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We explore the high-dimensional chaotic dynamics of the Lorenz-96 model by computing the
variation of the fractal dimension with system parameters. The Lorenz-96 model is a continuous in
time and discrete in space model first proposed by Lorenz to study fundamental issues regarding the
forecasting of spatially extended chaotic systems such as the atmosphere. First, we explore the
spatiotemporal chaos limit by increasing the system size while holding the magnitude of the exter-
nal forcing constant. Second, we explore the strong driving limit by increasing the external forcing
while holding the system size fixed. As the system size is increased for small values of the forcing
we find dynamical states that alternate between periodic and chaotic dynamics. The windows of
chaos are extensive, on average, with relative deviations from extensivity on the order of 20%. For
intermediate values of the forcing we find chaotic dynamics for all system sizes past a critical value.
The fractal dimension exhibits a maximum deviation from extensivity on the order of 5% for small
changes in system size and the deviation from extensivity decreases nonmonotonically with increas-
ing system size. The length scale describing the deviations from extensivity is consistent with the
natural chaotic length scale in support of the suggestion that deviations from extensivity are due to
the addition of chaotic degrees of freedom as the system size is increased. We find that each
wavelength of the deviation from extensive chaos contains on the order of two chaotic degrees of
freedom. As the forcing is increased, at constant system size, the dimension density grows mono-
tonically and saturates at a value less than unity. We use this to quantify the decreasing size of
chaotic degrees of freedom with increased forcing which we compare with spatial features of the
patterns. © 2010 American Institute of Physics. [doi:10.1063/1.3496397]

We explore fundamental questions regarding the compo-
sition and description of spatiotemporal chaos in high-
dimensional systems. The Lorenz-96 model is used for its
phenomenological relevance to fluid convection and at-
mospheric dynamics. We compute the variation of the
fractal dimension over a wide range of system param-
eters, for very long-times, and over many initial condi-
tions. We explore two limits: the “spatiotemporal chaos”
limit where the system size is increased while holding the
external forcing constant and the “strong driving” limit
where the external forcing is increased for a system of
fixed size. The variations in the fractal dimension with
system parameters are used to provide estimates for
characteristic length and time scales describing the cha-
otic dynamics. These findings are directly compared with
experimentally accessible diagnostics of the pattern dy-
namics to provide new physical insights into the underly-
ing features of high-dimensional chaos.

I. INTRODUCTION

A common feature of spatially extended systems that are
driven far-from-equilibrium is spatiotemporal chaos where
the dynamics are aperiodic in space and time." Important
examples include the dynamics of the atmosphere and
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Climate,2 fluid convection,l’3 the convection of biological or-
ganisms in the oceans,4 the transition to chaos in excitable
media,” and the complicated dynamics of systems of react-
ing, advecting, and diffusing chemicals.’ Despite intense the-
oretical and experimental investigation many important chal-
lenges remain regarding how to characterize, control, and
predict the dynamics of these large complex systems.

A unifying feature of many of these systems is that the
dimension of the attractors describing their dynamics in
phase space is very large. This severely limits the use of
sophisticated techniques of chaotic time-series analysis7 and
of powerful geometry based descriptions of dynamical
systems.8 However, the use of Lyapunov exponents to com-
pute the fractal dimension does not suffer from these limita-
tions and provides an important window into fundamental
aspects of the dynamics of high-dimensional chaotic sys-
tems. Furthermore, the spectrum of Lyapunov exponents is
inaccessible to experimental measurement using currently
available techniques which leaves their numerical computa-
tion as an important way to gain new insights. A physical
understanding of the dimension and how it varies with sys-
tem parameters can provide fundamental knowledge regard-
ing the underlying nature of spatiotemporal chaos that can be
used to guide the development of improved theoretical de-
scriptions for experimentally accessible systems.

© 2010 American Institute of Physics
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A defining feature of chaos is the sensitive dependence
of the system dynamics on initial conditions and the expo-
nential separation of nearby trajectories in phase space.9 The
rate of separation is quantified by the spectrum of Lyapunov
exponents \;, where i=1,...,N with \; arranged in descend-
ing order and N is the total number of degrees of freedom in
the system. For partial differential equations, although the
phase space is infinite, the value of N is expected to be very
large but finite corresponding to the dimension of the inertial
manifold (cf. Refs. 10 and 11). For a system of coupled
ordinary differential equations, as we study here, the value of
N is equal to the number of independent variables. The sum-
mation of the first M exponents (where M = N) describes the
growth of an M-dimensional ball of initial conditions in
N-dimensional phase space. The number of exponents re-
quired for the sum to vanish is the dimension of the ball that
will neither grow nor shrink and is an estimate of the fractal
dimension D, of the strange attractor. Using a linear interpo-
lation to determine the number of exponents yields the well-
known Kaplan—Yorke formula,

K
A
D)\=K+2 |)\ s (1)
i=1 |NK+1

where K is the largest integer such that the sum of the first K
Lyapunov exponents is non—negative.12 The magnitude of D)
is an approximate value of the number of degrees of freedom
acting in the system.n’14

Ruelle"” initially conjectured, and numerical simulation
later confirmed (cf. Refs. 16 and 17), that the fractal dimen-
sion is extensive for large chaotic systems. More precisely,
D, increases linearly with the volume of the system L¢,
where L is a characteristic length and d is the number of
spatially extended dimensions. The extensivity of D, is a
consequence of spatial disorder. If two subsystems are suffi-
ciently far apart their coupling is weak and they contribute
independently and additively to the overall dimension.""”
Cross and Hohenberg1 used this to define a natural chaotic
length scale as

D\~
&= (L—Q) , )
where a volume §‘§ will contain, on average, one degree of
freedom.

Using the above arguments, one intriguing possibility is
that underlying spatiotemporal chaos are structures of vol-
ume ~§§. This raises an interesting question: How does the
dimension vary for changes in system volume that are
smaller than 5‘(’5‘? One possibility is that D, is proportional to
the system size only on average. In this case, the variation of
D, would have a stepwise structure with system size where
the steps correspond to the addition of new degrees of free-
dom as the system grows large enough to accommodate
them. A smoother transition may also be possible where the
new degrees of freedom are able to stretch or compress to
match the system size. In light of this, the variation of D, for
small changes in system size can shed important physical
insight upon the basic nature and composition of spatiotem-
poral chaos (cf. Refs. 1 and 18-20).
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Questions relating to the precise variation of the fractal
dimension with system size have been explored numerically
for several important model equations. O’Hern et al.'® ex-
plored the extensive chaos of a two-dimensional coupled-
map lattice with an Ising-like transition. The fractal dimen-
sion was found to exhibit significant deviations from
extensivity near the onset of spatiotemporal chaos which rap-
idly decayed with increasing system size (here the number of
lattice sites).

Xi et al.®® explored the one-dimensional (1D) Nikolae-
vskii equation and Tajima and Greenside'” explored the 1D
Kuramoto—Sivashinsky equation. In both of these studies ex-
tensive chaos was found and a systematic exploration of the
dimension was performed in the extensive regime. The frac-
tal dimension remained linear to within the precision of the
calculations to yield what is now referred to as microexten-
sive chaos. It is important to note that neither study focused
upon the approach to extensive chaos where deviations may
be more accessible. At the larger system sizes explored it
remains a possibility that deviations in the fractal dimension
were too small to detect.

Fishman and Egolf18 explored the 1D complex
Ginzburg-Landau equation over a range of system sizes in-
cluding the approach to extensive chaos. Significant devia-
tions from extensivity were found to occur on a length scale
consistent with &5, which was used to suggest the presence of
building blocks that compose spatiotemporal chaos.'®

Computations of the fractal dimension have also been
conducted for experimentally accessible systems such as
Rayleigh-Bénard convection (the buoyant convection that
occurs in a shallow fluid layer heated from below). Extensive
chaos was found in large periodic boxes”' and in finite cy-
lindrical domains® yielding a natural chaotic length scale
&5~"2 corresponding approximately to the width of a convec-
tion roll pair. However, such calculations are very expensive
and it remains unclear if a fluid system such as Rayleigh—
Bénard convection is microextensive.

The approach we take is to study the dynamics of a
periodic lattice of coupled variables (discrete in space and
continuous in time) whose equations of motion were origi-
nally developed by Lorenz in 1996 with the dynamics of the
atmosphere and fluid convection in mind.* The model has
since become important in the study of forecasting spa-
tiotemporally chaotic systems. The model is now known as
the Lorenz-96 model and is described in detail below. We
compute the spectrum of Lyapunov exponents and fractal
dimension using standard approaches. The contribution of
this paper is a systematic and careful study of the variations
in the fractal dimension with changes in system parameters
to gain physical insights into high-dimensional chaos. By
exploring a simple model we are able to perform very long-
time simulations, over many initial conditions, and for a
broad range of system parameters.

Il. THE LORENZ-96 MODEL

The Lorenz-96 model is a simple model developed by
Lorenz in 1996 to study difficult questions regarding predict-
ability in weather forecasting.23 The model is constructed of
variables that represent the continuous time variation of an
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atmospheric quantity of interest, such as temperature or vor-
ticity, at a discrete location on a periodic lattice representing
a latitude circle on the earth. The discrete variables are
coupled spatially and their equation of motion includes con-
tributions relevant to fluid systems including a quadratic
nonlinearity, dissipation, and a constant external forcing.
However, the equations are phenomenological and cannot be
derived systematically from a more rigorous description.

Despite these simplifications the Lorenz-96 model has
emerged as an important and often used model system for the
testing of new ideas in the atmospheric sciences® 2 and in
the general study of spatiotemporal chaos.”” In our work, we
explore the Lorenz-96 model as a numerically accessible
model with phenomenological relevance to fluid systems.
The computational cost of a systematic study of the variation
of the fractal dimension with system parameters is signifi-
cant. It is anticipated that our exploration of a simple model
will yield new insights that can be used to guide future stud-
ies of more complicated systems.

Mathematically, the Lorenz-96 model is a linear lattice
of N variables where the dynamics of the kth variable is
given by

dX
d_tk = (Xps1 = Xj)Xjo = X+ F (3)

for k=1,...,N. In this equation F represents an external
driving, —X, is a damping term, and the quadratic term is an
advection term that has been constructed to conserve kinetic
energy (represented as the sums of squares of X;) in the
absence of damping. We consider the case of constant exter-
nal forcing F' and where the lattice is periodic in space. Al-
though other boundary conditions are possible, periodic
boundaries are of particular relevance for the atmospheric
systems of which this model was intended to describe. We
will show that the chaotic and periodic solutions we explore
are composed of traveling structures that travel completely
around the periodic lattice many thousands of times. In light
of this, other boundary conditions such as an absorbing
boundary would have a very strong impact on the dynamics.
We have not explored these possibilities in detail.

The two parameters N and F completely determine the
dynamics. The value of N is the system size and F' is the
magnitude of the external forcing. In the following we are
interested in the variation of the fractal dimension with these
parameters. We explore system sizes N=4 since N=3 does
not yield interesting dynamics due to the nature of the cou-
pling. For small values of the forcing F<8/9 it has been
shown? that all solutions decay to the steady solution X,
=F.

We compute the spectrum of Lyapunov exponents \; and
the fractal dimension D, using the standard procedure de-
scribed in detail in Ref. 28. There are N exponents and for
each exponent a set of equations linearized about Eq. (3) is
evolved simultaneously to yield the dynamics of perturba-
tions arbitrarily close to the full nonlinear system. These tan-
gent space equations are

Chaos 20, 043105 (2010)

dsxt)

= X1 X)) + (Xpoy = Xi) XY | — X 8%,

-, (4)

where 5X§:) is the ith perturbation about lattice site k and i
=1,...,N. The perturbations are reorthonormalized using a
Gram-Schmidt procedure after a time 7 to yield the magni-
tude of their growth [|6X"(sy)|. Each reorthonormalization
yields a value of the instantaneous Lyapunov exponent,

— 1 .
= —In[|ax]. (5)
In

This is repeated and the average value of ):k yields the finite
time Lyapunov exponent,

A ! %X (6)
k= ks
Niio

where N, is the number of reorthonormalizations performed.
The limit N,— oo yields the infinite-time Lyapunov exponent.

In our numerical simulations, we begin from random
initial conditions and use a fourth-order Runge—Kutta time
integration with a time step Ar=1/64. Typically, we integrate
forward for 1000 time units before starting the calculation of
Lyapunov exponents to ensure that all transients have de-
cayed. At this point we begin integrating the tangent space
equations using ty=1. All of our reported results are for very
long simulation times /=5 X 10° and we have computed re-
sults for each set of parameter values for 10-50 different
random initial conditions.

lll. RESULTS

A. The variation of the fractal dimension with system
size
1. Small external forcing, F=5

We first explore the dynamics for a small value of the
forcing term F=5 over a wide range of system sizes, 4=N
=50. We find that the dynamics are characterized by win-
dows of periodic and chaotic behavior. Figure 1 shows
space-time plots for X,(z) illustrating the variety of dynamics
present. In Fig. 1(a) the dynamics are periodic for N=38
yielding a wave of constant velocity traveling from right to
left. In Fig. 1(b) we show the interesting case N=22 where
the dynamics are chaotic with a small value of the fractal
dimension. The dynamics consist of a distorted wave struc-
ture traveling from right to left. In Fig. 1(c) chaotic dynamics
are shown for N=47. This illustrates the typical chaotic dy-
namics that we have observed where the traveling wave
structure is still apparent but with significant distortions and
deviations.

It is evident from these space-time plots that the time for
a wave structure to travel completely around the periodic
lattice ring is ~10 time units for sizes of the lattice rings
used here. Our typical simulation time is on the order of 10
time units which indicates that the number of complete rota-
tions in one of our simulations is approximately 10*. The
very long simulation times were required to gather statistics
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FIG. 1. Space-time plots of X,(¢) for 15 time units after r=5.1X10° indi-
cated by *. Dark regions are large values and light regions are small values:
(a) N=38, F=5, periodic dynamics; (b) N=22, F=35, low-dimensional cha-
otic dynamics; (c) N=47, F=5, chaotic dynamics; (d) N=38, F=10, chaotic
dynamics.

with sufficient accuracy to address many of the subtle ques-
tions we study. Despite the simple nature of the model stud-
ied the requirement for very long-time simulations is signifi-
cant. Overall, this suggests that the slow and noisy nature of
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FIG. 2. The variation of the dynamics with system size N for F=5. (a) The
variation of the inverse of the period P of the dynamics with system size N
where circles are periodic dynamics and triangles are chaotic dynamics.
(b) Deviations from extensivity illustrated by the variation of D, with N.
The circles are simulation results and the solid lines are to guide the eye.
The maximum value of AD=0.77 occurs for N=22, for N=27 the maxi-
mum deviation is AD=0.17, where AD is computed using Eq. (7). The
arrows indicate windows of periodic dynamics. The error in these calcula-
tions is ~1072 as determined by the standard deviation of D, using ten
different initial conditions at each N.

the convergence of the Lyapunov spectrum can pose signifi-
cant computational challenges for more complicated models.

Figure 2(a) illustrates the variation in dynamics with sys-
tem size where P! is the inverse period of the dynamics.
The circles represent system sizes yielding periodic dynam-
ics. For systems N=35 the period of oscillation is approxi-
mately 2 time units. The triangles, located at P~'=0, repre-
sent system sizes that yield chaotic dynamics. For each
system size N we performed ten long-time numerical simu-
lations starting from different random initial conditions. The
type of dynamics found was independent of the initial con-
ditions used.

Figure 2(b) shows the variation of D, with system size
N. The circles represent the fractal dimension for system
sizes yielding chaos and the solid line is to guide the eye.
The error in D, at each value of N is ~1072 as determined by
the standard deviation in the fractal dimension from simula-
tions initiated with ten different initial conditions. The
dashed line is a linear curve fit through the data for N=27 to
yield an estimate of D.,, describing the dimension of exten-
sive chaos. In all of our calculations of D, we use a third
order polynomial curve fit to determine an accurate value for
the number of Lyapunov exponents that must be included for
the sum to vanish (the curve fit uses only the four sums with
values closest to zero).'® The arrows highlight the gaps be-
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TABLE 1. Characteristic length scales describing the dynamics: (first row)
F=35, (second row) F=10. & is the chaotic length scale found using the
fractal dimension, &, is the average wavelength of the deviations in the
fractal dimension about extensivity, and &; is the average wavelength of the
wave structure. &,/ &5 is an estimate for the number of chaotic degrees of
freedom per wavelength of the deviation from extensivity, & /&s is an esti-
mate for the number of chaotic degrees of freedom per wavelength of the
pattern. The results for F=10 are for the large system limit N =40.

& éo & o/ &s &/&s
F=5 2.6 5.7 5.2 2.2 2.0
F=10 1.35 2.1 445 15 33

tween chaotic dynamics indicating system sizes yielding pe-
riodic dynamics. Using the slope of the dashed line of Fig.
2(b) and Eq. (2) the chaotic length scale is &5=2.6. For ref-
erence, the characteristic lengths determined from our calcu-
lations are collected in Table I.

The size of the windows of chaotic dynamics is largest
for the smaller system sizes. For N=27 the dynamics alter-
nate between chaotic and periodic dynamics in a regular
manner. The size of the interval between periodic dynamics
yields a length scale we will denote by §,. For N=27 there
are four such intervals with an average value of §,=5.25.
This yields &,/ &5=2.0 indicating the presence of two chaotic
degrees of freedom contained in each interval between peri-
odic dynamics. This suggests that the periodic dynamics oc-
cur when the system size has been increased sufficiently
enough to accommodate two additional degrees of freedom.
System sizes larger or smaller than this value yield chaotic
dynamics in agreement with what was found for the 1D com-
plex Ginzburg-Landau equation.18

To quantify the deviations of the dimension from purely
extensive chaos we define

D-D

AD= D—m (7)

ext

The overall maximum value of the deviation from extensiv-
ity occurs for N=22 where AD=0.77. If one only considers
N=27 the maximum deviation is AD=0.17. To estimate the
error in these calculations we computed results at each value
of N using ten different random initial conditions. The stan-
dard deviation of the values of D, is <1072, which is too
small to include as error bars in Fig. 2(b). The deviations
from extensivity exhibit regular variations about the line of
purely extensive chaos for N=25. To quantify the length
scale of these deviations we used a cubic spline interpolation
through the data symbols (shown as the solid line) to deter-
mine the average wavelength of these deviations which we
will denote as &,. Using this approach yields a value of &,
=5.7. The ratio &,/&s=2.2 yields that there are, on average,
2.2 chaotic degrees of freedom per wavelength of the devia-
tion from extensive chaos. This is consistent with what has
also been observed for the complex Ginzburg—Landau
equation.18

We now compare these results based upon the use of
Lyapunov exponents with what is found by analyzing the
spatial and temporal characteristics of the patterns. Analysis
of the patterns is of particular interest because these mea-
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FIG. 3. The temporal and spatial features of the patterns for F=5. (a) The
variation of the average correlation time & with system size N. The dashed
line is the average value of &,. (b) The variation of the pattern wavelength &,
with system size. Open symbols represent chaotic dynamics and filled sym-
bols represent periodic dynamics.

surements are often available in experiment whereas the
Lyapunov exponent based diagnostics are not. Figure 3(a)
shows the variation of the correlation time & with increasing
system size. The correlation time is computed from

(X (0)X (1) ~ ™%, (8)

where (X,(0)X,(¢)) is the autocorrelation of the kth variable

X, in which we have subtracted off the mean value. The
results shown are the time average value of the correlation

time for the variable X,(7) in the periodic lattice. Each data
point is also averaged over simulations which begun from
ten different random initial conditions. The results exhibit a
scatter about the mean value of &=0.162 with a coefficient
of variation of 9.6% (defined as the standard deviation di-
vided by the mean). The results indicate that the time dynam-
ics remain relatively constant as the system size increases.
To quantify the spatial variation of the pattern we have
computed the average pattern wavelength &, with increasing
system size, as illustrated in Fig. 3(b). The wavelength is
computed in Fourier space using the location of the largest
peak at small wavenumber to capture the size of the basic
wave structure and is averaged over all time for each initial
condition. For smaller systems N=<10 the deviations are
largest, whereas for N> 10 the wavelength varies about an
average value of & =~5.2 lattice spacings. For the chaotic
solutions, the fluctuations about the average value over the
ten different initial conditions yield a coefficient of variation
of approximately 14%. For the periodic dynamics the wave-
length of the periodic states was nearly identical to the pre-
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FIG. 4. A comparison of the variation in the normalized pattern wavelength
EL and the normalized deviation from extensivity AD for F=5 and N=25.

The constant normalization factors are chosen such that AD and EL each
equal unity for N=25 allowing both curves to fit on a single plot. The
wavelength results are given by the circles and the solid line (open symbols
are chaotic dynamics, filled symbols are periodic dynamics). The deviations
from extensivity are shown by the square symbols and the dashed line where
gaps indicate regions of periodic solutions. In both cases the lines are to
guide the eye.

cision of our calculations over the different initial conditions.
Computation of the two-point spatial correlation length is
difficult due to the lack of an exponential decay in the cor-
relation functions for the parameters we have explored and is
not included.

Our space-time diagnostics indicate that with increasing
system size the dynamics tend toward a state where &=~0.16
and &, =5.2. The wavelength of the pattern in the large sys-
tem limit is & = 0.9§,~= 2§;, indicating that each wavelength
of the pattern contains approximately two chaotic degrees of
freedom on average. In this case, it is useful to also compare
the deviations from extensivity with the variations in the
wavelength of the patterns for increasing system size.

The variation of &; about its mean value is quite similar
to what is found for the deviations from extensivity AD and
is illustrated in Fig. 4. We plot the variation of the normal-

ized wavelength EL and the normalized deviations from ex-

tensivity AD with the system size. The constant normaliza-
tion factors are chosen such that the normalized wavelength
and deviation from extensivity equal unity for N=25, allow-
ing both curves to be shown on a single plot. The circles are
results for the wavelength of the pattern where solid symbols
indicate periodic dynamics, and open symbols represent cha-
otic dynamics. The dashed line and the square symbols rep-
resent the deviations from extensivity. Gaps in the dashed
line occur for system sizes exhibiting periodic dynamics.
Figure 4 illustrates a correlation between the pattern
wavelength and the deviation from extensivity. The general
trend is that both the fractal dimension and the pattern wave-
length increase with increasing system size until the pattern
adjusts by adding an additional wave structure to the periodic
lattice effectively reducing the average wavelength of the
pattern. With the addition of the wave structure the dynamics
are periodic and the fractal dimension vanishes. A similar
trend is seen in the work of Fishman and Egolf,18 where
periodic dynamics were found for system sizes where the

Chaos 20, 043105 (2010)
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FIG. 5. (Color online) (a) The variation of the Lyapunov exponents N, with
k/N for k=1,...,N, where N is the system size and F=10. The solid line is
the average value using all of the data. (b) The variation of the summation of
the exponents with k for F=10 and N=40. The fractal dimension D, is the
value where the summation vanishes. The solid line is a sixth order polyno-
mial curve fit and the fractal dimension D, is shown by the vertical dashed
line.

deviation from extensivity was predicted to be a minimum
for the one-dimensional complex Ginzburg-Landau equa-
tion.

2. Intermediate external forcing, F=10

We next explore the dynamics for a larger value of the
forcing F=10 over the range of system sizes 5 =N =50. For
each system size we have performed 50 independent numeri-
cal simulations starting from different random initial condi-
tions. Each simulation was allowed to continue until
t=5% 10’ and in computing our results we only used data in
the time interval 3 X 10°<¢=5X 10’ to ensure the decay of
all transients and in order to gather good statistics. We found
chaotic dynamics at every system size and for each random
initial condition. A representative space-time plot for our re-
sults is shown in Fig. 1(d) for the case of N=38. The patterns
consist of distorted wave structures traveling from right to
left.

The spectra of Lyapunov exponents are shown in
Fig. 5(a) for six different values of system size. The spectra
collapse onto a single curve as expected for extensive chaos.
The solid line is the average of the results for the different
system sizes shown. The variation of the summation of the
exponents with the number of exponents is illustrated in
Fig. 5(b) for the case of N=40. The solid line is a sixth order
polynomial curve fit through the data. The fractal dimension
is indicated by the vertical dashed line at the location where
the summation vanishes.



043105-7 Extensive chaos in the Lorenz-96 model

x10~

Chaos 20, 043105 (2010)

FIG. 6. The variation of the dynamics with the system
size for F=10. (a) The variation of D, with N, the solid
line is a linear curve fit through the data indicating ex-
tensive chaos. For N=4 the dynamics are periodic and
are not included in the curve fit. (b) The variation of the
deviation from extensivity AD with N. The circles are
results from numerical simulation and the solid line is a
spline interpolation to guide the eye. The deviations

The variation of the fractal dimension with system size
is shown in Fig. 6. Figure 6(a) illustrates the variation of Dy
with N where the symbols represent the average value over
the 50 different initial conditions. An estimate of the error in
these calculations is the standard deviation of the values of
the dimension at each system size. Using this, the error is
found to be quite small with a magnitude that is <107 over
the entire range of system sizes. The solid line is a linear
curve fit through the data points indicating extensivity. This
yields a value of D, for any system size N and using Eq. (2)
yields a value of the natural chaotic length scale of &;
=1.35. It is important to point out that since £5>1, incre-
mental changes in N by adding a single lattice site allow the
variation in the fractal dimension to be observed for changes
in system size that are smaller than the chaotic length scale.

The deviations of the fractal dimension about extensivity
AD are shown in Fig. 6(b) where we have used Eq. (7), and
the solid line is to guide the eye. The magnitude of the de-
viation from extensivity for N=25 is ~5% at its largest
value and tends toward zero with increasing N. Error bars are
included and, over the entire range of system sizes, have a
magnitude on the order of ~1073, which is three orders of
magnitude smaller than the absolute values of AD. Due to
the very small magnitude of our error bars we can discern
these deviations in the fractal dimension from extensivity for
all values of the system size. For the larger system sizes
40=N=150 the variation of the deviation from extensivity is
shown in Fig. 6(c).

Figure 6(b) illustrates that the variation of AD with N is
given by an oscillating decay toward extensivity with a non-
monotonic amplitude. The previous studies exhibiting devia-
tions from extensivity of O’Hern et al.'® and Fishman and
Egolf18 both observed a rapid decay toward extensive chaos
that is well described by a rapidly decaying sinusoidal func-
tion. At present we do not have a good understanding of the
physical origin of the nonmonotonicity in the amplitude of
our oscillating decay. This is perhaps related to the discrete

from extensivity are on the order of 5% and decrease
with increasing N. (c) A close-up view illustrating the
deviations from extensivity for large N. The solid line is
a curve fit given by AD=1.3X 107N cos(2mN/ &)
where the wavelength &,=2.1 lattice spacings. The error
bars shown in (b) and (c) are on the order of ~10~> and
~107, respectively, and are computed from the stan-
dard deviation of the fluctuations of D, about its aver-
age value using simulations from 50 different initial
conditions.

spatial structure of the Lorenz-96 model. Another possibility
is that the form of the deviations may reveal information
regarding the symmetry of the interactions between the cha-
otic degrees of freedom.'®

It is useful to separate these findings into two regimes, a
small system regime where N =25 and a large system regime
where N=40. The small system regime includes the onset of
extensivity whereas the large systems are extensive. In a
more complicated system, one would typically only have ac-
cess to the deviations from extensivity for the small system
sizes since the deviations are largest in this range. However,
this is also the regime where one could expect pattern selec-
tion effects to be also important and complicate the results.
The large system limit is expected to be less influenced by
pattern selection effects and to provide a better estimate of
the length scale of a chaotic degree of freedom.

Over these two regimes we find that the wavelength of
the deviations varies significantly. To quantify this in the
small system limit we compute the zero crossings of AD to
estimate the wavelength of oscillation about D, given by §&,.
For N=25 there are three wavelengths with values of (3.3,
5.3, and 1.9) that yield an average of §,=3.5. The ratio
&/ £5s=2.6 yields that each wavelength of the deviation from
extensive chaos contains approximately 2.6 chaotic degrees
of freedom. The large spread in the values of the wave-
lengths suggests some competition with pattern selection
mechanisms.

In the large system limit N=40 the data are well repre-
sented by a damped cosine wave. The solid line in Fig. 6(c)
is given by AD=13X10N"!cos(2@wN/&,) where the
wavelength is &;=2.1 lattice spacings. The magnitude and
variation of the wavelengths are smaller than what was found
for the smaller systems. A similar curve fit does not represent
the data for the smaller system sizes. In the large system
limit the ratio &,/ &s=1.5 yields that, on average, there are
approximately 1.5 chaotic degrees of freedom per wave-
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FIG. 7. The temporal and spatial characteristics of the patterns for F=10. (a)
The variation of the average correlation time & with system size N. The
dashed line is the average value of &. (b) The variation of the average
pattern wavelength &, with system size. The solid line is a curve fit of the
form & =4.45-13.6N'%3,

length of the deviation from extensive chaos. As in the case
of F=5, the length scale of the deviations from extensive
chaos is consistent with the chaotic length scale suggesting
that the deviations are due to the presence of additional cha-
otic degrees of freedom with increasing system size. Our
results for small and intermediate forcing yield on the order
of two chaotic degrees of freedom per wavelength of the
deviation from extensivity. It is interesting to note that this is
in rough agreement with what has been found for the com-
plex Ginzburg—Landau equation although the two systems
are very different.'®

We now compute the characteristic time and length
scales describing the pattern dynamics using the same diag-
nostics that we applied to the results where F=5. A motiva-
tion here is also to provide further insight into the transition
between the small and large system limits in order to sepa-
rate pattern selection effects from dynamical effects related
to extensivity. Figure 7(a) shows the variation of the average
correlation time &, with N over 50 different initial conditions.
The time dynamics are noisy and the correlation time has an
average value of approximately &=0.11 (indicated by the
dashed line). The time dynamics are faster than what was
found for F=5 as expected for the increased value of the
forcing term.

Figure 7(b) illustrates the variation in the average wave-
length of the patterns with N over the different initial condi-
tions. The wavelength variation shows two regions of inter-
est. For small system sizes N=<20 the pattern wavelength
increases rapidly. For larger systems the wavelength remains
relatively constant with an average value of & =~4.45. The
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region of increasing wavelength corresponds to system sizes
where the pattern selection is affected significantly by the
size of the domain. This corresponds roughly with the region
where the fractal dimension is approaching extensivity in
Fig. 6(b). These trends are well captured by a curve fit
through the data of the form & =4.45-13.6N"'% and are
shown by the solid line in Fig. 7(b). The fluctuations of the
wavelength about the mean value for these chaotic states
yield a coefficient of variation of approximately 30%. For
this reason we do not provide a comparison of the deviations
of the wavelength about the average value with the devia-
tions from extensivity as we did for F=5 in Fig. 4. Our
space-time diagnostics indicate that in the large system limit
&, =3.3¢;, indicating that a wavelength of the pattern con-
tains, on average, 3.3 chaotic degrees of freedom. A more
detailed exploration of the relationship between §; and & for
increasing values of the forcing F will be explored in
Sec. III B.

B. Variation of the fractal dimension with forcing

In Sec. IIT A we have considered the large system limit
defined as the limit where the chaotic degrees of freedom are
much smaller than the system size. This was achieved by
holding the external forcing F fixed while the system size N
was increased. This is the typical manner to study spatiotem-
poral chaos and has been referred to as the spatiotemporal
chaos limit." For example, in a Rayleigh—-Bénard convection
experiment this could be accomplished by holding the Ray-
leigh number constant while increasing the aspect ratio of the
convective domain.

However, it is also possible to explore the large system
limit by keeping the system size fixed while increasing the
external forcing. This has been referred to as the strong driv-
ing or “strong turbulence” limit." In this case, it is expected
that the chaotic degrees of freedom will become smaller with
increasing forcing to yield the large system limit. In a
Rayleigh—-Bénard convection experiment this would be ac-
complished by increasing the Rayleigh number in a convec-
tion domain of fixed size. It has been conjectured that the
fractal dimension will also exhibit a power-law dependence
with respect to the value of the forcing.l

We have explored this strong driving limit in the
Lorenz-96 model by performing a series of simulations for
increasing values of F while the system size N is held con-
stant. We studied six values of the forcing over the range
5=F=30. For any particular value of F we performed ten
numerical simulations starting from different random initial
conditions and allowed the simulation to run for 5 X 10° time
units to ensure good statistics. We computed these results for
five different system sizes where 15=N=35.

It is more convenient to discuss these results using the
intensive dimension density,

Dy
5)\ = W . (9)
The variation of the dimension density with external forcing
is shown in Fig. 8. Each symbol is the average value of the
ten simulations from different random initial conditions. The
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FIG. 8. (Color online) The variation of the dimension density &, with the
forcing F and system size N. The results are for the five different system
sizes indicated in the legend. The symbols are simulation results and the
solid line is a curve fit through the average value of the data given by
8,=0.93-4.03F132, Each symbol is the average value from results com-
puted using ten different initial conditions. The magnitude of the standard
deviation of these results for each symbol is ~107.

magnitudes of the standard deviation of the results are ~107>
and have not been included as error bars due to their small
magnitude.

Results for the dimension density for different values of
N collapse onto a single curve given by &,
=0.93-4.03F'32 and are shown by the solid line. The scat-
ter in the results is quite small for all values of F explored
with the largest deviations occurring at the smallest value of
the forcing. The collapse of the data over the different system
sizes explored indicates that the dynamics are in the exten-
sive chaotic regime.

There are several interesting predictions given by the
trends in the data. First is the prediction that the asymptotic
value of the dimension density for external forcing of infinite
magnitude saturates at a value of 6,=0.93<1. In discussing
this it is useful to note that the inverse of the dimension
density is simply the natural chaotic length scale &= 5;1. In
light of this, Fig. 8 also illustrates the manner in which the
chaotic length scale decreases with increasing forcing. For a
spatially discrete system with N degrees of freedom the the-
oretical limit for the dimension density is &,=1. This corre-
sponds to a chaotic length scale of a single lattice spacing
&s=1. Using our results for &, yields a value of £5=1.08 for
the chaotic length in the limit of infinite forcing. This is in
contrast to a fluid system described by partial differential
equations with an infinite number of degrees of freedom. It is
interesting to note that the variation of the fractal dimension
with the degree of external forcing has been explored nu-
merically for turbulent Rayleigh—Bénard convection to yield
a linear dependence.29 Second is the prediction that the di-
mension density vanishes at a value of F=3.04 providing a
threshold value for F above which one finds chaotic dynam-
ics. We have run a series of numerical tests for values F' near
this threshold value to explore this further. Our results yield
that this value is correct to within the precision of our calcu-
lations.

We now compare several measures of characteristic time
and length scales for increasing values of the magnitude of
external forcing. Both the temporal and spatial scales de-
crease with increasing forcing as expected. The variation of
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FIG. 9. (Color online) The variation of two characteristic time scales with
external forcing F. (a) The variation of the inverse of the leading order
Lyapunov exponent )\TI. Data are shown for five different system sizes as
indicated in the legend. The solid line is a curve fit through the data of the
form )\f'=0.158+123.8F‘ 26 (b) The variation of the average correlation
time ¢ with F for a system size of N=35. The symbols are results from
simulation and the solid line is the power-law curve fit given by
£=0.35F03,

the inverse leading order Lyapunov exponent and the corre-
lation time are shown in Fig. 9. The symbols are results from
our simulations for each value of F. The value of \]' yields
a time scale related to the predictability of the system. The
solid line in Fig. 9(a) is a curve fit given by )\[1=O.158
+123.8F 26,

Figure 9(b) illustrates the variation of the average corre-
lation time §, with increased forcing and over the ten differ-
ent initial conditions for a large system with N=35. The solid
line is given by the power-law curve fit £=0.35F " The
fluctuations of the correlation time about the mean value
over the different initial conditions are quite noisy and yield
a coefficient of variation of 7.7%. In the limit of infinite
forcing the average correlation time &=0. Our results sug-
gest that the predictability decreases faster than the correla-
tion time indicating the possibility of at least two different
time scales.

The pattern wavelength and the chaotic length scale de-
crease for increasing values of the magnitude of the external
forcing. The variation of these length scales is shown in Fig.
10(a). The pattern wavelength is represented using square
symbols and the natural chaotic length scale is represented
using circle symbols. The length scales have been normal-
ized by their magnitude at F=5 to facilitate a comparison
using a single plot. The normalized length scales are referred
to as EL and EO, respectively. The coefficient of variation over
the different initial conditions for the chaotic length scale is
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FIG. 10. The variation of two characteristic spatial scales with external
forcing F for a system size of N=35. (a) The normalized natural chaotic

length scale s (circles) and the normalized pattern wavelength & (squares).
The normalization factors used are the respective values of s and & at
F=5. (b) &/&s yields an estimate for the number of chaotic degrees of
freedom per pattern wavelength.

quite small at ~0.01%, whereas the pattern wavelength mea-
surements are quite noisy with a coefficient of variation of
~31%.

It is clear that the natural chaotic length scale decreases
more rapidly than the pattern wavelength. The ratio of these
two length scales yields an estimate for the number of cha-
otic degrees of freedom per pattern wavelength and is shown
in Fig. 10(b). For small values of the forcing there are ap-
proximately two degrees of freedom per wavelength which
increases to nearly four degrees of freedom per wavelength
for large values of the forcing. The separation of these two
length scales suggests that for larger values of the external
forcing significant contributions to the overall disorder are
from subwavelength structures in the pattern dynamics. A
clear signature of the subwavelength chaotic degree of free-
dom was not found using our spatial diagnostics. Our find-
ings that the chaotic length scale &4 is smaller than, and not
correlated with, the pattern’s long-range spatial order are in
agreement with previous findings using the complex
Ginzburg-Landau equation30’31 and coupled map lattices.'® A
physical understanding of the chaotic length scale with re-
spect to the spatial features of the patterns remains an open
challenge and further study would be useful.

IV. CONCLUSIONS

Using a phenomenological model relevant to fluid con-
vection and the atmosphere, we have shown that the varia-
tion of the fractal dimension with system parameters can
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provide physical insights into fundamental features of high-
dimensional chaos. We have studied the variation of the frac-
tal dimension in the spatiotemporal chaos and strong-driving
limits in order to probe how the dynamics of a high-
dimensional chaotic system vary with increasing disorder. In
the spatiotemporal chaos limit we explored the cases of small
external forcing (F=5) and intermediate external forcing
(F=10) over a large range of system sizes. Our results yield
significant deviations from extensive chaos that we use to
quantify the underlying chaotic degrees of freedom. A com-
parison of the chaotic length scale with the wavelength of
deviations from extensivity and the pattern wavelength pro-
vides estimates for the number of chaotic degrees of freedom
contained per wavelength. For the parameters explored we
find on the order of two chaotic degrees of freedom per
wavelength of the deviation from extensivity. This is consis-
tent with the findings of Fishman and Egolf18 for the com-
plex Ginzburg-Landau equation. Our results provide further
evidence relating the deviations from extensivity and the
chaotic length scale for a model equation with relevance to
fluid systems.

For small forcing we find extensivity, on average, with
alternating windows of periodic and chaotic dynamics with
increasing system size over the range explored. Our results
suggest the presence of competing pattern selection dynam-
ics. This is similar to what has been found both numerically3 2
and experimentally3 in fluid systems such as Rayleigh—
Bénard convection. It is possible that the dynamics would
become purely extensive for very large system sizes and we
have not explored this in detail. For our results, the devia-
tions from extensive chaos exhibit significant deviations on
the order of 20%. The windows of periodicity occur in nearly
regular intervals of size equal to two chaotic degrees of free-
dom. In this parameter range we also find a correlation be-
tween the deviations from extensivity and the pattern wave-
length, suggesting that the pattern wave structure contributes
significantly to the chaotic dynamics.

Our results for intermediate forcing yield chaotic dy-
namics for all system sizes explored. We find deviations
from extensivity for all system sizes including the large sys-
tem limit where pattern selection effects due to the finite size
of the domain are not significant. In the large system limit we
find approximately 1.5 chaotic degrees of freedom per wave-
length of the deviation from extensive chaos. The amplitude
of the deviations from extensive chaos rapidly decays with
increasing system size. For the range of system sizes ap-
proaching extensive chaos the amplitude of the oscillating
decay is nonmonotonic, suggesting that there is perhaps
some asymmetry in the interactions of the chaotic degrees of
freedom in contrast to what has been found previously using
different systems.lG’18

In the strong driving limit we have explored the varia-
tion of the fractal dimension with increasing values of the
external forcing. For the spatially discrete Lorenz-96 system
there is a maximum value for the dimension density equal to
unity. We find that the dimension density saturates at a value
less than unity for infinite external forcing. The variation of
the fractal dimension quantifies the decreasing size of a cha-
otic degree of freedom with increased external forcing. We
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find that the chaotic length scale decreases faster than the
pattern wavelength with increasing values of the external
forcing. A comparison of these length scales yields that the
system goes from approximately two to four chaotic degrees
of freedom per wavelength of the pattern for small and large
values of the external forcing, respectively. It is important to
highlight that our results are in contrast to what would be
found for a spatially continuous system, such as the partial
differential equations that describe fluid dynamics where the
fractal dimension can be infinite.

If one considers only the space-time diagnostics of the
correlation time and pattern wavelength the results exhibit
significant fluctuations despite the use of very long-time
simulations for numerous initial conditions. This is in con-
trast to what is found when using the fractal dimension and
suggests the possibility of features of the dynamics that have
yet to be quantified in detail. Clearly identifying such fea-
tures, and relating them to experimentally accessible quanti-
ties, remains an important open challenge in the character-
ization of systems driven far-from-equilibrium. It is
anticipated that our results will be useful in guiding future
efforts to explore the extensive chaos of experimentally ac-
cessible systems.
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