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ABSTRACT

Motivation: The prediction of localization sites of various
proteins is an important and challenging problem in the
field of molecular biology. TargetP, by Emanuelsson et al.
(2000) is a neural network based system which is currently
the best predictor in the literature for N-terminal sorting
signals. One drawback of neural networks, however, is that
it is generally difficult to understand and interpret how and
why they make such predictions. In this paper, we aim to
generate simple and interpretable rules as predictors, and
still achieve a practical prediction accuracy. We adopt an
approach which consists of an extensive search for simple
rules and various attributes which is partially guided by
human intuition.

Results: We have succeeded in finding rules whose
prediction accuracies come close to that of TargetP, while
still retaining a very simple and interpretable form. We also
discuss and interpret the discovered rules.

Availability: An (experimental) web service us-
ing rules obtained by our method is provided at
http://hypothesiscreator.net/iPSORT/

Contact: bannai@ims.u-tokyo.ac.jp

INTRODUCTION

drug discovery. Further, if the rules for prediction were
biologically interpretable, this knowledge could help in
designing artificial proteins with desired properties.

TargetP (Emanuelsson et al., 2000), a neural network
based predictor, is known to be the best predictor in
the literature for N-terminal sorting signals. However,
although neural networks are “readily available” and
“often successful in practice”, they are also infamous
for the difficulty involved in trying to understand and
interpret their meaning (Chou, 2001). PSORT (Nakai and
Kanehisa, 1992; Nakai and Horton, 1999) and MitoProt
(Claros and Vincens, 1996), unlike TargetP, are systems
which incorporate existing knowledge about sorting
signals, but they use various real numbers as “weights”
in their prediction rules which also may not be trivially
interpretable. Also, they are somewhat obsolete and their
performance is unsatisfactory compared to TargetP.

The aim of this work is to derive simple and inter-
pretable rules which can be used to predict subcellular
localization sites, while still achieving a practical predic-
tion accuracy. Through outiscovery oriented approach
to the problem, we managed to find very simple and
interpretable rules with prediction accuracies which come
fairly close to TargetP.

Most proteins are first synthesized in the cytosol, and We will first review the existing knowledge about the N-
carried to specified locations, such as mitochondria oterminal signals, and then describe the general idea of our
chloroplasts. In most cases, the information determiningpproach.

the subcellular localization site is represented as a short i i i

amino acid sequence segment called a protein sortinj-Te€rminal Sorting Signals

signal (Nakai, 2000). If we could somehow detect theThe signals we consider are signals known to be on
amino acid sequence encoding this information, we wouldhe N-terminal of the protein. Mitochondrial targeting

be able to predict the localization sites.

peptides (mTP), chloroplast transit peptides (cTP), and

Prediction of localization sites is useful in various signal peptides (SP) are the typical N-terminal sorting
ways. Because cellular functions are often localized irsignals.

specific compartments, the prediction of localization sites Mitochondrial targeting peptides are known to be rich
of unknown or unannoted proteins may be used tdn arginine (R), alanine (A), and serine (S), while nega-
gain some indication of its function. For example, thetively charged amino acid residues (aspartic acid (D) and
information may be used to screen candidate genes fglutamic acid (E)) are rare (von Heijne et al., 1989). Only
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weak consensus sequences have been found. Further, th@gsented in the following sections, but we describe them
are believed to form an amphiphilic-helix important for  briefly here (See Figure 1).

import into the mitochondrion.

Chloroplast transit peptides are known to be rare if\Min0 acid index A large amount of experimental and
acidic residues, and also believed to form an amphiphiliéheoret'cal research has been performed to characterize

a-helix (Bruce, 2000). different kinds of properties of individual amino acids
It has been established that a concrete consens@&d t© represent them in terms of a numeric_al index.
sequence does not occur in signal peptides. Rather, . e AAindex database (Kawashima and Kanehisa, 2000)

three-region structure is conserved: a positively charge a compilation of 434 of such indices. As noted in

; ; : ; i bsection, protein sorting signals have
n-region, a hydrophobic h-region, and a polar c-regio € previous su : _ .
(von Heijne, 1990). rLeen characterized by the biochemical properties of the

amino acids composing them, and it seems reasonable
Overview of Our Approach to assume that some kind of characteristic which is
important for protein sorting is already contained in the

Several very important aspects in the process of scientifig\Ain dex database. Also, although an amino acid index
knowledge discovery are: 1) the generation or dlscover)éenera”y assigns é reaI’number for each amino acid. it

of goodattributes, and ways of looking at the data, WhiCh§hould be easy for us to interpret the biological meaning
is then used to explain the data, 2) the incorporation oLf the rule when we find a “good” amino acid index

and reflection on existing knowledge, and 3) the tr'alcontained in AAindex, which helps greatly in explaining

and error inferaction bet\_/veen the expert and the pr(_)blenghe data. Therefore, using AAindex as a knowledge base
We have been developing a computer software Ilbrar)(Ne gene.ratamino a,cid index rules '

focusing on these points to speed-up this process, and

have been applying it to various problems in the fieldAiphabet indexing + approximate pattermgain from

of bioinformatics (Maruyama et al., 1998, 1999; Bannaiprevious studies, we know that there is no clear-cut con-

et al., 2001). sensus sequence concerning each of the sorting signals.
The overall idea of this approach is to create massiv@iowever, since there does seem to be a common struc-

amounts of very simple attributes and their trivial combi-ture for the same signals, we wish to somehow capture this

nations, based on various known attributes. This way, iknowledge. Our approach here is to consider motifs which

such rules exist for the data, we can expect to overcomallow more ambiguity by usinglphabet indexingShimo-

the poor descriptive strength of simple rules, while at thezono, 1999) an@pproximate patternéWu and Manber,

same time control the complexity and structure of the rulel992) over the indexed sequence, similar to the BONSAI

to be generated. system (Shimozono et al., 1994), which was successful in
discovering meaningful knowledge from amino acid se-
Alphabet Indexing + Pattern Rule quences_
‘:"Q“G A JE— I An alphabet indexing is a classification of characters
R TR R R of an alphabet into a smaller set of cha(acters, and can
—_—— i 9 | 9 be_ V|_ewed as a discrete, unordereq version of an amino
e Prdr b 0 s acid index. For example, we may divide the amino acids
2 wsasic . | — — into the two classes of hydrophobic amino acids and
N Erares LM_]) """""""""""""""""" ~- hydrophilic amino acids. Using this alphabet indexing,
) e Ii\f\ ol JAETR W we can view the amino acid sequence as a sequence of
| YRS -. 2 e ‘0's (hydrophqblc) and ls (hydro_phlllc_:), and search for
T OO T e patterns (e.g. ’'001001100) contained in the sequences.

SN PQ R S T VoW v The outline of this paper is as follows: In the next
amnosddindexRule  gaction, we define the basic concepts used in our methods.
We then show the results we have obtained from applying
our methods to the data. Finally, we discuss how the rules
Fig. 1. Concept diagram of amino acid index rule and alphabetwe discovered may be interpreted.
indexing + approximate pattern rule

SYSTEM AND METHODS

Our search for the final hypothesis consists of twoAMino Acid Index Rule
main aspects: amino acid index, and alphabet indexingin amino acid indexs a mapping from one amino acid
+ approximate pattern. The details of each aspect will béo a numerical value, representing various physiochemical
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and biochemical properties of amino acids. allowed, the mismatch allowanceof the approximate
pattern. O

Definition 1 (Amino acid index)

Let A denote the set of amino acids, afthe set of Definition 5

real numbers. For a given amino acid index: 4 —  An alphabet indexing + approximate pattern ru{&2-

R and amino acid sequence = $;55...s, (for @ :  rule) is defined by: an alphabet indexing a specified
1...n,s; € A), let I(s) denote the homomorphism region of the amino acid sequengealenoted bys|u, v],
[[1(s1);I(s2);...;1(sn)|], where[|;|] denotes a sequence a patternp, and mismatch allowanc#/. A sequence is
of values. O  predicted “positive” ifp matches somewhere it s[u, v])

) ) . within mismatch allowancé/, and “negative” otherwise.
The AAindex Database (Kawashima and Kanehisap

2000) is a compilation of 434 types of amino acid indices,

which have appeared in various reports. The parameters to be chosen arfeu, v, p, M, and the
o _ o task again is to find the best combination of the parameters
Definition 2 (Amino acid index rule) which can distinguish between sequences of different

An amino acid index rule(R1-rule) is defined by: an signals.

amino acid index/, a specified region of the amino  With R2-rules, we expect to find locally specific charac-
acid sequences denoted bys[u,v], a function f,, € teristics concerning N-terminal sorting signals.

{avg, mazxavg,, minavg, }, and a threshold, where:

avg(I(s)) is defined as the average of the values ofData

sequencel(s), maravg,(I(s)) is the average of a The data used in our computational experiments was
substring of sizew in I(s), which gives the maximum obtained from the TargetP web-sitThese data consist
value (i.e.max{I(s") | s = xs'y,|s'| = w}), and  of two data sets: plant and non-plant sequences. The plant
minavg,(I(s)) is similarly the average of a substring data set of 940 sequences contained 368 mTP, 141 cTP,
of sizew in I(s) which gives the minimum value (i.e. 269 SP, and 162 “Other” (consisting of 54 nuclear and

min{I(s') | s = zs'y,|s'| = w}). s[u,v] = s,...s, 108 cytosolic) sequences. The non-plant data set of 2738

(1<u<wv<n)fors=sis;...8,. sequences contained 371 mTP, 715 SP and 1652 “Other”
A sequence is predicted “positive” by the R1-rule if (consisting of 1214 nuclear and 438 cytosolic) sequences.

Jw(I(s[m,n])) > 7 and “negative” otherwise. O We basically follow the work on TargetP, considering

different predictors for plant and non-plant proteins. Also,
The parameters to be chosendiau, v, f,w, 7,andthe  5qin the composition of TargetP, we will first consider
tas_k Is to IOOK fqr th? best combination of the parameter inary predictors which just predict whether or not a
Wh'Ch can distinguish between sequences of dIﬁerenEiven seguence contains a specific signal. The knowledge
S|gn'als. obtained from these binary rules is combined into a
. With Rl-rulc_es, we expect to capture the overall PrOPE€Yecision listto form a final rule. For each binary predictor,
ties of N-terminal sorting signals. we will call the sequences concerning the signal in
guestionpositive examplesand the sequences concerning

Alphabet Indexing + Approximate Pattern Rule _ :
the other signalg)egative examples

An alphabet indexindShimozono, 1999) is a classifica-
tion of characters of an alphabet. It is formally defined assearch Strategies

follows: We extensively search for various parameters described

Definition 3 (Alphabet indexing) in the previous sect'ion.. Since the size of the sear(;h
An alphabet indexing) is a mapping from one alphabet SPace for the co'mblnatlons' of d|fferent parameters is
S to another alphabef, where|T| < |S|. Forz = huge, an exhaustive sez_:lrch is not fe_aS|bIe even with the
T12s... 7 € X, let 1(x) denote the homomorphism powe_zrful computers WhICh were avallable. We adopted
Wz )(xs) - () € TL We will call y(z), the & mixture of _heu_rlstlcs and exhaustive search. Many
indexedsequence. o  different combinations of the parameters as well as minute
variations in the heuristics were tried.

Definition 4 (Approximate pattern)

An approximate patter@Wu and Manber, 1992) is a string Combining the Rules To create a single rule predicting

the sorting signal for a given sequence, we combine

Wh.'Ch Cta?] m%ch anoth?rhstr|ng, allow|tngfupl<tfer:raotrs the binary rules generated for each sorting signal into
.(m'S”?aC .)' € mismatch can consist of Up 10 S ypes, - yoiision list. The structure of the decision list is
insertion (ins), deletion (del), and substitution (sub). We

will call the parameterg and the types of mismatches fhttp:/mww.cbs.dtu.dk/services/TargetP/
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shown in Figure 2. The structure was determined greedilyfairly stable, but R2-rules seemed to somewhat over-fit the
according to the “ease” of discrimination by the R1-rules,training data. To overcome this problem, in the training
which was stable for all training/test combinations. phase for R2-rules, the training set was again randomly
From preliminary experiments, R1-rules seemed to belivided into 5 sets (4train and 1ttestsets), and rules are
sufficient for discriminating signal peptide sequences. Agienerated from ttrain and tested with ttest. The arithmetic
for the other signals, neither type of rule seemed googroduct of the scores from the ttrain and ttest sets was used
enough for identifying the signals. Therefore, we consideto select which alphabet indexing and substring interval to
combining both types of rules (R1-rules and R2-rulesyuse. The pattern was then trained using all sequences of
into a single rule. The first node of the decision listthe original training set, using the alphabet indexing and
discriminates signal peptides with a single R1-rule, whilesubstring interval.
the second and third nodes consist of both R1-rule and Rules are evaluated by the Matthews correlation coeffi-
R2-rule. The two rules (or perhaps their negations) areient (MCC) (Matthews, 1975), defined by:
combined with a logical ‘and’ where a sequence is judged

to have a certain signal if both rules say so. tpxtn— fpxfn
V(tp+ fn)(tp + fp)(tn + fp)(tn + fn)
’ sequence
wheretp = true positives,fp = false positivestn =
Fig. 2. The Structure of the P P /P P fn

. true negatives, angn = false negatives. Sensitivity,
final rule for plant and non- . . -
the fraction of correctly predicted positive examples

plant data sets. The last node tp e . - .
in parentheses conceming cTP (tp+fn), and specificity, the fraction of true positives in

and mTP is omitted for the the examples predicted as positivgﬁﬁ), were also
non-plant data set (classifying  calculated for reference.

to mTP). The various param- Details of the search is given below:
eters such as the amino acid
index, substring intervals, al-  Amino acid index rule Since we know that the signals

phabet indexing, and patterns  gre |ocated somewhere in the N-terminal region, we

which were chosen in the 5 |gok (somewhat) exhaustively at the substring intervals

training runs are summarized i thjs region: For amino acid indeX, all 434 entries

in Table 1 and 2. in the AAindex Database together with 20 more entries,
assigning a value of ‘1’ to one amino acid and ‘0’ to the
rest were considered. For the$&l entries,72 substring

intervals[u,v] = [5n + 1,5k] (wheren = 0...8 and
k =1...8)were considered. For the$g4 72 = 32688
Evaluation of Prediction Accuracy combinations,f, = avg, maravg,, minavg, Were

considered where was taken to bé to 12, resulting in

The whole search space conducted in our search w. - g
enormous, and involved considerable amounts of hum;)r?688* (2%7+1) = 490320 combinations. For all these

) ) . L combinations, all possible thresholds are considered:for
intervention, influenced largely by human intuition. To .
. . . 7 let fu,, ..., fu, be all f, values ofn sequences in sorted
give afair estimate for the prediction accuracy of our no o
methods, we choose a modest range of parameters der. Theny = (fu, + fu,.,)/2,i =1,...,n—1.The
P S 9 P Jmbination ofl,u,v, f,w, T which gives the highest
search for in the cross validation, and show that th

knowledge discovered is fairly stable even in that quite CC score is recorded.

large range. Alphabet indexing + approximate pattern rul€The sub-

Training and Evaluation We follow the training and thrlng intervalsfu, v] is taken to be5n + 1,5n + 54]

evaluation methods used for TargetP. The data wer wheren = 0,1,2 andk = 2,3,4). For a given al-

L ) . - ..~ phabet indexingp, all patterns of lengtt8 appearing in
randomly divided into 5 equal sized datasets by dividin he sequencesggre co%sideredgﬁorThg misrrr)%tch t)gllpes
each subset of sequences with specific localization sit

into 5 datasets. Rul ted b g 4 ft%ere limited to insertion and deletion only (no substitu-
into atasets. Rules were generated by using < o on). The maximum mismatch number was fixed at 2. We
data sets as training data, and testing was conducted

- . ' Uhirted with the alphabet indexing classifying the amino
thg remaining data set. This was repeated for the 5 possib ids into three classes, according to their “charges”:
pairs of training and test set, and the overall performance

is the sum of the 5 results. (All rules are generated by using 0 if x € {D,E},
the training data set only.) Yo(z) =< 1 if z € {K, R},
Preliminary experiments showed that R1-rules were 2 if reA—{D,E K,R}
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and optimized the indexing by conducting a local search
on the alphabet indexing (Shimozono et al., 1994): i.e. _
consider the alphabet indexings which are obtained
by changing the indexing for a single amino acid (40
candidates in this case), and adopt the indexing whose
product of the MCC scores for ttrain and ttest is the =1 m
highest for the best pattern. The process is repeated untl _ |
a local maximum is reached. A local search strategy
was used because an exhaustive search for all possible: |
alphabet indexings would result i8*° combinations,
which was not feasible. Numerous tries starting from =
other alphabet indexings, which were chosen randomly, ||
were also conducted, but high scoring indexings seemed
to be centered aroung,.

Hydropathy Index of [1,30] - Max Average of Window size 11

100

-1 0 1 2 3 4

Combination of the rules After determining the pa-

rameters for the above rules, the rules and possibly thefrig. 3. Histograms (light-SP, dark-mTP, cTP, Other)rotizavg:
negations are combined with a logical ‘and’, but a portionVa|UeS_ of hydropathy index (Kyte and Doolittle, 1982) for the
of the parameters are trained again. Namely, the substriryPstring(1, 30] of the plant data set. The threshold wa87727.
intervals, f, window sizes, amino acid index, and alphabet e can see that there is a clear difference in the distribution.
indexing are fixed. We retrain the mismatch allowance,

pattern, and threshold. Their ranges are expanded in the

retraining: The maximum mismatch numberlab 3 was 54 chiorop (0.50) (Emanuelsson et al., 1999), in the
allowed, and all patterns of lengftto 10 appearing inthe - 54 1ison of (Emanuelsson et al., 2000). Our predictor

data were considered. The of0 R1-rules are combined ¢.,oq higher for plant signal peptides, and for the other

with all possible R2-rules, and the combination whiChgjqnais our scores would again rank second, after TargetP
gives the best MCC score is chosen to be used against tfgy}, respect to the other predictors.

test set.
Biological Evaluation of the Rules
IMPLEMENTATION Amino acid index rules

The software used in our analysis was developed using )

the Hypothesis Creator Libran(Bannai et al., 2001). °P vs (mTP + cTP + Other): [Node P1, rule R1 in
Various shared memory multi-processor computers werdaPlé 1] The amino acid index with the highest score
available for calculation: 2 SGI Origin 2000 with (128, Was the hydropathy index (Kyte and Doolittle, 1982), and
32) x 195MHZ R10000 processors, 1 Sun Ultra Enterprisdudging from the substring interval , 30], and function
4500 and 2 Sun Ultra Enterprise 3500 with (14, 8, 8)"azavg, wherew is aroundll, we can say this rule

x 400MHz Sun Ultra Il processors respectively. Each iscorresponds to characteristics known for signal peptides

equipped with well over 2GB of memory, which was the (the hydrophobic h region) (von Heijne, 1990) (Figure
limit of the software. 3). What is surprising is that such a simple rule could

discriminate signal peptides so well - better than TargetP
RESULTS AND DISCUSSION for plant proteins.

The parameters found for each training set is summarizenTP + cTP) vs Other: [Node P2, rule R1 in Table
in Table 1 for the plant data set, and Table 2 for thel] The amino acid index was “negative charge”, which
non-plant data set. The scores of the cross validatioassigns a value of 1 to aspartic acid (D) and glutamic acid
is summarized in Table 3, together with the scores foE). This also corresponds to known characteristics: mTP
TargetP written in parentheses (The scores for TargetP wasd cTP are rare in negatively charged amino acids (von
taken directly from (Emanuelsson et al., 2000)). Heijne et al., 1989).

We can see that the MCC scores for our predictor is . .
fairly close to those of TargetP, except for chloroplastMTP Vs ¢TP: [Node P3, rule R1in Table 1] Various
transit peptides (cTP). However, it should be noted@Min0 acid indices were chosen, W|th substring regions
that our score for cTP (0.64) would rank second, aftefor a very short region at the N-terminal. However, the

TargetP (0.72), better than PSORT (0.51), MitoProt (0.44)§1mino acid index:_ Isoelectric point (Zimmerman et al.,
1968) can be considered as a more accurate measure of the

thttp://hypothesiscreator.net/ net amino acid charges. Atom based hydrophobic moment
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Table 1. The parameters chosen for each training set (threshid@mitted) for the plant data set. The nodesd®rresponds to nodes in Figure 2.

R1 R2
Node Trial | Amino Acid Index|u, v] fw,dir | Alphabet Indexindu, v] Pattern Mismatch| Combination
1 Hydropathy indeX [1, 30] mazavgi1,T | notused not used not used R1—SP
2 Hydropathy indeX6, 30] mazavgi1,T | notused not used not used R1—SP
P1 3 Hydropathy indeX1, 30] mazavgi1,T | notused not used not used R1—SP
4 Hydropathy indeX6, 30] mazavgi1,T | notused not used not used R1—SP
5 Hydropathy indeX6, 30] mazavgi1,T | notused not used not used R1—SP
1 Negative Chargél, 25] avg,| | DE— 0, AR — 1, Other— 21, 20] 221200020 3ins/del| —=R1V R2—Othert
2 Negative Chargél, 25] avg,] | DE— 0, CR— 1, Other— 21, 20] 20002212 2ins/del| —R1V R2—Other
P2 3 Negative Chargél, 25] avg,| | DE— 0,R— 1, Other— 2[1,15] 022120 lins/del | =R1V R2—Other
4 Negative Chargél, 30]  mazavgs,| | DE— 0, CR— 1, Other— 21, 20] 2002222222  1lins/del| —R1V R2—Other
5 Negative Chargél, 30] avg,| | DE — 0, CRF- 1, Other— 21, 20] 020222222 1lins/del| —-R1V R2—Other
1 Hyd. mom?2 (1, 10] mazavge, ] | E— 0, KR— 1, Other— 21, 10] 22112221 2ins/del| R1A R2—-mTP
2 Isoelectric point [1, 10] avg,] | E— 0, KRW — 1, Other— 21, 10] 22110 2ins/del | R1A R2—mTP
P3 3 Hyd. mom.[1, 10] mazavgy,| | E— 0, ARW— 1, Other— 21, 10] 22110 2ins/del | R1A R2-mTP
4 Net chargé [1, 10] avg,1 | E— 0, KR— 1, Other— 2[1,10] 1212221 2ins/del | R1IA R2—mTP
5 Isoelectric poin{1,15]  mazavgi2,T | E— 0, DKRW — 1, Other— 2[1,10] 11221 2ins/del | R1A R2—mTP

T: The actual rule was RA — R2 — mTPor cTP

Table 2. The parameters chosen for each training set (threshid@mitted) for the non-plant data set. The nodescBrresponds to nodes in Figure 2.

R1 R2
Node Trial | Amino Acid Index|u, v] fw,dir | Alphabet Indexindu, v] Pattern Mismatch| Combination
1 Hydropathy indeX1,30]  mazavgi2,T | notused not used not used R1—SP
2 Hydropathy indeX1,30]  mazavgi2,T | notused not used not used R1—SP
P1 3 Hydropathy indeX1,30]  mazavgi2,T | notused not used not used R1—SP
4 Hydropathy indeX1,30] mazavgi2,T | notused not used not used R1—SP
5 Hydropathy indeX1,30]  mazavgi2,T | notused not used not used R1—SP
1 Net Chargd1, 25] minavgi2, ] | DE— 0, R— 1, Other— 21, 25] 202020220 3ins/del| R1A—= R2—mTP
2 Negative Chargél, 20] avg,| | DE— 0, R— 1, Other— 2 [1, 25] 2211221222  2ins/del| R1A R2—mTP
P2 3 | Negative Chargél,20]  mazavgi2,| | DE— 0,R— 1, Other— 2[1,30] 2211221222  2ins/del| R1A R2—mTP
4 Negative Chargél, 20] mazavgiz,| | DE— 0, R— 1, Other— 21, 25] 2212211222  2ins/del| R1A R2—mTP
5 | Negative Chargél,20]  mazavgi2,| | DEY — 0,R— 1, Other— 2[1,25] 22122212 lins/del| R1A R2—mTP

1: Hydropathy index (Kyte and Doolittle, 1982); Atom based hydrophobic moment (Eisenberg and Mclachalan, 1986),
3:4: Net charge, Isoelectric point (Zimmerman et al., 1968).
fw T means that rule will answeesif the value of f,, (I(s[u, v])) is above a certain value, f,, | is the opposite.

(Eisenberg and Mclachalan, 1986) is also a similar amingignal.
acid index, where the values for arginine (R) and lysine Also seen in the alphabet indexing + approximate
(K) are higher than the other amino acids. Although valuegattern rule for mTP vs cTP, the region which was best for
for aspartic acid (D) and glutamic acid (E) are also highedistinguishing the two signals seemed to be located in the
for the atom based hydrophobic moment, these aminshort portion of the sequences, whereas the best regions
acids rarely appear in mTP or cTP, and do not effect théor distinguishing the other signals tended to be a longer.
average values. The plain occurrence count of amino acids did not seem
Therefore, together with the interpretation from to appear in any of the trials. This is perhaps because the
(mTP+cTP) vs Other, we can see that both mTP and cTRumber of certain amino acids is too rough an estimate of
lack negatively charged amino acids, but mTP tend to béhe overall biochemical properties of the signals.
more positively charged than cTP for the front end of the
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Table 3.The Prediction Accuracy of the Decision Lists (scores of TargetP (Emanuelsson et al., 2000) in parentheses). This represents the sum of the predictions
of the 5 hypotheses of Tables 1 and 2 over the test set.

True # of Predicted category o
Data Set category seqs cTP mTP SP Other Sensitivity MCC
cTP 141 96 (120) 26 (14) 0(2) 19 (5) 0.68 (0.85) 0.64(0.72)
Plant mTP 368 25 (41) 309 (300) 4(9) 30 (18) 0.84(0.82) 0.75(0.77)
SP 269 6 (2) 9(7) 244 (245) 10 (15) 0.91(0.91) 0.92(0.90)
Other 162 8 (10) 17 (13) 2(2) 135(137)  0.83(0.85) 0.71(0.77)
Specificity 0.71(0.69) 0.86(0.90) 0.98(0.96) 0.70(0.78)
mTP 371 - 275 (330) 11 (9) 85 (32) 0.74 (0.82)  0.67 (0.73)
Non-plant  SP 715 —-— 8 (13) 660 (683) 47 (19) 0.92 (0.91) 0.90(0.92)
Other 1652 - 119 (152) 44 (49) 1489 (1451)  0.90 (0.85)  0.78 (0.82)
Specificity - 0.68 (0.67) 0.92(0.92) 0.92(0.97)
Alphabet indexing + approximate pattern rules Non-plant

. A similar interpretation can be done for rules con-

(mTP + cTP) vs Other: [Node P2, rule R2 in Table  cerning the non-plant data set. The difference from the
1] The alphabet indexing was stable neay. The best pjant set being that the alphabet indexing was more
patterns were found to match the 'Other’ sequences, rathegaple around),. Also looking at the patterns discovered,
than patterns matching mTP and cTP signals. Althouglthe first pattern “202020220" does not match mTP
patterns of the latter type would be of more interest, thi%equences, meaning that mTP sequences are again rare
is natural since mTP and cTP are different signals an¢h aspartic acid or glutamic acid. For the other patterns
the similarity in their structure may be subtle. Looking “2211221222", “2212211222", “22122212", we can
at the combination of the rules, a signal is rejected folsee again the periodic occurrence of arginine (R) of an
mTP or cTP if the sequence contains (nearly) consecutivemphiphilica-helix. The pattern seems to be more stable
'0’s, which is aspartic acid (D) or glutamic acid (E). The in the non-plant data set perhaps the data set is much
occurrence of "1’ in each pattern is limited, showing thatlarger than for the plant set.
mTP or cTP signals should contain a number of arginine
(R). Lysine (K) is classified to '2" perhaps showing the Overall, the rules discovered can be interpreted in terms
asymmetry of arginine and lysine (K) in mTP. of biological knowledge known for the different signals.

] The parameters chosen for the rules in each of the training
mTP vs cTP: [Node P2, rule RZin Table 1] The best oynds seemed to be fairly stable, suggesting that the rules

patterns were found to match mTP sequences. SoMge capturing relevant characteristics concerning the N-
patterns may be too short to judge, but the patterngerminal signals.

"22112221' and '1212221' seem to be capturing the
periodic occurrence of arginine (R) or lysine (K) (‘1) in Future Work

mTP, which is the characteristic of an amphiphdichelix  For the plant data set, looking at the number of classified
(von Heijne et al., 1989). sequences, the weakness of our predictor seems to lie
With the same parameters, we also searched for theainly in the discrimination of mTP and cTP. It would
best patterns which match cTP and do not match mTRe interesting to find another simple but different form of
The patterns found were '022210’ for trials 1, 3, and 4,rule to discriminate the two types of signals.
2222022222’ for trial 2, and '220222110’ for trial 5, all In the search we conducted, we defined the regions as
with a maximum of 1 insertion/deletion. It is interesting substring intervals, fixed for all the sequences. Although
that all the patterns contain a '0’, which is glutamic acidthe N-terminal signals are generally located in a somewhat
(E). fixed area, this may not be true for nuclear sorting
signals, whose position in the sequence looks arbitrary.

304



Feature Detection of N-Terminal Sorting Signals

The substring interval may be “simple” for human to Kawashima, S. and M. Kanehisa (2000). AAindex: Amino Acid
understand, but may not be simple for the molecules index databaseNucleic Acids Res. 28), 374. o
detecting the signal. It would be desirable to find a way td<¥te. J. and R. Doolittle (1982). A simple method for displaying the
target the actual location of the signal, and then consider, "Ydropathic character of a proteid. Mol. Biol. 157 105-132.

h | fi d in thi If f II\/Iaruyama, 0., T. Uchida, T. Shoudai, and S. Miyano (1998).
€ ruies mentioned in this paper. It We are SUCCessIul, 1, ., 4 genomic hypothesis creator: View designer for discovery.

there might also be ways to predict cleavage sites by |, pjscovery Scienca/olume 1532 ofecture Notes in Artificial
locating candidate areas, and finding some meaningful |ntelligence pp. 105-116.

amino acid index or alphabet index rule. Maruyama, O., T. Uchida, K. L. Sim, and S. Miyano (1999).
Designing views in HypothesisCreator: System for assisting in
Conclusion discovery. InDiscovery Sciengé/olume 1721 ofLecture Notes

: : : . in Artificial Intelligence pp. 115-127.
We extensively searched various attributes and thell'\’/latthews, B. W. (1975). Comparison of predicted and observed

s!mple com_blnatlons and were successful in finding a secondary structure of t4 phage lysozymBiochim. Biophys.
simple and interpretable rule which could explain the data  acta 405 442-451.
set well. Despite their simplicities, the prediction accuracynakai, K. (2000).  Protein sorting signals and prediction of
of the rules were still competitive with the prediction  subcellular localization. In P. Bork (Ed.pnalysis of Amino
scores of TargetP, the best predictor in the literature. Acid Sequences/olume 54 ofAdvances in Protein Chemistry

An experimental WWW service for predicting Pp. 277-344. San Diego: Academic Press. _
N-terminal sorting signals using a decision list Nakai, K. e_md P Horton (1999_). PSORT: a_pr_ogram_for detecting
trained on the entire data set is provided at: http: the sprtmg signals of proteins gnd predicting their subcellular
/Ihypothesiscreator.net/iPSORT/. The range of paramete localization. Trends Biochem. Sci. 284-35, -

: ) e R?akal, K. and M. Kanehisa (1992). A knowledge base for predicting

searched to make the rules for the web service is different protein localization sites in eukaryotic cell§enomics 14897—
from that in this paper in that the alphabet indexing was g11.
searched in a wider range. Also, omlyg was considered Shimozono, S. (1999). Alphabet indexing for approximating
for f,. Other parameters were adjusted to give best cross features of symbolsTheor. Comput. Sci. 21@45-260.

validation scores. Shimozono, S., A. Shinohara, T. Shinohara, S. Miyano, S. Kuhara,
and S. Arikawa (1994). Knowledge acquisition from amino
Acknowledgements acid sequences by machine learning system BONSHhans.

. . . . Information Processing Society of Japan(B8), 2009-2018.
This research was supported .'n Pa” by Grant'!n'A!d\/on Heijne, G. (1990). The signal peptidd. Membr. Biol. 115
for Encouragement of Young Scientists and Grant-in-Aid 195 201.
for Scientific Research on Priority Areas (C) “Genomevon Heijne, G., J. Steppuhn, and R. G. Herrmann (1989). Domain
Information Science” from the Ministry of Education, structure of mitochondrial and chloroplast targeting peptides.
Sports, Science and Technology of Japan. Eur. J. Biochem. 18(b35-545.
Wu, S. and U. Manber (1992). Fast text searching allowing errors.
Commun. ACM 3533-91.
REFERENCES Zimmerman, J., N. Eliezer, and R. Simha (1968). The characteriza-
Bannai, H., Y. Tamada, O. Maruyama, K. Nakai, and S. Miyano tion of amino acid sequences in proteins by statistical methods.
(2001). Views: Fundamental building blocks in the process of J. Theor. Biol. 21170-201.
knowledge discovery. IfProceedings of the 14th International
FLAIRS Conferencep. 233-238. AAAI Press.
Bruce, B. D. (2000). Chloroplast transit peptides: structure, function
and evolution.Trends Cell Biol. 10440-447.
Chou, K.-C. (2001). Using subsite coupling to predict signal
peptides.Protein Engineering 1), 75-79.
Claros, M. G. and P. Vincens (1996, November). Computational
method to predict mitochondrially imported proteins and their
targeting sequencegur. J. Biochem. 248B), 779-786.
Eisenberg, D. and A. Mclachalan (1986). Solvation energy in
protein folding and bindingNature 3196050), 199-203.
Emanuelsson, O., H. Nielsen, S. Brunak, and G. von Heijne (2000,
July). Predicting subcellular localization of proteins based on
their N-terminal amino acid sequencel. Mol. Biol. 304),
1005-1016.
Emanuelsson, O., H. Nielsen, and G. von Heijne (1999). Chlorop,
a neural network-based method for predicting chloroplast transit
peptides and their cleavage sit&ot. Sci. 8 978-984.

305



