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Abstract

The major histocompatibility complex (MHC) is characterized by a birth and death model of evolution involving gene
duplication, diversification, loss of function, and deletion. As a result, gene number varies across taxa. Birds have between
one and 7 confirmed MHC class II B genes, and the greatest diversity appears to occur in passerines. We used multiple
primer sets on both genomic DNA (gDNA) and complementary DNA (cDNA) to characterize the range of class II B genes
present in a passerine, the common yellowthroat (Geothlypis trichas). We confirmed 39 exon 2 sequences from gDNA in
a single individual, indicating the presence of at least 20 class II B loci. From a second individual, we recovered 16 cDNA
sequences belonging to at least 8 transcribed loci. Phylogenetic analysis showed that common yellowthroat sequences fell
into subgroups consisting of classical loci, as well as at least 4 different clusters of sequences with reduced sequence
variability that may represent pseudogenes or nonclassical loci. Data from 2 additional common yellowthroats demonstrated
high interindividual variability. Our results reveal that some passerines possess an extraordinary diversity of MHC gene
duplications, including both classical and nonclassical loci.
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recombination

The major histocompatibility complex (MHC) consists of
genes that play a central role in vertebrate immunity, mainly
by recognizing foreign peptides and presenting them to
T cells, thus initiating the adaptive immune response (Klein
1986). MHC class I genes present primarily endogenous self
antigens and antigens originating from intracellular patho-
gens such as viruses to CD8-bearing T cells, whereas class II
genes present exogenous antigens to CD4-bearing T cells.
Class I and II genes can be further categorized as classical
(high polymorphism and expression), nonclassical (low
polymorphism with limited expression), or nonfunctional
pseudogenes (Klein and Figueroa 1986). Classical MHC
genes have the highest levels of polymorphism known for
coding genes (Gaudieri et al. 2000; Robinson et al. 2003).
This variability is thought to be produced primarily by
recombination (Richman et al. 2003; Reusch and Langefors
2005; Schaschl et al. 2006) and maintained through
balancing selection caused by coevolution of hosts and
parasites and sexual selection (Doherty and Zinkernagel
1975; Penn and Potts 1999).

MHC gene number varies across taxa, including between
closely related species and between haplotypes within
a species (Trowsdale 1995; Málaga-Trillo et al. 1998; Kelley

et al. 2005; Bryja et al. 2006). The MHC appears to follow
a birth-and-death model of evolution, in which new genes
arise via gene duplication and then are maintained for long
periods, become nonfunctional pseudogenes or are deleted
(Nei et al. 1997; Nei and Rooney 2005). Within individuals,
a higher number of loci and alleles may be favored if there is
a heterozygote advantage; however, evidence for this is
mixed (McClelland et al. 2003; Ilmonen et al. 2007; Oliver
et al. 2009), and some studies have found that an
intermediate number of MHC alleles is optimal (Wegner
et al. 2003; Bonneaud, Mazuc, et al. 2004; Kalbe et al. 2009).
Woelfing et al. (2009) predicted that the optimal number of
MHC molecules (class I and II combined) per individual
should be between 3 and 25, the same order of magnitude
typically observed in individuals, because higher variability
may lead to depletion of the T-cell repertoire (Nowak et al.
1992; Woelfing et al. 2009). The number of expressed MHC
class II B genes varies from one to 3 in amphibians (Kobari
et al. 1995; Babik et al. 2008; Zeisset and Beebee 2009), one
to at least 6 in fish (e.g., Málaga-Trillo et al. 1998; Aguilar
and Garza 2007), and at least 4 in a reptile (Miller et al.
2005). Eutherian mammals share conserved class II gene
regions of classical (DR, DQ, and DP) and nonclassical
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(DM and DO) loci, each having one or more expressed
B genes in most taxa (Hughes and Nei 1990; Takahashi et al.
2000; Kumánovics et al. 2003; Yuhki et al. 2003).

In birds, the number of class II B loci identified per
species varies from one to at least 7 confirmed and possibly
8 (Table 1). The best mapped bird species is the domestic
chicken (Gallus gallus), which has a minimal MHC (few genes
with short introns) compared with mammals (Kaufman
et al. 1999; Shiina et al. 2007; Hosomichi et al. 2008). Two
class II genes occur within the polymorphic chicken
B complex, although at least 3 less variable class II genes
of unknown function are present at the Y complex (Miller
et al. 2004). Some other species in Galliformes appear to
have similarly low numbers of class II loci (Wittzell et al.
1999; Strand et al. 2007), as do raptors (Alcaide et al. 2007;
Burri, Niculita-Hirzel, Salamin, et al. 2008), penguins (Tsuda
et al. 2001; Bollmer et al. 2007), and parrotlets (Hughes et al.
2008) among others (Table 1). Studies of passerine MHC
have generally revealed more genes than nonpasserines
(Westerdahl 2007; Table 1). Based on sequences amplified

from complementary DNA (cDNA), at least 3–7 tran-
scribed loci may be present per species in passerines,
whereas only 1–3 transcribed loci appear in nonpasserines
(Table 1). The presence of MHC pseudogenes and
nonclassical loci with low variability also appears to be
more common in passerines (Westerdahl 2007), although
the Y complex in Galliformes has similar nonclassical loci.
Single probable pseudogenes have been identified in
greenbuls (Andropadus virens; Aguilar et al. 2006) and house
finches (Carpodacus mexicanus; Hess et al. 2000), and 2 loci
(one probable pseudogene and one probable nonclassical
gene) have been identified in red-winged blackbirds (Agelaius
phoeniceus; Edwards et al. 2000; Gasper et al. 2001). It is
unclear whether these types of genes are duplicated within
species as are the classical loci.

Here, we employed multiple primer sets on both
genomic DNA (gDNA) and cDNA to assess the diversity
of MHC class II B loci present in a widespread North
American warbler, the common yellowthroat (Geothlypis
trichas). This is a promising species for further investigation

Table 1 Number of MHC class II B loci described in various avian species

Order Species
Total number
of loci

Transcribed
loci

Pseudogenes
or nonclassical
loci Source

Passeriformes Common yellowthroat (Geothlypis
trichas)

20 (31)* 8 (17) 9 (16) This study

House sparrow (Passer domesticus) 3* 3 Bonneaud, Sorci, et al. (2004)
Little greenbul (Andropadus virens) 8* 7 1 Aguilar et al. (2006)
Scrub jay (Aphelocoma coerulescens) 3* 3 Edwards et al. (1995)
Great reed warbler (Acrocephalus
arundinaceus)

4* 4 Westerdahl et al. (2000)

New Zealand robin (Petroica australis
australis)

7* 4 Miller and Lambert (2004a, 2004b)

I#iwi honeycreeper (Vestiaria coccinea) 3* 1 Jarvi et al. (2004)
Small cactus finch (Geospiza scandens) 6* 1 Sato et al. (2000), (2001)
Red-winged blackbird (Agelaius
phoeniceus)

3 2 Edwards et al. (1998, 2000); Gasper
et al. (2001)

Charadriiformes Great snipe (Gallinago media) 3* Ekblom et al. (2003)
Least (Aethia pusilla), crested
(A. cristatella) auklets

2* Walsh and Friesen (2003)

Galliformes Ring-necked pheasant (Phasianus
colchicus)

2 2 Wittzell et al. (1999)

Black grouse (Tetrao tetrix) 4* 2 2 Strand et al. (2007)
Chicken (Gallus gallus) 5 5 3 Miller et al. (2004); references therein
Japanese quail (Coturnix japonica) 7 6 Shiina et al. (2004)
Turkey (Meleagris gallopavo) 3 Chaves et al. (2009)
Peafowl (Pavo cristatus) 3* Hale et al. (2009)

Sphenisciformes Penguins (9 species) 1 1 Tsuda et al. (2001); Bollmer et al.
(2007); Kikkawa et al. (2009)

Ciconiiformes Crested ibis (Nipponia nippon) 1* Zhang et al. (2006)
Falconiformes Lesser kestrel (Falco naumanni) 1* Alcaide et al. (2008)
Strigiformes Barn owl (Tyto alba) 2 2 Burri, Niculita-Hirzel, Roulin, and

Fumagalli (2008)
Psittaciformes Parrotlet (Forpus passerinus) 1 Hughes et al. (2008)

The total number of loci are given, as are the number of those loci that are transcribed (if cDNA had been analyzed) or are possible pseudogenes or

nonclassical loci. For the common yellowthroat, the estimated number of loci based on confirmed sequences is given, as is the number of loci when both

confirmed and unconfirmed were considered (in parentheses). The MHC regions have been mapped in only a subset of these species, so most estimates are

minima. In many cases (indicated by *), the number of loci was estimated by ourselves or other authors based on the maximum number of sequences

recovered from a single individual with the assumption that individuals are heterozygous at each locus.
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of selection on the MHC because previous research has
shown that female mate choice is based on male plumage
ornamentation (Tarof et al. 2005; Dunn et al. 2008), and
male ornament size signals greater T-cell mediated and
humoral immunity (Garvin et al. 2008; Dunn et al. 2010),
which may be associated with MHC variation. Due to the
close relationships among duplicated MHC loci within
birds, primers often amplify multiple loci at once (Hess
and Edwards 2002; Westerdahl et al. 2004). We took
advantage of this to estimate the number of loci present in
the common yellowthroat. We amplified sequences from
gDNA to screen for classical loci as well as possible low
variability (nonclassical) loci or pseudogenes, and we
amplified sequences from cDNA in order to estimate the
number of loci that were actually transcribed. Our study
targeted exon 2 because it codes for the peptide-binding
region of the molecule and should be under selection. We
show that the number of class II B genes in this species
appears to be much greater than that found in previous
studies of birds.

Materials and Methods

Amplification of MHC from gDNA

For our initial investigation of MHC allelic variation, we
used DNA from 3 unrelated male common yellowthroats.
Samples were collected at the University of Wisconsin—
Milwaukee Field Station in Saukville, WI (lat 43�23#N, long
88�01#W) from individuals that were part of a long-term
study of mating behavior in this species (Garvin et al. 2006;
Dunn et al. 2008).

First, we amplified sequences from a single individual
(WNR) using 2 previously published primer sets: 1) 326/325
(Ekblom et al. 2003), a degenerate primer set which
amplified a 210-bp fragment (primers included) within exon
2 and 2) Int1f.7/Int2r.1 (Edwards et al. 1998; Aguilar et al.
2006), which amplified part of intron 1, all of exon 2, and
a small portion of intron 2 (525–575 bp including primers).
We amplified 326/325 in 50 ll reactions: 1� polymerase
chain reaction (PCR) buffer, 1 mM dNTPs, 2.5 mM MgCl2,
1 lM each primer, 1.2% DMSO, and 1.5 U GoTaq Flexi
DNA polymerase (Promega, Madison, WI). Reaction
conditions were as follows: 94 �C for 2 min; then 35 cycles
of 94 �C for 30 s, 50 �C for 30 s, and 72 �C for 30 s; and
a final extension of 72 �C for 7 min. We also amplified
Int1f.7/Int2r.1 in a 50 ll reaction: 1� PCR buffer, 1 mM
dNTPs, 2.5 mM MgCl2, 1 lM each primer, and 1.5 U
GoTaq. Reaction conditions included 94 �C for 3 min; then
30 cycles of 94 �C for 1 min, 54 �C for 1 min, and 72 �C for
1 min; and a final extension of 72 �C for 5 min. PCR
products were blunt ended by treating them with Pfu,
purified using QIAquick kits (QIAGEN, Valencia, CA), and
then cloned using the CloneSmart Blunt Cloning Kit
(Lucigen, Middleton, WI). Colonies with inserts of the
correct size were sequenced at the University of Chicago
Cancer Research Center DNA Sequencing Facility using the
vector primers (SL1 and SR2). WNR underwent 2 (326/325)

and 3 (Int1f.7/Int2r.1) independent PCR, cloning, and
sequencing rounds with these primer sets.

We designed a new forward primer (GetrInt1f; 5#-
GCCCTGAGCTGTGTGCTG-3#) because the intron
primer set (Int1f.7/Int2r.1) amplified sequences that we
suspected belonged to either pseudogenes or nonclassical
genes, and we wanted to target likely functional alleles. The
GetrInt1f primer was positioned in intron 1 (ending 9 bp
upstream of exon 2), and, in combination with Int2r.1,
amplified a 327 bp fragment (primers included) encom-
passing all of exon 2. Reaction conditions for GetrInt1f
were the same as for Int1f.7/Int2r.1. Using the GetrInt1f
primer, we cloned sequences from the original individual
(WNR), as well as 2 other individuals (ERM and GRG).
Each individual underwent 3 independent PCR,
cloning, and sequencing rounds with the GetrInt1f/Int2r.1
primer set.

Amplification of MHC from cDNA

To amplify transcribed sequences, total RNA was isolated
from liver tissue of a common yellowthroat collected in
Baton Rouge, Louisiana in January 2009. Liver tissue was
stored in RNAlater (QIAGEN) in the field, and RNA was
extracted using the RNeasy Mini Kit (QIAGEN) with
a DNase treatment. We then used the OneStep RT-PCR Kit
(QIAGEN) for both reverse transcription and amplification of
our target sequence, following the manufacturer’s protocol
with an annealing temperature of 57 �C. In order to amplify
exon 2, we used primers placed in exons 1 and 3: Song EX1F.2
and Song EX3R.1 (Aguilar et al. 2006). The PCR product was
then cloned and sequenced following the methods outlined
above. The extractedRNAunderwent 3 independent roundsof
reverse transcription PCR (RT-PCR) and cloning.

RFLP and Southern Blot Analysis

To obtain an estimate of how many class II B genes might
be present in the common yellowthroat, we performed
a restriction fragment length polymorphism (RFLP) analy-
sis. We selected 4 unrelated adults from the Wisconsin
population and digested 10 lg of gDNA for 3 h with
20 units of PvuII, an enzyme that has been used successfully
in other avian MHC studies (e.g., Ekblom et al. 2003;
Bonneaud, Sorci, et al. 2004; Miller and Lambert 2004a).
The digested DNA was run on a 0.8% agarose gel for 19 h
at 60 V in 0.5� Tris-Borate-EDTA buffer and then
transferred by Southern blotting to a Hybond (Amersham)
membrane following manufacturer’s instructions. The blot
was prehybridized at room temperature overnight in 50%
formamide, 5� standard saline citrate (SSC), 10� Denhardt’s
solution, and 250 lg/ml yeast RNA. The blot was then
hybridized at 42 �C overnight with 32P-labeled Getr*15
sequence as a probe. The hybridization buffer was the same
as the prehybridization, with the addition of dextran sulfate
to a concentration of 10%. The blot was washed in 0.5�
SSC, 0.1% SDS by rinsing briefly at room temperature,
followed by two 30 min washes at 65 �C with a buffer
change between each wash. Autoradiography was carried
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out for 24 h on Kodak BioMax film at �80 �C using an
intensifying screen.

Data Analysis

Spurious sequences can form during PCR due to Taq error
or the formation of heteroduplexes or chimeras, especially
when amplifying multiple sequences in one reaction (Jansen
and Ledley 1990; L’Abbé et al. 1992). We considered
sequences to be confirmed if they were amplified in at least
2 independent reactions, either from 2 different PCR/
cloning rounds from the same individual or from 2 different
individuals. Due to the apparently large number of
sequences present in each bird (.39 in WNR), it was often
difficult to get duplicates of individual sequences in
independent reactions, so we have reported unconfirmed
sequences as well and labeled them as such. Other
sequences that were less than 3 bp different from either
confirmed or unconfirmed sequences were discarded as
probable PCR error as were sequences that appeared to be
chimeras of 2 other sequences. All confirmed sequences
were submitted to GenBank (accession numbers
GQ247563–GQ247638), and both confirmed and uncon-
firmed sequences are available online as Supplementary
material.

We aligned the sequences manually in BioEdit v. 7.0.9.0
(Hall 1999). To determine relationships among common
yellowthroat sequences and to identify subsets of sequences,
including possible pseudogenes or nonclassical genes, we
constructed a phylogenetic network using the program
SplitsTree4 (Huson 1998; Huson and Bryant 2006). We
employed the Neighbor-Net method (Bryant and Moulton
2004) using Jukes–Cantor distances. The advantage of
phylogenetic networks is that they permit the representation
of conflicting signal that arises when processes such as gene
duplication and recombination have made evolutionary
relationships among sequences more complex than can be
demonstrated by a traditional phylogenetic tree (Bryant and
Moulton 2004). We used confirmed exon 2 sequences to do
this. To assess the relationships between exon 2 sequences
of common yellowthroat and other species, we constructed
a maximum likelihood (ML) tree using the HKY85
nucleotide substitution model with 500 bootstrap replicates
in the program PhyML v. 3.0 (Guindon and Gascuel 2003).
We then calculated exon 2 sequence diversity measures in
the program DnaSP v. 4.5 (Rozas et al. 2003).

We tested for the presence of recombination (or gene
conversion) using the program GENECONV v. 1.81
(Sawyer 1999). GENECONV employs a substitution
method that has a high probability of identifying re-
combination when it is present (with a low rate of false
positives) and is able to analyze homologous sequences
from the same locus or multiple loci (Posada 2002). The
program compares sequences in a pairwise fashion and
searches for stretches of sequence (fragments) that are more
similar than would be expected by chance. Each fragment is
compared with all possible fragments in the alignment in
a permutation process, and global P values (corrected for

multiple comparisons) are calculated. We ran 10 000
permutations and allowed zero mismatches. P values
,0.05 were considered evidence of recombination.

We tested for historical evidence of balancing selection
on the peptide-binding region by calculating nonsynon-
ymous (dN) and synonymous (dS) substitution rates. A dN/dS
ratio of x 5 1 is expected under neutral evolution, x , 1
under purifying selection, and x . 1 under positive
selection. First, we calculated the substitution rates using
the Nei and Gojobori (1986) method with the Jukes–Cantor
correction in MEGA v. 4.1 (Tamura et al. 2007). Rates were
calculated separately for both hypothesized peptide-binding
and non–peptide-binding codons as determined by Brown
et al. (1993) for human class II molecules. We tested for
positive selection using a Z-test (Nei and Kumar 2000).
Second, we tested for positive selection using the ML
method implemented in CODEML in the package PAML
v. 4 (Yang et al. 2000, 2005). The advantage to this method
is that we do not make an a priori assumption about which
codons may be peptide binding. To test for selection, we
used likelihood ratio tests of neutral models and models
with selection. In particular we compared: 1) neutral model
M1a (x0 , 1, x1 5 1) with positive selection model M2a
(x2 . 1) and 2) neutral model M7 (0, x, 1) with positive
selection model M8 (0, x, 1, x. 1). This second model
comparison (M7 and M8) is most robust to the effect of
recombination, which may cause false positives (Anisimova
et al. 2003). Positively selected codons with a x . 1 were
identified using the Bayes empirical Bayes approach (Yang
et al. 2005).

Results

Number of gDNA and cDNA Exon 2 Sequences

We recovered a large number of gDNA class II exon 2
sequences per individual. From one individual (WNR), we
sequenced 42–95 colonies containing MHC inserts for each
of the primer sets (Table 2). From these colonies, we were
able to confirm a total of 39 different sequences, indicating
a minimum of 20 class II B loci. There were an additional
22 unconfirmed sequences from WNR. From the 2
additional individuals (GRG and ERM) screened using
only the GetrInt1f/Int2r.1 primer set, we confirmed 12
and 14 sequences from 88 and 84 colonies, respectively.
These individuals also appeared to have a large number
of unconfirmed sequences. Overall, we confirmed a total
of 62 sequences from these 3 individuals, with only 3 of
these sequences confirmed in 2 different individuals,
indicating high interindividual allelic variability (Supplemen-
tary Figure S1).

We also found a large number of transcribed loci, with at
least 8 confirmed. From a single common yellowthroat
individual, we sequenced a total of 155 clones from 3
independent RT-PCR/cloning rounds and confirmed 16
sequences (Table 2). One confirmed cDNA sequence
matched a previously unconfirmed sequence (Getr*62)
recovered from WNR and another matched a confirmed
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sequence (Getr*34) from ERM. The 16 confirmed cDNA
sequences indicated at least 8 loci were transcribed; how-
ever, the number may be much higher as we recovered an
additional 18 unconfirmed sequences (Table 2).

RFLP Analysis

The RFLP analysis provided further evidence that the com-
mon yellowthroat has a large number of class II B genes.
Each of the 4 individuals had between 19 and 27 bands in the
range of 0.5–3.5 kb (Supplementary Figure S2). Also, all 4
individuals had different genotypes.

Phylogenetic Relationships

A phylogenetic network of confirmed gDNA sequences
from WNR and confirmed cDNA sequences from a second
individual showed a pattern of structuring, possibly
corresponding to different groups of loci (Supplementary
Figure S3, Figure 1). A subset of sequences fell into clusters
divergent from the rest of the sequences but with low
within-cluster sequence divergence. Different primer sets
amplified different clusters: Int1f.7/Int2r.1 amplified Clus-
ter 1, 326/325 and GetrInt1f/Int2r.1 amplified Cluster 2,
and 326/325 and Int1f.7/Int2r.1 amplified Cluster 3. More
than 2 gDNA sequences fell into each cluster, indicating
that the cluster sequences originated from multiple loci.
Two sequences (Getr*01 and 08, both amplified by 326/325)
were especially divergent from the rest and may represent
separate loci. The remaining sequences were amplified by
one or more of the 3 primer sets. A neighbor joining (NJ)
tree generated using amino acid sequences produced the
same pattern of clustering as the DNA sequences (Bollmer JL,
Dunn PO, Whittingham LA, unpublished data). Because

introns are not under selection, they may give more accurate
information about locus identity. In a separate NJ tree, the
corresponding intron 1 sequences supported these sub-
groups, further evidence that the cluster sequences are from
divergent groups of loci (Supplementary Figure S4). All the
confirmed cDNA sequences were interspersed among the
noncluster gDNA sequences (Supplementary Figure S3).
Similar to the confirmed gDNA sequences, the unconfirmed
sequences from WNR also consisted of noncluster and
cluster sequences; whereas 4 of the unconfirmed cDNA
sequences fell into Clusters 1 and 3 (Table 2; Supplementary
Figure S5). Although none of the Cluster 3 cDNA sequences
were confirmed, different Cluster 3 sequences were recovered
from independent cloning rounds: 2 sequences from the first
cloning round and one from the third.

Some common yellowthroat sequences intermixed with
sequences from other passerine species (Figure 1). Four of
the yellowthroat sequences fell into well-supported clusters
with sequences from other passerines. The 3 common
yellowthroat Cluster 3 sequences (Getr*05, 10, 18) formed
a cluster with 2 Savannah sparrow (Passerculus sandwichensis)
sequences. Also, common yellowthroat sequence Getr*01
(previously one of the divergent, noncluster sequences) fell
into a new cluster (Cluster 4) with sequences from 3 other
passerine species: the Savannah sparrow, red-winged
blackbird (A. phoeniceus), and common Amakihi (Hemignathus

virens), a Hawaiian honeycreeper. In contrast, no sequences
from other species fell into the common yellowthroat
Clusters 1 and 2, and no common yellowthroat sequences
were closely related to putative pseudogenes or nonclassical
genes previously identified in other passerine species (e.g.,
Came-DAB1, Anvi-DAB1, Agph-DAB2, and Agph-DAB3;
Figure 1).

Sequence Variation, Recombination, and Selection

Sequences in Clusters 1, 2, and 3 were less variable than the
remaining, nonclustered and transcribed sequences (Table 3).
Using only confirmed sequences, the number of poly-
morphic sites within each of the clusters was �18, whereas
the nonclustered and transcribed sequences had 110 and 69
variable sites, respectively (within the 160-bp fragment
where sequences from all 3 primer sets overlap). Nucleotide
diversity and average intersequence divergence were corre-
spondingly low within the 3 clusters. The 76 confirmed
exon 2 sequences translated into 74 unique amino acid
sequences (Supplementary Figure S1). Among the gDNA
sequences, 10 had a single codon deletion, one (Getr*61) had
a single codon insertion, and 2 (Getr*12 and 20) had a 4 bp
deletion resulting in a stop codon (Supplementary Figure S1).
No other sequences had stop codons. Among the confirmed
cDNA sequences, Getr*68 had a single codon insertion, and
none had deletions.

The program GENECONV found evidence of putative
recombination events among confirmed common yellow-
throat sequences. This analysis was restricted to the 65
sequences derived from the intron primer sets that spanned
the entire exon 2. It identified 4 possible fragments (60–89 bp

Table 2 Number of MHC class II B exon 2 sequences
amplified from gDNA and cDNA of common yellowthroats

326/
325

Int1f/
Int2r

GetrInt1f/
Int2r Total cDNA

Number of colonies
sequenced

42 84 95 221 155

Confirmed Noncluster 10 3 18 22 16
Cluster 1 5 5
Cluster 2 5 4 9
Cluster 3 2 1 3

Total confirmed 17 9 22 39 16

Unconfirmed Noncluster 3 5 8 14
Cluster 1 1 11 12 1
Cluster 2 2 2
Cluster 3 3

Total unconfirmed 1 14 7 22 18

Total number of sequences 18 23 29 61 34

The gDNA sequences were amplified from a single individual (WNR) using

3 different primer sets (326/325, Int1f/Int2r, and GetrInt1f/Int2r), and the

‘‘Total’’ column reports the total number of sequences across primer sets

(after removing redundant sequences) amplified from that individual. The

cDNA sequences were amplified from a second individual. Numbers of

confirmed and unconfirmed sequences are presented separately and are

further classified into subgroups based on sequence similarity.
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long) that were likely produced by recombination. (Table 4).
Seven different sequences were involved in these 4 fragments,
and all were noncluster sequences. We found no evidence
for recombination between noncluster and cluster sequences,
between sequences from different clusters, or between se-
quences within clusters. The high sequence similarities within
clusters, however, make the detection of conversion events
within clusters unlikely.

Analysis of nucleotide substitution rates provided
evidence of positive selection on exon 2. Using MEGA,

there was evidence of positive selection on the peptide-
binding codons of the confirmed noncluster and transcribed
sequences but not on Cluster 1 and 3 sequences (Table 5).
The noncluster gDNA and transcribed sequences had
similarly high nonsynonymous mutation rates, whereas both
dN and dS were much lower among the sequences in Clusters
1, 2, and 3. Cluster 2 sequences did show a significant excess
of nonsynonymous mutations, but this result is questionable
because of the low mutation rates. We found no evidence of
selection acting on the non–peptide-binding codons for any

Figure 1. ML tree of MHC class II B exon 2 sequences (based on 133 bp) from common yellowthroats and other passerine

species. Bootstrap values above 60 are shown. A subset of yellowthroat sequences (Getr, Geothlypis trichas) were used, including

a representative sample of sequences from Clusters 1, 2, and 3. (Acar, Acrocephalus arundinaceus; Agph, Agelaius phoeniceus; Anvi,

Andropadus virens; Apco, Aphelocoma coerulescens; Came, Carpodacus mexicanus; Ceol, Certhidea olivacea; Geco, Geospiza conirostris; Gefo,

Geospiza fortis; Gefu, Geospiza fuliginosa; Hevi, Hemignathus virens; Hisa, Himatione sanguinea; Pado, Passer domesticus; Pasa, Passerculus

sandwichensis; Peau, Petroica australis).
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of the sequence sets. The above analyses were limited to
confirmed sequences only, and the Cluster 1 sequences with
frameshift mutations (Getr*12 and 20) were excluded. There
was also evidence of positive selection using the ML method
implemented in CODEML. We did separate analyses for all
the confirmed sequences together, the noncluster sequences
only, and cluster sequences only. These analyses were
restricted to the 65 sequences derived from the intron
primer sets that spanned the entire exon 2. Both selection
models (M2a and M8) provided a better fit than their
respective neutral models (M1a and M7) when we analyzed
all sequences, as well as just the noncluster sequences
(P , 0.001; Supplementary Table S1). When we analyzed
just the cluster sequences, M2a was not significantly better
than M1a (P . 0.10), but M8 was a better fit than M7 (P ,

0.05). The M2a and M8 models identified 13 and 15 sites,
respectively as being under positive selection when all se-
quences were analyzed and 22 sites each for noncluster
sequences only (Supplementary Table S1). Twelve of the 22
sites identified by CODEML as being under positive
selection were designated by Brown et al. (1993) as being
peptide binding (Supplementary Figure 1). Analyses of the
cluster sequences did not identify any sites with posterior
probabilities .0.99.

Discussion

The MHC is characterized by gene duplication and deletion,
resulting in variation in gene number between even closely
related taxa. Passerines are thought to have a greater number
of MHC loci than other bird taxa; however, the data on gene
number in passerines are more ambiguous than for other
taxa. This study provides the best evidence to date of a large
number of gene duplications in a passerine. We recovered
39 confirmed exon 2 sequences from a single individual,
which is evidence of at least 20 class II B loci in the com-
mon yellowthroat. Furthermore, we identified another 22
sequences that were unconfirmed, which, if confirmed by
replication, indicates this individual could have a minimum
of 31 loci. As mentioned earlier, MHC gene number can
vary among haplotypes within a species, so other individuals
with different haplotypes could have fewer or more genes.
These loci included both those having characteristics typical
of classical loci, as well as 3 low variability clusters that may
represent either nonclassical loci or pseudogenes, although
that remains uncertain. We also recovered a large number
of transcribed alleles from a different individual. We were able
to confirm 16 sequences but amplified 18 additional un-
confirmed sequences, so a minimum of 8 (but as many as 17 if
additional sequences are confirmed) loci are transcribed. This
is likely an underestimate as gene expression varies across
tissues, is low for some genes, and depends on disease state
(e.g., Shiina et al. 2004; Hughes 2005). An RFLP analysis
revealed a large number of bands, corroborating the high
number of sequences recovered from cloning. A few common
yellowthroat sequences fell into well-supported clusters with
sequences from other passerine species (Figure 1), suggesting
the presence of loci that predate the divergences of these
species. We also found evidence of selection on the peptide-
binding codons of the noncluster and transcribed sequences;
in contrast, 2 clusters did not differ from neutrality. Overall,
we confirmed a total of 76 sequences from 4 yellowthroat
individuals, which is an indication of high variability both
within and between individuals.

Number of Loci

Across bird species, MHC class II B gene number varies
from one to at least 7 confirmed loci (Table 1). The MHC
regions of a few bird species have been mapped to varying
degrees, providing the most accurate estimates of overall
gene number. Real and substantial differences in gene
number do exist: the 2 classical class II B genes mapped in
the domestic chicken correspond to 7 loci in the Japanese
quail (Shiina et al. 2004). The domestic turkey has 3 class II
B loci mapped (Chaves et al. 2009), and there is strong
evidence that owls have only 2 loci (Burri, Niculita-Hirzel,
Salamin, et al. 2008; Burri, Niculita-Hirzel, Roulin, and
Fumagalli 2008) and a parrotlet has only one (Hughes et al.
2008). Some passerines appear to have a larger number of
class II B loci than other taxa; however, the data are more
ambiguous. A few genes have been characterized in 3
species (Edwards et al. 1998, 2000; Hess et al. 2000;
Gasper et al. 2001; Aguilar et al. 2006), but most information

Table 3 Sequence diversity at common yellowthroat MHC
class II B loci

Sequence set
Number of
sequences

Number of
polymorphic
sites p

Number of
bp differences
between
sequences
(average ±
standard error)

All gDNA
sequences

62 121 0.184 29.4 ± 2.6

Cluster 1 5 16 0.050 8.0 ± 1.9
Cluster 2 12 17 0.035 3.9 ± 1.0
Cluster 3 3 4 0.017 2.7 ± 1.3
Noncluster
(gDNA)

42 109 0.172 27.5 ± 2.5

Transcribed 16 68 0.152 24.3 ± 2.7

The number of sequences included for each analysis, number of

polymorphic sites, nucleotide diversity (p), and average distance between

sequences are reported. Only confirmed sequences were used, and the

analyses were limited to the 160 bp for which all primer sets overlapped.

Table 4 Putative recombination events between common
yellowthroat MHC class II B sequences

Seq 1 Seq 2 Sim P Begin End Length

Getr*64 Getr*68 0.023 100 159 60
Getr*37 Getr*39 0.032 188 276 89
Getr*34 Getr*76 0.040 104 167 64
Getr*65 Getr*68 0.044 100 167 68

All fragments are globally significant. The 2 sequences involved, the

simulated P value, beginning position, ending position, and length (bp) of

each fragment are given.
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about locus number has to be inferred from the number of
sequences recovered from single individuals or from RFLP
analyses. For example, Miller and Lambert (2004b) recovered
up to 14 exon 2 sequences per individual from New Zealand
robin (Petroica australis) gDNA, and Aguilar et al. (2006)
recovered 14 unique sequences from the cDNA of a little
greenbul, suggesting that these species may have a minimum
of 7 loci (8 in the greenbul when a pseudogene is included).
RFLP analyses also provide a rough estimate of gene number,
and passerines have had up to 30 bands per individual,
indicating the presence of a large number of class II genes in
some species (reviewed in Westerdahl 2007).

Based on RFLP and cloning data, the common yel-
lowthroat has a high number of class II B genes compared
with other bird species studied to date. The 4 common
yellowthroats had between 19 and 27 RFLP bands per
individual, a high number similar to the willow warbler
(Phylloscopus trochilus) and Savannah sparrow (P. sandwichensis),
which both had more than 20 bands per individual
(Westerdahl et al. 2000; Freeman-Gallant et al. 2002). In
contrast, great reed warblers (Acrocephalus arundinaceus) had
13–17 RFLP bands (Westerdahl et al. 2000), house sparrows
(Passer domesticus) had 6–12 (Bonneaud, Sorci, et al. 2004),
and Florida scrub jays (Aphelocoma coerulescens) had only 2–4
(Edwards et al. 1995). The cloning data suggested a similarly
high number of loci compared with other species. The
confirmation of 39 sequences from a single individual
implies that the common yellowthroat has at least 20 class II
B loci, and, thus, evidence of extensive gene duplication.
Pseudogene or nonclassical sequences (i.e., low variability)
have been recovered from other passerines (e.g., Edwards
et al. 2000; Hess et al. 2000; Jarvi et al. 2004; Aguilar et al.
2006) but not in the high numbers that seem to be present
in the common yellowthroat. Two different low variability
loci were recovered from the red-winged blackbird
(Edwards et al. 2000; Gasper et al. 2001), whereas in the
common yellowthroat, we recovered confirmed sequences
that fell into 4 different low variability clusters, 3 of which
contained more than 2 sequences, indicating they originated
from multiple loci: Cluster 1 had 5 sequences, Cluster 2 had 9,

Cluster 3 had 3, and Cluster 4 had one. So, not only are the
classical loci duplicated in the common yellowthroat but
possible nonclassical or pseudogene loci are likely duplicated
as well.

The greater number of loci found in the common
yellowthroat compared with other bird species may be
attributed to our use of multiple primer sets. In multigene
families, particular primers might selectively amplify some
genes or alleles but not others (Wagner et al. 1994). We used
3 different primer sets on the gDNA, and each of them
amplified sequences not amplified by the other 2 primer
sets. Cluster 1 sequences, for example, were amplified
almost exclusively by the intron primer combination
Int1f.7/Int2r.1, whereas this primer set did not amplify
any sequences from Cluster 2. The implication of this
finding is that MHC studies may be underestimating the
amount of variation present depending on the primers used.
In addition to different detection capabilities of different
primer sets, the same primer set may detect a different
number of loci in different species. The 326/325 exon
primer set appeared to amplify only a single locus in the
great snipe (Gallinago media; Ekblom et al. (2003), whereas it
amplified 17 confirmed sequences in a single common
yellowthroat (WNR). Also, Aguilar et al. (2006) used the
Int1f.7/Int2r.1 intron primer set on the little greenbul and
amplified at least 3 apparently classical loci and a single
pseudogene, whereas in the common yellowthroat, we
amplified at least 2 classical loci and at least 3 nonclassical or
pseudogene loci with these primers. Much of the apparent
variation in gene number among bird species is likely due to
gene duplication, but variation in the primers’ ability to
detect loci apparently contributes as well.

Our results suggest the presence of at least 20 class II
genes in the common yellowthroat, but there may be as
many as 31 loci if unconfirmed sequences are included as
well. It is known that artifact sequences may arise during
PCR due to Taq error or the formation of recombinants
(Jansen and Ledley 1990; L’Abbé et al. 1992), and this
problem may be exacerbated when the number of target
sequences is large (Qiu et al. 2001). For this reason, most

Table 5 Comparison of rates of nonsynonymous (dN) and synonymous (dS) substitutions calculated separately for peptide-binding
codons and non–peptide-binding codons of common yellowthroat MHC class II B sequences

Peptide-binding codons Non–peptide-binding codons

Sequence set
Number of
sequences dN ± SE dS ± SE dN/dS dN ± SE dS ± SE dN/dS

All gDNA sequences 60 0.608 ± 0.120 0.211 ± 0.111 2.88a 0.135 ± 0.034 0.137 ± 0.034 0.99
Cluster 1 3 0.000 ± 0.000 0.053 ± 0.066 0.00 0.045 ± 0.017 0.058 ± 0.041 0.78
Cluster 2 12 0.034 ± 0.018 0.000 ± 0.000 —a 0.024 ± 0.008 0.024 ± 0.021 1.00
Cluster 3 3 0.000 ± 0.000 0.000 ± 0.000 0.00 0.022 ± 0.013 0.027 ± 0.027 0.81
Noncluster (gDNA) 42 0.553 ± 0.110 0.132 ± 0.092 4.19a 0.134 ± 0.033 0.129 ± 0.031 1.04
Transcribed 16 0.534 ± 0.125 0.180 ± 0.079 2.97a 0.105 ± 0.030 0.082 ± 0.032 1.28

Substitution rates were calculated separately for the different subsets of sequences. Fourteen peptide-binding and 39 non–peptide-binding codons were

analyzed. SE, standard error.
a Z-test for positive selection (HA: dN . dS) was significant (P , 0.05).
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MHC studies verify their sequences by confirming them in
independent PCRs. Cloning and sequencing can be an
inefficient method when confirming sequences because
the questionable sequences cannot be targeted for recloning
(all sequences are reamplified and recloned), and some
sequences appear to be more easily amplified than others. In
our case, the large number of sequences present in these
individuals made it difficult to get duplicates of individual
sequences in independent reactions. Although we identified
and removed sequences that were likely PCR artifacts, we
cannot rule out the possibility that others exist among the
unconfirmed sequences. In turn, we may have inadvertently
discarded true sequences as PCR error. Nevertheless, within
each individual, the unconfirmed sequences we retained are
all �3 bp different from other unconfirmed and confirmed
sequences in that individual, suggesting that many of these
represent additional alleles.

Low Variability Loci

Clusters of sequences with low variation (e.g., 1, 2, and 3
in Supplementary Figure S3, Figure 1), which may be
individual loci or groups of loci, have been identified in
a number of taxa, but their origins and functions vary. Some
low variability loci appear to be pseudogenes, having
characteristics such as frameshift mutations, stop codons,
or mutations in promoter regions that prevent them from
producing functional transcripts (e.g., Moon et al. 2005).
Among birds, a few low variability class II loci in passerines
have been identified as probable pseudogenes (Edwards
et al. 2000; Hess et al. 2000; Aguilar et al. 2006), whereas
others do not have characteristics of pseudogenes (at least at
the portions sequenced), but still lack polymorphism
(Gasper et al. 2001; Sato et al. 2001; Jarvi et al. 2004).
These other low variability loci may be nonclassical genes,
which have been described predominantly at MHC class I
but also at class II in mammals (DM and DO regions). In
addition to low polymorphism, nonclassical genes have
limited expression (e.g., tissue specific) and may have
functions differing from classical MHC genes (Klein and
Figueroa 1986). These genes might arise when a polymorphic
classical locus specializes to present certain types of antigens
(Fischer Lindahl et al. 1997) or to perform other specialized
functions (e.g., Kropshofer et al. 1998; Zarutskie et al.
2001). In other cases, nonclassical loci are transcribed, but
their function remains unknown. This is the case in house
sparrows with low variability class I loci (Bonneaud, Sorci,
et al. 2004) and in the chicken with nonclassical class II loci
found in the Y complex (Zoorob et al. 1993; Miller et al.
2004).

Common yellowthroat sequences fell into multiple low
variability clusters, at least 2 of which may contain non-
classical genes. We hypothesize that the clusters correspond
to separate loci or groups of loci, due to the degree of
sequence divergence at exon 2 between clusters and be-
tween the clusters and noncluster sequences. Intron se-
quences can be better indicators of gene identity than exon
2 because balancing selection on exon 2 may obscure

phylogenetic history. In our study, the pattern of clustering
at intron 1 supported the pattern of clustering at exon 2,
suggesting that sequences from Clusters 1 and 3, as well as
noncluster sequences, came from different groups of loci.
However, more data are needed to confirm that the clusters
represent separate loci. Clusters 1 and 2 (Figure 1) were
composed of common yellowthroat sequences only,
suggesting these alleles arose more recently. In contrast,
Clusters 3 and 4 (which was originally identified by Jarvi
et al. [2004]) did include sequences from multiple species,
which indicates these allelic lineages are likely older,
predating the divergences of those species, although
convergent evolution is also a possible explanation. In
birds, few orthologous loci have been identified and only
between relatively closely related species (Wittzell et al.
1999; Miller and Lambert 2004a; Strand et al. 2007; Burri,
Niculita-Hirzel, Salamin, et al. 2008). Interestingly, both
Clusters 3 and 4 consist of fewer sequences and thus likely
originate from fewer loci within the common yellowthroat
than do Clusters 1 and 2 and the noncluster sequences
(Supplementary Figure S3; Table 2). It appears likely that
Clusters 1 and 3 contain nonclassical genes. Our cDNA
sequencing revealed one unconfirmed sequence from
Cluster 1, as well as 3 unconfirmed sequences from Cluster 3.
This suggests that at least some of these loci are functional and
not pseudogenes. We confirmed 2 sequences with frameshift
mutations within Cluster 1, so either these are pseudoalleles at
functional loci, or Cluster 1 contains a mix of functional and
nonfunctional genes. In contrast, sequences within Cluster 2
showed no evidence of being from pseudogenes (although we
sequenced only a small portion of the genes), but we did not
recover any of these from the cDNA. They could be expressed
in a different tissue or they are possible pseudogenes. It is
possible that the clusters we have chosen to recognize as
probable low variability loci are spurious because they result
from a single individual or are relatively invariant because of
the low number of sequences in each cluster (3, 5, and 12).
However, the corresponding sequence divergence at intron 1
supports the idea that these sequences originate from different
groups of loci, and the sequences at our smallest cluster
(3 sequences in Cluster 3) are not only highly similar to each
other but also show high similarity to 2 sequences from
another species, suggesting it is not an artifact of sequence
number.

Evidence of Recombination and Selection

We confirmed a total of 76 exon 2 sequences from only 4
common yellowthroat individuals, an indication of high
allelic variability in this species. Two processes responsible
for the high polymorphism typically seen at MHC genes are
recombination and balancing selection. Recombination
shuffles variation, thereby forming new alleles, and it is
thought to play a central role in generating MHC poly-
morphism (Gyllensten et al. 1991; She et al. 1991). Evidence
for both intra- and interlocus recombination at the MHC
has been found in a number of taxa (e.g., Richman et al.
2003; Miller and Lambert 2004a; Reusch and Langefors
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2005; Schaschl et al. 2006). We found evidence that
recombination may be contributing to the high allelic
diversity within the common yellowthroat, at least among
the noncluster and transcribed sequences. Interestingly, we
found no evidence of recombination between noncluster
and cluster sequences or between sequences from different
clusters. Perhaps this is because sequences at the cluster loci
have more specialized functions that make recombining
with divergent sequences disadvantageous.

Balancing selection is also responsible for high MHC
polymorphism as it acts to retain alleles over time. An excess
of nonsynonymous mutations (dN/dS . 1) at putative
peptide-binding codons is characteristic of classical MHC
genes (Hughes and Nei 1988, 1989; reviewed in Bernatchez
and Landry 2003; Garrigan and Hedrick 2003). Among the
common yellowthroat sequences, we found strong evidence
of positive selection on the noncluster and transcribed
sequences. Putative peptide-binding codons showed an
excess of nonsynonymous mutations, and CODEML also
identified a number of sites under positive selection. In
contrast, the sequences within the 3 clusters had low
mutation rates or no mutations at all at the peptide-binding
codons. Hess et al. (2000) and Aguilar et al. (2006) found
dN/dS ratios not significantly different from neutral at low
variability pseudogenes, whereas others have found dN/dS
ratios less than 1 at peptide-binding codons of lower
variability loci and have speculated that it was the result of
purifying selection (Jarvi et al. 2004; Axtner and Sommer
2007). Cluster 2 did have an excess of nonsynonymous
mutations at the putative peptide-binding codons; however,
the overall mutation rate was very low, so this may be
a spurious result. Garrigan and Hedrick (2003) noted that an
excess of nonsynonymous mutations is not definitive
evidence of current selection because it takes time for
sequences to accumulate an excess of nonsynonymous
mutations when under selection and it takes a long time for
the signal to be erased in the absence of selection.

It has been noted that, although selection appears to favor
high MHC variability at the population level, each individual
expresses only a small proportion of the existing alleles,
which is somewhat unexpected given the high potential for
gene duplication (Woelfing et al. 2009). In fact, there is some
evidence in polyploid species that duplicate loci have been
silenced (Shum et al. 2001; Sammut et al. 2002), suggesting it
is advantageous to maintain a lower number of expressed
loci. The primary explanation for this is that as the number of
MHC alleles (class I and II combined) increases, there is first
positive selection for an increased number of T-cell lines that
are capable of interacting with MHC/peptide complexes in
general, followed by a specific negative selection against
T-cell lines that are self-reactive (reviewed in Milinski 2006;
Woelfing et al. 2009). Modeling shows that negative selection
likely outweighs positive selection (Nowak et al. 1992;
Woelfing et al. 2009; but see Borghans et al. 2003) so having
too many MHC alleles leads to depletion of the T-cell
repertoire and reduced immunocompetence. Woelfing et al.
(2009) predicted that the optimal number of MHC molecules
should be between 3 and 25 per individual, but a larger

optimum could be favored by a high diversity of pathogens.
We amplified at least 16 sequences (with possibly as many as
34 different transcribed sequences if confirmed) in a single
common yellowthroat from class II alone. It will be
interesting to determine whether class I has undergone
a similar duplication of transcribed loci, what the optimum
number of MHC alleles is in this species, and whether it is
also higher than in other taxa.

Supplementary Material

Supplementary material can be found at http://www
.jhered.oxfordjournals.org/.
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