent at a fixed base-emitter bias); the forward Early

voltage Vaf (note that this is extracted from measure-

ments, and is not the SPICE model parameter); and b.

Table 1 shows measured manufacturing data

along with summary statistics from a 10,000-sample

Monte Carlo simulation using statistical models,

generated from the BPV procedure, based on

both linear and quadratic e(p) formulations. The

improved accuracy of the quadratic form compared

to the linear form for modeling the statistical varia-

tions (i.e., the � values) is apparent. Figure 1 shows

Table 1. Bipolar junction transistor (BJT) statistical-modeling results with the backward propagation of variance

( BPV ) technique.

Device performance Statistic Measured data Linear BPV Quadratic BPV

Ratio of collector current to base

current, �

m 80.0 82.6 79.3

� 30.7% 43.8% 28.4%

Base-emitter voltage, Vbes m 0.850 V 0.852 V 0.850 V

� 10.03 mV 9.20 mV 9.26 mV

Forward Early voltage, Vaf m 46.4 V 49.3 V 45.6 V

� 39.17% 28.88% 37.80%

b

0 50 150

50

100

Vaf

150

100

Figure 1. Bivariate bipolar junction transistor

(BJT) statistical modeling distributions. Dashed

lines are G3s values, symbols are Monte Carlo

simulations, and shaded curves are marginal

distributions.
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the shape of the distributions; the skewness in the

distributions, which arises from the nonlinearity

in the e(p) dependencies (the samples for p are

generated from symmetric normal distributions), is

clear.

To further investigate the capability of the

extended BPV procedure, we have modeled PMOS

and NMOS devices together, and we included as

modeling targets the correlation coefficients between

the peak transconductances, gm,max, of wide and

long devices and the saturated drain currents, Isats,

of wide and short devices. The oxide thickness, tox,

was considered common between the PMOS and

NMOS device models, and its variance was deter-

mined directly from measured capacitance data��

that is, it was treated as an FPV statistical modeling

parameter. Additional parameters (CD, ODP, and ODN)

were introduced to model the effective-channel-length

variations, and these were transformed into the appro-

priate SPICE model parameters using the mappings in

Equations 1 and 2.

Table 2 shows the computed standard deviations

of the effective-channel-length parameters’ compo-

nents. The largest portion of the variation is in the

common polysilicon critical-dimension CD variation;

however, significant portions of the overall variation

are from the out-diffusion parameters, which are sep-

arate for each device type. Note that the variations in

these individual components of �L variation cannot

easily be measured directly; they can only be com-

puted using the BPV procedure.

Table 3 shows summary statistics for some key types

of electrical performance from a 10,000-sample Monte

Carlo simulation. The important point is that the corre-

lations are not modeled accurately unless they are

explicitly taken into account in the modeling process:

The correlations between the peak transconductances

are ‘‘naturally’’ fitted because they are for wide and

long devices, andwe have taken tox to be perfectly cor-

related between PMOS and NMOS devices. The corre-

lations between the saturated drain currents of the

wide and short devices cannot be fitted accurately

without the model form in Equations 1 and 2 and

the BPV procedure that incorporates fitting of the cor-

relations between e components. The accuracy of the

correlation modeling is also visually apparent in the

bivariate results of Figure 2, and individual univariate

distributions are also modeled well (see Figure 3).

Compact Variability Modeling for Nanometer CMOS Technology

Table 3. MOSFET model statistical results.

Device performance MOSFET type Measured data Correlated BPV

Peak transconductances, gm,max� PMOS 1.8% 1.8%

NMOS 1.7% 1.7%

Saturated drain currents, Isats � PMOS 3.9% 4.1%

NMOS 2.4% 2.4%

rðgp
m;max; g

n
m;maxÞ 0.596 0.594

rðIpsats; I
n
satsÞ 0.718 0.719

Table 2. Extracted standard deviations

of �L parameters.

Parameter s (mm)

CD 0.017

ODP 0.011

ODN 0.008

7.5 8 8.5 9 9.5 10
3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

I
sats
n

p
I s

a
ts

Figure 2. Bivariate scatter plot of PMOS vs. NMOS

wide and short saturated drain currents. Symbols

are measured data, ellipses are 1s, 2s, and 3s

yield curves from 10,000 Monte Carlo samples.
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BPV modeling including
circuit performance

The theoretical formalism we have presented

makes no assumptions about what are selected as

the components of e. Conventionally, these are

device-level measurements (embodying either global

or local variation). Typically, these device performan-

ces are chosen so that they make the process param-

eters, p, observable and serve as key quantities that

control circuit performance. Nothing, however, tech-

nically prevents some or all components of e from

being measures of circuit performance. Indeed, incor-

porating circuit-level performance as part of the

statistical-modeling process can only improve the

overall accuracy of modeling circuit behavior. Accu-

rate modeling of circuit performance is the ultimate

goal of modeling, not modeling device-level perfor-

mance or parameter variations.

To that end, we have used the PSPMOSFETmodel to

characterize the statistical variation of PMOS devices,

NMOS devices, and ring oscillators, which are all mea-

sured from the same sample wafers. PSP is the most ac-

curate and physical MOSFET model available,10 and so

should be expected to provide good statistical-modeling

capability while using as few parameters as possible.

Conceptually, the process parameters can be bro-

ken into three groups: those that affect only PMOS de-

vices, pp; those that affect only NMOS devices, pn;

and those that are common and affect both types

of devices, pc. Similarly, the different components of

electrical performance can be broken into three cat-

egories: those specific to PMOS devices, ep; those spe-

cific to NMOS devices, en; and those that are circuit

performances, ec, which depend on the performance

of both the PMOS and NMOS transistors. The propaga-

tion of variance relations in Equation 6, considering

only linear variations, becomes

s2
ep

s2
en

s2
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2
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4

3

7

5
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 !2
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(17)

which has a bordered block-diagonal structure. This

structure shows that parameters common to both

types of device can also be made observable by

including one or more circuit-level performance that

depends on the electrical behavior of both types

of device, in contrast to explicitly including

correlations between e components, as was done

in the ‘‘Extended BPV results’’ section.

The coupled device-circuit-level statistical BPV

modeling procedure was applied to our measured

data from individual devices and ring oscillators.

Figure 4 shows the measured and modeled results

8 8.2 8.4 8.6 8.8 9 9.2 9.4 9.6 9.8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

P
D

F

I
sats
n

Figure 3. Univariate probability density function for wide and

short NMOS saturated drain current. Solid lines are from

measured data; dashed lines are from a 10,000-sample Monte

Carlo simulation.

Measurements

Normal distribution fit for
measurements

Normal distribution fit for
Monte Carlo simulation

4.5 4.75 5 5.25 5.5
0

1
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3

4

5

Isats (mA)

D
e
n
s
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y

W/L=10/0.2 µm

Figure 4. Measured and modeled distributions for wide and

short NMOS saturated drain current.
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for the saturated drain current of wide and short

NMOS devices. The accuracy of the statistical

model is clear.

Figure 5 shows the measured and modeled varia-

tion in the ring oscillator gate delay, td, as a function

of the supply voltage VDD. The dashed line shows the

model results when the PMOS and NMOS saturated

drain currents and the ring oscillator gate delay are fit-

ted only at the highest value of VDD. The BPV proce-

dure obviously fits the statistical variation of td well,

at the highest supply voltage; however, the accuracy

degrades for lower supply voltages. Even though

PSP is an extremely accurate model, and it fitted the

measured device’s current-voltage and capacitance-

voltage characteristics well, and also perfectly fitted

the variances of Isats and td at a high VDD, clearly

there is imprecision in extrapolating the variances

to lower VDD values.

Besides there being no restriction on what the

components of e are, the BPV technique has no re-

striction on how many components of e can be

included in the modeling procedure (as long as it is

at least the minimum number to make all the process

parameters, p, observable). The solid line in Figure 5

shows the statistical variation in the gate delay when

additional drain currents, at lower supply voltages,

are added to the BPV procedure. Clearly, fitting the

variance of td over VDD shows significant improve-

ment, with essentially no loss in modeling accuracy

at the highest VDD value. We stress that we added

only extra drain currents as modeling targets; we

didn’t explicitly include variances in the gate delays

td at the lower supply voltages as additional fitting tar-

gets, but they follow from the improved fitting of

NMOS and PMOS Isats over VDD.

THE BPV FORMALISM was previously verified to work

well for both global and local (mismatch) statistical

modeling, and has now been verified to be able to han-

dle nonlinearities and correlations, and to be able to

be applied using circuit-level as well as device-level

measures of electrical performance. Remaining chal-

lenges include extension to handle both global and

local variations in a single and unified manner, and

to be able to leverage the analysis of nonlinearities

and correlations to predict optimum corner models

taking both of these effects into account. �
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