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Abstract. Humans process images with apparent ease, quickly filter-
ing out useless information and identifying objects based on their shape
and colour. However, the undertaking of visual processing and the imple-
mentation of object recognition systems on a robot can be a challenging
task. While many algorithms exist for machine vision, fewer have been
developed with the efficiency required to allow real-time operation on
a processor limited platform. This paper focuses on several efficient al-
gorithms designed to identify field landmarks and objects found in the
controlled environment of the RoboCup Four-Legged League.

1 Introduction

Robot vision systems are often required to identify landmarks relevant to the
robot’s operation. In autonomous robot soccer, situations arise where the robot
operates for extended periods without viewing critical landmarks on the field
such as goal posts and other objects. This lack of information leads to the robot
becoming disorientated and uncertain about its position.

In the past, methods used to alleviate this problem have mostly involved so-
called “active localisation”. Active localisation requires the robot to periodically
interrupt its normal operation to better determine its location. For example,
a robot may interrupt its gaze to search for a landmark before executing a
critical manoeuvre (such as kicking the ball). However, because of the time
critical nature of robot soccer, the use of active localisation can allow opposition
robots to pounce on the ball while the localising robot wastes time determining
its position and orientation. Identification of additional landmarks is therefore
beneficial as it reduces the need for active localisation.

Many vision algorithms developed in recent years are inappropriate for lim-
ited processor systems and real-time applications. In this paper, we present
some efficient algorithms to solve complex problems such as edge detection and
data association so commonly seen in both theoretical and practical problems.
While the solutions presented are in the context of the RoboCup Four-Legged
League [1], it is expected that some of the ideas and algorithms could be useful
in areas such as automation so commonly seen in industry.
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The objective of the methods described in this paper is to increase the number
of landmarks on the field that the vision system can recognise. By locating field
and sidelines in the image, it is possible to locate points such as the corners of
the penalty box, the centre circle and the intersection of the centre line with the
sideline (the “centre corner”).

The accuracy of measurements to objects detected by the vision system is
also of great importance. In the context of a soccer match and in many other
areas, obstructions can occur which impede both the identification of objects
and measurements to them. The practice of fitting circles to the ball provides
a robust mechanism through which accurate heading and distance information
can be determined, even in the presence of obstructions and despite the limited
processing power available.

2 Field and Sideline Detection

As discussed in the introduction the attainment of additional information from
which to localise is of paramount importance. One idea to increase the quantity
of objects identified by the vision system is to make use of the field and sideline
information. The following sections document the process and algorithm used
in identifying and determining the equation of the field and sidelines within the
image.

2.1 Line Detection

While existing techniques for edge detection, such as those of the German team,
have focused on examining the camera image (in YUV colour space) for a shift
in the Y component [2], this report focuses on the identification of field and
sidelines using a classified image. A classified image is one which has, through
the use of a look up table, been mapped to a set of colours identifiable by
the robot. Using the classified image, the key to determining the presence of
field and sidelines lies in the systems ability to discern field-green/boundary-
white and boundary-white/field-green transitions. These transitions identify the
boundary between the field and both field and side lines. For example, for a field
line to be present, a field-green/boundary-white transition and a correspond-
ing boundary-white/field-green transition must be found. These two transitions
mark the change from field to field-line and back to field again, ruling out the
possibility that the point was actually part of the sideline.

The algorithm searches a sparse grid structure over the entire image to dis-
cover the field and sideline transitions. While a complete scan of all pixels would
have provided more accurate data, line transitions are typically several pixels
wide and so are still identifiable when checking only the pixels located on grid-
lines. Under the current implementation, a grid with a spacing of 4 by 2 pixels
is used in the identification of field and sideline points. While this grid is consid-
ered fine, testing has revealed that should additional processor time be required,
the size of this grid may be increased without a serious negative effect on the
identification of points in the image.
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Fig. 1. Identification of field (blue) and side (red) line points

The points identified as field and sideline can be seen in Figure 1. The red line
present in this image represents the horizon line, which is used to identify those
parts of the image which should be scanned and those which can be ignored. This
technique obviously reduces the area to be scanned and hence the processing load
in many images. Further detail on the generation of the horizon line can be found
in [2, 3].

2.2 Field and Sideline Identification

Having acquired the transitions in the image believed to be part of a field or
sideline, the problem of associating points with individual lines offers a further
challenge to be investigated. The sideline case is trivial, in that sidelines are
always separated horizontally in the image. However, multiple field lines may
appear stacked, a fact illustrated by Figure 1.

The data association problem for field lines was solved using a simple cluster-
ing algorithm such that if the distance of a point from any previously generated
line is too great then a new line will be formed. Points are always processed
from left to right. Once all points have been allocated to a line, the start and
end points of each line are compared with other lines identified. This step deter-
mines whether the two lines actually represent a continuous field line broken in
two due to a corner. Any pair of lines found to be continuous are merged. It is
for this reason that the points are always processed from left to right: By placing
an ordering on the initial line formation step, longer lines tend to generated and
therefore less merging must be performed later.

For example, in Figure 1 the clustering algorithm results in three field lines.
The first field line is obvious and represents the four points identified in the
goalmouth, while the second and third lines are not so obvious and represent
the two components of the penalty box. The presence of the corner forces the
points to be split in two as in processing the points from left to right, the distance
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of the points from the end of the generated line eventually becomes too great
forcing a new line to be formed. In this example, the two lines that form the
corner due to the proximity of their ends will be determined to be part of the
same field line and will be merged.

Upon successful discovery of a fixed number of points believed to be part
of the same line, the principle of Least Squares Line Fitting can be used to
determine the equation of the line in the image. The algorithm may also be used
to filter outliers based on their distance from the generated line thus increasing
the tolerance of the system to noisy input data.

3 Landmark Identification Using Field and Sidelines

This following sections document the way in which field and sideline data iden-
tified is used to locate landmarks on the field useful for robot localisation. The
landmarks identified by the algorithms presented in the following sections are
shown in Figure 2.

Fig. 2. Landmarks identified in the following sections

3.1 Penalty Box Corner Detection

While a number of approaches were trialled for the identification of penalty box
corners, many of these proved too time consuming or error prone for use in
a soccer game. The solution described below was successful in identifying cor-
ners both accurately and quickly, although it has the caveat of being unable
to recognise the rare situation where multiple corners are present in a single
line. This technique was inspired in part by the well known split and merge al-
gorithm [4]. The first step is to identify the point furthest from the line fitted
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Fig. 3. The split and fit algorithm

through the start and end points of the data set. The Split and Merge algorithm
then splits the data set into smaller and smaller line segments in an attempt to
find an accurate equation for the line. In contrast, we use a simple Hill Climbing
algorithm to search in the direction that minimises the residual of the fitting of
two lines to the points either side of a candidate split point. The algorithm stops
when the point identified is such that residual of the line fitting operations is
minimised and no further improvements can be made. The corner point itself is
taken as the intersection of the two lines fitted to the data set. This last step
of taking the intersection point of the two lines minimises the risk of taking
a point identified incorrectly in the original transition discovery phase due to
misclassification or obstruction.

As can be seen in the example, the algorithm operates using a simple hill
climbing process. The steps used can be described as follows:

a) Fit a line through the two extreme points of the dataset and find the point
most distant to this line. This point defines the starting point of the search

b) Split the data set in two and calculate (using least squares) the residual of
the two lines fitted either side of the centre point found

c) Take the first point to the right of the centre point and refit the two lines.
Note that in this example the error of the system increases, indicating a
move away from the corner
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d) Take the first point to the left of the centre point and refit the two lines.
Note that this decreases the error of the system and hence a move towards
the corner

e) The algorithm continues to search in the direction that minimises the error of
the system. In this case, the error has increased by searching left indicating
that the corner point has already been passed.

f) Two lines are fitted through the point that minimises the error of the system
and the intersection of these lines taken as the corner point. Despite the bad
point in the example, the algorithm correctly identifies the true corner.

While the point identified in the first step is often the corner point, the
additional steps have proved to give reliable and robust determination of the
corner point even in situations where significant amounts of noise are present
in the system. This algorithm has proved an extremely efficient solution to the
problem of finding a corner in a system of ordered points, easily executed in
real-time on the robot.

3.2 Centre Circle Detection

As the centre circle closely resembles a field line, it made sense that the de-
tection of the centre circle should somehow be related to the detection of field
lines within the image. This was achieved by observing that the centre circle
provided a special case when present, in that from most angles three sets of
field-green/border-white/field-green transitions occurred in the same column.
The presence of the centre circle is therefore determined by the existence of
three or more sets of field line transitions in the same column (referred to as a
triple). An example of this situation can be seen in Figure 4.

Fig. 4. Centre circle
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The parameters of the centre circle are determined from the sets of triples
identified in the image. Using the sets of triples, the centre of the circle was
defined by the point that bisected the line fitted through the two triples most
separated in the image.

Although the discovery of the centre circle is only possible from certain angles
upon the field, it does provide a foundation from which further work can be
performed. Future work may include research into the fitting of circles or ellipses
to determine accurately the presence and parameters of the circle.

3.3 Centre Corner Point Detection

Another area in which field and side line information is used, is in the identifica-
tion of the two points where the centre field line intersects with the sideline. An
example of the point considered the centre corner point can be seen in Figure 5.

Fig. 5. Centre corner point

The detection of these landmarks requires the detection of a field line inter-
secting with a sideline. This condition is satisfied at the goal mouth as well as
at the centre corner point, so an additional constraint to reduce the number of
false positives is that the goal must not be present in the image. On checking
that the end of a field line is sufficiently close to the sideline, the intersection of
the field and sideline is taken as the centre corner point.

4 Circle Fitting to the Ball

A commonly used method for object recognition in the Four-Legged League is
to find a rectangular blob around all colour objects within the image. The size
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of the blob determines the distance to the object. While this is convenient to
code and can be extremely efficient, it also results in an overall reduction of
information and introduces error that makes the perceived location of objects
less precise. This problem is most evident in the recognition of the ball due to its
circular shape (other notable objects on the soccer field are roughly rectangular).

In ball recognition, it was decided that points located on the perimeter of the
ball should be identified and a circle fitted through these points. It was hoped
that this method would make the system more tolerant of obstructions in front
of the ball, such as another robot or the edge of the image. For example, consider
the situation shown in Figure 6(a) where the lower part of the ball is obstructed
by the robots leg.

Fig. 6. (a) Obstruction caused by a robot. (b) Point determination after blob formation

The result is a blob smaller than the actual size of the ball and a resultant
distance much greater than the actual distance to the ball. Fitting a circle us-
ing points on the perimeter helps overcome this problem, resulting in a better
approximation for the radius of the ball.

4.1 Determining Fitted Points

In fitting a circle to the ball, it is necessary to know those points (coordinates
in the image) which define the perimeter. The technique identified for locating
perimeter points, involved the recovery of information lost during the identifi-
cation of the ball. This algorithm performs a horizontal search from the edge of
the circle blob towards the centre, recording the first pixel found to match the
colour of the object (i.e. orange). In using this algorithm, the pixels searched are
those shadowed by the blob identified as the ball, which are not orange. Specific
knowledge of the point’s location is used to exclude certain points from the set,
such as points located on the edge of the image, which are not genuinely on the
perimeter of the ball. Future work in this area may include the use of a Convex
Hull to filter points incorrectly identified within the ball. Figure 6(b) shows the
points determined by the algorithm presented above.
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4.2 Least Squares Fitting to the Ball

Although techniques such as fitting a circle through three points were tested,
the method of shape fitting using Least Squares Fitting (LSF) proved the most
successful. Whilst this algorithm is slightly more computationally expensive, the
algorithm generates the most accurate fit, especially in cases where obstruction
of the ball occurs. It was also noted that as the algorithm uses a higher number
of points the generated result is more tolerant of noisy data.

Whilst many different papers have been written about the Least Squares
Fitting of circles through a set of points, the paper used as the primary reference
for this research was that by Chernov and Lesort [6], which discusses the various
strengths, weaknesses and efficiencies of several commonly used circle fitting
algorithms. The concept of Least Squares Fitting of circles is based on minimising
the mean square distances from the fitted circle to the data points used. Given
n points (xi, yi), 1 ≤ i ≤ n, the objective function is defined by

F =
n∑

i=1

d2i (1)

where di is the Euclidian (geometric) distance from the circle to the data
points. If the circle satisfies the equation

(x − a)2 + (y − b)2 = R2 (2)

where (a, b) is the centre and R is the radius, then

di =
√

(xi − a)2 + (yi − b)2 − R (3)

The minimisation of the objection function min{F} for a, b, R > 0) is a
non-linear problem with no closed form solution. For this reason, there is no
algorithm for computing the minimum of F with all known algorithms being
either iterative and computationally expensive or approximate. It was therefore
important that the correct algorithm be chosen for implementation on the robot
to minimise the load placed on both processor and memory.

Having reviewed the results in [6] it was decided that a combination of both
geometric and algebraic methods be used. The Levenberg-Marquardt [5, 7, 8] ge-
ometric fit method was selected above others, such as the Landau and Spath
algorithms, due to its efficiency. This algorithm is in essence a classical form of
the Gauss-Newton method but with a modification known as the Levenberg-
Marquardt correction. This algorithm has been shown to be stable, reliable
and under certain conditions rapidly convergent. The fitting of circles with the
Levenberg-Marquardt method is described in many papers.

It is commonly recognised that iterative algorithms for minimising non-linear
functions, such as the geometric circle-fitting algorithm above, are sensitive to
the choice of the initial guess. As a rule, an initial guess must be provided
which is close enough to the minimum of F to ensure rapid convergence. It has
been shown that if the set of data points is close to the fitting contour, then
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the convergence achieved is nearly quadratic. It was therefore required that in
order to minimise the CPU utilisation on the robot, an initial guess should be
provided by a fast and non-iterative procedure. After further research, it was
decided that the fast and non-iterative approximation to the LSF, provided by
algebraic fitting algorithms, seemed ideal for solving this problem.

Algebraic fitting algorithms are different from their geometric equivalents in
that they attempt to minimise the sum of the squares of the algebraic errors
rather than minimising the distances of the sum of the squares of the geometric
distances. If the above equations are considered.

F =
n∑

i=1

[(xi − a)2 + (yi − b)2 − R2]2 =
n∑

i=1

(x2i + y2i + Bxi + Cyi + D)2 (4)

where B = −2a, C = −2b and D = a2 +b2−R2. Differentiating the equation
with respect to B, C and D yields the following system of linear equations

MxxB + MxyC + MxD = −Mxz (5)

MxyB + MyyC + MyD = −Myz (6)

MxB + MyC + nD = −Mz (7)

where Mxx, Mxy etc. define moments, for example Mxx =
∑n

i=1 x2i and
Mxy =

∑n
i=1 xiyi. The system can be solved using Cholesky decomposition (or

any other method for solving a linear system of equations) to give B, C and D,
which in turn gives parameters a, b and R that define the circle. The algorithm
used on the robot varies slightly from this definition, in that it uses a gradient

Fig. 7. Circle fitting to the ball
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weighted [9, 10] form of the algorithm. This algorithm is commonly considered
a standard for the computer vision industry [11, 12, 13] due to its statistical op-
timality. An example of a circle fitted on the robot can be seen in Figure 7.
The circle fitted in the image is resilient to noise caused by the obstruction (the
edge of the image), which would have previously affected both the distance and
elevation values of the resultant ball.

4.3 Results

A comparison of the distances returned by examining the height of the object, the
new circle fitting method and the actual distances are shown below in Figure 8.
The ball is approximately 75% obstructed by the robot in each measurement.

Fig. 8. Comparison of ball distances with 75% obstruction

5 Summary

The implementation of real-time object recognition systems for use on a robot
is a complex task. It was observed throughout this project that while complex
algorithms exist for image processing, many of these are not appropriate for use
on a robot.

This study focussed on the development of edge detection and data associ-
ation techniques to identify field landmarks in a controlled environment. These
techniques were designed with efficiency as their key requirement so as to func-
tion effectively despite processor limitations. It has also been shown that a com-
mon method - circle fitting - can be scaled for use on a robot with a slow pro-
cessor. Additionally, the circle fitting algorithm is able to operate in conjunction
with existing Four-Legged League vision systems
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Hence while many conventional algorithms are unsuitable for use on the
robot, appropriate algorithms have been developed or adapted for real-time vi-
sual processing, greatly assisting in the identification of key objects and in turn
robot localisation.
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