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aquifers in the Indus Valley
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Arsenic-contaminated aquifers are currently estimated to affect ~150million people around theworld. However, the
full extent of the problem remains elusive. This is also the case in Pakistan, where previous studies focused on
isolated areas. Using anewdata set of nearly 1200groundwater quality samples throughout Pakistan,wehave created
state-of-the-art hazard and risk maps of arsenic-contaminated groundwater for thresholds of 10 and 50 mg/liter.
Logistic regression analysis was used with 1000 iterations, where surface slope, geology, and soil parameters were
major predictor variables. The hazard model indicates that much of the Indus Plain is likely to have elevated arsenic
concentrations, although the rest of the country is mostly safe. Unlike other arsenic-contaminated areas of Asia, the
arsenic release process in the arid Indus Plain appears to be dominated by elevated-pH dissolution, resulting from
alkaline topsoil and extensive irrigation of unconfined aquifers, although pockets of reductive dissolution are also
present. We estimate that approximately 50 million to 60 million people use groundwater within the area at risk,
with hot spots around Lahore andHyderabad. This number is alarmingly high and demonstrates the urgent need for
verification and testing of all drinking water wells in the Indus Plain, followed by appropriate mitigation measures.

INTRODUCTION

The trace element arsenic (As) is found throughout Earth’s crust and
hydrosphere (1). In particular, arsenic can strongly affect groundwater
quality through natural geogenic leaching processes from host rocks
and sediments (2–5). The general geochemical conditions that lead to
mobilization of arsenic into groundwater are characterized by one or
more of the following features: reducing (6–8) environments, arid oxi-
dizing environments with elevated pH (1, 9, 10), geothermal activity
(11, 12) and/or oxidative weathering of sulfideminerals (13, 14). Aquifers
within Holocene sediments are particularly susceptible to arsenic enrich-
ment due to the sediments’ limited time of exposure to groundwater
flushing such that the sediments continue to hold a relative abundance
of mobilizable arsenic within its grains (15, 16). Arsenic concentrations
can also increase due to a lowhydrological gradient, resulting in sluggish
groundwater flow (1), as well as a strongly arid environment that leads
to evaporative concentration (11, 17).

Regular consumption of water containing high concentrations of
arsenic can have adverse health effects, including skin disorders, lung
cancer, and cardiovascular diseases (18, 19). In actuality, arsenic-
contaminatedwater is one of themost serious global health threats, with
currently estimated 150million people relying on arsenic-contaminated
groundwater (5). The permissible concentration of arsenic in drinking
water set by the World Health Organization (WHO) is 10 mg/liter,
whereas the guideline in Pakistan is 50 mg/liter (20).

To determine where best to apply the limited resources for ground-
water testing, geostatistical modeling can identify areas likely to be
affected by arsenic contamination by finding statistically significant re-
lationshipsmeasured arsenic concentrations and environmental predic-
tors (21–25). As opposed to indicator kriging, such an approach takes

into account the relevant physical processes of contaminant release and
accumulation. This also has the advantage of being able to use spatially
continuous predictor data sets to identify areas of high arsenic hazard,
where groundwater quality data are lacking. Although this method can
efficiently predict the occurrence of contamination on a large scale, it is
generally ineffective at the scale of individual wells due to small-scale
aquifer heterogeneities that are undetectable at the surface. Winkel et al.
(25) explored the use of three-dimensional (3D) geological information in
modeling, which, although more accurate, showed that models based on
2D geological information can effectively predict elevated concentrations
of arsenic in groundwater.

Here,we investigate andmodel the distributionof arsenic inPakistan,
which faces critical water quality challenges. Although microbial con-
tamination presents the most immediate health threat and causes one-
third of all deaths in the country (20, 26), arsenic and other toxic metals
pose a significant health hazard through chronic exposure (27–30).
While the full health effects of arsenic in Pakistan are not yet known,
various studies over the past decade have uncovered arsenic-related skin
disorders (29, 31) and high levels of arsenic in blood and hair samples
(32, 33) from people living in predominantly rural areas with high ex-
posure to arsenic in groundwater. Food crops in the Sindh (34, 35) and
Punjab (ownmeasurements) provinces also indicate a potentially severe
health threat due to plant uptake of arsenic via irrigationwater extracted
from shallow Holocene aquifers.

Numerous small-scale local studies, generally at the village level,
have reportedhigh arsenic concentrations in groundwater up tohundreds
of micrograms per liter, primarily in the provinces of Punjab and Sindh
(20, 30, 36–41). However, a lack of resources in the country has prevented
the comprehensive evaluation of arsenic in groundwater (30). Consider-
able arsenic contamination has also been reported in other South and
East Asian countries, for example, India, Bangladesh, Cambodia, and
Vietnam (42–46). Shallow small-scale and family-based hand andmo-
torized pumps have long been a major source of drinking water in the
Indus Plain and are as widespread in Pakistan as in those other arsenic-
affected regions of Asia. Higher-volume pumping with tube wells
became popular throughout Pakistan in the 1960s and is used primarily
not only for irrigation but also for municipal water supplies (47).
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Pakistan is characterized by the flat-lying Indus Plain in the east; the
Himalaya, Karakoram, and Hindu Kush mountain ranges in the north;
hill regions in the northwest; and the Baluchistan plateau in the west.
With the exception of the temperate northwest, the climate is semiarid
to arid. The most significant aquifers of the country are found in the
Indus Plain, which is composed of up to 300 m of Quaternary alluvial
deposits and permeable soils low in organic content (48), with ground-
water yields in the range of 100 to 300 m3/hour to 150-m depth (49).
Windblown sands generally dominate in the neighboring desert regions
(groundwater yields of 10 to 50 m3/hour), and permeable gravels of
limited extent can be found in the northwest (49). Because of its abun-
dant water resources and fertile soils, the Indus Plain of Pakistan hosts
extensive agricultural production and a population of over 100 million
people, including the major cities of Karachi, Islamabad, Lahore, and
Hyderabad (Fig. 1). On account of a highly arid climate in the Indus
Plain, extensive irrigation uses groundwater resources and awidespread
canal system that distributes water from the Indus River and its main
tributaries across the adjacent plains.

The morphology and age of flat-lying, Holocene fluvial sediments
along the Indus River and tributaries are similar to those of the well-
known arsenic-affected areas of the Ganges/Brahmaputra Rivers in
India and Bangladesh (5), the Red River in Vietnam (45), and the
Mekong River in Cambodia and Vietnam (46). A chemically reducing
environment generally dominates in the aquifers along these rivers,
which is generally due to an abundance of organic material along with
a limited supply of oxygen, and results in the desorption of arsenic from
iron oxy(hydr)oxides. Depleted oxygen levels can come about, for
example, due to an impermeable near-surface silt and/or clay layer that
prevents contact of the aquifer with the atmosphere.

The aquifers of the Indus Plain, however, are generally unconfined
andhave hydraulic connectivitywith the surface (48, 50). This results, for
example, in a strong connection between surfacewater of the Indus Basin
Irrigation System and the underlying aquifer (37, 51). Since the intro-
duction of widespread irrigation, the water table has risen significantly
with accompanying waterlogging and groundwater salinization (37).

Rather than being a detailed geochemical investigation, this study
focuses on risk determination based on our new groundwater quality
data set and has produced the first-ever statistically based arsenic hazard
model and health risk map for Pakistan. Furthermore, the main geo-
chemical conditions of arsenic releasewere assessed in conjunctionwith
various environmental variables.

RESULTS

Groundwater quality measurements
Our data set of measured arsenic concentrations is displayed in Fig. 1,
and 11 othermeasured species are also shown in figs. S1 and S2. Table S1
summarizes all of these measurements and well depth. The average
pH is 7.67 ± 0.45, and the average total dissolved solids (TDS) is 556 ±
557 mg/liter.

High arsenic concentrations (>10 mg/liter) exist mainly along the
Indus River and its tributaries. Very high arsenic concentrations
(>200 mg/liter) were measured primarily in the southern half of the
Indus Plain. Overall iron concentrations are low, averaging 0.05 ±
0.13mg/liter and not exceeding 1.9mg/liter. The highest concentration
of ironmeasured in a water sample with arsenic greater than 10 mg/liter
is only 0.86mg/liter (table S1). Furthermore, low nitrate levels (average,
2.7 mg/liter; median, 1.3 mg/liter) in the wells with arsenic >10 mg/liter
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generally imply ongoing nitrate reduction but limited iron-reducing
aquifer conditions. Outside of the Indus Plain where arsenic is mostly
below 10 mg/liter, nitrate concentrations are considerably higher (see
fig. S2) and indicative of less reducing aquifer conditions.

Depthwas recorded for ~30%of themeasurements and ranges from
3 to 70m (mean, 17m;median, 12m). However, there is no statistically
significant correlation between depth and arsenic concentration. With
regard to the other sampling sites, it is generally assumed from local
knowledge that depths of family-based wells are in the range of 9 to
30 m and thus access the uppermost, unconfined aquifer (37, 48). Forty-
one other deeper (>120 m) water samples (not included in the mod-
eling) collected fromLahoremunicipal water supply tube wells ranged
in arsenic concentration from <1 to 85 mg/liter (average, 23 mg/liter;
median, 25 mg/liter), despite the use of arsenic filters with these water
sources.

Hazard probability model
In total, 232 of the 1000 logistic regression runs did not pass theHosmer-
Lemeshowgoodness-of-fit test (52), leaving 768 runs fromwhich a single
set of coefficients was calculated. Of the nine variables used in the logistic
regressions, the following were retained by stepwise selection: fluvisols,
Holocene fluvial sediments, slope, soil organic carbon, and soil pH. The
averageweighted coefficients based onnormalized variables are listed in
table S2. Steeper slopes (>0.1°) and soil organic carbon were negative
indicators (inverse correlation) of high arsenic levels in groundwater,
whereas fluvisols, soil pH, and Holocene fluvial sediments were posi-
tive indicators (positive correlation). With the exception of soil or-
ganic carbon, the number of variables that passed the goodness-of-fit
test is nearly equal.

The plots in Fig. 2 summarize the classification strength of themodel
at different cutoff values, which helps in finding the best cutoff to opti-
mize the rates of correct positive and negative classification. Figure 2A
shows the receiver operating characteristic (ROC) curve (53) using the
entire data set of 743 aggregated points (original measurements aver-
aged into 1-km × 1-km pixels). The area under the ROC curve (AUC)
(possible values between 0.5 and 1) is 0.80, which shows that the logistic
regression does a good job of correctly classifying high and low arsenic
concentrations (TheROCandAUC indicate amodel’s classification rates
of high and low values at different probability cutoff values). Figure 2B
plots accuracy, sensitivity (true-positive rate), and specificity (true-negative

rate) against cutoff, the latter two being equal at a cutoff of 0.60. The
modeled arsenic probability map is shown in Fig. 3A, with the binary
data points of measured arsenic concentrations used in the analysis
being plotted. Table 1 compares the AUC and Akaike information
criterion (AIC) (see Materials and Methods) (54) of the final model
with other logistic regression analyses using manually selected, fixed
predictor variables.

Health risk model
Combining the area of high hazard (≥60% probability) in Fig. 3A with
population figures for 2016 indicates that approximately 88millionpeople
live within the modeled hazard area. The population figures were cal-
culated using census data from 2010 (55) multiplied by subsequent an-
nual population growth rates (56). Using the assumption that about 60
to 70% of the population throughout Pakistan relies on groundwater
for its drinking water (57, 58), this number reduces to ~50 million to
60 million people potentially affected (Fig. 3B). Furthermore, arsenic
remediation is minimal in rural areas (20, 30), and our study showed
that remediation in the municipal water supply system of the urban
center of Lahore is onlymoderately effective inmeeting the local arsenic
concentration standard (57%of samples below50 mg/liter) and does not
attain the WHO standard (1% of samples below 10 mg/liter).

The above analysiswas also carried out using a threshold of 50mg/liter
(fig. S3B and table S3), which is Pakistan’s official health guideline for
arsenic in drinking water. Although the probabilities of exceeding this
guideline are lower, the cutoff where sensitivity and specificity are equal
is also lower (fig. S5). Since less than 10% of the measured data points
have concentrations between 10 and 50 mg/liter, the physical area en-
compassing this range of concentrations is small and the number of
people potentially affected by arsenic-contaminatedwater ultimately re-
mains approximately 50 million to 60 million (fig. S6).

DISCUSSION

pH-induced arsenic release and accumulation in
unconfined aquifers
Analysis of data points with As > 10 mg/liter suggests that reducing
conditions are generally not dominant in the Indus Plain, with nitrate
averaging 2.7 mg/liter and ranging up to about 28mg/liter (figs. S1 and
S2 and table S1). The average dissolved concentration of iron (Fig. 4A

Fig. 2. Statistics of the classification strength of the logistic regression analysis results using the threshold of 10 mg/liter (WHO As guideline) applied to the entire

set of 743 aggregated data points. (A) ROC curve with an AUC of 0.80, which indicates the discriminative power of the logistic equation. (B) Sensitivity (true-positive

rate), accuracy, and specificity (true-negative rate) versus cutoff value.
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Fig. 3. Arsenic prediction and risk models. (A) Probability (hazard) map of the occurrence of arsenic concentrations in groundwater exceeding the WHO As guideline
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and table S1) in high-arsenic samples is low at 0.09 mg/liter, and high
arsenic concentrations are negatively correlated (R = −0.778; Table 2)
with soil organic carbon (Fig. 4B). However, some areas do locally
show a high correlation between high arsenic and iron, suggesting a
reducing environment.

The percentage of high values of arsenic (>10mg/liter) correlates very
strongly with soil pH (R = 0.977; Fig. 4C), which is consistently elevated
throughout the Indus Plain (Fig. 4D). This implies pH-induced de-
sorption and corroborates the findings of Farooqi et al. (51) for a site
near Lahore, Punjab. Although soil pH throughout the Indus Plain is
generally between 8.0 and 8.5, the average pH of groundwater samples
with arsenic concentrations greater than 10 mg/liter is only 7.6, with no
significant correlation. This indicates that arsenic release due to high-pH
desorption may be occurring predominantly in the uppermost sedi-
ments before being transported downward via infiltration to the aquifer.
Depth is not correlated with arsenic concentration over the range of
available depthmeasurements (3 to 70m)of the unfilteredwater samples
used in modeling, and, as previously mentioned, deeper (>120 m)
municipal tube wells from Lahore, which are filtered for arsenic, also
exhibit elevated arsenic concentrations.

Aridity (precipitation/PET) is also well correlated with high arsenic
values (R = −0.779; Table 2), which is consistent with the process of
evaporative concentration as suggested by Rasool et al. (59) for Mailsi,
Punjab and by Brahman et al. (40) for the Tharparkar District, Sindh.
The latter study also found a predominance of theAs(V) species relative
to the reduced As(III) species. The very strong correlation of irrigated
area with arsenic contamination (R = 0.967; Table 2) could be a conse-
quence of the role of irrigation in evaporative concentration and/or soil
alkalization with associated arsenic desorption. Although these finding
are consistent with arsenic release caused by oxidizing and/or elevated-
pH dissolution, the process of reductive dissolution may be responsi-
ble locally, particularly as a result of industrial or human/animal organic
waste in urban areas (37) or intensive agricultural activity.
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Table 1. Comparison of AUC and AIC results of logistic regression

analyses of models with fixed variables (models A to E) along with

the final model (model F) shown in Fig. 3A, which was achieved

by stepwise variable selection. A higher AUC shows better model
prediction performance, whereas a lower AIC is indicative of a simpler,
more effective model. The associated hazard maps are provided in
fig. S4.

Model Predictor variable(s) AUC AIC

A Fluvisols (probability) 0.69 787 ± 5

B Irrigated area 0.72 739 ± 7

C Aridity, slope (binary, 0.1°) 0.73 716 ± 8

D Slope (binary, 0.1°), soil pH 0.77 688 ± 9

E Aridity, Holocene fluvial sediments
(binary), slope (binary, 0.1°)

0.77 664 ± 8

F Fluvisols (probability), Holocene fluvial
sediments (binary), soil organic
carbon, soil pH, slope (binary, 0.1°)

0.80 644 ± 9
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Model proxies
The relationships between the predictor variables and the process of
arsenic enrichment in groundwater are generally straightforward. A
flat surface topography, such as in the Indus Plain, implies a low hydrau-
lic gradient resulting in sluggish groundwater flow, thereby allowing
arsenic concentrations to gradually increase in the groundwater. High
soil pH can drive arsenic desorption and is indicative of an evaporative
environment, which further raises arsenic concentrations.

The data set of predicted fluvisols (young alluvial sediments) indicates
an environment similar to that of Holocene sediments but specifically in-
dicates an alluvial setting. As such, it could be an effective predictor var-
iable where geological maps do not specify the Holocene epoch. High
levels of soil organic carbon are a common driver of reducing conditions
resulting in arsenic release (5). The inverse relationship in our model
appears to be a consequence of the presence of an arid climate result-
ing in minimal natural growth of vegetation and accumulation of organic
carbon in the soil of the Indus Plain, which leaves the other factors
mentioned to be responsible for the enrichment of arsenic. This further
implies that reducing conditions are not predominant in the Indus Plain.

By design, the stepwise method of variable selection produces the
model with the best combination of model simplicity and likelihood,
as measured by the AIC. After our initial identification of potential
predictor variables (see Materials and Methods), the stepwise
method was allowed to automatically identify the final set of predic-

tors. To test the efficacy of this approach, we ran other logistic analy-
ses using fixed combinations of variables that would be expected to
effectively predict elevated arsenic concentrations based on their
known relationships or associations with arsenic enrichment in
groundwater. These results (Table 1) confirm that the stepwise
method of variable selection in this case produces a statistically supe-
riormodel to that whichmay be achieved bymanually selecting varia-
bles based only on expert knowledge. In any case, the hazard maps
produced using these fixed selections of variables are largely similar
in that they place the highest probability of high arsenic enrichment
in the Indus Plain (fig. S4).

These results highlight the fact that the variables used generally have
their highest absolute values, and therefore greatest effect on resultant
models, in the Indus Plain. However, independence and causality are
not clear, particularly with regard to irrigation. For example, the strong
positive correlation of high arsenic concentrations and irrigated area
(R = 0.967; Table 2), as well as the relatively good performance of the
logistic regression using only irrigated area (Table 1, model B), could
simply be a coincidence of extensive irrigation being carried out on flat
fluvial sediments, where there is a regular supply of water and nutri-
ents from the rivers, as well as a high demand for irrigation due to very
arid conditions. However, it appears reasonable that the increased
evapotranspiration from irrigation water as well as its slow infiltration
through the alkaline topsoil and young alluvial sediments may con-
tribute to an increase in groundwater arsenic concentration.

Implications of hazard and risk models
The riskmapof Fig. 3B showcases the severity of the problemof ground-
water arsenic contamination in Pakistan. Regardless of using a model
based on a guideline of 10 or 50 mg/liter (fig. S3), the area of high prob-
ability of arsenic contamination encompasses most of the Indus Plain
in the province of Sindh and around the Indus tributaries in the province
of Punjab (Jhelum, Chenab, Ravi, and Sutlej rivers), where population
densities are particularly high. Although the estimate of 60 to 70%
groundwater utilization is only a rough estimate based on available
published figures and subject to potentially large regional variations,
it remains clear that a great number of people are potentially exposed to
dangerously high levels of arsenic. Our estimate of ~50 million to
60 million people potentially affected in the Indus Plain is as high as
that for the Ganges-Brahmaputra Delta in Bangladesh and India
(~50 million) (3, 42, 60) and exceeds that for China (~20 million) (24)
and the Red River Delta in Vietnam (~7 million) (25). Furthermore,
our estimate is about four times higher than that of Rabbani et al. (36)
for the Indus River, which did not consider its tributaries in densely
populated Punjab province and was made on the basis of distance
from the river in a ~120-km × 40-km area in Sindh province. In addi-
tion, there are pockets of high measured arsenic concentrations within
the Indus Plain that fall just below the statistically determined 60%
probability cutoff used to calculate high-risk areas, which, if anything,
wouldmake our estimate somewhat conservative and only further high-
lights the severity of the problem.

First and foremost, the risk map indicates the need for widespread
testing of drinking water wells in the Indus Plain to help safeguard the
long-term health of its population. Because of an inherent high degree of
small-scale spatial variability of geogenic arsenic contamination (61–63),
wells should be tested individually so thatmeasures can be implemented
for those most severely affected.

Mitigation requires action at several levels, including awareness rais-
ing, emergency solutions, coordination of government and financial

Table 2. Data sets evaluated for use as predictor variables in the logistic

regression analysis. Correlations were found using the percentage of
measurements exceeding 10 mg/liter in 11 bins of equal member-size across
the range of each variable (see Materials and Methods). P values of logistic
regression are based on univariate analyses. An asterisk indicates data sets
that were not significant and therefore removed from the full logistic
regression analysis. n/a, not applicable.

Data set Resolution
Correlation

(P)

Logistic

regression (P)

Potential evapotranspiration
(PET) (72, 73)

30″ 0.730 (<0.05) <0.05

Precipitation (74) 30″ −0.776 (<0.05) <0.05

Aridity [precipitation (74)/
PET (72, 73)]

30″ −0.779 (<0.05) <0.05

Irrigated area % (75) 5’ 0.967 (<0.05) <0.05

Slope (binary, 0.1°) (76) 30″ n/a <0.05

Fluvisol probability (%)
(70, 77, 78)

30″ 0.704 (<0.05) <0.05

Soil organic carbon
(70, 77, 78)

30″ −0.778 (<0.05) <0.05

Soil pH (70, 77, 78) 30″ 0.977 (<0.05) <0.05

Soil clay % (70)* 30″ −0.338 (>0.05) >0.05

Soil silt % (70)* 30″ −7.22 × 10−2

(>0.05)
>0.05

Holocene fluvial sediments
(binary) (69)

Polygon n/a <0.05

*Data sets that were not significant and therefore removed from the full
logistic regression analysis.

SC I ENCE ADVANCES | R E S EARCH ART I C L E

Podgorski et al., Sci. Adv. 2017;3 : e1700935 23 August 2017 6 of 10

 o
n
 A

u
g
u
s
t 2

3
, 2

0
1
7

h
ttp

://a
d
v
a
n
c
e
s
.s

c
ie

n
c
e
m

a
g
.o

rg
/

D
o
w

n
lo

a
d
e
d
 fro

m
 

http://advances.sciencemag.org/


support, health intervention programs, alternative resources of drink-
ingwater (for example, deepwells) (41, 64), and arsenic removal options
(41, 65, 66). Ultimately, any treatment optionsmust be socially accept-
able and tailored to the local groundwater composition (67).

MATERIALS AND METHODS

Groundwater sampling
Between 2013 and 2015, groundwater sampleswere collected from1184
sites throughout the country, mainly from hand and motor pumps as
well as municipal and agricultural water supply tube wells. The site
selection of sampling was designed to be evenly spatially distributed
and was based on individual union council/tehsil (sub-administrative
governmental units), for which topographical district maps obtained
from the Survey of Pakistan were used.

To obtain representative samples of groundwater, we purged hand
pumps with one stroke for every 30 cm of depth and ran electric pumps
for 10 min before sampling. Groundwater samples were then immedi-
ately filtered on-site using 0.45-mm cellulose acetate filters contained in
Millipore Sterivex syringe capsules. During fieldwork, representative
samples were carefully handled to help ensure high quality of subse-
quent analyses and reduce cross contamination during sampling. Pre-
cleaned 1-liter polyethylene bottles were used for sample collection. All
bottles were first rinsed with deionized water before sampling, and two
aliquots of each sample (acidified and non-acidified) were taken on site.
For acidified samples used for the analysis of arsenic (As) and other
tracemetals, a fewdrops of concentrated nitric acid (HNO3)were added
to reduce the pHof water samples to <2. The basic water quality param-
eters of pH, electrical conductivity (EC), bicarbonate (HCO3

−), TDS,
sulfate (SO4

−), nitrate (NO3
−), chloride (Cl−), and fluoride (F−), as well

as the elements calcium (Ca), magnesium (Mg), and iron (Fe) were also
measured (figs. S1 and S2). pH, temperature, dissolved oxygen (DO),
and EC were measured at the time of sample collection, as were the
geographical coordinates, usingGPS (Global Positioning System). pH,
EC, DO, and TDS of all water samples were measured using a W2015
pH/EC meter and a DO meter (Sinowell). The sealed samples were
stored at 4°C in portable coolers before transportation to the laboratory
for further analysis.

Groundwater samples were analyzed for calcium (Ca2+) and
magnesium (Mg2+) by volumetric titration with EDTA (0.05 mol/liter)
and alkalinity (measured as HCO3) by volumetric titration with
0.1 HCl. NO3

− was determined spectrophotometrically using an
ultraviolet-visible (UV-Vis) spectrophotometer (Shimadzu, model
UV 1601) at a wavelength of 220 nm. SO4

2− values were determined
by gravimetric analysis as BaSO4. Chloride (Cl

−) was determined by
titration (American Public Health Association 1998). Fluoride was
measured using an ion chromatograph (ICS-3000, Thermo Fisher).

Arsenic and other elements were analyzed in the acidified samples
with an Agilent 7500cx inductively coupled plasma mass spectrometer.
Calibration solutions were prepared using multi-element stock solu-
tions of 100 ppm (parts per million). The operating conditions were
as follows: radio frequency power at 1510 W, carrier gas at 1.1 liter/min,
makeup gas at 0.10 liter/min, heliumgas flow at 3.5ml/min, andnebulizer
pump at 0.1 rps. The standard stock solutions mixed with elements
(100 mg/ml; GSB 04-1767-2004) were obtained from theNational Center
of Analysis and Testing for Nonferrous Metals and Electronic Materials.

A quality control (QC) sample was prepared and injected after every
15th sample to check instrument stability. TheQC samplewas prepared
by mixing aliquots of each sample and was therefore representative of

the entire sample set. There was less than 15% variation in the metal
concentrations of the QC samples. Spiked samples were also prepared
in the same manner as the water samples. Some samples were spiked
with As and other elements before analysis at the final two levels of 10
and20ng/ml.Moreover, to confirmanalytical performance andadequate
precision, we used standard reference solutions of analytical-grade
chemicals with 99.9% spectroscopic purity (Merck). Twice-distilled
water was used throughout the analyses. By means of blank and dupli-
cate samples, reproducibility of the analytical data was found to be
within 5% and the analytical errorwas estimated to be <10%.Working
solutions were prepared on a daily basis by appropriate dilution of
a standard stock solution with a mixture of 65% HNO3 and H2O
[1:3 (v/v)]. The order in which all samples were run was randomized
so as to reduce the error from any injection of artifacts or changes in
instrument sensitivity during the analysis sequence.

Statistical modeling
Because it is of primary importance whether or not the arsenic concen-
tration in groundwater poses a health hazard,we used logistic regression
analysis to model arsenic concentration in groundwater being above or
below the WHO guideline of 10 and 50 mg/liter. We used our own
groundwater quality data (n= 1184) as well as those from the previously
mentioned studies (20, 30, 37–41, 51, 59), which constitute 69 additional
samples in total.

The data were first aggregated into 1-km squares by taking the
geometric mean of measurements falling within each square, which
resulted in 743 data points. The 1-km × 1-km dimensions correspond
to the finest resolution (30″) of data set used in the logistic regression
analysis (Table 2). Because the measured arsenic concentrations in
groundwater were used as the dependent variable in the logistic regres-
sions, they were assigned the value of 1 if the concentration is greater
than theWHO guideline of 10 mg/liter (49.8% of data points) or 0 if the
concentration is less than or equal to 10 mg/liter (50.2% of data points).

Logistic regression uses a logistic function, which takes on inde-
pendent variables that can range between negative infinity and positive
infinity and produces an outcome between 0 and 1 (52)

P ¼
1

1þ e�t
ð1Þ

where 0 ≤ P ≤ 1, and

t ¼ b0 þ b1x1 þ b2x2 þ…þ bnxn ð2Þ

where x1 … xn are the independent variables and b1 … bn are the
corresponding regression coefficients. P is interpreted as the prob-
ability of the dependent variable being 0 or 1. Logistic regression
analyses were conducted using the generalized linear model function
of R (68).

To aid comparison of different analyses, the AIC (54) provides a rel-
ative comparison in terms of the trade-off between complexity and
goodness of fit

AIC ¼ 2k� 2 lnðLÞ ð3Þ

where k is the number of parameters and L is the likelihood. For a given
suite of analyses, the one with the lowest AIC provides the best combi-
nation of modeling performance and simplicity.
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Variable selection
Eleven predictor variables were considered for use in the logistic regres-
sions (Table 2). These includedPET, precipitation, aridity (precipitation/
PET), temperature, irrigated land area, surface slope, the probability of
fluvisols, soil organic carbon, soil pH, clay content, silt content, and
Holocene fluvial sediments. All variables were continuous except for
slope (binary above or below 0.1°) and the existence of Holocene fluvial
sediments. The latter was taken from the Geological Map of Pakistan
(69) and divided into two sections: (i) Holocene streambed, floodplain,
and fluvial terrace sediments and (ii) all otherQuaternary andolder units
(fig. S7E). This differentiation was based on the prevalence of elevated
arsenic concentrations in Holocene fluvial sediments (1, 23, 24, 45). The
other variables were chosen for their direct or indirect relationship to the
process of arsenic enrichment in groundwater. For example, surface
topography may be related to the groundwater flow rate, and the soil
parameters, estimated at 1.5-mdepth (70), are assumed to have an effect
at least on shallow aquifers (51).

To help identify effective predictor variables for logistic regression,
we calculated linear (Pearson) correlations between each of the contin-
uous variables and the occurrence of high arsenic concentrations
(Table 2 and fig. S8). These were made using the percentage of arsenic
measurements greater than 10 mg/liter for 11 bins across the range of
each independent variable. The number of bins was determined using
Sturges’ formula (71), and thebinwidthwasvaried tohaveeachbincontain
the samenumber ofmembers. The datawere consolidated as such to focus
on the fundamental criterion of whether or not the concentration of ar-
senic poses a health hazard. In addition, a univariate logistic regression
was run with each variable, and the significance of the coefficient was
assessed through its P value (Table 2). On the basis of the evaluation of
P values from both analyses at the 95% confidence level (P= 0.05), clay
content and silt content were removed from further consideration.

Logistic regression analysis
The data set was randomly divided into subsets of 80% for training and
20% for testing. Logistic regression analysis was then run on the training
subset using a stepwise selection of variables (both directions), which
removes or adds variables based on their improvement to the AIC.
The result was then applied to the testing subset, and the Hosmer-
Lemeshow goodness-of-fit test (52) was used to indicate the accuracy of
predictions against the testing subset at the 95% confidence level. To
avoid introducing bias due to the particular selection of training and
testing subsets, we repeated this process 1000 times. Analyses were
retained if they passed the Hosmer-Lemeshow goodness-of-fit test,
and these results were used as a weighting in averaging the variable
coefficients. If an analysis did not contain a certain variable, a zero
was used instead. This technique provided stability to the final model
and emphasized parameters that more strongly predict the occurrence
of high arsenic concentrations.

The performance of the final set of averaged coefficients was eval-
uated on the entire data set by plotting sensitivity (rate of true positives,
or success rate of predicting high concentrations) against specificity
(rate of true negatives, or success rate of predicting low concentrations)
for all possible cutoff levels in an ROC curve (53). The AUC was then
calculated to evaluate the performance of the logistic regression (Fig.
2A). The AUC indicates the ability of a model to correctly classify pos-
itive and negative cases and generally ranges from 0.5 to 1, where 0.5
corresponds to an analysis that predicts the data no better than would
a random selection and 1 corresponds to an analysis that perfectly pre-
dicts the observations.

For comparison, other logistic regression analyses (using a threshold
of 10 mg/liter)were runusing fixed combinations of variables thatwould
be expected to effectively predict elevated arsenic accumulation. These
were also run 1000 times, and the coefficients of the analyses passing the
Hosmer-Lemeshow goodness-of-fit test were combined in a weighted
average using the test results.

Generation of hazard and risk models
The coefficients of the final logistic regression were used to generate a
hazard probability map of groundwater arsenic concentrations exceed-
ing either 10 or 50 mg/liter. The cutoff to distinguish between areas of
high and low hazard was selected where the sensitivity and specificity of
the analysis are equal (Fig. 2B).

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/

content/full/3/8/e1700935/DC1

fig. S1. Maps of spatial distribution and values of all chemical parameters.

fig. S2. Grids of all measured chemical parameters.

fig. S3. Hazard maps of logistic regression models using thresholds of 10 and 50 mg/liter.

fig. S4. Maps of other well-fitting logistic regression models.

fig. S5. Statistics of logistic regression model using threshold of 50 mg/liter.

fig. S6. Density of population at risk using logistic regression models with thresholds of 10 and

50 mg/liter.

fig. S7. Predictor data sets used in the final model.

fig. S8. Graphs of correlation between predictor variables and percentage of As measurements

>10 mg/liter.

table S1. Summary statistics of all measured parameters.

table S2. Coefficients, SDs, and frequencies of predictor variables in logistic regressions with a

threshold of 10 mg/liter.

table S3. Coefficients, SDs, and frequencies of predictor variables in logistic regressions with a

threshold of 50 mg/liter.
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fig. S1. Maps of spatial distribution and values of all chemical parameters. Maps of 

Pakistan depicting the spatial distribution of all chemical parameters measured for this study 

in groundwater samples that were collected throughout the country (n=458). 



 

 

fig. S1 (cont.) 



 

 

fig. S2. Grids of all measured chemical parameters. Inverse-distance-weighting grids of all 

chemical parameters measured for this study in groundwater samples that were collected 

throughout the country (n=458). The interpolation used a distance exponent of 1 and a 

variable search radius (encompassing 12 points). 



 

 

fig. S2. (cont.) 



 

table S1. Summary statistics of all measured parameters. Count, range, mean and median of arsenic and 11 other parameters measured in 

groundwater and well depth. Statistics are provided for all measurements as well as for the groupings of arsenic measurements within and exceeding 

10 µg/L. 

   As (µg/L) Ca (mg/L) Cl (mg/L) EC (µs/cm) F (mg/L) Fe (mg/L) HCO3 (mg/L) Mg (mg/L) NO3 (mg/L) pH SO4 (mg/L) TDS (mg/L) Depth (m) 

A
L

L
 

Count 1184 483 483 485 580 445 483 483 459 485 483 480 343 

Range 0-500 6-988 0.4-1800 24-10360 0-12.8 0-1.88 0.68-1148 4-956 0-193 6.14-9.18 1-1950 3.6-5180 3-70 

Mean 100±104 116±89 86±167 1100±1110 0.8±1.10 0.05±0.13 224±113 143±119 7.4±13.9 7.67±0.45 209±269 556±557 17±11 

Median 100 92 30 763 0.5 0.01 216 114 3.3 7.71 105 386 12 

A
s 

≤
 1

0
 µ

g
/L

 Count 399 396 397 398 397 363 398 396 379 398 396 396 0 

Range 0-10 6-988 0.4-1800 24-10360 0-3.7 0-1.88 0.68-1148 4-784 0-193 6.32±9.18 1-1950 3.6-5180 n/a 

Mean 1±3 114±88 86±163 1102±1102 0.6±0.6 0.04±0.13 222±118 146±114 8.4±15.0 7.68±0.45 209±268 556±553 n/a 

Median 0 91 32 762 0.4 0.01 209 116 3.8 7.72 105 385 n/a 

A
s 

>
 1

0
 µ

g
/L

 Count 785 87 86 87 183 82 85 87 80 87 87 84 343 

Range 12-500 18-656 1.5-1350 178-7240 0-12.8 0-0.86 64-400 8-956 0-28.4 6.14-8.30 8-1600 88.8-3620 3-70 

Mean 150±94 126±97 88±186 1089±1149 1.2±1.7 0.09±0.15 234±86 129±138 2.7±3.9 7.62±0.44 212±278 559±579 17±11 

Median 126 94 27 786 0.7 0.04 242 86 1.3 7.70 100 394 12 

 

 



 

 

table S2. Coefficients, SDs, and frequencies of predictor variables in logistic regressions 

with a threshold of 10 µg/liter. Weighted coefficients, standard deviations and frequency of 

variables retained in the original 1000 logistic regression runs using a threshold of 10 µg/L. 

(WHO As-guideline). 

 

Variable Coefficient Std. dev. 

Freq. in logistic 

regressions 

(intercept) -3.75 0.48 768 

fluvisols (probability) 1.39 0.23 768 

Holocene fluvial sed. (binary) 1.16 0.10 768 

slope (binary, 0.1°) -0.67 0.10 766 

soil organic carbon -1.73 0.56 610 

soil pH 4.21 0.58 768 

 

 

table S3. Coefficients, SDs, and frequencies of predictor variables in logistic regressions 

with a threshold of 50 µg/liter. Weighted coefficients, standard deviations and frequency of 

variables retained in the original 1000 logistic regression runs using a threshold of 50 µg/L 

(Pakistan As-guideline). 

 

Variable Coefficient Std. dev. Freq. in analyses 

(intercept) -4.94 0.43 860 

slope (binary, 0.1°) -0.53 0.11 802 

aridity (prec./PET) -3.69 0.62 859 

fluvisols (probability) 1.25 0.23 859 

soil pH 5.14 0.54 860 

irrigated area % 0.74 0.15 817 

Holocene fluvial sed. (binary) 0.82 0.13 860 



 

 

 

fig. S3. Hazard maps of logistic regression models using thresholds of 10 and 50 µg/liter. 

Probability (hazard) maps of the occurrence of arsenic concentrations in groundwater 

exceeding (A) the WHO guideline of 10 µg/L and (B) the Pakistan As-guideline of 50 µg/L 

along with the aggregated arsenic data points used in modeling (n=743). 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

fig. S4. Maps of other well-fitting logistic regression models. Plausible hazard models 

using the predictor variables of (A) fluvisols, (B) irrigated area, (C) aridity and slope (binary, 

0.1°), (D) slope (binary, 0.1°) and soil pH, (E) aridity, Holocene fluvial sediments and slope 

(binary, 0.1°), (F) fluvisols, Holocene fluvial sediments, soil organic carbon, soil pH and 

slope (binary, 0.1°) (final model in paper). 



 

 

 

fig. S5. Statistics of logistic regression model using threshold of 50 µg/liter. Statistics of 

the of the classification strength of the logistic regression analysis results using the threshold 

of 50 µg/L (Pakistan As-guideline) applied to the entire set of 743 data points: (A) the ROC 

curve (AUC of 0.80) and (B) sensitivity (true positive rate), accuracy and specificity (true 

negative rate) versus cut-off value. 

 

fig. S6. Density of population at risk using logistic regression models with thresholds of 

10 and 50 µg/liter. Density of population at risk of high levels of arsenic in groundwater 

using (A) the WHO guideline of 10 µg/L and (B) Pakistan As-guideline of 50 µg/L. The 

population risk in both cases falls in the range of 50–60 million people, which is based on 

2016 population estimates and a 60–70% groundwater utilization rate. 



 

 

 

fig. S7. Predictor data sets used in the final model. Predictor datasets used in the final 

model: (A) Slope derived from the SRTM 30 arc-second DEM (65). (B) Predicted occurrence 

of the presence of fluvisols (59, 66, 67). (C) Estimated soil organic carbon at 150 cm depth 

(59, 66, 67). (D) Estimated soil pH at 150 cm depth (59, 66, 67). (E) Holocene fluvial 

sediments (68). 



 

 

 

fig. S8. Graphs of correlation between predictor variables and percentage of As 

measurements >10 µg/liter. Correlation of the percentage of groundwater samples exceeding 

the WHO As-guideline of 10 µg/L against continuous predictor variables. Data were placed 

into 11 bins of variable width to allow each bin to contain the same number of members. 


