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Synopsis   

 

Parasites are often hidden in their hosts and exhibit patchy spatial distributions. This makes 

them relatively difficult to detect and sample. Consequently we have poor knowledge of 

parasite diversities, distributions and extinction. We evaluate our general understanding of 

parasite diversity and highlight the enormous bias in research on parasites such as 

helminths and arthropods that infect vertebrate hosts. We then focus on Myxozoa as an 

exemplary case for demonstrating uncharted parasite diversity. Myxozoans are a poorly 

recognised but speciose clade of endoparasitic cnidarians with complex life cycles that have 

radiated to exploit freshwater, marine and terrestrial hosts by adopting strategies convergent 

to those of parasitic protists. Myxozoans are estimated to represent some 20% of described 

cnidarian species – greatly outnumbering the combined species richness of scyphozoans, 

cubozoans, and staurozoans. We summarise limited understanding of myxozoan 

diversification and geographical distributions, and highlight gaps in knowledge and 

approaches for measuring myxozoan diversity. We close by reviewing methods and 

problems in estimating parasite extinction and concerns about extinction risks in view of the 

fundamental roles parasites play in ecosystem dynamics and in driving host evolutionary 

trajectories. 
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Introduction 

Diversity in terms of species richness in any one place and at any one time will be a 

manifestation of both ecological and evolutionary processes. The latter will be a function of 

patterns of speciation and extinction resulting from responses to abiotic and biotic 

environments while immigration and emigration will determine the distributions of locally 

adapted species. Because species are typically comprised of genetically distinct populations 

and species ranges vary, the outcomes of species interactions with their environments will 

continuously change in space and time according to geographical selection mosaics 

(Thompson 1999). Such ongoing evolutionary and ecological dynamics organise biodiversity 

on Earth. Coevolution in reciprocally interacting species continually reshapes interactions 

across different spatial and temporal scales and is a major biodiversity driver. However, 

accelerated environmental change effected by anthropogenic activities now challenges such 

biodiversity dynamics (Hoberg & Brooks 2015). 

Parasites form intimate associations by living on or in another organism, the host, from 

which they derive nutrition. Because they are often hidden within their hosts, and exhibit 

patchy distributions parasites are inherently difficult to sample. Such difficulties no doubt 

have contributed to the typical absence of data on parasites in ecological surveys, in indices 

of biological assessment, in many food web studies, and in evaluations of extinction risk.  

Other factors contributing to neglect of parasites include lack of taxonomic expertise, time 

required for pathological investigation and charismatic appeal – parasites often elicit disgust 

and avoidance responses. Parasites are also overlooked over long time scales with their 

paltry fossil record promoting a narrow view of the history of life on Earth. Our consequent 

poor knowledge of parasite diversities, distributions, origins and extinctions creates a 

‘parasite void’.  

We examine this parasite void by evaluating our general understanding of parasite 

diversity and then more particularly explore uncharted diversity patterns revealed by the 

Myxozoa, a speciose radiation of endoparasites that exploit vertebrate and invertebrate 
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hosts. Long regarded as enigmatic, it is now clear that myxozoans are a clade of parasitic 

cnidarians – an affinity that is increasingly but not yet broadly recognised by biologists. By 

focusing on patterns of myxozoan diversity we illustrate generic problems of estimating 

parasite diversities while highlighting patterns of diversification that have enabled 

endoparasitic cnidarians to exploit marine, freshwater and terrestrial hosts. We then go on to 

review parasite extinction and its implications in our changing world.   

 

Parasite diversity  

The present-day diversity of parasites results from evolutionary transitions to parasitism by a 

broad array of organisms and their subsequent diversification and extinction. Thirteen of the 

approximately 50 eukaryotic phyla recognised by de Meeûs & Renaud (2002) are comprised 

entirely of parasites and a further 23 phyla contain parasites. Within Metazoa, parasitism 

appears to have evolved independently at least 223 times in 15 of the 35 generally 

recognised animal phyla (Weinstein & Kuris 2015) with subsequent diversification to large 

numbers of species in some cases (e.g. nematodes; Poulin & Morand 2000; Poulin 2011a; 

Blaxter & Koutsovoulos 2015), These estimates are likely to increase as metazoan 

relationships are better resolved, unknown life-history strategies are described and new 

species are discovered (Weinstein & Kuris 2015). Although free-living lifestyles have been 

regained on occasion (Poulin 2011a) and some transitions to parasitism may ultimately have 

failed, parasitism as a lifestyle has clearly been highly successful.  

Parasitologists have long recognised that parasites are ubiquitous, that co-infections 

are common and that host species are often infected by numerous parasite species 

(Schmid-Hempel 2011). For example, Kennedy (1978) found that brown trout from nine 

British lakes harboured 17 species of metazoan parasites (mostly helminths), and Valtonen 

et al. (1997) recorded 42 and 38 species of metazoan and protozoan parasites from perch 

and roach, respectively, from four Finnish lakes. Even though some parasites may be 

generalists (equivalent stages infecting > one host species) such data have led to the 
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conclusion that there are more parasitic than host species on the planet (Windsor 1988, 

Schmid-Hempel 2011). Many estimates of parasite species diversity are based on 

extrapolations of patterns of host specificity using simple equations. For example, Poulin and 

Morand (2000) inferred that every metazoan host has at least one parasite species. Poulin 

and Morand (2004) proposed that there are at least twice as many endohelminth species 

(77,000 species) as species of vertebrate hosts, and Dobson et al. (2008) suggested a 

greater estimate (300,000 endohelminth species) after correcting for cryptic species.   Such 

extrapolations may be overestimates if local patterns of host-specificity cannot be scaled up 

to global patterns and across all host types (Costello 2016). In addition, the decelerating 

nature of species accumulation curves is not accounted for (the discovery of new parasite 

species becomes less likely as more host species are investigated; Strona & Fattorini 2014). 

Another approach to estimate parasite species diversity is to rely on expert opinion, although 

recent evidence suggests this may be unreliable (Poulin 2014).  

Estimating parasite diversities is compromised by various issues.  Many parts of the 

world (e.g. deep sea, meiofaunal zones) and many host groups (e.g. invertebrates) are 

poorly sampled (e.g. Leung et al. 2015; Rohde 2015; Costello 2016; Okamura 2016). 

Unrecognised cryptic species and geographic bias also confound diversity estimates. 

Furthermore, invalid taxa may not be accounted for (e.g. species synonymous with species 

already described). Perhaps most remarkable, however, is our extremely poor knowledge of 

microparasite diversity (Okamura 2016). Indeed, Dobson et al. (2005) conceded that ‘we 

have no credible way of estimating how many parasitic protozoa, fungi, bacteria, and viruses 

exist’– hence nearly all estimates of parasite diversity are based on extrapolation of data on 

metazoan parasites (especially helminths).  Poulin (2014) stated that there are ‘no solid 

estimates of parasite diversity and no adequate method for obtaining one’. Accordingly, 

cumulative curves of known parasite species are still rising or only beginning to slow down.  

We note, however, that our very poor understanding of microparasite diversity is 

beginning to improve. Molecular approaches are now revealing extensive diversities of 

eukaryotic protistan groups through the analysis of environmental samples from marine, 

Page 5 of 54 Integrative and Comparative Biology



freshwater and terrestrial habitats (see Bass et al. 2015 for review). For example, de Vargas 

et al. (2015) found an unsuspected diversity of parasites in metabarcoding studies of 

eukaryotic plankton from the photic oceanic realm. General primers used in amplicon 

sequencing identified some 21% of the hyperdominant cosmopolitan OTUs as parasitic 

alveolates and excavates. Most notable was novel excavate diversity (>12,300 OTUs) that 

was associated with reference sequences of diplonemids (for which there are only two 

described genera). This unanticipated and surprising excavate OTU diversity was some 50-

fold, 6-fold and 3.8-fold higher than that of associated foraminifers, ciliates and diatoms, 

respectively. In addition, 30% of the OTUs obtained by de Vargas et al. (2015) could not be 

assigned to known eukaryotic groups. Given the ubiquity of parasites, it is likely that a 

considerable proportion of these OTUs will be representative of parasites.  

For highly divergent taxa, targeted primers may be required to reveal diversity. For 

example, Chambouvet et al. (2015) developed primers for Perkinsea (a parasitic group of 

alveolates associated with mass mortality of frog tadpoles) and found novel diversity in 

freshwater samples and tadpole livers from temperate and tropical habitats. Similarly, 

targeted primers identified novel lineages of haplosporidians (parasites of marine and 

freshwater invertebrates belonging to the Ascetosporea), increasing the total number of 

haplosporidians by >100% (Hartikainen et al. 2014a).   

 

The Myxozoa: An unusual, species-rich clade of endoparasites 

Introduction to Myxozoa 

Myxozoans are a species-rich clade of endoparasitic cnidarians with complex life cycles, 

exploiting invertebrate and vertebrate hosts (Canning & Okamura 2004; Okamura et al. 

2015a). Many myxozoan infections are innocuous (not readily apparent), but some cause 

important diseases of fish (Feist & Longshaw 2006). Myxozoans demonstrate extreme 

morphological simplification and miniaturisation as a result of their parasitic lifestyle 

(Okamura et al. 2015b). In particular, they exhibit a trend of tissue loss, they lack a gut and 
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nervous system, and cilia and centrioles are absent.  The stinging cells or cnidocytes used 

by free-living cnidarians for prey capture and defense have been co-opted for transmission. 

Water-borne multicellular stages (spores) possess intracellular organelles (polar capsules 

homologous to  nematocysts in cnidocytes). Filaments everted from polar capsules effect 

attachment to hosts. Infectious cells within spores then invade the host. Observations of 

meiosis identify invertebrates as definitive hosts.  

According to the most recent estimate, there are some 2400 described myxozoan 

species (Zhang 2011), but complete life cycles have only been resolved for some 50 species 

(Eszterbauer et al. 2015). Current knowledge of myxozoan species diversity is largely based 

on infections in fish (n ~ 2300). The two major monophyletic myxozoan clades are 

distinguished by molecular data, invertebrate host use, species richness and degree of 

morphological simplification. Members of the species-poor Malacosporea use freshwater 

bryozoans (Class Phylactolaemata) and fish as hosts (Canning et al. 2000). The speciose 

Myxosporea use oligochaetes and polychaetes as definitive hosts and various vertebrates 

(primarily fish) as secondary hosts (Fiala et al. 2015a; Hallett et al. 2015).  

The malacosporeans possess recognisable tissues and some develop as active 

vermiform stages (myxoworms) (Gruhl & Okamura 2015). There are five described species 

(Patra et al. 2017). Malacosporeans develop as myxoworms or sacs in the coelomic cavity of 

bryozoan hosts (Canning & Okamura 2004) (Fig. 1A,B). Both forms possess epithelia and 

tetraradially arranged longitudinal muscles with obliquely-oriented muscle fibres enable 

helical swimming in myxoworms (Gruhl & Okamura 2012, 2015). Multicellular spores (Fig. 

1C) produced within myxoworms and sacs are infectious to fish. Uninucleate 

pseudoplasmodia develop in kidney tubules in intermediate fish hosts (Feist et al. 2015) (Fig. 

1D). Multicellular spores produced within pseudoplasmodia are secreted in urine to infect 

bryozoans. Extensive replication of at least one malacosporean (Tetracapsuloides 

bryosalmonae) in kidney tissue can cause the devastating Proliferative Kidney Disease 

(PKD) in salmonid fish hosts. The simple spores produced by malacosporeans are relatively 

spherical, lack a hardened outer wall and are indistinguishable amongst species, possessing 
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either four or two polar capsules (when developing in bryozoans and fish, respectively) 

(Canning & Okamura 2004).  

The myxosporeans have lost proper tissues and are highly morphologically simplified. 

There are some 2400 described species (Zhang 2013). Myxosporeans develop as 

pansporocysts in their definitive annelid hosts (Fig. 2A). Cells forming the pansporocyst wall 

have retained features suggestive of a highly modified epithelial layer (apical adherens 

junctions, general cell polarity and functions such as uptake and secretion; Gruhl & Okamura 

2015) although a basal lamina is lacking. Multicellular spores (‘actinospores’) produced 

within pansporocysts are infectious to vertebrates. Osmotically-driven inflation of outer valve 

cells upon release into the environment produces caudal processes that reduce actinospore 

sinking rates (Fiala et al. 2015a) (Fig. 2B-D). Multinucleate plasmodia or uninucleate 

pseudoplasmodia develop in intermediate vertebrate hosts (Feist et al. 2015) (Fig. 2E,F) and 

multicellular spores (‘myxospores’) infectious to annelids are produced within these stages 

(Fig. 2G). The hardening of myxospore walls confers viability in the environment for relatively 

long time periods (e.g. up to months depending on temperature; Ray et al. 2015). 

Morphological variation of myxospores (Fig. 2H-K) is useful for taxonomic purposes (Fiala et 

al. 2015a). Myxosporeans are the causative agents of some problematic fish diseases (e.g. 

whirling disease and enteronecrosis in salmonids; Jones et al. 2015).  

The first reported myxozoan was from whitefish (Jurine 1825) and for a long time 

myxozoans were classified as protists despite recognition of the multicellularity of spores by 

early researchers (Canning & Okamura 2004). The advent of molecular tools confirmed a 

metazoan affinity (Smothers et al. 1994) but led to considerable controversy over placement 

within the Metazoa due to high levels of molecular divergence and resultant long branch 

attraction. It is now clear that myxozoans are cnidarians (e.g. see Foox et al. 2015; Okamura 

& Gruhl 2015 for review), vindicating Weill’s early observation of the similarity of polar 

capsules and nematocysts (Weill 1938). Phylogenetic analyses enabled by transcriptomic 

and genomic data demonstrate that myxozoans group with Polypodium hydriforme (a 

monotypic lineage with larval forms parasitizing eggs of sturgeon and paddlefish) forming a 
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clade of endoparasitic cnidarians (Chang et al. 2015; Kayal et al. 2017) referred to as the 

Endocnidozoa (Collins 2009).     

 

Myxozoan taxonomy and species discrimination 

Traditional myxozoan taxonomy is based largely on morphologies of myxospores (Lom & 

Dyková 2002, Fiala et al. 2015b). This reflects the long history of research on myxosporeans 

in fish, myxosporean species-richness, the very recent recognition of the Malacosporea, and 

separate assignment of actinospores (as Actinosporea) prior to recognition of complex 

myxozoan life cycles (Okamura et al. 2015a). Important taxonomic characters include the 

number and configuration of shell valves and polar capsules, spore and polar capsule 

dimensions, the number of turns of the polar filament, and spore surface features (Lom & 

Dyková 2006, Fiala et al. 2015b). However, myxospore morphologies can be plastic, spore 

morphotypes may be convergent, and boundaries between many genera are vague, 

especially when spores are morphologically simple (Atkinson et al. 2015, Fiala et al. 2015b). 

Accordingly, molecular markers reveal unexpected relationships and discrepancies with 

myxospore-based classifications (e.g. Fiala & Bartošová 2010). Actinospores can 

demonstrate different morphologies even within the same species which limits their 

taxonomic usefulness (Eszterbauer et al. 2006). Consequently, the provision of SSU rDNA 

sequence data in species descriptions was encouraged (Kent et al. 2001) and such data are 

now routinely reported in species discrimination as the marker reliably clarifies the 

relationships among myxozoan species (Fiala et al. 2015b). Other features that can be 

useful in species discrimination include patterns of host and tissue specificity (Molnár & 

Eszterbauer 2015), geographical distribution (Hervio et al. 1997) and developmental stages 

(Lom & Arthur 1989).  

 

Estimates of myxozoan species richness 

As of October 2005 some 2180 myxozoan species had been recorded (Lom & Dykova 2006) 

– a three-fold increase in the number of species reported 39 years earlier (n = 731; Sh’ulman 
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1966). Zhang (2013) reported a total of 2425 myxozoan species in 2013 based on the 

number of named species reported by Lom and Dykova (2006) and species subsequently 

described by Zoological Record entries. We have determined that by the end of 2017 there 

were 2596 described myxozoan species (using Zoological Record and Google Scholar to 

identify species descriptions since 2013). This number does not incorporate many unique 

sequences deposited in GenBank with no associated species descriptions and includes 

species described before sequencing was routine. As will become clear later, we expect this 

is a considerable underestimate of true species richness. We note that all estimates are 

comparable, being based on species descriptions,  and therefore collectively suggest that 

the number of myxozoan species being described is not levelling off over time.  

Zhang (2013) also reported 10,203 extant species of free-living cnidarians. Thus, as of 

2013 some 19% of described cnidarian species were endoparasitic – close to the estimate of 

18% suggested by Okamura et al. (2015a) (who used Lom & Dykova’s estimate of 2180 

myxozoan species and did not include data for staurozoans). To determine whether the ratio 

of free-living:parasitic cnidarian species has remained roughly the same we updated Zhang’s 

estimate, obtaining a total of  11,758 described species of extant free-living cnidarians by the 

end of 2017. This indicates that at present some 20% of described cnidarian species are 

endoparasitic. As depicted in Fig. 3A, the number of described myxozoan species greatly 

exceeds the number of described species of scyphozoans, cubozoans, and staurozoans. As 

we argue below these summaries are likely to greatly underestimate both myxozoan species 

richness and proportional representation within the Cnidaria. 

To explore the issue of unknown myxozoan diversity further we determined the 

number of myxozoan species reported from fish in freshwater environments in Brazil over 

time since the first species were detected (Dunkerly 1915) (Fig. 3B) using various 

information sources (see Supplementary Data). The lack of any evidence of an asymptote in 

the cumulative number of species reported over time is a typical pattern for parasites and 

suggests there are many further myxozoans in this region alone.  
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Patterns of myxozoan diversification 

A clear cut pattern of myxozoan diversification is the disparity in species richness between 

Myxosporea and Malacosporea. This pattern may relate to the diversity of definitive hosts, 

annelid hosts being relatively species rich (some 11,500 extant oligochaete and polychaete 

species; Ruppert et al. 2003) and phylactolaemate bryozoan hosts being notably species-

poor (69 extant phylactolaemate species; Massard & Geimer 2008). Similar patterns of 

diversification are exhibited by the extensive independent radiations of myxosporeans that 

exploit oligochaete and polychaete invertebrate hosts (Fiala et al. 2015a). Such patterns are 

consistent with conclusions from a meta-analysis that parasite species richness is strongly 

correlated with that of their hosts, with richer host clades harbouring richer parasite 

assemblages (Kamiya et al. 2014a). 

The vast majority of myxozoans are known to exploit fish as vertebrate hosts. Because 

fish serve as hosts of malacosporeans and myxosporeans (and also of sister taxon, 

Polypodium hydriforme) exploitation of fish may be primitive. Other vertebrate hosts have, 

however, been acquired by myxosporeans. These include amphibians (frogs, toads, newts, 

salamanders), reptiles (turtles and tortoises), waterfowl (ducks), and small mammals 

(shrews and probably moles) (Hallett et al. 2015). The recent discovery of infections in 

caecilians (Hartigan et al. 2016) confirms that myxosporeans exploit hosts in all amphibian 

orders and that amphibian hosts have been adopted independently on at least three 

occasions. All of the bird and mammal infecting species group variously within one clade 

(part of the large, oligochaete-infecting Freshwater Clade; Fiala et al. 2015a) and are distinct 

from each other. This clade will likely expand as sampling for and recognition of 

myxosporeans infecting terrestrial hosts continues. The small number of myxosporeans 

described from non-fish hosts (some 33 species), their short branches in molecular 

phylogenies, and molecular clock analysis suggest a scenario of relatively recent host 

switching in all cases (Kodádková et al. 2015; Fiala et al. 2015a). However, lack of sampling 

may compromise this inference. 
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Drivers of species richness in other parasite groups have been linked with host traits 

viewed to promote the colonisation and persistence of parasites. For example, in another 

meta-analysis Kamiya et al. (2014b) found that parasite species richness was positively 

associated with body size, geographical range and density of animal, plant and fungal hosts. 

Sympatry and gregarious host behaviour have also been linked with switching of fish hosts 

and subsequent speciation in monogeneans (Vanhove & Huyse 2015). These patterns have 

not been explored for myxozoans largely for reasons outlined in the next section. 

 

Measuring and detecting myxozoan diversity: problems, gaps and approaches  

Myxozoan species discrimination is now highly dependent on DNA sequence data (Atkinson 

et al. 2015). However, variable rates of molecular evolution can confound species 

identification. Therefore, a combination of sequence data and other traits is widely used for 

species discrimination. Nevertheless, measuring and detecting myxozoan diversity remains 

problematic. Here we outline these problems and approaches that can be employed to 

improve our understanding of myxozoan diversity.  

The inapparency of most myxozoan infections (Lom & Dyková 2002) suggests that 

many are undetected, contributing to our poor understanding of myxozoan diversity 

(Okamura 2016). In addition, parasites of invertebrates are generally poorly studied because 

there are few incentives to investigate parasites of organisms considered to be of little 

commercial value (Leung et al. 2015). Unsurprisingly, myxozoan-invertebrate host systems 

that have received the most attention are those associated with economically important fish 

diseases (e.g. salmonid whirling disease and PKD; Alexander et al. 2015; Hartikainen & 

Okamura 2015). Fieldwork focusing on the ecology of these diseases can coincidentally 

enable the discovery of new myxozoan diversity (e.g. Hartikainen et al. 2014b), but this will 

inevitably be biased in various ways (e.g. geographically and taxonomically). Further 

impediments to identifying myxozoan diversity by surveying invertebrates include inapparent 

covert infections (Okamura 2016) and low infection prevalences in annelid hosts (e.g. often 

< 5%; Alexander et al. 2015). Additional hindrances to detecting diversity include oversight 
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of infection during routine pathological examinations, lack of expertise, difficulty in identifying 

species, and patchy distributions of infected hosts.  

As observed in other parasite groups (e.g. digenean trematodes; Poulin 2011b), there 

is growing indication of cryptic speciation in myxozoans. Molecular data provide evidence for 

complexes of morphologically indistinguishable myxozoan species that segregate with 

geographical or host distributions. For example, the ‘Kudoa thyrsites’ complex contains 

isolates infecting marine fish in distant environments (Japan, Australia, eastern Pacific, 

eastern Atlantic) and isolates of the ‘Parvicapsula minibicornis’ complex are associated with 

different salmonid hosts and distinct river locations (Atkinson et al. 2015). As for other taxa 

(Kuris 2015) the extent of cryptic speciation in myxozoans remains unknown. An open 

question, however, is whether knowledge of morphology and host use for all life cycle stages  

may resolve apparently cryptic species. 

There are considerable geographical gaps in our knowledge of myxozoan diversity. 

Myxozoans were first recognised in Europe and since then have primarily been studied in 

Europe, North America, Russia, Japan, Australia, Turkey, India, China and Israel. 

Investigations of myxozoans from various African countries resulted in a key for some 100 

myxosporean species in freshwater fish (Fomena & Bouix 1997) and there is notable 

ongoing work describing myxozoans in various undersampled geographical regions (e.g. in 

South Africa [Reed  et al. 2002; 2003, 2010], Cameroon [Benoît et al. 2017] and India 

[Gupta & Kaur 2017a,b]). Myxozoan diversity is especially poorly known in Central and 

South America (with the exception of Brazil) and in many countries of Asia. Unsurprisingly, 

geographical knowledge of myxozoans can be biased reflecting the predilections of 

investigators. For example, what we know of myxozoan diversity in Brazil and Africa is 

largely based on investigations of myxozoans in freshwater environments. Insights on 

myxozoan diversity in all geographical regions are generally a direct or indirect result of 

concern for diseases in aquaculture.  

Understanding of biogeographical patterns is also compromised. We suggest this is 

partly because parasites such as helminths are generally more easily and rapidly collected 
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and identified (e.g. potentially without a microscope), especially in difficult to sample or 

remote regions. Nevertheless, it is clear that myxozoans exploit fish hosts in the deep sea. 

For example, Moser et al. (1976) identified five myxozoan species in macrourid fishes and 

Kodádková  et al. (2015) described a myxosporean infecting primitive chimeroid fish that is 

sister to the marine myxosporean lineage, forming a clade inferred to have evolved at the 

time of origin of cartilaginous fish . Greater sampling from such regions may reveal further 

novel diversity, enabling new insights into myxozoan evolution and adaptive radiations. 

Myxozoans are also known to infect marine fish in Arctic environments (e.g. Køie et al. 

2008; Køie  2009; Kodádková et al. 2014, Kristmundsson & Freeman 2013). By combining 

data from their own study and others Kodádková et al. (2014) compare ratios for the number 

of myxosporean species found:number of dissected fish species. Although based on 

relatively low sample sizes ratios > 1.0 suggest a large and untapped diversity of myxozoans 

in Arctic fishes. Myxozoans have also been described from Antarctic regions. For example, 

two myxosporeans were found in two species of deep sea fish in the Southern Ocean near 

the San Juan Archipelago, Chile (Pardo-Gandarillas et al. 2008) and Noble (1984) reports at 

least three myxosporeans in six species of fish (including five notothenioids) from the 

continental shelf of Antarctica.  

Studies of Australian fish suggest substantial myxozoan diversity in coral reef 

environments. Gunter and Adlard (2008) found 13 myxosporeans (12 being new) by 

surveying for infections in 31 damselfish species from Queensland. The high host specificity 

of many ceratomyxids (Gunter et al. 2010, Heiniger & Adlard 2013) suggests that Australia’s 

coral reef fish will be exploited by over 1,500 species of Ceratomyxa yet < 1% of these 

ceratomyxids have been described (Queensland Museum Network, 2010). Research in 

other tropical environments suggests similar problems of undersampling and undetected 

diversity. Freeman and Kristmundsson (2015) describe two species in two new 

myxosporean families from Malaysian fish hosts, one infecting marine fish and one infecting 

monogeneans (a case of hyperparasitism). Shaharom (2012) noted that numerous cultured 
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and ornamental fish in Malaysia are infected with undescribed or undocumented 

myxosporeans. 

Molecular approaches are also revealing novel myxozoan diversity in environmental 

and tissue samples. For instance, myxosporean-specific primers used in amplicon 

sequencing enabled Hartikainen et al. (2016) to characterise novel myxozoan OTUs in water 

samples from freshwater and marine environments and in faeces of piscivores (otters and 

cormorants). Only 7% of the 107 myxosporean OTUs associated with aquatic environments 

clustered with previously known sequences in the molecular phylogeny. Furthermore, only 

one of 28 OTUs associated with otter spraints clustered with a previously known sequence. 

We estimate that at present some 23% of described myxozoan species have associated 

SSU rDNA sequence data. This estimate is based on 816 unique SSU rDNA isolates in 

GenBank (as of December 2017) of which 591 (= 22.8% of the 2596 myxozoan species 

reported here) were linked with described species. Results of sampling for myxozoans in 

environmental samples (eDNA analyses) therefore suggest substantial undiscovered 

myxosporean diversity even in regions where the myxozoan fauna is relatively well known 

(i.e. some 23% of 107 OTUs would be expected to represent described species). Such 

eDNA surveys provide a non-destructive and integrative means of characterising myxozoans 

present in local environments and are likely to contribute greatly and potentially in a non-

biased way to revealing novel myxozoan diversity in the future. We anticipate that species 

richness estimates deriving from unique OTUs will sooner or later outstrip the number of 

described myxozoan species while further study may help to resolve redundant species. 

However, determining the nature of the myxozoans associated with OTUs present in 

environmental samples will be a considerable challenge.  

 

Parasite extinction 

Approaches and problems in estimating parasite extinctions 

Page 15 of 54 Integrative and Comparative Biology



Current rates of species extinction greatly exceed background rates (e.g. Ceballos et al. 

2015) and many species will therefore be lost before their detection. Such never-to-be-

known diversity is likely to be particularly high for parasites in part due to their hidden nature 

and systematic oversight in surveys and checklists of threatened fauna (Rocha et al. 2016, 

Cizauskas et al. 2017). However, it is also predicted that coextinction, the loss of one 

species as a result of extinction of a species it depends on, may be the most common form 

of species loss (Dunn et al. 2009). Colwell et al. (2012) review how statistical host-extinction 

modelling approaches based on empirical matrices of hosts and affiliate species enable 

insights into past and future extinctions of at least some parasites by producing coextinction 

curves to estimate the number of extinctions of affiliate species as a function of host 

extinctions. For example, Dunn et al. (2009) predicted that the number of coextinctions of 

parasite species is more than an order of magnitude greater than that of their North 

American carnivore hosts. Retrospective extensions to such modelling enabled Colwell et al. 

(2012) to infer that between four and eight unknown affiliate species (louse, flea and 

cestodes) went extinct as a result of 13 known extinctions of terrestrial North American 

carnivores during the Holocene.  

Another potential method of inferring parasite extinctions is to characterise parasite 

presence in extinct hosts. For example, Boast et al. (2018) examined ancient DNA in extinct 

New Zealand moa coprolites and identified apparently host-specific heterokoid nematodes. 

The first myxozoan reported (Jurine 1825) may have gone extinct along with its fish host, the 

whitefish Coregonus fera, if it failed to utilise other fish hosts.  

Other research has focused on inferring risks of parasite extinction. For example, 

Dobson et al. (2008) considered the percentage of vertebrate species listed as threatened in 

the IUCN Red list and, accounting for host specificity, estimated that around 3% of helminths 

may therefore be endangered. Another method is to examine how projections of 

environmental change may cause parasite declines and loss using ecological niche 

modelling. Thus, a recent study (Carlson et al. 2017) estimated that 5-10% of species from 

eight parasite clades are committed to extinction by 2070 by considering projected range 
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shifts and climate-driven habitat loss. Further modelling predicted that some 30% of parasitic 

helminths could go extinct (without dispersal) by 2070 due to host extinction (Carlson et al. 

2017). Such inferences of course rest on the availability of data on parasite distributions and 

these are scarce and biased. Factors other than inferred range loss of hosts or parasites of 

course may also influence parasite extinction rates, including dispersal capacity, availability 

of hosts in complex life cycles, host population density, ability to adopt novel hosts or to 

truncate life cycles, phenological mismatch with hosts, incompatibilities of local habitats that 

are not incorporated in ecological niche models, and secondary extinctions and extinction 

cascades (Colwell et al. 2012; Carlson et al. 2017; Cizauskas et al. 2017).  

Poor understanding of host specificity and parasite distributions has compromised 

inferences of parasite extinction. For example, the widely cited co-extinction of two louse 

species with passenger pigeons was falsified with their discovery on other bird hosts (Strona 

2015). Furthermore, the most comprehensive spatially explicit data set on parasites 

available to date (53,133 occurrences of 457 species of acanthocephalans, nematodes, 

cestodes, trematodes, mites, ticks, lice, and fleas)  is described as a meagre subset of 

parasites (e.g. there are some 300,000+ species of parasitic helminths alone) (Carlson et al. 

2017). Finally, poor knowledge of parasites of invertebrates and of microparasites make 

current estimates of parasite extinction rates highly biased. However, it may be the case that 

parasites such as helminths are particularly susceptible to extinction due to their high 

diversity relative to host diversity and associations with higher trophic level and more 

extinction-prone vertebrate hosts (Colwell et al. 2012). Strona (2015) synthesises the 

growing literature on host-parasite coextinctions and reviews approaches and difficulties in 

inferring vulnerabilities and risks of parasite extinctions in a changing world.  

 

Should we care about parasite diversity and extinction? 

Our understanding of both the diversity of and threats to parasites is highly compromised. If 

parasites were minor players exerting minimal impacts on hosts and few secondary effects, 
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concerns about this limited knowledge might largely relate to failure to comprehend 

biodiversity in general and how a significant proportion of life has radiated on Earth. 

However, it is clear that parasites are ubiquitous, abundant and functionally significant 

components of ecosystems – features that give rise to the assertion that healthy ecosystems 

are rich in parasites (Hudson et al. 2006). Parasites can dominate ecosystems in terms of 

biomass (Kuris et al. 2008; Lambden & Johnson 2013) and contribute substantially to energy 

transfer and food web structure and stability (e.g. Dunne et al. 2013; Cirtwell & Stouffer 

2015; Michalska-Smith et al. 2017). Parasites with complex life cycles often exploit hosts at 

different trophic levels and free-living stages can be significant components of diets 

(Johnson et al. 2012). Parasites can alter host behaviour, determine host distributions and 

abundances, and can mediate the outcome of species interactions (e.g. competition, 

predation) thereby influencing population and community dynamics (Gómez et al. 2012; 

Hatcher et al. 2012). In addition, interactions of hosts and parasites via evolutionary arms 

races have driven host life history traits and have been invoked to explain such fundamental 

traits as the maintenance of sexual reproduction via negative frequency dependent selection 

(Hamilton 1980) and host body size (Guralnick et al. 2004). Finally, parasites may be 

potential sources of novel drugs, some helminths bioaccumulate heavy metals that would 

otherwise concentrate in host tissues, and contact with parasites can reduce the risk of 

immune-mediated disorders (Gómez et al. 2012). In short, parasites make substantial 

contributions to ecosystem health and function and may provide a plethora of other goods 

and services that contribute to the health and welfare of individual hosts and that may also 

benefit humankind.  

On the other hand, novel parasites acting in conjunction with ecological change may 

contribute to host declines or extinctions (Plowright et al. 2008). Parasites also of course 

contribute to the global burden of human disease and may hinder socioeconomic 

development (e.g. malaria; Sachs & Malany 2002), prompting programmes of control and 

eradication for parasites of medical or veterinary importance. Clearly, the costs and benefits 

of such programmes require careful evaluation in view of the consequences for ecosystem 
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dynamics and the removal of lineages with unique co-evolutionary histories and future co-

evolutionary potentials (Gómez et al. 2012). By extension, the roles of parasites (e.g. in 

providing protective immunity to hosts) should also be evaluated and appropriately 

incorporated in conservation programmes (Dougherty et al. 2015).  

 

Conclusion 

Parasites are the result of unique evolutionary radiations driven by intimate species 

interactions. As a result of these interactions parasites demonstrate striking evolutionary 

trajectories involving e.g. the loss, gain and co-option of traits. Myxozoans illustrate this 

perhaps most dramatically (Okamura et al. 2015a). As they have miniaturised over time, 

myxosporeans have lost proper tissues and occur as unicellular plasmodia, evolving 

endoparasitic strategies comparable to parasitic protists. Nevertheless within these 

plasmodia multicellular spores develop. Myxozoans have co-opted the intracellular 

organelles (nematocysts) of their free-living ancestors deploying them to achieve 

transmission to new hosts rather than for prey capture or defense. Adoption of this 

endoparasitic strategy has been highly successful – myxozoans represent a substantial 

proportion of cnidarian species richness and it is entirely possible that myxozoan species 

may outnumber those of their free-living relatives. Whether this question is ever adequately 

resolved will depend on future expertise in and funding for taxonomic research. 

It is clear that parasites substantially contribute to biodiversity on Earth and play 

fundamental ecological and evolutionary roles. We can expect that molecular approaches 

will continue to refine our insights on parasite diversification and macroecological patterns. 

Key questions here include revealing parasite diversity gradients (Rohde 2016) and the 

relative responses of hosts and parasites to rapid environmental change. Because parasites 

cannot persist below a critical threshold of host density the latter issues are of fundamental 

and practical interest. Fortunately, the unique and complex roles of parasites are 

increasingly being appreciated, spawning recent academic (Wood & Johnson 2015) and 
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media attention with the British Broadcasting Corporation posing the question ‘What would 

happen if all the parasites disappeared?’ (Jones 2015). Answering such ‘what if’ scenarios 

may help to identify strategic areas for research on the past, present and future biodiversity 

of these uncharismatic and hidden players.  
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Figures 

Fig. 1  Malacosporean stages.  (A) Sacs (s) of Buddenbrockia bryozoides developing within 

the body cavity surrounding the digestive tract of its bryozoan host Cristatella mucedo which 

is extending tentacular crowns (lophophores). Scale bar =  0.8 mm. (B) Sacs in various 

stages of development of B. bryozoides extruded from C. mucedo by applying pressure to 

the bryozoan body wall. Multicellular spores can be seen filling the lumen of more mature 

sacs on right. Scale bar =  200 µm. (C) Spores of Tetracapsuloides bryosalmonae with 4 

polar capsules (pc) and 2 enclosed amoeboid sporoplasms (sp) that invade fish host. Scale 

bar =20 µm. (D) Pseudoplasmodium (p) of Buddenbrockia sp. attached to kidney tubule (t) of 

fish host Barbatula barbatula (stone loach). Note the projections (arrows) attaching the 

pseudoplasmodium to the tubule wall. Scale bar = 1 µm. 

 

Fig. 2  Myxosporean stages.  (A) Unicapsula pansporocyst isolated from the coelomic cavity 

of polychaete host Diopatra neapolitana. Seven developing spores (ds) can be seen 

enclosed by the plasmodium wall (W). Scale bar = 10 µm (photo courtesy of L. Rangel). (B-

D) Morphological types of spores that develop in annelid hosts (known as actinospores) 

showing three caudal processes (cp) and polar capsules (pc) (B, C photos courtesy of S. 

Feist; D courtesy of S. Atkinson); B - Aurantiactinomyxon-type; scale bar = 20 µm, C - 

Neoactinomyxum-type; scale bar =  20 µm, D - Triactinomyxon-type;  scale bar = 50 µm. (E) 

Myxobolus sp. cysts (white masses) in Leuciscus leuciscus (dace) gill filaments. Scale bar = 

1 mm (photo courtesy of C. Williams). (F) Transmission electron micrograph of multinucleate 

plasmodium of Myxobolus sp. in gill of fish host Salminus franciscanus (dorado) showing 

outer wall (arrow) enclosing developing spores. Scale bar = 10 µm. (G) Closer view of F, 

showing developing myxospores and sections of filaments within polar capsules (arrows). 

Scale bar = 5 µm. (H-K) Variation in spores that develop in fish hosts (known as 

myxospores); H) - Sphaerospora sp. spore within monosporic plasmodium in Oncorhynchus 

mykiss (rainbow trout) kidney, scale bar = 5 µm (photo courtesy of S. Atkinson), (I) - 
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Myxobilatus gasterostei from Gasterosteus aculeatus (three-spined stickleback) kidney 

showing polar capsules (pc) and elongated caudal processes (cp); scale bar = 10µm (photo 

courtesy of S. Feist), (J) - Hofferellus sp. showing short, fine caudal filaments (arrow) 

infecting Carassius auratus (goldfish) kidney; scale 5 µm (photo courtesy of S. Atkinson), K) 

- Myxobolus sp. spores from Anguilla anguilla (eel) showing detail of enclosed polar filament 

(arrow) and thickened valve walls (W), scale bar = 5 µm (photo courtesy of C. Williams). 

 

Fig. 3  Species diversity of myxozoans. (A) Pie-chart showing the proportions (and numbers) 

of described species within the major cnidarian clades, Anthozoa, Hydrozoa and Myxozoa.  

‘Others’ includes described species in Scyphozoa, Cubozoa, Staurozoa and the monotypic 

Polypodium hydriforme. (B) The cumulative number of myxosporean species reported in 

Brazilian freshwater fish over  10 year increments from 1915 except for the last point which 

incorporates species reported during the period 2005-2017.  
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Supplementary Data 

To determine the number of myxozoan species reported infecting freshwater fish from Brazil over 
time we consulted Zoological Record, PubMed, Brazilian check lists (Gioia & Cordeiro 1996, 
Walliker 1969), and check lists for Henneguya (Eiras 2002, Eiras & Adriano 2012), Myxobolus 
(Eiras et al. 2005b, Eiras et al. 2014) and Myxidium (Eiras et al. 2011) to confirm species identity. 
The below table provides records and sources for the following genera (and number of species 
reported in Brazil from 1915: Myxobolus (45 species), Henneguya (58 species), Myxidium (6 
species), Ceratomyxa (4 species), Thelohanellus (1 species), Tetrauronema (1 species), Agarella (1 
species), Meglitschia (1 species), Ellipsomyxa (1 species), Triangulomyxa (2 species), Kudoa (2 
species). 

Table 1.  Records for myxozoans found in Brazil, including species, site of infection in fish, fish 

host, locality and reference. Studies that included molecular data identified with asterisk (*). 

Genera Species Site of infection Host Locality Reference 

Myxobolus batalhensis liver and ovary Salminus hilarii Batalha river, 
Brazil 

Vieira et al. 

2017* 

marajoensis muscular layer of 
the intestine 

Rhamdia quelen Paracauri 
river, 

Brazil 

Abrunhosa et 

al. 2017* 

axelrodi Brain and retinas Paracheirodon 

axelrodi 

Brazil Camus et al. 

2017* 

prochilodus gill Prochilodus lineatus Mogi Guaçu 
river, Brazil 

Zatti et al. 

2016* 

hilarii Kidney Brycon hilarii Mogi Mirim, 

Brazil 

Capodifoglio 

et al. 2016* 

niger the membrane of 
the gill arch 

Corydoras melini Negro River, 
Brazil 

Mathews et al. 
2016a 

filamentum gill filaments 

 

Brycon orthotaenia 

 

São 
Francisco 
river, Brazil 

Naldoni et al. 

2015* 

curimatae gill Prochilodus costatus São 
Francisco 
river, Brazil 

Zatti et al. 

2015* 

lomi gill filaments Prochilodus lineatus Peixes river, 
Brazil 

Azevedo et al. 

2014* 

umidus spleen Brycon hilarii Pantanal 
wetland, 
Brazil 

Carriero et al. 

2013* 

piraputangae kidney Brycon hilarii Pantanal 
wetland, 
Brazil 

Carriero et al. 

2013* 

aureus liver Salminus brasiliensis Pantanal 
wetland, 
Brazil 

Carriero et al. 

2013* 

pantanalis gill filaments Salminus brasiliensis Pantanal Carriero et al. 
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wetland, 
Brazil 

2013* 

flavus gill arch Pseudoplatystoma 

corruscans and 
Pseudoplatystoma 

reticulatum 

Pantanal 
wetland, 
Brazil 

Carriero et al. 

2013* 

myleus gall-bladder Myleus rubripinnis Pará, Brazill Azevedo et al. 
2012 

 

brycon gill Brycon hilarii Pantanal, 
Brazil 

Azevedo et al. 
2011a 

oliveirai gill  
Brycon hilarii 

Pantanal 
wetland, 
Brazil 

Milanin et al. 

2010* 

franciscoi fins Prochilodus argenteus São 
Francisco 
river, Brazil 

Eiras et al. 
2010 

sciades gill  Sciades herzbergii Poti river 
Brazil 

Azevedo et al. 
2010 

 

salminus gill Salminus brasiliensis Pantanal, 
Brazil 

Adriano et al. 
2009a 

cordeiroi skin, gill arch, 
eyes, urin. 
bladder 

Zungaro jahu Pantanal, 
Brazil 

Adriano et al. 

2009b* 

 heckelii gill Centromochlus heckelii Tocantins 
river, Brazil 

Azevedo et al. 
2009a 

platanus spleen Mugil platanus Lagoa dos 
Patos, Brazil 

Eiras et al. 
2007 

cuneus connective tissue Piaractus 

mesopotamicus 

São Paulo, 
Brazil 

Adriano et al. 
2006 

Milanin et al. 

2015* 

peculiaris gills (smears) Cyphocharax nagelli Brazil Martins & 
Onaka 2006 

metynnis connective 
subcutaneous 
tissue of the 
orbicular region 

Metynnis argenteus Brazil Casal et al. 
2006 

testicularis testis Hemiodopsis microlepis 

= Hemiodus microlepis 
Brazil Tajdari et al. 

2005 

insignis gills 
(intralamellar) 

Semaprochilodus 

insignis 

Amazon 
river, Brazil 

Eiras et al. 
2005a 

porofilus visceral cavity Prochilodus lineatus Mogi Guaçu 
river, Brazil 

Adriano et al. 
2002 

Zatti et al. 

2016* 

desaequalis gill lamellae Apteronotus albifrons Amazon, 
Brazil 

Azevedo et al. 
2002 
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maculatus kidney Metynnis maculatus Amazon 
river, Brazil 

Casal et al. 
2002 

absonus opercular cavity Pimelodus maculatus Piracicaba 
river, Brazil 

Cellere et al. 
2002 

macroplasmodialis abdominal cavity Salminus maxillosus = 

S. brasiliensis 

Mogi Guaçu 
river, Brazil 

Molnar et al. 
1998 

Carriero et al. 

2013* 

braziliensis gills 
(interlamellar) 

Bunocephalus 

coracoideus 
Brazil Casal et al. 

1996 

colossomatis connective tissue Colossoma 

macropomum 

Brazil Molnar & 
Bekesi 1993 

Müller et al. 

2013* 

inaequus brain Eigenmannia virescens Brazil Kent & 
Hoffman 1984 

serrasalmi spleen, kidney, 
liver 

Serrasalmus rhombeus Brazil Walliker 1969 

kudoi integument Nemathognata sp. Brazil Guimarães & 
Bergamin 
1938 

 stokesi nose integument Pimelodella (?) sp. Brazil Pinto 1928a 

noguchii gills (blood 
smear) 

Serrasalmus spilopleura Brazil Pinto 1928a 

pygocentrus intestinal content Pygocentrus piraya Brazil Penido 1927 

cunhai intestinal content Pygocentrus piraya = 

Pimelodus clarias 

Brazil Penido 1927 

 

associatus kidney Leporinus mormyrops Brazil Nemeczek 
1926 

lutzi testis Girardirnus januarius = 
Phalloptychus januarius 

Brazil Aragão 1919 

inaequalis skin of head Piramutana blochii South 
American 
rivers (Brazil, 
Guiana, 

Surinam) 

Pinto 1928b 

      

Henneguya 

  

gilbert gills Cyphocharax 

gilbert 
Rio de 
Janeiro, 
Brazil 

Casal et al. 

2017* 

melini gill filaments Corydoras melini Negro river, 

Brazil 

Mathews et al. 
2016b 

paraensis gill Cichla temensis Tocantins 
river, Brazil 

Velasco et al. 

2016* 

aequidens gills Aequidens 

plagiozonatus 
Peixe-boi 
river, Pará, 

Videira et al. 
2015 
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Brazil 

cuniculator gill filaments Pseudoplatystoma 

corruscans 
São 

Francisco 

river, Brazil 

Naldoni et al. 

2014* 

visibilis  fins Leporinus 

obtusidens 
São Paulo, 
Brazil 

Moreira et al.  

2014a* 

rotunda gill arch Salminus 

brasiliensis 
São Paulo, 
Brazil 

Moreira et al. 

2014b* 

maculosus gill filaments Pseudoplatystoma 

corruscans and P. 
reticulatum 

Brazilian 

Pantanal 

wetland, 

Brazil 

Carriero et al. 

2013* 

nagelli  gills Cyphocharax 

nagelli 
São Paulo, 
Brazil 

Azevedo et al. 
2013a 

multiplasmodialis  gills arch, gill 
filaments 

Pseudoplatystoma 

corruscans 
Brazil Adriano et al. 

2012 * 

azevedoi gill lamellae Leporinus 

obtusidens 
Brazil Barassa et al. 

2012 

eirasi  gill filaments Pseudoplatystoma 

corruscans 
Brazil Naldoni et al. 

2011* 

torpedo  brain, spinal 
chord 

Brachyhypopomus 

pinnicaudatus 
Brazil Azevedo et al.  

2011b 

hemiodopsis   secondary gill 
lamellae 

Hemiodopsis 

microlepis 
Brazil Azevedo et al. 

2009b 

 

corruscans  gill filaments Pseudoplatystoma 

corruscans 
Brazil Eiras et al. 

2009 Carriero 
et al. 2013* 

pseudoplatystoma  gills filaments Pseudoplatystoma 

corruscans x P. 

fasciatum (hybrid) 

Brazil Naldoni et al. 
2009 

Milanin et al. 

2015* 

rondoni  peripheral lateral 
nerves 

beneath lateral 
lines 

Gymnoramphichthys 

rondoni 
Brazil Azevedo et al. 

2008 

arapaima  gill arch, gall-
bladder 

Arapaima gigas Brazil Feijó et al. 
2008 

caudicula  secondary gill 
lamellae 

Leporinus lacustris Brazil Eiras et al. 
2008 

guanduensis  gills Hoplosternum 

littorale 
Brazil Abdallah et al. 

2007  

cyphocharax  gills Cyphocharax gilbert Brazil Abdallah et al. 
2007 

garavelli  gill filaments Cyphocarax nagelli Brazil Martins & 

Page 38 of 54Integrative and Comparative Biology



Onaka 

2006 

caudalongula  gills (intra and 

interlamellar 
spaces) 

Prochilodus lineatus Brazil Adriano et al. 
2005a 

pellucida  serous membrane 
of 

visceral cavity 
and 

tunica externa of 

swim-bladder 

Piaractus 

mesopotamicus 
Brazil Adriano et al. 

2005b 

rhamdia  connective tissue 
of 

base of gill 
lamellae 

Rhamdia quelen Brazil Matos at al. 
2005  

 schizodon  kidney Schizodon fasciatus Brazil Eiras et al. 
2004a 

 

paranaensis  secondary gill 
lamellae 

Prochilodus lineatus Brazil Eiras et al. 
2004b 

 

curvata  interlamellar 
epithelium 

or epithelium of 

secondary 
lamellae 

Serrasalmus 

spilopleura 
Brazil Barassa et al. 

2003a 

 

chydadea  gill lamellae 
epithelium 

Astyanax 

altiparanae 
Brazil Barassa et al. 

2003b 

 

astyanax  interlamellar 
spaces of 

gills 

Astyanax keithi Brazil Vita et al. 
2003 

pilosa  gill filaments Serrasalmus altuvei Brazil Azevedo & 
Matos, 

2003 

friderici  gill filaments Leporinus friderici Brazil Casal et al. 
2003 

Vidal & Luque 
2017 

(genbank)* 

curimata  kidney Curimata inormata Brazil Azevedo & 
Matos 2002 

 

leporinicola  gills Leporinus 

macrocephalus 
Brazil Martins et al. 

1999  

testicularis  testis Moenkhausia oligolepis Brazil Azevedo et al. 
1997  
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piaractus  gills Piaractus 

mesopotamicus 
Brazil Martins & 

Souza 1997  

Müller et al. 

2013* 

striolata  gills Serrasalmus striolatus Brazil Casal et al.  
1997  

malabarica  gills Hoplias malabaricus Brazil Azevedo & 
Matos 1996a  

adherens  gills Acestrorhynchus 

falcatus 
Brazil Azevedo & 

Matos 1995 

  

amazonica  gills Crenicichla lepidota Brazil Rocha et al. 
1992  

artigasi  gills Astianax scabripinnis Brazil Gioia & 
Cordeiro 1987 

hoimba  gills Astyanax fasciatus Brazil Cordeiro & 
Gioia 1987  

intracornea  cornea Astianax scabripinis Brazil Gioia et al. 
1986  

theca  brain Eigemannia virescens Brazil Kent & 
Hoffman 1984  

pisciforme  gills Hyphessobrycon anisitsi Brazil Cordeiro et al. 
1983/84 

electrica  large electric 
organs 

Electrophorus electricus Brazil Jakowska & 
Nigrelli 1953 

visceralis  kidney, liver, 
heart, mesentery 

Electrophorus electricus Brazil Jakovska & 
Nigrelli, 1953 

santae  gills Tetragonopterus santae Brazil Guimaraes & 
Bergamin 
1934 

travassoi  muscle Leporinus sp. Brazil Guimaraes & 
Bergamim 
1933  

bergamini  body cavity Astyanax fasciatus Piracicaba 
river, 
Piracicaba 
City (São 
Paulo 
state), Brazil 

Guimaraes 
1931 

cesarpintoi  gills cavity. Astyanax fasciatus Agua Funda 
(São Paulo 
state), Brazil 

Guimaraes 
1931 

fonsecai Fin tissue Leporinus copelandi Paraiba river, 
Taubate City 
(São Paulo  

state), Brazil 

Guimarães 
1931 

iheringi gills Serrasalmus spilopleura Turvo river, 
Pirangy City 
(São Paulo 
state), Brazil 

Pinto 1928a 
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wenyoni  gills Tetragonopterus sp. Brazil Pinto 1928c 

leporini  urinary ducts Leporinus moormyrops Brazil Nemeczek 
1926  

 

occulta  gills Loricaria sp. Brazil Nemeczek 
1926  

 

lutzi gall-bladder Piaractus 

mesopotamicus 
Pardo river, 
Brazil 

Cunha & 
Fonseca 1918 

linearis gills Pimelodus sebae Brazil and 
South 
America 

Pinto 1928 

      

Myxidium amazonense gall-bladder Corydoras melini Rio Negro 
river, Brazil 

Mathews et al. 

2015* 
ceccarelli gall-bladder Leporinus elongatus São 

Francisco 
river, Brazil 

Adriano et al. 

2014* 

cholecysticum gall-bladder Astyanax scabripinnis Alpes farm, 
Atibaia river 
basin, Brazil 

Cordeiro & 
Gióia 1990 

gurgeli gall-bladder Acestrorhamphus sp. Mogi Guaçu 
river, Brazil 

Pinto 1928d 

cruzi gall-bladder Chalcinus nematurus Mato Grosso 
state, Brazil 

Penido 1927  

fonsecai gall-bladder Carapus fasciatus Porto 
Esperança 
Brazil 

Penido 1927 

      

Ceratomyxa   brasiliensis gall-bladder Cichla monoculus Tapajós river, 
Brazil 

Zatti et al. 

2017  * 

vermiformis gall-bladder Colossoma 

macropomum 

Amazon 
river, Brazil 

Adriano & 
Okamura et al. 

2017* 
amazonensis gall-bladder Symphysodon discus Amazon 

river, Brazil 
Mathews et al. 

2016c* 

microlepis gall-bladder Hemiodus microlepis Amazon 
river, Brazil 

Azevedo et al. 
2013b 

      

Thelohanellus marginatus gills Hypophthalmus 

marginatus 

Amazon 
river, Brazil 

Rocha et al. 
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2014* 

      

Tetrauronema desaequalis ventral fins Hoplias malabaricus Amazon 
river, Brazil 

Azevedo & 
Matos 1996b 

      

Agarella gracilis testis Lepidosiren paradoxa Amazon 
river, Brazil 

Dunkerly et al. 
1915 

      

Meglitschia mylei gall-bladder Myleus rubripinnis Amazon 
river, Brazil 

Avevedo et al. 
2011c 

      

Ellipsomyxa gobioides gall-bladder Gobioides broussonnetii Amazon 
river, Brazil 

Avevedo et al. 
2013c 

      

Triangulamyxa psittaca urinary bladder Colomesus psittacus Amazon 
river, Brazil 

Rocha et al. 
2011 

amazonica lumen of the 
intestine 

Sphoeroides testudineus Amazon 
river, Brazil 

Azevedo et al. 
2005 

      

Kudoa orbicularis musscle Chaetobranchopsis 

orbicularis 
Amazon, 
Brazil 

Azevedo et al. 

2016* 

aequidens sub-opercular 
musculature 

Aequidens 

plagiozonatus 
Amazon, 
Brazil 

Casal et al. 
2008 
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Fig. 1  Malacosporean stages.  (A) Sacs (s) of Buddenbrockia bryozoides developing within the body cavity 
surrounding the digestive tract of its bryozoan host Cristatella mucedo which is extending tentacular crowns 
(lophophores). Scale bar =  0.8 mm. (B) Sacs in various stages of development of B. bryozoides extruded 

from C. mucedo by applying pressure to the bryozoan body wall. Multicellular spores can be seen filling the 
lumen of more mature sacs on right. Scale bar =  200 µm. (C) Spores of Tetracapsuloides bryosalmonae 

with 4 polar capsules (pc) and 2 enclosed amoeboid sporoplasms (sp) that invade fish host. Scale bar =20 
µm. (D) Pseudoplasmodium (p) of Buddenbrockia sp. attached to kidney tubule (t) of fish host Barbatula 

barbatula (stone loach). Note the projections (arrows) attaching the pseudoplasmodium to the tubule wall. 
Scale bar = 1 µm.  
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