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Abstract

Tumorigenesis requires the re-organization of metabolism to support malignant prolifera-

tion. We examine how the altered metabolism of cancer cells is reflected in the rewiring of

co-expression patterns among metabolic genes. Focusing on breast and clear-cell kidney

tumors, we report the existence of key metabolic genes which act as hubs of differential co-

expression, showing significantly different co-regulation patterns between normal and

tumor states. We compare our findings to those from classical differential expression analy-

sis, and counterintuitively observe that the extent of a gene's differential co-expression only

weakly correlates with its differential expression, suggesting that the two measures probe

different features of metabolism. Focusing on this discrepancy, we use changes in co-ex-

pression patterns to highlight the apparent loss of regulation by the transcription factor

HNF4A in clear cell renal cell carcinoma, despite no differential expression of HNF4A. Final-

ly, we aggregate the results of differential co-expression analysis into a Pan-Cancer analy-

sis across seven distinct cancer types to identify pairs of metabolic genes which may be

recurrently dysregulated. Among our results is a cluster of four genes, all components of the

mitochondrial electron transport chain, which show significant loss of co-expression in

tumor tissue, pointing to potential mitochondrial dysfunction in these tumor types.

Author Summary

The metabolism of malignant tumors is deranged. The transition from healthy to cancer-

ous state involves, among other factors, the transcriptional coordination of genes spread

throughout the cell’s metabolic pathways. An examination of this multivariate regulatory

effort can offer insights which may remain hidden from analyses focusing on a single gene

in isolation. Such an analysis is particularly relevant for metabolic networks, whose con-

stituent enzymes are fundamentally linked through their common utilization of a limited

pool of substrates. Here, we examine the extent to which altered metabolism is reflected in

the co-expression patterns of genes, shedding light on the differential regulation of meta-

bolic genes within tumors. We study patterns of differential co-expression across metabol-

ic pathways in both breast and kidney tumors, and integrate regulatory information to

study the drivers of these changes. Among the results of our analysis is the apparent
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dsyregulation of genes controlled by HNF4A in clear-cell kidney tumors. Finally, by com-

bining the results of our analyses across seven different tissues, we identify the recurrent

decoupling of a set of mitochondrial genes, pointing to possible mitochondrial dysfunction

in these cancers.

Introduction

All cellular events, from the transduction of signals to the translation of nucleic acids, rely on

the interaction of molecular entities. Indeed, one may argue that the fundamental unit of a bio-

logical network is not its constituent components (e.g. proteins or genes), but rather the edges

representing the interactions between them. Then, it follows that the manifestation of disease,

of a deranged phenotype of this network, should be evident by observing changes in the wiring

and activity of these edges.

Here, we study the interactions between pairs of genes encoding metabolic enzymes, and

how these interactions change in the course of transformation of normal cells to malignant

tumor. This notion of studying “interactions” is particularly important for understanding the

network of coupled enzymatic reactions which constitute metabolism. It is well-known that tu-

mors, which are under strong selection for proliferative capacity, must re-organize their metab-

olism in order to deliver the precursors and energy needed to grow as quickly as possible. Otto

Warburg published a series of key findings highlighting a fundamental dysregulation in glyco-

lytic metabolism in cancer, whereby cancer cells metabolized high levels of glucose to lactate

[1]. Some of the earliest chemotherapies (e.g.methotrexate) targeted a metabolic phenotype

which distinguished tumor from normal tissue. In recent years, an invigorated field has identi-

fied a number of distinct “metabolic lesions” in various tumors, including, for example, the

preferential expression of PKM2 [2] and the presence of an oncometabolite, 2-hydroxygluta-

rate, in cells with activating IDH1 and IDH2 mutations [3].

Our use of the term “interaction” above is loose: for the purposes of our study, which focus-

es on the analysis of gene expression data, we say that two metabolic genes putatively interact if

we observe they are co-expressed. This co-expression may occur by chance, or as a result of co-

regulation by a set of common factors. Furthermore, while strong co-expression is more likely

to occur between proteins which physically interact with each other, the highly connected

structure of the metabolic network suggests that even genes residing in opposing corners of

metabolism may be coupled to each other. Regardless of the source of co-expression, our goal

is to identify regions of the metabolic network whose co-expression patterns appear fundamen-

tally different between normal and cancerous tissue samples. Put another way, we intentionally

search for cases where two genes are co-expressed in one manner in normal tissue, and then

co-expressed in an entirely different manner in the tumor tissue. Our approach follows other

studies employing techniques to detect so-called “differential co-expression” of genes [4–11].

Differential expression analysis is the standard method for comparing the expression pat-

terns of genes across conditions. Aside from its ubiquitous use in research, several large-scale

surveys of differential expression focusing exclusively on metabolic genes in cancer have been

completed [12, 13]. In contrast, while a handful of publications have examined differential co-

expression in various cancer settings (for example, [9, 14–17]), differential co-expression anal-

ysis remains largely absent in most studies of gene expression and (to our knowledge), no sur-

vey of differential co-expression among metabolic genes in cancer ahs been undertaken. This

is, at least in part, due to the requirement for large sample sizes in order to detect statistically

significant differential co-expression patterns. Here, we embark on such a large-scale analysis
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of RNA-Seq data from 3000 samples of primary tumor and adjacent normal samples from

seven distinct tissues, and focus our attention squarely on the expression patterns of 1789 met-

abolic genes. Among our main findings is the (previously known, see [18], but potentially

under-appreciated) observation that genes with strong differential co-expression patterns are

not necessarily differential expressed. A relatively large fraction of the genes we identify in our

study show no substantial difference in their absolute expression between tumor and normal

tissue, but nevertheless exhibit recurrent differential co-expression.

The results to be presented will encompass a variety of analyses, studying differential co-ex-

pression patterns first across two cancer types for which we have the most data available (breast

and clear cell renal cell carcinomas, (KIRC)), and then expanding to include five other cancer

types (lung, thyroid, prostate, liver, and head and neck), as described in Table 1. In the course

of doing so, we propose two simple, but novel, analyses which integrate pathway information

to assess the functional role of differentially co-expressed gene pairs. We examine the associa-

tion between differential co-expression and differential expression, and identify genes which

are strongly enriched for one measure but not the other. By leveraging our findings against reg-

ulatory (i.e. transcription factor binding) data, we identify transcription factors whose targets

are highly enriched for differential co-expression. Among our findings is a previously unre-

ported loss of co-expression between HNF4A, a transcription factor, and its regulatory targets

in KIRC. Finally, we leverage the scale of our study to complete a “Pan-Cancer” analysis of dif-

ferential co-expression, searching for those pairs of metabolic genes which are recurrently dif-

ferentially co-expressed across multiple cancer types. Our results highlight a small group of

four mitochondrial electron transport chain (ETC) genes which are recurrently differentially

co-expressed, hinting at a fundamental alteration in the function of the ETC in tumors.

Methods

Data

All TCGA expression data were accessed using the Broad Institute Firehose. RSEM-normalized

expression was used for the co-expression calculations. Entrez IDs of metabolic genes were ex-

tracted from the Recon2 genome scale metabolic network reconstruction [19], and used to ex-

tract the corresponding metabolic gene expression data from the TCGA datasets.

Calculation of Changes in Gene Co-expression

We begin by describing the methodology, broadly illustrated in Fig 1, to detect changes in co-

expression patterns between normal and tumor samples. After obtaining RNA-Seq data, we

Table 1. Cancer data used in this study.

Study Number Tumor Samples Number Normal Samples Individual Analysis PanCan Analysis

Breast Cancer 914 106 X X

Clear Cell Renal Cell Carcinoma 480 71 X X

Head and Neck Squamous Cell Carcinoma 303 37 X

Liver Cancer 103 49 X

Lung Adenocarcinoma 446 57 X

Prostate Adenocarcinoma 176 44 X

Thyroid Cancer 482 58 X

Total 2904 422

doi:10.1371/journal.pcbi.1004176.t001
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Fig 1. Outline of the method to calculate differential co-expression. (A) Calculate the co-expression for
each pair of metabolic genes across tumor (red) and normal (blue) samples, respectively. (B) For each pair of
genes in a given tumor type (e.g. breast), compare the Spearman correlation coefficient in tumor and normal
samples. Most pairs of genes show very similar co-expression in both tumor and normal samples (reflected in
the high density of points in the center of the plot). More rarely, a pair of genes will show significantly different
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calculate the Spearman correlation (a non-parametric measure of the correlation of two ran-

dom variables employing ranks) of each pair of genes i, j, and record the p-value pij associated

with this correlation. These calculations are performed separately for tumor and normal sam-

ples. To account for multiple hypothesis testing, we apply the conservative Bonferonni correc-

tion [20], yielding corresponding adjusted p-values p̂. The results of these correlation

calculations are stored in two matrices, CT and CN (corresponding to tumor and normal sam-

ples, respectively), with entries

Cij ¼
(

rij; if p̂ij < t

0; otherwise
ð1Þ

Here, τ is a significance threshold for our Bonferroni-corrected p-values. Throughout the man-

uscript unless otherwise stated, we employ a threshold τ = 1×10−2.

Our goal is to identify significant differences between the strength of co-expression (as

quantified by the correlation coefficients) in tumor and normal samples. Such a comparison of

sample correlation coefficients must be done with care. In fact, the difference between two cor-

relation coefficients is not sufficient information to determine how often such a difference

would appear by chance. We offer an example to illustrate this phenomenon. Very small corre-

lation coefficients (say, r1 = 0.1, r2 = −0.1) may appear in random, uncorrelated data simply by

chance. In this case, the difference between the two correlation coefficients (r1−r2 = 0.2) should

be categorized as statistically insignificant because it is quite likely to happen by chance. On the

other hand, the same difference for two very large correlation coefficients (say, r1 = 0.99, r2 =

0.79) appears less likely to happen by chance; instead, this difference is more likely to arise via

the corruption of a nearly perfect correlation by a confounding factor or noise.

The basis of this intuition is that very large correlation coefficients are observed quite rarely

by chance. More importantly, the variance of the correlation coefficient estimated from the

data (referred to as the sample correlation coefficient, r) depends on the value of the true corre-

lation coefficient underlying the data (referred to as the population correlation coefficient, ρ).

In particular, the variance of sample correlation coefficient is approximately [21, 22]

VarðrÞ / ð1� r
2Þ2

Thus, as the population correlation coefficient tends to ±1, the variance of the sample correla-

tion coefficient asymptotically approaches zero. This dependence of the variance of r on ρ itself

makes it very difficult to carry out hypothesis tests comparing two sample correlation coeffi-

cients. A standard method for testing for a difference between correlation coefficients is to em-

ploy a transformation to stabilize the variances, making them independent of ρ. Here, we use

the Fisher r to z transformation:

z ¼ 1

2
log

1þ r

1� r

� �

: ð2Þ

The change of variables in Eq (2) is well-known, and has been used in prior work on differ-

ential co-expression [7]. When applied to data drawn from a bivariate normal distribution, this

co-expression between normal and tumor samples (e.g. bottom right and top left corners). (C) Using the
statistical methodology detailed in Eq 4, filter out insiginificant differences in correlation coefficients. Retain
the remaining (significant) differences in correlations in the matrixD. The filtered results can then be analyzed
further to identify regions of metabolism enriched for differential co-expression.

doi:10.1371/journal.pcbi.1004176.g001
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transformation yields a quantity which is approximately normally distributed with variance

s
2 ¼ 1

ffiffiffiffiffiffi

N�3
p independent of the population mean, with N equal to the size of the population. By

applying this transformation to our measured correlation coefficients in normal tissue and

tumor samples, we are able to apply a Z-test to determine if the correlation coefficients rTij and

rNij are significantly different. In particular, the quantity (3), which measures the difference be-

tween the two transformed correlation coefficients, is approximately normally distributed with

mean zero and variance one:

Dzij ¼
zT � zN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

NT�3
þ 1

NN�3

q ; ð3Þ

where NT is the number of tumor samples, NN is the number of normal samples, zT is the Fish-

er-transformed tumor sample correlation coefficient, and zN is the Fisher-transformed normal

sample correlation coefficient. Python code for the differential co-expression test is included in

S1 Code. Thus, we can associate p-values pzi;j with the Z-test in (3) for each pair of genes i, j.

After again correcting pz for multiple hypothesis testing using the Bonferonni correction, we

stored the results of our calculations in a matrixD with entries

Dij ¼
(

Drij; if p̂z
ij < t and ðp̂T

ij < t or p̂N
ij < tÞ

0; otherwise
ð4Þ

where p̂z
ij is the Bonferonni adjusted value of p

z
ij. The entries of the matrixD correspond to the

change in gene co-expression between tumor and normal samples, and will be our main object

of study. We emphasize one final, but important, feature of Eq 4: an entry ofD is nonzero if

and only if that gene pair shows both (1) a significant change in co-expression between tumor

and normal samples, and (2) the genes were co-expressed at a statistically significant level in

tumor or normal samples (or both). This ensures that those gene pairs which we call differen-

tially co-expressed are also co-expressed at a statistically significant level in at least one group

of samples.

Pathway Scores for Differential Co-expression Breast and Kidney
Cancers

We assigned each gene in our study to one or more pathways using the subsystem assignments

in the Recon2 human metabolic reconstruction [19]. Then, for each TCGA study, we calculated

a score for each pathway i, Ei, using:

Ei ¼
X

j2Pi

S0j ; ð5Þ

where Pi is the set of all genes in pathway i. Thus, Ei counts the total number of dysregulations

for all genes in pathway i. We then divided each Ei by the number of genes in pathway i to ob-

tain a normalized pathway score Ê i. Thus, Ê i quantifies the differential co-expression of all

genes in a pathway, averaged over the number of genes in that pathway. We excluded from our

analysis pathways composed of fewer than five genes.

Tests for Enrichment of Transcription Factor Targets

We obtained data on transcription factor targets from the Broad Institute’s MSigDB website

[23].
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Assuming that a particular regulatory factor hasm targets, we calculate the total number of

differential co-expression edges in the sub-network composed of only thesem gene targets. In

this subnetwork, there are t ¼
m

2

 !

¼ m�ðm�1Þ
2

total possible edges. If we see e edges in the

true subnetwork, we can calculate the probability that these edges would appear by chance.

Given that the probability of a random“differential co-expression edge” in the network is p (e.g.

for a Bonferonni-corrected p-value threshold of 1 × 10−2 for detecting differential co-expres-

sion, p� 8 × 10−3), the probability of seeing at least e edges by chance is

P ¼
X

t

i¼e

t

i

� �

ipðt � iÞ1�p ð6Þ

A Bonferonni correction is then applied to the vector of p-values for all transcription

factor motifs.

Results

Differential Co-expression in Tumor Samples

With our analytical framework established, our first aim was to assess how pervasive differen-

tial co-expression was among metabolic genes in cancer samples. We used the Recon2 human

metabolic network reconstruction [19] to identify metabolic genes, and extracted expression

corresponding to these genes from the TCGA datasets. We applied the differential co-expres-

sion analysis described above to two TCGA studies (breast, BRCA; and clear cell renal cell car-

cinoma, KIRC) with large numbers of both tumor and normal RNA-Seq samples (106 and 71

normal samples, 914 and 480 primary tumor samples, respectively). Using the list of metabolic

genes from Recon2, we were able to extract data for 1,789 unique metabolic genes. We used a

strict Bonferonni corrected p-value threshold of 1 × 10−2 to identify pairs of genes which we

called differentially co-expressed. Across the total number of pairs of metabolic genes in our

dataset (approximately (2 × 103)2/2 = 2 × 106 distinct pairs), we calculated (for each of the two

studies) that approximately 2.5 percent of gene pairs were differentially co-expressed. The top

differentially co-expressed gene pairs are reported in Tables 2 and 3.

To independently test the extent of differential co-expression in our data, we followed the

protocol presented in [17] and completed a permutation test to assess how frequently we

Table 2. Top differentially co-expressed genes in BRCA.

Entrez HUGO Si S0

i SCat
i SComp

i

38 ACAT1 11731.9 516 11 0

5264 PHYH 13080.2 512 3 0

10449 ACAA2 10819.4 508 12 0

9588 PRDX6 10983.9 506 2 0

4259 MGST3 9211.37 494 1 0

7360 UGP2 9882.05 492 0 0

847 CAT 9462.16 490 3 1

48 ACO1 11005.9 484 3 0

7371 UCK2 6024.4 483 0 0

doi:10.1371/journal.pcbi.1004176.t002
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would expect the observed changes in correlation coefficients by chance (S1 Fig). In this analy-

sis, we shuffled the labels (e.g. tumor or normal) of all samples, and calculated the difference in

correlation coefficients and transformed correlation coefficients in the new, permuted data.

This process was repeated 10000 times, and the results aggregated to form a distribution. In-

spection of the results confirmed that for a large number of gene pairs, the differences in corre-

lation coefficients were larger in the real data than in the permuted data (S1 Fig). Although it

was computationally intractable to complete enough permutations of the data to generate ro-

bust p-values (because of the large correction for multiple hypothesis testing), we nevertheless

found that 12% of gene pairs showed a higher difference in both (1) tumor and normal correla-

tion coefficients and (2) transformed correlation coefficients than in any of the 10000 permut-

ed data sets. These findings supported our observation of extensive differential co-expression

in metabolic genes.

Naturally, we were interested in identifying those genes which were enriched for member-

ship in differentially co-expressed gene pairs. To find these genes, we calculated two “scores”

for each gene:

1. S0i , the number of differentially co-expressed gene pairs which gene i participates in

2. Si ¼ �Pj:p̂z
ij
<t
ln p̂zij

� �

, a weighted sum of the number of differentially co-expressed pairs

gene i participates in

The score S, based on Fisher’s method for combining p-values from independent statistical

tests [24], accounted for both the frequency of a gene’s membership in differentially co-ex-

pressed pairs, as well as the confidence with which we could claim the gene pair was differen-

tially co-expressed (i.e. by the magnitude of p̂z
i�Þ. It is important to note that each test of

differential co-expression in our dataset is not independent, so we cannot use S as a formal test

statistic. However, its use as a measure of the recurrence and magnitude of a gene’s overall dif-

ferential co-expression is nevertheless useful.

In breast cancer, the top-ranked gene was ACAT1 (Acetyl-CoA acetyltransferase, not be

confused with the enzyme acyl-Coenzyme A: cholesterol acyltransferase 1, which is encoded by

the gene SOAT1). The enzyme translated from ACAT1 catalyzes the formation of acetoacetyl-

CoA, which along with acetyl-CoA is the precursor to 3-hydroxy-3-methylglutaryl-CoA. These

two metabolites lie at the beginning of the mevalonate pathway, which generates precusors for

cholesterol and steroid biosynthesis. Intriguingly, Freed-Pastor and colleagues [25] recently re-

ported that upregulation of the mevalonate pathway is sufficient and necessary for mutant p53

Table 3. Top differentially co-expressed genes in KIRC.

Entrez HUGO Si S0

i SCat
i SComp

i

29968 PSAT1 13719.8 492 0 0

10846 PDE10A 11676.9 474 3 0

6482 ST3GAL1 13591.9 466 0 0

1594 CYP27B1 12064.4 465 0 0

65010 SLC26A6 10902.9 451 0 0

64849 SLC13A3 15016.4 445 0 0

64077 LHPP 7200.28 444 2 0

205 AK4 9709.72 443 0 0

54682 MANSC1 9081.81 440 0 0

doi:10.1371/journal.pcbi.1004176.t003
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to have phenotypic effects on cell architecture in mammary tissue. Overexpression of various

genes in the mevalonate pathway has also been shown to associate with poor prognosis in

breast cancer [26]. Interestingly, ACAT1 is differentially coexpressed with 11 genes for which

it is a catalytic partner: ACAA2, DLD, MLYCD, HADHB, HADH, OXCT1, PCCA, PDHA1,

PDHB, and ACSS1. A plot of the differences in the correlation of these genes with ACAT1 is in

S6 Fig. In many cases, the co-expression patterns show remarkably tight correlations in normal

tissue, and these correlations are partially or completely eroded in the tumor samples. Func-

tionally, many of these genes are part of the terminal reactions in glycolysis, lipid biosynthesis

and fatty acid oxidation. This loss of co-expression suggests that the flux generated by these

pathways is no longer coupled to the flux through ACAT1 in tumor cells.

For KIRC, the highest-scoring differentially co-expressed gene was PSAT1 (phosphoserine

aminotransferase 1), a key enzyme in the serine biosynthesis pathway which has already been

associated with breast and colorectal cancers before [27, 28], but has not yet been associated

with kidney cancer. PSAT1 was differentially co-expressed with 492 other metabolic genes in

the dataset, with the strongest signals coming from genes like GATM (glycine aminotransfer-

ase), GBA3 (a beta-glucosidase), and SLC10A2 (a bile transporter) (S4 Fig). Because nearly all

of the strongest signals came from loss of positive correlation in normal samples, we further

identified those genes with which PSAT1 was more strongly co-expressed in tumor samples

than in normal samples (S5 Fig). These genes included several galactosidases (GLA, GLB1),

glycogen phosphorylase (PYGB), and SLC35A2, which transfers nucleotide sugars into the

Golgi body for the purposes of glcosylation. Neither the substrates (3-phosphonoxypyruvate,

glutamate) nor the products (phosphoserine, 2-oxoglutarate) of PSAT1 participate in the gly-

cogenolysis pathway, suggesting that the positive correlation between PSAT1 and glycogen

breakdown in tumors may be the result of indirect couplings. In particular, it is possible that

the overexpression of glycogen phosphorylase may liberate carbon units to be shunted from

glycolysis into the serine biosynthesis pathway through PSAT1, as well as into the Golgi body

for glycosylation in tumor cells.

Following our analysis of PSAT1, we reasoned that a particularly interesting set of genes

were those showing a higher degree of co-expression (as quantified by the magnitude of the

Spearman correlation coefficient) in tumor samples relative to normal samples. For both

BRCA and KIRC, we isolated pairs of genes exhibiting this property, and scored each metabolic

gene based on how many such interactions it participated in. Interestingly, in both studies the

highest-scoring gene was associated with the metabolism of lipids. In KIRC, the highest scoring

gene was mevalonate kinase, MVK, a key gene in the cholesterol pathway described above for

BRCA. In breast tissue, the highest scoring gene was LIPG, an endothelial lipase which cata-

lyzes the hydrolysis of lipids. The products of this hydrolysis can then be used for the produc-

tion of signaling lipids as well as cell membrane components.

Breast and Kidney Cancers Show Distinct Co-expression Patterns

We decided to investigate more comprehensively whether differential co-expression patterns

were similar between BRCA and KIRC. To probe whether common, “global” patterns of differ-

ential co-expression existed between the two studies, we completed a principal components

analysis (PCA, Fig 1A). We assembled a concatenated differential co-expression matrix:

D
C
¼ DBRCA

DKIRC

� �

ð7Þ

with dimension 2m ×m, wherem is the number of genes under study. For a given index i<m,

row i corresponded to the differential co-expression pattern of that gene in BRCA, while rowm

Extensive Decoupling of Metabolic Genes in Cancer
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+i corresponded to the differential co-expression pattern in KIRC. Thus, each column ofDC

corresponded to a metabolic gene, and stored the differential co-expression of that gene with

all other metabolic genes in both breast and kidney studies.

Our expectation was that PCA would identify patterns of differential co-expression which

breast and kidney cancers might share in common. Instead, we found that genes in the two

studies displayed completely distinct patterns of differential co-expression (Fig 2A). While a

large portion of the variance in the data was captured by the first two principal components

(33 and 19 percent of the total variance in the data, respectively), most genes from breast can-

cer had nearly no loading on component 2, while most genes from kidney cancer had nearly no

loading on component 1. The result was the cross pattern evident in Fig 2A.

Despite the results above, we still found a small positive correlation (Spearman ρ 0.28, p-

value< 1e−30, Fig 2C) between differential co-expression in the two cancer types, suggesting

that many genes showed high (or low) levels of differential co-expression in both studies. In

general, most genes participated in relatively few differential co-expression interactions, while

a small subset of “hub” genes participated in hundreds (Fig 2C, histograms). A particularly in-

teresting example was ASS1, an enzyme involved in arginine synthesis and the synthesis of ni-

tric oxide and polyamines. It is known that several tumor types exhibit an arginine auxotrophy

phenotype, and are unable to proliferate in the absence of arginine [29]. Intriguingly, Qiu and

colleagues recently reported the killing of triple-negative breast cancer cell lines under arginine

deprivation, identifying it as a lucrative therapeutic target [30]. It is not clear from our analysis

whether differential co-expression of ASS1 is associated with such a vulnerability, but its recur-

rent differential co-expression in both studies suggests that its activity may play an important

role in malignancy.

The results of the PCA analysis above reflected the large number of cases of high differential

co-expression in one tumor type, but none in the other. We explicitly identified such cases by

calculating the mean and standard deviation of S0 (the number of differentially co-expressed

gene pairs a gene participates in) for each study. We then searched for genes with S0 greater

than two standard deviations above the mean S0 in one study, but with S0 = 0 in the other

study (Fig 2C, blue and green points). KIRC-specific differentially co-expressed genes were

highly enriched for SLC and ABC transporters. A particularly interesting kidney-specific gene

was DPEP1 (a dipeptidase) in light of the recently observation of elevated dipeptide levels in a

subset of clear cell renal carcinoma tumors (manuscript in preparation). In contrast, BRCA-

specific genes included CDO1 (cysteine dioxygenase Type 1, whose inactivation was recently

reported to contribute to survival and drug resistance in breast cancer [31]) and a number of

genes involved in glycerolipid/lipid biosynthesis and associated with malignancy in breast can-

cer (GPAM [32] and MGLL [33]).

We also made special note of those pairs of differentially co-expressed genes which took

part in a known, previously reported biological interaction. To do so, we extracted from the

Pathway Commons database [34] a list of pairs of genes known to interact in either of two

ways: 1) through the formation of a complex with each other (“In-Complex-With” interac-

tions), and 2) through the production of a metabolite by the enzyme encoded by one gene in

the pair, and subsequent use of that metabolite as a substrate for the enzyme encoded by the

other gene in the pair (“Catalysis-Precedes” interactions) [35]. We then identified which pairs

of differentially co-expressed genes participated in either of these kinds of interactions. These

results were summarized in two additional gene-level statistics, S
Comp
i and SCati , indicating the

number of differentially co-expressed catalysis-precedes and in-complex-with interactions, re-

spectively, a gene i participates in.
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Fig 2. (A) Principal components analysis (PCA) for the breast (green) and kidney (blue) differential co-expression data. Each dot represents one gene. Data
from kidney tumors exhibits variation mostly along the first principal component, while data from breast tumors varies mostly along the second, suggesting
that the dominant modes of variation in the two tumor types are distinct from each other. (B) Differential co-expression pathway analysis. Each axis denotes
the enrichment score for a pathway in breast or kidney tumors, respectively. Red dots indicate significantly over- or under-enriched pathways. (C) A

comparison of the score S
0 in breast and kidney tumors. Each dot is a single gene. A number of genes (blue and green dots and inset boxes) show extensive

differential co-expression in one tumor type, but none in the other. Other genes (red dots and inset box) are highly differentially co-expressed in both.

doi:10.1371/journal.pcbi.1004176.g002
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We compared the incidence of differential co-expression among pairs of genes participating

in the binary interactions described above, to genes not participating in such interactions. To

do so, we compared the distribution of transformed correlation coefficients (defined in 3) for

the two groups of genes. We found a striking drop in co-expression among metabolic genes

participating in a common molecular complex, an effect that was evident in both BRCA and

KIRC (t-test, p-value< 1 × 10−200 BRCA,< 1 × 10−75 KIRC, S2 Fig, S3 Fig). A much weaker,

but statistically significant, effect was also observed for catalytically adjacent genes (t-test, p-

value< 1 × 10−18 BRCA, .0002 KIRC). Together, the results suggest a disruption of metabolic

complexes in these two cancers. A more detailed future investigation is required to determine

if this phenomenon is limited to metabolism, or is evident across all molecular complexes.

Finally, we analyzed the pattern of differential co-expression across metabolic pathways, as

annotated in the Recon2 metabolic network [19] (see Methods). The results of our analysis are

highlighted in Fig 2B, where we compared the score of each pathway in BRCA and KIRC, re-

spectively. In breast cancer, among the most enriched pathways is peroxisomal transport

genes, including the peroxisomal transporters ABCD1, ABCD2, and ABCD3, which transport

fatty acids and acyl-CoAs and have been shown to be markers of tumor progression and re-

sponse to therapy [36]. Notably, genes in the vitamin C pathway were enriched for differential

co-expression in both cancers, possibly as an indirect consequence of high oxidative stress

within the tumors.

Differential Expression Sheds Little Light On Differential Co-expression

A common first step in the analysis of gene expression data across samples is the identification

of differentially expressed transcripts. The underlying rationale behind differential expression

analysis of metabolic genes is intuitive: higher expression of genes in one condition over anoth-

er suggests a difference in metabolic flux through those sets of genes. In this study, we are more

concerned with the coupling of genes together: since metabolic genes are components of a net-

work, different co-expression patterns may lead to differences in metabolic flux. Naturally, one

may ask whether the two measures are in agreement; in other words, do genes which are up- or

down-regulated in tumor (compared to normal tissue) also exhibit large differences in co-ex-

pression patterns in tumor (compared to normal) samples?

To explicitly test the connection between differential co-expression and differential expres-

sion, we compared the two measures for metabolic genes in BRCA and KIRC (Fig 3). We as-

sessed differential expression using the limma voom package [37]. We found that the

magnitude of differential expression (as quantified by the log2 ratio of tumor to normal expres-

sion) was weakly associated with the frequency of differential co-expression of a gene (BRCA,

Spearman ρ 0.21, p-value 3 × 10−17; KIRC, Spearman ρ 0.11, p-value 4 × 10−6). In spite of this

weak association, many of the most differentially expressed genes were members of very few

dysregulated gene pairs, and conversely many genes which exhibited no substantial change in

expression levels nevertheless were found to be frequent members of dysregulated gene pairs

(S7 Fig).

The most intriguing observation we made was that a number of genes showed no measur-

able change in absolute expression levels, but nevertheless were among the most differentially

co-expressed genes in the entire dataset (green dots, Fig 3). To find exceptional cases like these,

we identified genes with S0greater than 2 standard deviations above the mean S0 for the study,

but with an absolute log2 ratio of less than 0.2. For breast cancer, these genes included PLOD2

(procollagen lysyl hydroxylase 2 [38], recently reported to be essential for hypoxia-induced

breast cancer metastasis), and LDHA, a key enzyme in the terminal end of glycolysis. In KIRC,
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several of the genes we identified (RENBP, GNE, and CTSA) were members of the glycoprotein

sialyation pathway, which has also been associated with metastasis [39].

The presence of genes with exceptionally high differential co-expression and eseentially no

differential expression (and the converse) deserves further discussion. It is possible that, de-

pending on how the activity of a metabolic pathway is modulated, either differential expression

or differential co-expression may be a more suitable technique for identifying such modulation.

In one case, a gene may change in synchrony with its regulatory partners; that is, regardless of

whether the gene is over- or under-expressed relative to normal tissue, it exhibits precisely the

same co-expression patterns. Such an effect may be observed, for example, following the over-

expression of a transcription factor common to all the genes in a co-expressed cluster. As we

suggested earlier, synchronous regulation of a metabolic pathway may serve as a mechanism

for increasing flux through the pathway, and would be detected through standard differential

expression analysis. In contrast, a gene’s expression may correlate with different sets of genes

in different conditions. In our case, the control over expression wielded by one transcription

factor in normal tissue TFN would be ceded to a different transcription factor in tumor tissue

Fig 3. Differential expression and differential co-expression are only weakly correlated.Green dots, detailed in insets, indicate genes with high
differential co-expression score S0

i
(> 2 standard deviations above the mean S0

i
) but very small absolute fold ratio (< 0.1). Black dots indicate a gene is

differentially expressed with corrected p-value less than 0.01 and absolute fold log2 fold ratio greater than 1. Transparent dots correspond to genes which are
not differentially expressed.

doi:10.1371/journal.pcbi.1004176.g003

Extensive Decoupling of Metabolic Genes in Cancer

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004176 May 11, 2015 13 / 25



TFT. The consequence is that the gene of interest is co-expressed with a completely distinct set

of genes under the control of TFT. The differential co-expression of such a gene provides indi-

rect evidence that the source or destination of metabolic flux through the enzyme encoded by

this gene may be changing from normal to tumor tisues.

Signatures of Regulation in Differential Co-expression Patterns

As alluded to above, the expression of genes is fundamentally orchestrated by regulatory factors

such as transcription factors and microRNAs. Thus, the differential co-expression patterns we

observe are likely due, at least in part, to differential regulatory activity by these molecules. In-

spired by prior work linking transcription factors with observations of differential co-expres-

sion [18, 40], we examined our differential co-expression networks for an enrichment of

targets associated with particular transcription factor motifs annotated in MSigDB [23]. To de-

tect such enrichment, we isolated metabolic genes which were reported targets of a particular

transcription factor. Then, we applied a binomial test (see Methods) to quantitatively assess

whether the number of differential co-expression edges existing between only these target

genes was higher than would be expected by chance. We used only highly significant differen-

tially co-expressed edges, with a p-value threshold of 1 × 10−10.

Among the 556 transcription factor motifs we examined, only a handful were enriched in ei-

ther kidney or breast cancer. In breast cancer, 21 transcription factors were identified as en-

riched in differentially co-expressed gene targets. The most enriched transcription factors

(reported in Table 4) included SP1, NFAT, and ERR1. Several of these transcription factors

have already been reported to play important roles in breast cancer throughout the literature.

SP1 is known to be involved in cell proliferation, apoptosis, and cell differentiation and trans-

formation, and has been reported as a prognostic marker for breast cancer [41, 42]. Both

NFAT and SP1 have been shown to induce invasion of breast tissue via the transcriptional

modulation of downstream genes [42, 43]. Perhaps most interesting is the identification of

ERR1 (estrogen-related-receptor 1, also known as as ERR-α), an orphan receptor known to in-

teract with PGC1-α to regulate a number of metabolism-related genes. ERR-α is regulated by

ErbB2/Her2 signaling [44], and is associated with poor outcomes in breast cancer patients [45].

For kidney cancer, the pattern was far more unanimous: several of the most enriched tran-

scription factor target sites were targets of HNF4A (Table 5). Out of the 15 transcription factors

Table 4. Transcription factors most enriched for differential co-expression targets in BRCA.

MSigDB Transcription Factor Motif P-Value

SP1-Q6 2×10−22

HNF4-01 9×10−16

NFAT-Q4-01 3×10−13

FREAC2-01 1×10−11

ETS2-B 2×10−8

AACTTT-UNKNOWN 6×10−8

ERR1-Q2 8×10−8

YNGTTNNNATT-UNKNOWN 5×10−7

HFH8-01 8×10−7

CTTTAAR-UNKNOWN 4×10−6

doi:10.1371/journal.pcbi.1004176.t004
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identified as enriched for differentially co-expressed gene targets, 5 were associated with

HNF4. HNF4A is known to control cell proliferation in kidney cancer cell lines, and regulates a

number of well-known cancer-associated genes to do so (e.g. CDKN1A and TGFA) [46–48].

Interestingly, HNF4A (one of the two isomers of HNF4, which was most enriched for differen-

tial co-expression targets) shows no clear differential expression pattern between KIRC tumor

samples and adjacent normal tissue samples (Fig 4A), but does seem to exhibit more variation

in tumor samples than in normal samples.

On the other hand, the co-expression of HNF4A and its metabolic gene targets is markedly

different in normal and tumor samples (Fig 4B). A number of these genes (including PIK3R3, a

member of the PI3K pathway, and PKLR, an isoform of pyruvate kinase) showed exceptionally

strong co-expression with HNF4A in normal samples, only to have this co-expression abrogat-

ed in tumor samples (S8 Fig). Similarly, many of the strong co-expression patterns existent be-

tween the targets of HNF4A and HNF4A itself in normal samples wre also abrogated in tumor

samples (Fig 4B). Together, these findings suggest that the regulatory program associated with

HNF4A in normal tissue is disrupted in tumor tissue, a hypothesis in line with previous find-

ings implicating its dysregulation with increased cell proliferation [46]. Given its high score in

our enrichment analysis, we tested whether the expression of HNF4A was associated with pa-

tient survival in the TCGA data. After stratifying patients into groups with high and low ex-

pression (relative to the mean expression of HNF4A in the tumor samples), we found that low

HNF4A expression is associated with shorter survival in KIRC patients (Fig 4D, log-rank p-

value 0.007).

Taken together, our observations above suggest that HNF4A’s control over the expression

of its targets changes in at least a subset of clear cell kidney tumors when compared to normal

kidney tissue. It is possible that this loss of control occurs via under-expression of HNF4A it-

self. It is also possible that (as we proposed in the prior section) other transcription factors

exert a more dominant control over HNF4A’s targets. In either case, this leads to the loss of co-

expression among HNF4A’s targets, and between HNF4A itself and its targets.

PanCan Patterns of Differential Co-expression

This final section of our work strikes out into more difficult territory: we ask whether some pat-

terns of differential co-expression may exist throughout different cancer types, regardless of

their tissue of origin. While we have found a number of apparently dysregulated metabolic

genes specific (and in some cases, common) to breast and clear cell renal cell carcinoma

Table 5. Transcription factors most enriched for differential co-expression targets in KIRC.

MSigDB Transcription Factor Motif P-Value

LEF1-Q2 4×10−45

HNF4-Q6 2×10−31

HNF4-01 7×10−30

HNF4ALPHA-Q6 7×10−24

HNF4-DR1-Q3 1×10−13

HNF4-01-B 4×10−10

COUP-01 4×10−8

PPAR-DR1-Q2 6×10−7

PAX4-02 6×10−5

IK3-01 0.0002

doi:10.1371/journal.pcbi.1004176.t005
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Fig 4. The targets of HNF4 are enriched for differential co-expression in KIRC. (A) HNF4A is not differentially expressed between tumor and adjacent
normal tissue samples in KIRC. Each dot corresponds to the expression of HNF4A in one sample of either primary KIRC tumor or normal kidney tissue. (B)
Nevertheless, the metabolic gene targets of HNF4A show a distinct loss of co-expression with HNF4A in tumor samples. Several of these genes reside in
central carbon metabolism. Genes outside the shaded area correspond to statistically significant instances of differential co-expression. (C) Heatmap of
differential co-expression for the 20 metabolic gene targets of HNF4A containing the motif AARGTCCAN around the transcription start site. Value of each
square indicates the difference in correlation coefficients between tumor and normal samples, with statistically insignificant differences set to zero. A strict p-
value threshold of 1 × 10−4 was used to assign statistical significance. (D) Survival curves for patients showing low or high expression of HNF4A. Patients
with low expression of HNF4A exhibited worse outcomes.

doi:10.1371/journal.pcbi.1004176.g004
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tumors, we have made little effort to search for common patterns across many different types

of tumors. Such a search is necessarily complicated by the fact that our analytical method re-

quires large numbers of normal and tumor samples for sufficient statistical power. The TCGA

features few studies with large numbers of normal RNA-Seq samples. In order to balance the

need for statistical power with our desire to detect so-called “PanCancer” patterns of differen-

tial co-expression, we included five more studies (lung adenocarcinoma, LUAD; hepatocellular

carcinoma, LIHC; prostate adenocarcinoma, PRAD; head and neck squamous cell cancer,

HNSC; and thyroid cancer, THCA) with at least 30 normal RNA-Seq samples, in our analysis.

To increase the confidence of our predictions, we used a stricter p-value threshold of τ =

1 × 10−4 to call statistically significant differential co-expression.

The results of the PanCan analysis are shown in Fig 5. We retained only those genes which

were members of a gene pair which was differentially co-expressed in at least three of the seven

studies. Out of the 1789 metabolic genes under study, only 50 genes satisfied this criteria. Inter-

estingly, many of these genes encode key enzymes in central metabolism (for example, PC, py-

ruvate carboxylase; LDHD, D-lactate dehydrogenase; IDH1, isocitrate dehydrogenase 1;

ALDOA, aldolase A), pointing to apparently recurrent dysregulations of core pathways.

Among the many individual results of our PanCan analysis, perhaps the most interesting

was the recurrent dysregulation of four genes in the mitochondrial electron transport chain

(ETC): two genes associated with mitochondrial ATP synthase complex V (ATP5F1 and

ATP5L), COX7B (part of the complex IV cytochrome c oxidase), and NDUFV2 (complex I). A

number of other mitochondrial ETC genes are also differentially co-expressed (but to a lesser

extent), including UQCR10, UQCRC2, UQCRC1, ATP5A1, and NDUFS3. Given how critical

these protein complexes are to energy production and proliferation, we examined in detail the

co-expression patterns of ATP5F1 and ATP5L. We found an exceptionally strong correlation

in the expression of both genes in normal tissue. Across all seven studies, the expression of

both genes was almost precisely equal (Fig 5B, blue dots). However, in tumor samples, the

strength of the co-expression (as measured by the correlation coefficient) was substantially

weaker. Notably, ATP5F1 and ATP5L were not differentially expressed; instead, their co-ex-

pression simply appeared “noisier” in tumor samples. To quantify whether this “noisier” co-ex-

pression may be occuring by chance, we fit each co-expression pattern in Fig 5B to a line, and

then calculated the variance of the residuals of the fit. We used Levene’s test to test whether the

variance of the residuals associated with tumor samples was larger than the variance of the re-

siduals associated with normal samples. In all four tumor types, we confirmed that the tumor

samples showed higher variance (p-value 7 × 10−17, 3 × 10−3, 6 × 10−9, 6 × 10−6, 3 × 10−11,

2 × 10−3, 5 × 10−3 for BRCA, HNSC, KIRC, LIHC, LUAD, PRAD, and THAC samples,

respectively).

The functional consequences of these increasingly “noisy” co-expression patterns in

ATP5F1 and ATP5L are unclear. It is known that stoichiometric imbalances of proteins (for

example as a result of changes in gene dosage) in complex with each other can manifest pheno-

typically [49]. Given the recurrence of differential co-expression of three different gene pairs

containing ATP5F1 and a second mitochondrial matrix member (ATP5L, COX7B, and

NDUFV2), it is tempting to speculate that differential co-expression of ATP5F1 may lead to an

altered mitochondrial phenotype. In particular, an imbalance in the levels of ATP5F1 and

ATP5L may cause defects in the ability of mitochondria to efficiently conduct oxidative phos-

phorylation via the electron transport chain. Further experiments are required to evaluate

this hypothesis.
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Fig 5. PanCan analysis of differential co-expression. (A) All gene pairs which showed differential co-
expression in at least 3 out of 4 different TCGA studies were identified. Approximately 50 unique metabolic
genes participated in these recurrently differentially co-expressed pairs. The differential co-expression across
all possible pairs of thes genes is depicted in the heatmap. A p-value threshold of 1 × 10−4 was used to assign
statistical significance for differential co-expression. Special emphasis is placed on ATP5F1. (B) Co-
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Discussion

In this work, we have searched for signals of differential co-expression in tumors. Among our

findings, the most relevant is simply the prevalence of differential co-expression throughout

metabolism. Gene expression studies are frequently the “first-step” analytical method of choice

for understanding the consequences of a perturbation on an organism, or for the comparison

of two distinct subsets of samples. While standard methods for differential expression analysis

offer useful insights into the differential regulation of genes, our findings here (and the prior

findings of others studying differential co-expression) suggest that a great deal of information

remains to be culled from the study of “second-order” co-expression patterns between pairs of

genes. We have shown that these two measures (differential expression and differential co-ex-

pression) are not interchangeable, and in many cases point to distinct regions of the metabolic

network that may be dysregulated. Of course, it is important to remember that while the statis-

tical power of both approaches relies on large sample sizes, differential co-expression is signifi-

cantly more sensitive to sample size upon multiple hypothesis correction because of the large

number of independent statistical tests (equal to the square of the number of genes) under eval-

uation. It will be interesting in the future to compare the results of our work to other methods

for calculating differential interactions (e.g. partial correlations).

The orthogonality of differential expression and differential co-expression described above

suggests that, to detect changes in the activity of a pathway, one must separately investigate the

unilateral increase/decrease of enzyme levels, as well changes in their coordinated co-expres-

sion. In the first case, the expression of a large set of genes (for example, those in a long, linear

metabolic pathway) may be synchronously upregulated. This coordinated up-regulation of

transcription may, for example, enable the pathway to carry substantially more metabolic flux.

In the second, perhaps more subtle case, the characteristic pattern of flux through a pathway

may be re-wired (as illustrated in Fig 6). In Fig 6, the mechanism for this re-wiring is transcrip-

tional, but in principle this type of coupling may arise through a variety of distinct mechanisms

(such, as, for example, post-translational modification). In both cases, changes in intra- or

extra-cellular conditions across a set of samples induces variation in the expression of genes.

However, the manifestation of these changes may be hidden from either differential expression

or differential co-expression analysis. Thus, we argue that both differential expression and dif-

ferential co-expression analysis should play central, complementary roles in the analysis of

gene expression data [11].

Our findings here are a small, first step in applying such a second-order analysis to cancer

data, and in particular to the study of cancer metabolism. We have made a number of assump-

tions in order to make progress in the analysis, and these assumptions should be re-visited in

future work. In particular, we have repeatedly assumed that the expression of a gene roughly

correlates with the abundance of its translated protein product, and that this abundance corre-

lates with enzyme activity. An entire field of theoretical study (metabolic control analysis, [50])

and a number of experimental studies (e.g. [51]) have shown that metabolite abundances are

equally, if not more, important for the control of fluxes. We note, given an adequately large

number of samples, an analogous “differential correlation analysis” is possible for

expression of ATP5F1 and ATP5L, both members of mitochondrial Complex V, in four different TCGA studies
(blue dots: normal tissue samples; red dots: tumor samples). Red line corresponds to perfect 1:1 correlation.
Tumor samples exhibit substantially noisier co-expression of these two genes.

doi:10.1371/journal.pcbi.1004176.g005
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metabolomics data. It would be especially interesting to compare the results from such an anal-

ysis with the analogous results using expression data.

One major concern with our results are the confounding effects of (1) contamination by

stromal and immune cells, and (2) existence of heterogeneous tumor subtypes in the data.

Tumor samples are often contaminated with mixtures of normal adjacent tissue and immune

cells. Deconvolving the contribution of non-cancerous cells from the total signal obtained from

a tumor sample remains a major computational challenge, and it is unclear how the contribu-

tion of this non-cancerous signal affects our differential co-expression results. A separate but

related concern is the existence of distinct molecular subtypes in a set of samples (e.g. ER+, ER−

breast cancer samples). We have not made any efforts to tease apart the confounding effects of

these distinct subtypes in our work. Interestingly, it possible that a significant portion of the

differential co-expression signal we identify derives directly form these subtypes; in other

words, the primary differences between subtypes may lie among the differentially co-expressed

genes. Evaluating such a hypothesis will require substantially larger sample sizes. Nevertheless,

we feel that a more careful analysis of such patterns after subtype separation and stromal

deconvolution is a lucrative route for future studies.

Finally, we would like to comment on the complementarity of differential expression and

co-expression which we have proposed. In the course of responding to environmental stresses

and stresses, it is inevitable that some genes will be both differentially expressed as well as dif-

ferentially co-expressed. We are not arguing that one measure is superior to the other; rather,

each offers a different glimpse onto the response of a highly-connected network to a perturba-

tion. Neither the over-expression of a single gene, nor an increase in the co-expression of a pair

of genes, signals a change in a pathway’s activity. However, by monitoring both measures, one

Fig 6. Differential co-expression can signal a change in the activity of a pathway. Each arrow represents the level of expression of an enzymatic gene
from a single sample (e.g. a patient, so that all arrows of the same color derive from the same sample). In normal tissue, the expression of genes encoding
enzymes E1 and E2 are strongly correlated, and the expression of E1 and E3 are uncorrelated. In tumor tissue, the expression of genes encoding enzymes E1

and E3 are strongly correlated, and the expression of E1 and E2 are uncorrelated. If we assume that enzyme activity is correlated with expression, then we
may hypothesize that the metabolic flux exiting from E1 is coupled to flux in E2 in normal tissue, and to flux in E3 in tumor tissue. Note that the average
expression of all enzymes remains constant between tumor and normal conditions, so that a differential expression analysis would be unlikely to identify the
expression of these genes as anamolous.

doi:10.1371/journal.pcbi.1004176.g006
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univariate and the other multivariate, one may obtain a more complete picture of the complex

system under examination.
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S1 Code. Python function for the differential co-expression statistical test.
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S1 Fig. A comparison of the difference in correlation coefficient in clear cell kidney cancer

for the true (red) and permuted random (purple) data sets. The labels (i.e. tumor or normal)

of all RNA-Seq samples were permuted, and the difference in correlation coefficient calculated.

This process was repeated 10000 times to generate a distribution. Differences in correlation co-

efficients tend to be larger in the true data, suggesting that differential co-expression is

being observed.

(PDF)

S2 Fig. Comparison of changes in Spearman correlation coefficient for functionally related

genes in BRCA. In top panel, a comparison is made between gene pairs whose products are in

complex with each other, and gene pairs whose products are not in complex with each other.

In the bottom panel, the unit of interaction is the “catalysis-precedes” binary interaction in

Pathway Commons. A gene pair participates in this interaction if the gene products share a

common substrate or product. Note that from the top panel, gene pairs whose products are

members of a common complex show loss of co-expression in tumor samples.

(PDF)

S3 Fig. Comparison of changes in Spearman correlation coefficient for functionally related

genes in KIRC. In top panel, a comparison is made between gene pairs whose products are in

complex with each other, and gene pairs whose products are not in complex with each other.

In the bottom panel, the unit of interaction is the “catalysis-precedes” binary interaction in

Pathway Commons. A gene pair participates in this interaction if the gene products share a

common substrate or product. Note that from the top panel, gene pairs whose products are

members of a common complex show loss of co-expression in tumor samples.

(PDF)

S4 Fig. Differential co-expression in PSAT1 in KIRC. Blue dots correspond to normal tissue

samples and red dots correspond to tumor samples.

(PDF)

S5 Fig. Novel co-expression in KIRC tumors with PSAT1. Blue dots correspond to normal

tissue samples and red dots correspond to tumor samples.

(PDF)

S6 Fig. Differential co-expression in ACAT1 in BRCA. Blue dots correspond to normal tissue

samples and red dots correspond to tumor samples.

(PDF)

S7 Fig. Differential expression and differential co-expression are only weakly correlated. X-

axis corresponds to the absolute value of the log2 ratio of expression between tumor and

normal tissues.

(PDF)

S8 Fig. Differential co-expression of HNF4 with its metabolic gene targets in KIRC. Blue

dots correspond to normal tissue samples and red dots correspond to tumor samples.

(PDF)
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