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Abstract

The majority of disease-associated variants lie outside protein-coding regions, suggesting a link

between variation in regulatory regions and disease predisposition. We studied differences in

chromatin states using five histone modifications, cohesin, and CTCF in lymphoblastoid lines

from 19 individuals of diverse ancestry. We found extensive signal variation in regulatory regions,

which often switch between active and repressed states across individuals. Enhancer activity is

particularly diverse among individuals, whereas gene expression remains relatively stable.

Chromatin variability shows genetic inheritance in trios, correlates with genetic variation and

population divergence, and is associated with disruptions of transcription factor binding motifs.

Overall, our results provide insights into chromatin variation among humans.

Association and gene expression studies have linked disease predisposition to specific

alleles (1–3) and identified intermediate molecular phenotypes that may be responsible for

organismal differences (4–7). However, the underlying mechanisms by which genetic

variation drives either disease or expression differences remain poorly understood.

Interindividual variability has been reported for transcription factor (TF) binding (8–10) and
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deoxyribonuclease I (DNase I) accessibility (11, 12). However, TF studies assay a very

small fraction of regulatory elements, whereas DNase I hypersensitivity does not distinguish

between different types of regulatory elements (e.g., enhancers versus promoters), is biased

toward active elements, and provides little information on domain-level features (e.g.,

Polycomb-repressed domains).

To further characterize human variation in diverse types of regulatory elements, we studied

the chromatin state of lymphoblastoid cell lines (LCLs) derived from 19 individuals: five

European (CEU), seven Yoruban (YRI), and two Asian individuals from the 1000 Genomes

Project (including two mother-father-daughter trios) (13), an additional Caucasian individual

(14), and four deeply sequenced individuals from the San population (15) (table S1). We

used RNA sequencing (RNA-seq) to measure expression and chromatin

immunoprecipitation followed by high-throughput sequencing (ChIP-seq) to map five

histone modifications (H3K27ac, H3K4me1, H3K4me3, H3K36me3, and H3K27me3) and

two general factors (CTCF and SA1, a subunit of cohesin) (figs. S1 and S2 and tables S1 to

S4). ChIP-seq reads were mapped to each line’s phased genome to reduce mapping biases.

To systematically identify variable regions across individuals, we used analysis of variance

(ANOVA) as well as DESeq (figs. S3 and S4) (16). Active chromatin marks H3K27ac,

H3K4me1, and H3K4me3, and the repressive mark H3K27me3 show the highest fraction of

variable regions, in contrast to gene-body marks and RNA expression levels (Fig. 1A and

fig. S4).

We additionally used ChromHMM (17) to segment the genome of each individual into 15

chromatin states based on the combinatorial patterns of the chromatin marks and CTCF (Fig.

1, B and C, figs. S5 to S8, and table S5). We found that enhancer states exhibit the most

variability (fig. S9), with bivalent (poised) enhancers having the highest fraction of

individual-specific regions, followed by weak enhancers, followed by strong active

enhancers. Similarly, bivalent promoters are more variable than active promoters and

strongly transcribed states.

The variability of chromatin marks is often dependent on functional context defined by

combinatorial chromatin patterns. H3K27ac and H3K4me3 show significantly higher

variability at enhancers compared with promoters (fig. S10). This could explain the apparent

discrepancy between the high variability of H3K4me3 and the low variability of expression

and gene body marks (Fig. 1A). Furthermore, the repressive mark H3K27me3 is

significantly more variable when co-enriched with other marks in bivalent states—such as

poised enhancers and poised promoters—than in stable Polycomb-repressed domains (Fig.

1B and fig. S10).

Investigating the dynamics of chromatin state conversions among individuals, we found that

most significant state switches are between active states, such as enhancers, promoters, or

transcribed regions, and repressed or weakly active states (Fig. 1D and fig. S11). Although

changes in activity are common, switching between enhancers and core promoter states is

rare, highlighting that these are distinct types of regulatory elements.
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We examined the effects of enhancer variability on gene expression and found no significant

difference in expression variability between genes with one variable enhancer and those

lacking variable enhancers. However, there is a significant increase in expression variability

when more than 60% of the gene’s enhancers vary (fig. S12A; Wilcoxon’s rank sum test, P

< 0.05), indicating that changes in multiple enhancers are often required to alter gene

expression. We also found that 74% of nonvariable genes and 99% of variable genes are

associated with at least one variable enhancer (24-fold enrichment, Fisher’s exact test, P <

2.2 × 10−16 ) (15, 18) and that enhancer-gene expression correlations are stronger for genes

with a single enhancer than for genes linked to multiple enhancers (fig. S12B; Wilcoxon, P

= 7 × 10−5). Thus, a substantial fraction of the enhancers that are variable across individuals

do not result in detectable differences in gene expression, suggesting that compensatory

regulatory effects, enhancer redundancy, subtle gene expression variation, or

nonconsequential enhancer variation exist under the experimental conditions examined.

Variable regions are enriched in single-nucleotide polymorphisms (SNPs) relative to

nonvariable regions (2.8-fold; P < 2.2 × 10−16; Fisher’s exact test), with an increased

number of SNPs associated with higher variability (fig. S13). Signal variability also

increases with nucleotide diversity (P < 1 × 10−10; Wilcoxon test) (15). Consistently, the

correlation between genotype and signal is stronger for variable than nonvariable H3K27ac

peaks (P < 1 × 10−15; Wilcoxon test) (Fig. 2A). Nonvariable H3K4me1 and H3K27ac F2

peaks have suppressed derived allele frequencies in both the Yoruban and Caucasian

populations (P < 2 × 10−5; Wilcoxon test) and increased conservation scores (P < 0.005;

binomial test) (15) compared with variable regions, suggesting stronger negative selection in

nonvariable regions. Also, the fraction of heterozygous SNPs with allele-specific signal is

highest for the active marks H3K27ac, H3K4me1, and H3K4me3 (fig. S14A), which is in

agreement with cis effects on the variability of these marks. Finally, rare variants (allele

frequency < 0.01 in the 1000 Genomes Project) are enriched in variable H3K27ac regions

compared with nonvariable regions (P < 2.5 × 10−14; two-sample t test), indicating that rare

variants may underlie enhancer variation.

We observed strong correlation of allele-specific signal between daughters and parents,

especially for CTCF, SA1, and the enhancer and promoter marks, which suggests that the

patterns of chromatin modifications and TF binding are heritable (Fig. 2B and fig. S14B).

For the majority of marks, more than 75% of sites agree in the direction of allelic bias

between daughters and parents (fig. S14, C and D). Gene expression is less heritable (Fig.

2B), in agreement with previous studies (19).

Next, we analyzed variation across individuals grouped by ancestry. For all marks, ancestry

explains less than 20% of the variance at a majority of regions (fig. S15). The enhancer

marks H3K27ac and H3K4me1 have the largest fraction of regions that discriminate

ancestry groups [F-test corrected P < 0.01 (15)] (Fig. 3, A and B, and figs. S16 and S17, A

and B), with signal divergence often correlating with genetic divergence (Fig. 3C). The

expression of genes overlapping these regions shows a similar but weaker pattern (fig.

S17C), suggesting that the impact of genetic variation at regulatory elements may be diluted

at the level of downstream expression. Regions with divergent signal across ancestry groups

are enriched for SNPs compared with other regions for the same marks (binomial P = 2 ×
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10−58 to 1.8 × 10−5 for all marks) (fig. S17D). They are also enriched for SNPs with high

fixation index (FST) (20), a measure of genetic divergence across populations (binomial P =

1 × 10− to 0.01) (Fig. 3D). Although the observed signal patterns may not generalize to

larger samples, they establish a link between chromatin variation and genetic divergence.

One possible mechanism through which genetic variability leads to chromatin variation is

the disruption of TF binding (8, 12). We found that variable regions of active chromatin

marks are enriched for motif-disrupting SNPs (1.3- to 2.3-fold; Fisher’s exact test P < 5.1 ×

10−46) (fig. S18A). Of the variable H3K27ac regions overlapping Encyclopedia of DNA

Elements TF binding sites in GM12878 (21), 32% show significant associations between

signal differences and motif disruptions (fig. S18B) (15). The most frequent motif

disruptions involve cell-type–specific regulatory factors (Fig. 4A and fig. S19), some of

which are differentially associated with H3K27ac variation at enhancer and promoter states

(Fig. 4B). Finally, variable regions and allele-specific SNPs are enriched for DNase I

sensitivity quantitative trait loci (dsQTLs), expression QTLs (eQTLs), and genome-wide

association studies (GWAS) SNPs, providing further evidence of the functional implications

of chromatin variability (Fig. 4C and fig. S20).

In summary, enhancers are highly variable and may contribute to phenotypic differences

between individuals and ancestral groups through heritable variation in histone

modifications arising from SNPs in TF binding sites.
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Fig. 1.
Variation in chromatin, factors, and expression across individuals. (A) Number and fraction

of enriched regions (for chromatin marks and factors) and expressed genes (for RNA) that

are variable across individuals. (B) Composition (emission probability) of five chromatin

marks and CTCF in 15 chromatin states: TssA (active promoters), TssF (flanking active

promoters), Tx (strong transcription), TxW (weak transcription), EnhA (active enhancers

with H3K4me3), TxEnhA (active enhancers in transcribed regions), Enh (active enhancers

without H3K4me3), TxEnh (active enhancers without H3K4me3 in transcribed regions),

EnhW (weak enhancers), TxEnhW (weak enhancers in transcribed regions), TssP (poised

promoters), EnhP (poised enhancers), ReprPC (Polycomb repressed), Ctcf (CTCF enriched

regions), and Low (low signal). (C) Examples of a nonvariable and a variable region.

Coordinates are in build hg19 of the human reference sequence. State colors are as in (B).

(D) log10 ratio of the observed probability that a region switches from one state (row) to

another (column) in any pair of individuals relative to background switching across pairs of

replicates.
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Fig. 2.
Genetic basis of chromatin variation. (A) Spearman correlation between genotype and signal

at variable and nonvariable H3K27ac regions after correcting for differences in length and

signal strength. For the null sets, we shuffled the signal. (B) Correlation of allelic biases

between the parents and the daughter of the YRI trio at allele-specific SNPs of the daughter

that are homozygous in both parents (Pearson correlation coefficients are in the legend;

linear fits are shown as lines). Only marks with at least 50 SNPs are shown.
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Fig. 3.
Correlation between chromatin signal and ancestry. (A) Fraction and number of regions

where ancestry has a significant contribution to signal variation. (B) Row-standardized

signal at H3K27ac peaks from (A), grouped into four clusters (C1 to C4). (C) Fraction of

regions from (B) with SNPs characteristic of individuals in each ancestry group. Each

column is divided by its maximum. The maximum genetic divergence for each ancestry

group (squares with the value 1) is achieved in the cluster that shows the most divergent

signal for that group [from (B)]. (D) Enrichment of regions from (A) for SNPs with high

FST. Stars indicate P < 0.01 (binomial test) after accounting for the overall enrichment for

SNPs.
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Fig. 4.
Mechanism and functional consequences of chromatin variation. (A) Correlation

coefficients of TF motif disruption scores and H3K27ac signal across individuals. Motifs are

sorted based on the number of associated peaks; peaks are sorted based on their associated

motifs. (B) Log2 fold-enrichment of motifs in promoter (red) versus enhancer (orange)

states. Only significant enrichments (Fisher’s exact test P < 0.05) are shown. (C) eQTLs and

GWAS hits in variable regions. Stars indicate P < 0.05.
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