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Extensive gene content variation in the
Brachypodium distachyon pan-genome correlates
with population structure
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While prokaryotic pan-genomes have been shown to contain many more genes than any

individual organism, the prevalence and functional significance of differentially present genes

in eukaryotes remains poorly understood. Whole-genome de novo assembly and annotation

of 54 lines of the grass Brachypodium distachyon yield a pan-genome containing nearly twice

the number of genes found in any individual genome. Genes present in all lines are enriched

for essential biological functions, while genes present in only some lines are enriched for

conditionally beneficial functions (e.g., defense and development), display faster evolutionary

rates, lie closer to transposable elements and are less likely to be syntenic with orthologous

genes in other grasses. Our data suggest that differentially present genes contribute sub-

stantially to phenotypic variation within a eukaryote species, these genes have a major

influence in population genetics, and transposable elements play a key role in pan-genome

evolution.
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T
he genetic variation found among individual members of a
species is the raw material upon which natural and artifi-
cial selection act. This variation ranges from single-

nucleotide polymorphisms (SNPs) to large presence/absence
variants (PAVs) encompassing multiple genes. Most genome-
wide studies of intra-specific genetic variation in eukaryotes use
reference-based approaches in which individual sequence reads
from different accessions are compared to a single reference
genome. This approach efficiently identifies SNPs and small
insertions/deletions (indels) in reasonably well-conserved regions
as well as larger deletions. In contrast, long DNA sequences that
are not found in, or are highly diverged from, the reference
genome are overlooked by most analyses. Although the amount,
biological and physical properties, as well as turnover of such
sequence is poorly understood in eukaryotes, several studies
indicate that may be responsible for phenotypes of high value to
breeders and biologists1–4. Indeed, in rice 41.6% of trait-
associated SNPs from genotype-by-sequencing markers were
not contained in the reference genome5. Unlocking the infor-
mation in non-reference sequences necessitates defining the
extant catalog of genetic diversity within a species, termed a pan-
genome6.

Pan-genomes have been created for some bacterial species and,
typically, are much larger than the genome of any individual
strain6. In contrast, the challenges associated with creating mul-
tiple high-quality eukaryotic de novo genome assemblies and
associated sequence annotations have prevented large-scale, in-
depth exploration of eukaryotic pan-genomes. Rather, eukaryotic
pan-genome studies have employed several approaches to avoid
the difficulty of generating many high-quality genome assemblies:
using reference genome-based approaches with targeted de novo
assembly7–12, focusing on a small number of relatively low-
quality de novo assemblies13,14; employing a metagenome
approach that combines low depth sequences from many lines
with targeted de novo assembly5; or creating a pan-transcriptome
as a way to reduce complexity15–17. While these studies all have
limited ability to capture and describe the full nuclear pan-gen-
ome, most suggest a pan-genome that is considerably larger than
the genome of any individual line. For example, a study of the
maize pan-transcriptome suggested that the reference genome
only contained half the genes in the maize pan-genome15, a study
of the low-copy regions of 18 wheat lines found 21,653 predicted
genes that were not contained in the reference genome despite the
fact that the lines were closely related9, and a metagenome study
of rice found 8,000 genes that were not in the Nipponbare
reference genome5. The rice study also performed a genome-wide
association study that showed a remarkable 41.6 % of trait-
associated SNPs were from genomic locations corresponding to
non-reference genes. Thus, plant pan-genomes are potentially
large and a source of important traits.

To enable detailed insights into the size, phylogenetic dis-
tribution, importance and evolution of eukaryotic pan-genomes,
we created a pan-genome for the model grass Brachypodium
distachyon, whose small (272Mbp), diploid, highly homozygous
genome simplifies genomic studies18,19. Further enabling our
study, the B. distachyon reference genome is a finished genome
except for the placement of some centromeric repeats20; a large
collection of publicly available, geographically, genetically and
phenotypically diverse natural accessions has been assem-
bled18,21. Since B. distachyon is not domesticated, its pan-genome
represents an unaltered view of intra-species natural diversity.
Finally, since this small, wild, annual grass has been widely
adopted as a model system for the grasses used to produce grains,
forage, and biofuels, numerous experimental resources exist to
functionally test hypotheses developed from the analysis of its
pan-genome19,22,23.

Results
De novo genome assembly and pan-genome construction. We
sequenced (92x median genome coverage, 100 bp paired-end
Illumina short reads) and assembled the genomes of 54 diverse
B. distachyon inbred lines (Supplementary Table 1)18,19,21. As a
control, we assembled Illumina sequence data from the same line,
Bd21, used to create the reference genome22. The mean assem-
bled genome size was 268Mbp, very close to the 272Mbp
reference genome size22 (Fig. 1a, Supplementary Table 2). We
achieved a scaffold L50 of 1Mbp for the best assembly and an
average of 75 kb. Our best de novo assembly has a higher percent
completeness24,25 (Bd18-1: BUSCO score 98.4%) than the v2.0
B. distachyon reference genome sequence (98.3%), which is
among the top ten most complete plant reference genomes
(Supplementary Table 2, Supplementary Fig. 1a). Although five
assemblies were less complete than average, mainly in non-coding
sequence (Fig. 1a), all assemblies were more complete than some
recently published reference genomes and contained similar levels
of PAV (Supplementary Fig. 1a, Supplementary Table 2). Scaf-
folds were ordered and oriented into five chromosome-scale
assemblies using synteny to the reference genome for each line.
Up to 97% (72% on average) of the assembled bases for each line
was placed into chromosomes26 (Fig. 1b). Characterization of our
assembled sequence using flanking genes and synteny enabled us
to distinguish allelic and isoform differences from gene content
differences, which distinguishes this work from pan-genomes
based on transcriptome data or a metagenome.

To validate PAVs, we mapped raw reads onto various
assemblies. Despite being supported by their own raw reads, a
median of 1 Mbp of genic sequence and greater than 8Mbp of
non-genic sequence (~ 3% of each genome) from each assembly
lacked reference control read alignments (Fig. 1c, Supplementary
Fig. 1c, Supplementary Note 1). An example of a region
encompassing ~ 15 kb of non-reference sequence that contains
an annotated gene is shown graphically in Fig. 1d. Read
alignments to this region clearly demonstrate that it is found in
some lines but not others (Fig. 1e). We also observed sequences
spanning hundreds of kilobases that are absent or extremely
diverged from the reference genome (Fig. 1f). Alignment of short
reads from each line to the reference genome indicated a similar
magnitude of sequence absence (Fig. 1c, Supplementary Fig. 1)27.

To obtain a preliminary estimate of pan-genome size, purely at
the DNA sequence level, we constructed a sequence-based pan-
genome by iteratively comparing each of the 54 genome
assemblies to the preceding pan-genome to identify novel
sequences >600 bp (long enough to contain a gene). We defined
sequence as novel if it did not contain a single 21 bp sequence
found in the preceding pan-genome (Supplementary Note 1). The
sequence-based pan-genome was 430Mb, 58% larger than the
272Mb reference genome, and contained 40% more genes. The
average length of the DNA segments added to the pan-genome
was 1,487 bp, much larger than the 600 bp minimum length
cutoff. These analyses reveal a large amount of gene and non-
coding sequence that is not captured by a single reference
genome.

To enable a more detailed and contextual biological analysis, a
pan-genome based on annotated genes was also constructed.
First, each assembly was individually annotated by the same
pipeline used to annotate the reference genome. The number of
genes and total length of coding sequence identified for each line
were similar to the reference annotation, further indicating that
the assemblies and annotations are essentially complete (Fig. 1a,
Supplementary Table 2). As a control for the assembly and
annotation processes, we annotated our Bd21 short read assembly
and the Sanger-based Bd21 reference assembly (v2.0), resulting in
three annotations for Bd21: the v2.1 reference annotation from
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Phytozome20, the re-annotated Bd21 v2.0 assembly (Bd21
annotation control), and an annotation of the Bd21 short read
assembly created in this study (Bd21 assembly control). Overall,
these controls were in agreement in all of our analyses, indicating
that our assembly and annotation were accurate. Since genes with
repetitive elements are the most problematic in short read
assemblies, we examined one class of repetitive genes, those
encoding nucleotide-binding-site leucine-rich-repeat proteins
(NBS-LLRs), in detail. All annotations (including the reference
annotation) contained similar numbers of annotations related to
these genes (Supplementary Fig. 1f,g,e). Ninety-one percent of
known reference NBS-LRR genes22 had identical copy number
between the assembly control and the reference, indicating that
our approach was highly accurate (Supplementary Fig. 1e). As
expected, the majority of observed differences were in multi-copy

NBS-LRR genes. Only a single (1/119) false PAV was detected in
total and belonged to a single-copy reference NBS-LRR gene,
which was not detected in the assembly control. Thus, our
assembly and annotation approach was highly accurate and the
most common problem, collapsed gene clusters, would actually
decrease our estimates of pan-genome size.

Gene models were grouped based on sequence similarity using
Markov clustering in the GET_HOMOLOGUES-EST pipe-
line17,28. This resulted in 61,155 pan-genome clusters that we
categorized based on the number of lines in each cluster29: core
gene clusters contained all lines, including the two reference
controls (56 annotations total); softcore gene clusters contained
53–55 lines (95–98%); shell gene clusters contained 3–52 lines
(5–94%); and cloud gene clusters contained 1 or 2 lines (2–5%)
(Fig. 2a). This classification system allows us to represent some of
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the technical uncertainty, particularly for the softcore, where true
core genes could be placed if they were missed in a few
annotations, and the cloud, which could contain anomalous
annotations from one or two genomes. Thus, the most robust
comparison is between shell genes and core genes. We selected
one gene from each gene cluster (termed a pan-gene) to make the
gene-based pan-genome that was analyzed further. Since cloud
genes are more likely to be assembly or annotation artifacts, they
were excluded from subsequent analyses that focused on a high-
confidence pan-genome consisting of 37,886 core, softcore, and
shell pan-genes (Fig. 2b). Nevertheless, RNA-Seq data from the
leaves of 36 lines indicated that 22% of cloud pan-genes were
expressed, suggesting that a large number of cloud genes are bona
fide genes. On average, any individual line in our study is
composed of mostly core or softcore pan-genes (73%) and only
27% is categorized as shell or cloud (Fig. 2b). Thus, the majority
of genes within any individual are found in all (or almost all)
other individuals. Figure 2b also indicates that only one line,
BdTR11a, contributes disproportionately to the number of cloud
genes; this contribution does not appear to be explained by poor
assembly quality.

Forty-five percent of the high-confidence pan-genes were shell
genes, indicating that a sizable fraction of the genetic diversity in
B. distachyon is not accessible via a reference-based strategy.
Forty-one percent (7,135/17,195) of shell pan-genes are not
contained in the v2.1 reference annotation, the v2.0 reference re-
annotation control or the annotation of the short read assembly
control (Fig. 2c). Forty-two percent of non-reference pan-genes
had BLAST matches (E-value ≤ 0.0001) to plant species, and 78%
of those hits were to plants other than B. distachyon. The largest
number of non-B. distachyon hits were to the closely related grass,
Aegilops tauschii, one of the three progenitors of bread wheat
(Supplementary Fig. 2a). Less than 0.3% percent of non-reference
sequences had matches to possible microbial sequences, ruling
out contamination as a significant error.

We cross-validated the classification of core, softcore, and shell
pan-genes by mapping raw reads from each assembly onto the
pan-genes. As expected, raw read coverage of the pan-genes
supports the presence/absence variation in shell and softcore pan-
genes (Fig. 2d). Furthermore, clustering lines by short read
coverage of respective pan-genes correctly identifies the three
major population groups in this study, described in more detail

below. Thus, the observed PAVs are not simply due to assembly
or annotation errors. To examine how many lines need to be
sampled to capture the B. distachyon pan-genome, we conducted
simulations of pan-genome size from increasing numbers of
randomly selected lines. The results indicate that the pan-genome
increases rapidly up to 20 lines and is still steadily increasing at 54
lines (Supplementary Fig. 2b). Thus, even sampling of 54 lines,
chosen to represent the available genetic diversity, does not
capture the full pan-genome of the species.

To gain insight into the evolution and estimate the false
discovery rate of non-reference shell genes, we attempted to force
gene models (lift-over) for non-reference pan-genes onto the v2.0
reference genome assembly, requiring ≥70% amino acid similarity
between original and lifted-over peptides. Forty-two percent of
non-reference pan-gene models (2988) could not be lifted over to
the reference genome sequence. Fifty-two percent (1549/2988) of
these could not be lifted over because there was no similar
sequence in the reference genome. Forty-eight percent (1439/
2988) of non-reference pan-genes that were not lifted over appear
to be pseudogenes in the reference line identified by either partial
peptide alignments (807) or incomplete lift-over models (632).
Six percent (407) of lifted-over gene models resulted in peptides
with less than 80% identity to the pan-gene model and therefore
may be functionally distinct even if they are bona fide genes in the
reference genome. Since we cannot be sure if the remaining lifted-
over genes (3740) are genes in the reference genome without
additional data, this represents the upper bound of our false
positive rate for non-reference shell genes. However, given that
the vast majority of shell pan-genes were confirmed as missing
from two or more assemblies by read mapping, our overall
estimate of the number of shell pan-genes is robust despite the
fact that some genes may be missed in some annotations (Fig. 2c).

Functional characterization of the pan-genome. A comparison
of the predicted biological functions of core and shell pan-genes
revealed that core pan-genes are enriched for essential cellular
processes (e.g., glycolysis), whereas shell and softcore pan-genes
are enriched for functions that may be advantageous in some
environments (e.g., gene regulation, disease resistance) (Fig. 3a, b).
Genes such as Type I MADS-box and F-box genes that are known
from inter-specific and subgenome fractionation comparisons to
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undergo accelerated birth, death and evolution30 were also found
at higher frequency among the shell pan-genes compared to core
pan-genes, indicating that these genes are also more dynamic
within a single species. Gene Ontology (GO) term enrichments
for shell pan-genes include “negative regulation of translation” (p
< 0.05, Fisher’s exact test; false discovery rate (FDR)< 0.05),
encoding rRNA N-glycosylase ribosome-inactivating proteins
(RIPs). Such genes may be adaptive given that they are known to
have a specific function in protection against attack from
pathogenic fungi or herbivorous insects31. Expanded RIP gene
families with unusually diverse domain architecture are common
in Poaceae/cereal species32. GO enrichments were also observed
for “telomere maintenance”, associated with telomeric proteins
known to show rapid evolutionary divergence and poor inter-
species conservation, although this enrichment did not pass our
FDR threshold (p< 0.05, Fisher’s exact test; FDR> 0.05). Pre-
vious studies have shown that gene duplication has created tel-
omere protein paralogs with novel functions33.

As expected, non-reference pan-genes fall almost exclusively
within the shell gene subset and have predicted functions similar
to shell pan-genes (Fig. 3c). Shell pan-genes have higher non-
synonymous/synonymous substitution ratios than core genes
(p< 2.2e−16, Welch two-sample t-test, Fig. 3d) and an overall
higher frequency of non-synonymous and synonymous

substitutions (Supplementary Fig. 3) suggesting reduced func-
tional constraint. Compared to shell genes, core genes are
generally expressed at higher levels (p< 2.2e−16, Wilcoxon
signed rank test), and are more broadly expressed across tissues
(Fig. 3e, f). Shell genes are less likely to have orthologs in rice and
sorghum (Fig. 3g). All of this is consistent with the core gene set
being enriched for genes that are under purifying selection
because they perform essential functions and shell genes being
less evolutionarily constrained because they are not essential
under at least some environmental conditions. The observed
enrichment of shell genes with putative adaptive functions
suggests that shell genes are preferentially retained when they
acquire functions that confer benefits under some conditions.
Thus, shell genes may be responsible for considerable phenotypic
variation that could be of particular interest for breeding
improved crop varieties and evolutionary studies of adaptive
traits.

Population analysis. To provide a phylogenetic benchmark for
analysis of the pan-genome, we reconstructed a maximum like-
lihood (ML) tree based on 3,933,264 high-confidence SNPs
(Fig. 4a, Supplementary Fig. 4a) that was consistent with previous
results based on simple-sequence-repeat and genotyping-by-
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sequencing markers)18,19,34,35. To investigate the possibility that
incomplete lineage sorting and the use of a single concatenated
SNP data set36 introduced topological errors in the phylogeny, we
also ran a coalescence modeling phylogenetic analysis based on
the Singular Value Decomposition quartets (SVDq)37 method.

This approach is especially useful in cases with ongoing gene flow
across the species range. Since the topology of the SVDq tree was
very similar to the ML tree (Supplementary Fig. 4a,b), we focused
on the ML tree for further analysis. The ML tree splits into two
highly supported clades, one of which can be further separated
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into two population groups (Fig. 4a, b). The first clade contains
lines from multiple geographic locations that almost all exhibit an
extremely delayed flowering (EDF+) phenotype (Fig. 4c). In
contrast, the second clade contains groups corresponding to a set
of eastern (predominantly Turkish, T+) lines and a set of western
(predominantly Spanish, S+) lines that do not show the EDF+
phenotype (Fig. 4c, Supplementary Fig. 4a). The T+ and S+
groups come from mixed latitudes (Fig. 4d), and are differ-
entiated in genotypes containing molecular variants within genes
known to regulate flowering relative to those shown by indivi-
duals of EDF+ clade (Fig. 4e). The strongly supported differ-
entiation of the S+ and T+ groups indicates that geographical
isolation is another important factor in the divergence of the
populations (Fig. 4f). We examined genetic structure and found
that three population groups matched the ML tree (Fig. 4b) and
that there was evidence of significant admixture in some lines
(Supplementary Table 3).

To explore the evolutionary history of the population groups,
we reconstructed the ancestral state for 25 discrete flowering time
traits (Fig. 4c) and molecular variants in genes of known
flowering regulators recorded in 53 of the sequenced lines (Fig. 4e,
g, i, j Supplementary Figs. 5 and 6a). Changes were inferred to
have occurred for most analyzed traits along the long branch
leading from the most recent common ancestor (MRCA) of B.
distachyon (node 1) to the MRCA of the EDF+ clade (node 2),
which showed an ancestral pattern, congruent with that observed
today in most of its descendant lines (e.g., extremely delayed
flowering and distinct polymorphisms in vernalization and
flowering genes; Fig. 4a, g, i, j, Supplementary Figs. 5, 6a,
Supplementary Table 4). By contrast, changes were less
pronounced in the short branches leading to the respective
MRCAs of the T+ -S+ clade (node 8) and the S+ subclade (node
35) (Fig. 4a, g, i, j, Supplementary Figs. 5, 6a; Supplementary
Table 4). In addition, Bayes factor (BF) tests revealed strong
evidence (BF> 5) of correlation between flowering time traits
(Supplementary Fig. 6b) and molecular variants in genes of
known flowering regulators (Fig. 4e, i, j) (Supplementary Fig. 5,
Supplementary Table 4,5, Supplementary Note 2). These results
support the idea that flowering time is a major factor in the
divergence of populations10,27 (Fig. 4a–c, e, g–j Supplementary
Fig. 5, 6a; Supplementary Table 5–7). Conversely, there was weak
correlation (BF< 2) between collection latitude and flowering
phenotype and polymorphisms in flowering and vernalization
genes (Fig. 4d, h, Supplementary Fig. 5, 6b), indicating that
latitude is not a major factor driving intra-specific divergence in
B. distachyon.

FST estimates were 0.5579, 0.6277, and 0.4220 respectively for
EDF+|T+, EDF+|S+, and S+|T+ comparisons, indicating that the
groups are strongly differentiated. Fixed-SNP differences were

greatest between the EDF+ group and the other two groups
(Fig. 4k). As expected, the EDF+ clade contributed the most non-
reference gene clusters on a per-line basis due to the reference
genome residing in the distant T+ group (Fig. 4l). We observed
hundreds of genes that were present in only one of the population
groups (Fig. 4m). In order to further explore the interplay
between population structure and the pan-genome, we con-
structed pan-genomes using only non-admixed lines within the
three population groups. As expected from our simulations
(Supplementary Fig. 2a), the size of the population group pan-
genomes decreased with sample size: T+=48,481 pan-genes
among 21 lines; S+=38,739 pan-genes among 16 lines; EDF
+=37,742 pan-genes among 7 lines. However, the number of non-
reference genes in each of the three experiments was still
significant. For the EDF+ group, we identified 2,868 non-
reference pan-genes (relative to the EDF+ reference line BdTR8i);
in the T+ group, we identified 6,746 non-reference pan-genes
(relative to the non-admixed T+ reference BdTR3c); and in the S
+ group, we identified 4,790 non-reference pan-genes (relative to
the S+ reference ABR4). In addition, we observed the same
pattern as for the full pan-genome when we plotted the number
of genes vs. the number of lines containing each pan-gene
(Fig. 2a, Supplementary Fig. 2c). This indicates that the ratio of
the various pan-gene compartments is not determined by
population structure. Interestingly, we found that some shell
genes in the full pan-genome are core within the sub-populations:
1,603 pan-genes for the EDF+ population; 2,334 pan-genes for
the S+ population; and 526 pan-genes for the T+ population
(Fig. 4n). Shell pan-genes that were core to the EDF+ population
were enriched in GO terms including “regulation of gene
expression” (p< 0.05, Fisher’s exact test; FDR< 0.05), which
was also observed for shell pan-genes core to the S+ population
(p< 0.05, Fisher’s exact test; FDR> 0.05). Shell genes core to
either the T+ population or S+ population had enrichment for
“multicellular organism development” (p< 0.05, Fisher’s exact
test; FDR> 0.05). Despite strong population structure, 6 of 53
lines (11%) in our study show a significant degree of admixture
(Supplementary Table 3), including large stretches of DNA in the
earliest flowering line Bd21 (also the source of the reference
genome) that look very similar to EDF+ lines, indicating gene
flow between the latest and earliest flowering lines. Not
surprisingly, then, all three groups are fully inter-fertile in
laboratory crosses. Thus, despite the high FST rates and genomic
structure, this group still appears to functionally behave as a
single species.

Underscoring the accuracy of the pan-genome and our genome
assemblies, dendrograms created based on PAVs, copy number
variation, and average nucleotide identity recovered the same
main population groups (EDF+, T+ and S+) identified by the

Fig. 4 Populations analysis. a Maximum likelihood phylogenetic tree based on 3,933,264 SNPs for 53 B. distachyon lines. Thickness of branches indicates

bootstrap support (thick, 100%; intermediate, 70–99%; thin, 50–69%). Insets at select nodes (N) show the probabilities for the ancestral state of the traits

in c and e. b Plot of individual membership (SNP profiles) to optimal K= 3 Bayesian STRUCTURE groups: EDF+ (blue), T+ (yellow), S+ (green) (see

Supplementary Table 3). c–e Color-coded matrix based on mapping all trait values to discrete state categories for flowering phenotypes (c), collection site

latitude (d), and DNA variants in known flowering genes (e). Color labels can be found in Supplementary Table 4. f Geographic distribution of accessions.

Points labeled as: Extremely Delayed Flowering (EDF+): square; Delayed Flowering (DF): circle; Intermediate Delayed Flowering (IDF): triangle;

Intermediate Rapid Flowering (IRF): open triangle; Rapid Flowering (RF) and Extremely Rapid Flowering (ERF): star. Colors reflect membership to

STRUCTURE groups in b. The background map was constructed from Worldclim (http://www.worldclim.org/) elevation date using ArcGIS software

(http://www.esri.com/arcgis). g–j ML mapping of probable ancestral states for g flowering time class, h latitude, i molecular variant in the FLT13 gene, and

jmolecular variant in the known flowering regulator VRN1. See Supplementary Fig. 5 and 6a for individual line labels and the remaining traits, respectively. k

Fixed-SNP differences between the three STRUCTURE groups. l Median number of non-reference genes added per line from each of the three major

groups.m Exclusive and shared gene clusters between the three STRUCTURE groups (including admixed lines). n, Overlap between core pan-genes in sub-

population pan-genomes from the three STRUCTURE groups (without admixed lines) and shell genes in the combined pan-genome. Whiskers in the above

plots extend to the most extreme data point which is no more than 1.5 times the IQR
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SNP-based ML tree (Figs. 2d and 4a, Supplementary Fig. 7). In
addition, PHYML phylogenetic trees of the flowering gene
BdVRN1 created from variants detected by read mapping to the
reference genome (assembly v2.0) and variants identified from
our genome assemblies were in agreement (Supplementary
Fig. 4c,d). Furthermore, the BdVRN1 gene tree created from the
genome assemblies included 75 additional variants that were not
detected by read mapping and showed higher resolution and
bootstrap support (Supplementary Fig. 4d).

Unlike reference-based strategies, the pan-genome allowed us
to examine thousands of PAVs across populations (Fig. 2d). For
example, the reference line, Bd21, is the most rapidly flowering
line characterized to date, raising the possibility that genes
important for vernalization responsiveness may not be present in
the reference genome. Indeed, alleles of a predicted CCAAT box-
binding NF-YB transcription factor (pan-gene Brdis-
v1ABR21022861m) are present in all EDF+ lines and in some
delayed flowering S+ group lines but not in intermediate T+ or
rapid flowering lines. In wheat, Arabidopsis, and rice, NF-YB
paralogs regulate flowering38–41 suggesting that alleles of
Brdisv1ABR21022861m may play a role in determining flowering
time in B. distachyon. NF-Y subunit transcription factors are
known to have an elevated rate of duplication, consistent with the
presence/absence variation observed in B. distachyon41.

An example of the 1,549 pan-genes that were entirely absent
from the reference line is Brdisv1ABR41022793m, predicted to
encode an ent-copalyl diphosphate synthase (CPS). Neither the
reference genome nor any members of the T+ group contain
alleles of this pan-gene; however, alleles were observed in all
members of the EDF+ clade and in four lines from the S+ group.
Pan-gene Brdisv1ABR41022793m is slightly more similar to a
wheat gibberellin biosynthetic gene (CPS-A42, 71% identity) than
to the most closely related B. distachyon reference gene
(Bradi2g33686, 69% identity). Flanking genes localize Brdis-
v1ABR41022793m to a block of B. distachyon chromosome
2 syntenic to the wheat R-A1 locus43 on wheat chromosome 3A,
whereas CPS-A is reported to reside on wheat chromosome 7A42.
We compared syntenic genomic regions of six lines that contain
alleles of Brdisv1ABR41022793m and four lines from which it was
absent (Fig. 1d). The presence/absence of the Brdis-
v1ABR41022793m locus was confirmed by analysis of read depth
across the region (Fig. 1e). Bradi2g33686 was differentially
expressed between dawn and mid-day, similar to the maize
gibberellin biosynthetic gene44, whereas Brdisv1ABR41022793m
was expressed at similar levels between these time points. These
differences in expression suggest different functions for these
genes, similar to CPS-encoding genes in other plants42,45–47.

The sequenced lines in our study vary in resistance to multiple
plant pathogens48–50. Shell genes may underlie much of the
observed variation in resistance since PAVs are common among
disease resistance loci in many plants51. Non-reference shell pan-
gene Brdisv1Bd1-11011965m encodes an uncharacterized protein
and has alleles in six phylogenetically diverse lines. Its best
BLASTP hit is a predicted wheat protein,
TRAES_3BF053100160CFD_c152 (38% identity). Flanking genes
anchored Brdisv1Bd1-11011965m to a region of B. distachyon
chromosome 2, which is syntenic to the wheat Sr2 locus51,52. This
locus contains 40 genes, including TRAES_3BF053100160CFD, and
confers broad-spectrum resistance to wheat stem rust51 and
powdery mildew53. The exact gene(s) conferring resistance at this
locus have not been determined, but it is linked to extensive PAVs
and extreme haplotype divergence among wheat cultivars51. In line
Bd1-1, expression of Brdisv1Bd1-11011965m was induced by wheat
stem rust infection. Thus, Brdisv1Bd1-11011965m may be involved
in pathogen resistance, and the specificity may be controlled by
differential gene content as seems to be the case in wheat51.

Putative mechanisms leading to gene gain and loss. There are
several, non-exclusive mechanisms for the genesis and elimina-
tion of shell genes. As observed in other systems, errors during
recombination may create and eliminate genes from the gen-
ome54,55. Since the loss or movement of non-essential shell genes
is expected to be more tolerable than the loss of essential core
genes, recombination may cause the distribution of shell genes to
be higher in areas of the genome with low recombination. We
hypothesize that shell genes may arise via gene duplication fol-
lowed by sequence divergence as evidenced by their higher non-
synonymous/synonymous substitution ratios among lines
(Fig. 3d). Transposable elements (TEs) are known to mediate
gene duplication and movement55; therefore shell genes may be
enriched in TE-rich regions of the genome. These mechanisms
have been proposed to reduce synteny and homeolog retention
after ancient whole-genome duplications within pericentromeric
regions, as well as elevate rates of pseudogene formation and
transposon accumulation30.

Although shell genes are observed throughout the genome, the
ratio of shell genes to core genes is higher in pericentromeric
regions of the chromosomes (Fig. 5a, b). We observed striking
relative patterns of polymorphism rate, TE density, synteny, shell/
core gene ratio, recombination rate, and TE insertion/excision
activity across chromosomes (Supplementary Fig. 3,8,9). The
ratio of shell genes to core genes was negatively correlated with
recombination rate (rs = −0.43, p< 3.3e−05, Spearman’s test), and
positively correlated with higher density of annotated reference
TEs (r = 0.58, p< 4.5e-11, Spearman’s test). Increased shell:core
ratio was highly correlated with intra-species TE activity (non-
reference insertion and deletion) (Fig. 5b, c; insertion: r = 0.67, p
< 4.9e−15, Spearman’s test; deletion: r = 0.59, p< 3.9e−11, Spear-
man’s test). Linear models predict that shell:core ratio was
significantly influenced by intra-species TE activity (p< 2.2e−16,
McFadden R2, Supplementary Note 3). As our data sets
correspond respectively to new insertions in at least one of the
53 lines or to potential excisions from the reference genome, our
results are consistent with intra-species TE dynamics mediating a
higher rate of shell gene genesis at some locations of the genome.
Both TE activity and shell:core ratio were strikingly correlated
with the ratio of non-syntenic to syntenic genes in comparisons
of the B. distachyon reference genome to rice (Fig. 5b, d; r = 0.84,
p< 2.2e−16, Spearman’s test, Supplementary Fig. 8). Further-
more, while 74% of core genes were located within DNA
segments syntenic to rice, only 24% of shell genes fell into
syntenic segments (Fig. 5e). Linear models support the hypothesis
that the non-syntenic:syntenic gene ratio is influenced by the
shell:core ratio and is a better predictor of reduced co-linearity
than TE activity itself (p< 2.2e−16, McFadden R2, Supplementary
Note 3). Consistent with higher rates of shell gene evolution and
location outside of co-linear blocks, shell genes were less likely to
have a retained homeolog from past evolutionary whole-genome
duplications (Fig. 5f, χ2-test for independence, p< 2.2e-16).

To fully utilize the pan-genome and further elucidate the role
of TEs in shell gene evolution, the repeat elements in each de
novo assembly were annotated (Supplementary Methods). We
quantified gene expression levels across 27 assemblies to evaluate
the effect of TEs and other repeat sequences on gene expression.
We looked at pairs of allelic genes, defined by synteny of each
genome to the reference, with a TE present within 1 kbp upstream
of the translation start site in one line but not in another. Genes
with a TE within 300 bp of the start site were expressed
significantly less than allelic genes without an upstream TE
insertion (Fig. 6a, b, Supplementary Fig. 10). On average, TEs
were significantly closer to and comprised a larger fraction of the
upstream region of shell genes than core genes (p< 2.2E−16,
Wilcoxon signed-rank test, Fig. 6c, d). Different classes of repeat
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elements had different effects on the expression of neighboring
genes (Fig. 6e). Class 1 elements significantly decreased expres-
sion of adjacent genes (binomial test, p< 0.01), whereas the
decrease associated with class 2 elements was not significant
(Supplementary Fig. 10) and Class 1 elements were more likely to
be found upstream of shell than core genes (Chi-square test for
independence, p< 2.2E−16, Fig. 6f). Irrespective of TE class, TE
insertions with the largest negative effect on expression were
associated with a lower proportion of core genes and higher
proportion of shell genes (Supplementary Fig. 10). Furthermore,
even when adjacent to a TE, core genes tended to retain their
expression level, whereas shell genes tended to be altered in
expression (Fig. 6g). These results are consistent with the
hypothesis that TE insertion events that alter expression of core
genes may be selected against as compared to shell genes. As TEs
are known to mediate gene transposition and removal, the higher
frequency of retained TE insertions adjacent to shell genes may
mediate their dynamic behavior among individuals of the species.

Discussion
The primary goal of our study was to accurately estimate the size
of a plant pan-genome. As mentioned in the introduction, the
challenges of producing numerous, complete de novo genome
assemblies have prompted previous plant pan-genome studies to

use approaches that avoid whole-genome de novo assemblies
(e.g., reference-based with targeted assemblies, pan-tran-
scriptomics, metagenomics) or examine small numbers of lower
quality assemblies. These studies likely underestimate the size of
the pan-genome because they have limited power to detect novel
contiguous sequence outside the reference genome or they use a
small number of highly fragmented assemblies of unknown
completeness. Nevertheless, they provide important insights into
functional aspects of plant pan-genomes. For example, reference-
based approaches found that non-reference genes are often
involved in processes related to traits of agronomic interest such
as environmental stress and plant defense responses and may be
implicated in heterosis9,10,15,16,56. They have also shown that as
much as 30 percent of genes in a reference genome may be
affected by PAV10,11,57. Studies focused on de novo assembly
approaches have observed similar functional attributes of genes
associated with PAV across the species-wide pan-genome5,14.
These studies have also shown that up to 16% of the species-wide
pan-genome lies outside the reference genome13. In pairwise
comparisons, maize inbred lines show extreme PAV and copy
number differences, which if extrapolated would lead to an
immense species-wide pan-genome for this species58,59 suggest-
ing that maize pan-genome size estimates represent a lower
bound on pan-genome size.
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Fig. 5 Chromosomal characterization of pan-gene subsets. a Number of reference genes in respective pan-genome categories within 2.5Mbp windows

along chromosome 4. b Shell:Core gene ratio, non-syntenic:syntenic gene ratio (in comparison to rice, Oryza sativa), and the number of reference TEs

absent from other B. distachyon lines compared to the reference (a measure of TE dynamics), plotted for 2.5Mbp non-overlapping windows along

chromosome 4. Frequency of TE “insertion” relative to the reference genome shows a similar pattern as TE “absence” (Supplementary Fig. 9). c Intra-

species TE insertion frequency vs. shell:core gene ratio within 2.5Mbp genomic intervals. d Plot of non-syntenic:syntenic gene ratio vs. shell:core gene

ratio. e Percent of core and shell genes in the reference genome that are/are not syntenic with the corresponding rice ortholog. f Fewer shell genes in the

reference genome have a homeolog that was retained after the ancient grass whole-genome duplication
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By including assembly controls and conducting extensive cross
validation of PAVs via read mapping and phylogenetic analysis,
our study provides strong evidence that the B. distachyon pan-
genome is considerably larger than the genome of any individual
plant of this species. Indeed, the high-confidence pan-genome
contains 7135 pan-genes that were not contained in the reference
genome and nearly half of the genes in the high-confidence pan-
genome are found in only a subset of lines. The completeness and
number of de novo genome assemblies utilized in our study, the
selection of lines to maximize the sampled genetic diversity, and
the fact that B. distachyon is a wild plant that has not experienced
a domestication bottleneck all contributed to the large pan-
genome observed for this species. Our estimated size of the B.
distachyon pan-genome is a conservative estimate due to col-
lapsed tandem repeats, co-clustering of related paralogs within an
assembly to the same pan-gene, and lack of gene annotations for
novel genes lacking expression or homology support (required for
our gene annotation). Thus, we have defined a lower bound for
the size of the B. distachyon pan-genome. Precisely defining the
core genome becomes more problematic as the number of gen-
omes sampled increases due to the challenge of assembling and
annotating a particular gene model correctly in every sequenced

genome. Our softcore category reflects this uncertainty. It should
be noted however, that uncertainty about the exact set of core
genes does not affect our estimate of pan-genome size, our pri-
mary objective, because the pan-genome is simply the sum of the
genes in the reference genome and all the non-reference pan-
genes. While the B. distachyon pan-genome is larger than the
pan-genomes reported for several other species, it is not com-
pletely unexpected based on results from other species. For
example, an estimation of the maize pan-genome based on the
pan-transcriptome16 was of similar magnitude to the B. dis-
tachyon pan-genome. In addition, a study of 10 reference-guided
assemblies of Brassica oleracea found that 20% of pan-genes
showed PAV10 which is consistent with our simulation of the
pan-genome size for 10 B. distachyon lines (Supplementary
Fig. 2b). Similarly, true de novo assemblies of 15 Medicago
genomes found that 42% of genomic sequence was found in only
some accessions13.

Previous studies utilizing a purely de novo assembly strategy
have focused on relatively small numbers of less complete
assemblies making it difficult to ascertain the effect of population
structure on pan-genome size and phylogenetic distribution.
Powered by the much larger sample size in our study, we show
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the importance of population structure in elaboration of the
species pan-genome. In our study, PAV correlates with phylo-
genetic relatedness and pan-genes that are non-core in the
species-wide pan-genome are often core within sub-populations.
After excluding admixed lines, the three major population groups
in B. distachyon differ greatly in their complement of pan-genes.
Hundreds of pan-genes are core to one sub-population while not
found in other populations (Fig. 4n). Sub-population core genes
may in fact contribute to perpetuating population structure. For
example, we identify a putative NF-YB transcription factor in all
EDF+ lines that may potentially contribute to temporal differ-
ences in onset of flowering relative to non-EDF+ lines that could
reinforce the genetic distinctness of the EDF+ sub-population via
pre-mating reproductive isolation. Genes that appear dispensable
within the species-wide pan-genome may in fact be extremely
important for the biology of a sub-population60. Individuals from
previously non-sampled sub-populations contribute far more to
increases in pan-genome size than the addition of closely related
individuals. This underscores the importance of careful selection
of individuals for pan-genome studies, particularly in species like
B. distachyon, in which geography may be a secondary factor in
shaping population structure, and autogamy may influence the
spread of and selection on PAVs. The degree of population
structure within a species and genetic bottlenecks, such as
domestication, need to be taken into account when interpreting
pan-genomes and may be reasons some crop plants may have
smaller pan-genomes than wild species such as B. distachyon.
Despite the large overall size of the B. distachyon pan-genome,
individuals in our study share the vast majority (90% on average)
of their genes at the pairwise-level. Previous studies have observed
greater amounts of pairwise PAV between individuals in other
plant species58,59,61. Thus, the amount of PAV that we observe in
the compact genome of B. distachyon is likely to be dwarfed by
PAV in larger, more complex genomes such as maize58.

The functional enrichments observed in the shell genes, their
expression levels and patterns, and their high evolutionary rates
are consistent with a scenario in which shell genes evolve rapidly
and are more likely than core genes to be adaptive under certain
environmental conditions. For example, we found that shell pan-
genes are enriched in RIPs, which can provide an advantage in
the presence of pathogenic fungi or herbivorous insects. In con-
trast to higher frequency pan-genes in the shell compartment, the
long tail in pan-gene frequency in Fig. 2a may indicate that a large
portion of PAVs is at low frequency and may be under negative
purifying selection. This fits a scenario where new pan-genes are
continually created and lost unless they are adaptive under some
conditions. Selection against indels has been noted in other sys-
tems61. The higher relative abundance of shell genes in non-
syntenic blocks of the genome and the higher level of intra-
species TE insertions and deletions near shell genes suggest TE
dynamics as an important mechanism for shell gene creation and
removal, similar to the role of TEs in generating inter-species
differences in gene content30,52. In light of our study, this concept
may be expanded to intra-species variation as previously specu-
lated55. Our observations are consistent with previous results in
Glycine soja, where a higher level of PAVs in pericentromeric
regions was noted14. Class I elements were proportionately
overrepresented upstream of shell genes. This would be compa-
tible with retrotransposon-mediated long terminal repeat
(LTR)–LTR illegitimate recombination as a mechanism by which
shell genes are lost/gained. Indeed, it has been suggested that LTR
recombination actively counters retroelement expansion in B.
distachyon and may partly explain its relatively low complement
of repeats and small genome size22. In contrast, it has been
proposed that retroelements persist for very long periods of time
in the closely related Triticeae, which have high repeat content

and large genomes. High repeat content complicates genome
assembly and thus precludes non-reference-based pan-genome
analysis. Nonetheless, advances in technology may soon enable
these analyses in large genomes with higher repeat content such
as maize, which is believed to have a large pan-genome of
unknown size8.

The individual genome assemblies, associated data sets as well as
interactive tools for mining the B. distachyon pan-genome are
available at the BrachyPan website (https://brachypan.jgi.doe.gov/).
These tools, in combination with the experimental resources
available for B. distachyon, allow further investigation of the
mechanisms and functional consequences of intra-species gene
dynamics.

Methods
Plant germplasm, DNA extraction and sequencing. The sources of the lines used
in this study are described in supplementary table 1. High molecular weight nuclear
genomic DNA was isolated from 10–20 g of leaf tissue collected from 4-week-old
seedlings using a nuclei isolation protocol62. DNA was randomly sheared into
~250 bp fragments, and then used to create Illumina libraries. Sequencing was
performed on Illumina HiSeq2000 and HiSeq2500 sequencers, generating
73–100 bp paired-end reads for the 54 B. distachyon inbred lines at 92x median
genome coverage. Also, 4 kb mate-pair large-insert libraries were constructed for
eight lines. Illumina short reads were processed by the Joint Genome Institute read
filter (rqcfilter, https://sourceforge.net/projects/bbmap/) to remove common con-
taminants, adapter sequences and low-quality reads.

De novo genome assembly and annotation of 54 inbred lines. The eight gen-
omes for which we had appropriate fragment and mate-pair libraries were
assembled with ALLPATHS-LG63 and the remaining genomes were assembled
with Velvet64 (v1.1). As a control, we assembled Illumina sequence data from the
same line used to create the reference genome, Bd21. To make the assemblies easier
to work with and provide physical context, we used synteny to the reference
genome to order and orientate scaffolds into five pseudomolecules corresponding
to the five B. distachyon chromosomes and additional super-scaffolds containing
unassigned sequence. Significantly, no reference sequence was added to any of the
assemblies during this process. Details on genome assembly, gene and transposable
element annotation and analysis can be found in Supplementary Methods.

Clustering pan-genes. As annotated genes residing on each individual assembly
were not necessarily syntenic, we identified related genes across assemblies by
grouping the 1,796,495 gene models across assemblies by sequence similarity using
Markov clustering in the GET_HOMOLOGUES-EST pipeline17 (https://github.
com/eead-csic-compbio/get_homologues) with minimum alignment coverage of
75% (Supplementary Methods). The resulting clusters were divided into cloud,
shell, soft-core and core subsets based on the number of lines contained in each
cluster.

Variant calling and high-confidence SNPs. Variants were identified from BWA
alignment of short reads to the B. distachyon reference genome followed by analysis
with SAMtools mpileup to detect variants that passed initial quality filtering by
vcftools (v0.1.12b) vcf-annotate (defaults+3× average depth cutoff) resulting in
5,994,487 variants. These variants were used in the gene tree for VRN1 and its
comparison to the equivalent tree based on the assembled genomes.

Phylogenetic analysis and flowering time measurements. For whole-genome
phylogenetic trees the initial set of variants was further filtered to retain only SNPs
that were supported by at least three reads in every individual, and had an
unambiguous genotype for at least 52 of the 53 lines. After filtering we were left
with 3,933,264 high-confidence SNPs that were used for phylogenetic analysis. For
whole-genome phylogenetic analysis, maximum Likelihood (ML) phylogenetic
analysis was performed on the high-confidence SNPs of the 53 B. distachyon lines
in RAxML65 (v. 8.0.0). The 3,933,264 SNP sites were proportionally distributed
across the five chromosomes of B. distachyon (see Supplementary Methods).
Growth conditions and scoring of flowering time are described in the supple-
mentary Methods.

Analysis of flowering time and related molecular traits. The evolution of the 25
flowering time traits and related molecular traits recorded in 53 sequenced B.
distachyon lines was analyzed using BAYESTRAITS v 2.066 (Supplementary
Methods).

Transposable element insertions and deletions relative to the reference

genome. Transposable element (TE) variants relative to the reference genome were
inferred with TEMP67 (v1.05), using TE consensus sequences from the TREP
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database (http://botserv2.uzh.ch/kelldata/trep-db/index.html). Briefly, for each
accession, TEMP uses breakpoints of homology between paired-end sequences to
detect TE insertions present in the sequenced accession but absent from the
reference genome (non-reference insertions). In addition, TEMP uses deviations
from the expected insert size to identify TE insertions present in the reference
genome but absent from the sequenced accessions (absent insertions). Only sus-
pected TE insertions/absences were retained which were supported by at least two
read pairs from each side. The filtered output was then used to create TE insertion
and absence matrices, respectively.

Gene expression studies. Expression profiles for leaves from 36 accessions was
conducted using 3′ tag sequencing as described in the Supplementary Methods.
Expression analysis of accession Bd1-1 during its interaction with the grass fungal
pathogen P. graminis f. sp. tritici (Pg-tr) was conducted using 101 bp single-end
Illumina sequencing as described in the Supplementary Methods.

BLASTP similarity of non-reference genes to other proteomes. Peptide
sequences corresponding to non-cloud non-reference genes were queried against
the NCBI nr database (release 11 July 2014) with BLASTP to identify best matches
to other species with E-value ≤ 0.0001, if there was one. The mean query coverage
of retrieved hits was 77.8%.

Synteny between the reference genome and related grasses. We used an in-
house synteny pipeline, comprised of all vs. all BLASTp between respective pro-
teomes as well as self-BLASTp, using a HSP filter of 1E−5, and assignment of
putative orthologs using Cscore and four-fold degenerate transition/transversion
rates to identify syntenic genes. Adjacent (co-linear) gene matches were merged
into syntenic segments with a maximum allowed separation of five non-co-linear
genes. We required four co-linear gene pairs within merged segments in order to
retain respective segments.

Additional experimental details can be found in the Supplementary Methods.

Data availability. The sequence assemblies, gene annotations and related infor-
mation can be downloaded from the project website: https://brachypan.jgi.doe.gov/.
The raw reads for the genomic sequences are available (Supplementary Table 1 for
GOLD biosample identifiers and SRA information). Seeds for the lines used in this
study are available from the USDA NGPS or by request from the authors.
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