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ABSTRACT 

For three particles interacting via forces of finite range, it is shown 

that the wave function interior to the finite volume where all three force ranges 

overlap completely determines the exterior wave function, provided only the 

wave functions (half off-shell t matrices) of the isolated two-particle subsystems 

are also known inside their own range of force. The determination is provided 

by the solution of a one-variable integral equation with a compact kernel, whose 

resolvent applied to any parametrization of the interior wave function supplies 

the equivalent of a phase shift analysis for three-particle final states (exact 

description of overlapping resonances throughout the Dalitz plot), and (if the 

interior three-particle fordes are also known) a matrix equation for the interior 

wave function. 

(Submitted to Physical Review Letters) 
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For (central, spin-independent) forces of finite range the exterior 

wave function for two particles can be uniquely specified by a single phase 

shift in each angular momentum state, which parameters also specify the 

scattering cross section. So far, the corresponding description for three 

particle final states has not been ccmstructed. At first sight, the Faddeevl 

decomposition into the three channels which asymptotically contain an inter- 

acting pair plus a free particle would seem to solve the problem. However, 

so long as the interacting pair are within the range of the two-particle force, 

their energy and momentum are not necessarily connected as they will be in 

the three free particle final state, and they can pick up momentum from the 

outgoing wave in one of the other two channels (cf. Figure 1). This produces 

a non-local2 interaction which falls off only with the inverse distance to the 

third particle, even if the two particle forces are of finite range. This in turn 

produces a singularity in the Faddeev equations which must be removed (e. g. 

by contour rotation or iteration) before they can be solved. In addition, any 

strongly interacting system can be expected to have three-body forces where 

all three particle ranges overlap, and these must be specified, in addition to 

the two particle forces, before the physical prediction of three-particle cross 

sections can be achieved. Thus the Faddeev equations provide a dynamical 

description, but do not provide a means of separating the. exterior from the 

interior wave function. We show below that by reformulating the problem in 

in configuration space, it is possible to make such a separation. Because of 

the long-range effect described above, the formalism necessarily requires a 

complete description of the wave functions of the isolated two-particle systems 

inside the range of the two-particle forces (half off-shell two-particle t matrix), 

but still can be made whether or not there are three-particle forces inside the 
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finite volume where the force ranges of all three pairs overlap. Hence, to 

the extent that one believes a covariant description of the half off-shell two- 

particle t matrices (e. g. via the Blankenbecler-Sugar equation), the description 

could also be extended to the relativistic case. Tf the forces are known in the 

interior region, the method also provides non-singular dynamical equations 

for the three-body problem. 

The wave function 9M & r 1, 2, r 3) for three particles of masses m _ 1’ 

m2, m3 can be re-expressed in terms of the new coordinates 

g = pry1 + m2g2 + m,r,)/(y + m2 + m3) 

= [2mjmk/@j $ mkd ‘fj - $1 

Yi = [2mi(mj + mk)/(ml + m2 + m3)ls 
(1) 

['ri + (mjpj + mkLk)/tmj + mk)l 

i,j,k cyclic on 1,2,3, and decomposed into Faddeev channels and radial and 

angular parts according to 

*M = .i_P*g uJ,” (x y ) Lh s’s M 
J 

s=l PA xs% 

y J& cex 9  9, 3  ‘y ) +ys) (2)  

-s -s s 

M where ,P is the total momentum and the Y J1h are the two-direction spherical 

harmonics as defined by Blatt and Weisskopf3. If the interactions are due to 

central, spin-independent potentials vi ( I ~~ -sk I.) and Wi( xi) = 

Vi([ (mj + mk)/2m.m I* Ji 
J k 

xi), the radial wave functions Ue h (x, y) are uniquely4 

specified for each value of J (which index we now drop) by the dynamical 

equations 
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c 1 

i 
az a2 + - rn Q(Qz+l) _ <qp! -l-z -M+,+;~(xi,yi) 
8~: a$ xi yi 

mh($jCPis* R-$i+is) 
d@ c ,.Kis ii! 

s Q,h, QAQ’h’ (hit #,I U~,h,(rcos(Ps, r SWs> 

~ wi( xi) Sun (xi, yi) (3) 

r = cospis = E 2rnirnd 8 
(mi + ms) (ms 

I 
+m;) 

s=j, s,f=k or s=k, sf=j 

Z = EUB- P2/2 (ml + m2 + m3) 

The geometrical fact& coupling in the two other channels is, explicitly 

K~$~~~($i~ Cps) = 8n2 c Y”* 
(2 J-I- 1) 4 si112/5~ MM’ 

JQh (5,‘, bi, 0)  ‘~:,, (5 + tis,‘,E ’ %is + 5,,‘) 

cos 5‘, = (cos.25s CO8 2 $ - cos 2 $Js)/sin2pis~ sin2 OS 
_.. 

‘OS his = (SW, q,in cppos si - cospis cos q/cos 4s 

cos 5, 7 (COS2Pis Sin2 4i CO8 S i + Sin2pis cos 2 @$/sin 2 @s 

and is independent of the angle 2 which li makes with some arbitrary axis 

fixed in the plane of the triangle. For the states of zero total and relative 

angular momentum, K is just l/sin2pis and for three particles of the same 

mass, pis is n/3. 

(4) 
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. 
Since the two-particle forces W1 are assumed known, we can con- 

struct the Green’s function for the left hand side of JZq. (3) in terms of product 

wave functions in x and y, f(x) f,(sy), which vanish at x = 0 or y = 0 and which 
. 

we choose to normalize, asymptotically to I$ (x) - sin(px+ $,i-Q+/2), 

fA(qy) - sin(qy - &r/2) (i. e. fA(qy) = qy j,(qy)). They therefore have the ortho- 

normality properties 
Co 

2 
?r f 

dp u!(x) uQpi(x,, = 6(x wx’); $ s ds f#Y) f#lY’) = qy - y’) (5) 
0 

f 

. 
where the symbol is written to remind us that if W1 is strong enough to 

support bound states at p = iy , these discrete terms must also be included. 

Since, when this Green’s function is applied to the source term on the right, we 
. . 

encounter $(x’)W’(xr), we can eliminate explicit reference to the potential in 

favor of the half off-shell t matrix by the relation 

f(x) Wi(x) = -tQe 
-i6P, A ) 

s 
0 

akkf,@, t;@,P;P2) 

ti(p,p;p2) = e 
iGQi 

p singi/, = T(p) 

(6) 

If the right hand side of Eq; (3) were bounded in both x and y, the Green’s 

function solution 

I 

j 

i ’ 

* 1p’ 

++Y) = &x, y) + $ $dp jdq&xTf dyl p 
@ ‘I f-#lY’) * - 

0 0 0 2 2 2 + ie -p -q 
wl(x’)s;,(x’y’) 

would have the exterior representation 
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em J- z-q2x) = 

with 

(8) 

FjAtq) = a,/ ~w,Jz-q2;z-q2) JJ . 
dx ‘Y fQ orx) f$qY) $~c”, Y) 

interior 
(9) 

Clearly, the FiA(q) are simply proportional to the Faddeev Ti in the JQh 

representation, and include elastic scattering and rearrangement collisions 

via the discrete terms in the sum. Unfortunately, the source-term, although 
. 

bounded in x if W’(x) has a finite range, falls off only like l/y for reasons 

discussed in the first paragraph. 

The key to a separation of Rq. (3) into exterior and interior parts is 
. 

to note that the limits of integration on $s plus the assumption that $ vanishes 

for x > R for all i is sufficient to limit the region for xs < R in which 

UQt (xs, y,) need be known to compute S(x, y) to the finite domain 

Q < xs < R; O ’ Ys ’ @  + xScos~is)/sinPis 00) 

while in the contribution coming from xs > R (which lies in the strip bounded by 

y, = (R f xsCos~is)/sin~is), can be computed from the one-variable represen- 

tation given in Eq. (8). Hence, if we assume the wave function known in this 

interior region, for example, in terms of some complete set A,(x, y) over this 

finite domain, i. e. 
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The Fib(q) can be determined by solving the one-variable integral equation 

If the resolvent for Q(q, p) exists, application to the inhomogeneous term in 

Eq. (12) immediately gives Ti in terms of known functions with coefficients an. 

These known functions are completely determined by the two-body half off- 

shell t matrices and the complete set A,(x, y), so the an are the analog of phase 

shifts for the three-particle system. Further, if this exterior representation 

is used in Eq. (ll) and reinserted in Eq. (3), we obtain an equation for $(x, y) 

over the finite domain (Eq. (lo)); hence, using the orthonormality of the 

An(x, y), this gives immediately a matrix equation for the an. (If there are 

three-body forces, these must be explicitly introduced into Eq. (3) at this point. ) 

It remains only to show, that Q(q, p) falls off more rapidly than const/(qp)t for 

large q and p. -licitly 

03) 

where G is a purely geometrical factor given by 



e tr seMs- W 4(1” cos$i) fA(qr SiI$) eQ, -P2 r cos$s) 

The factor K is a product of spherical harmonics of angles in the physical 

04) 

range, so can only improve the convergence of the integrals and can be safely 

ignored. If we perform the k integration over the off+hell extension of t first, 

the fact that this comes from the difference between the wave function and its 

asymptotic form’ ensures that it will be bounded by a factor proportional to 

1/(k2 + p2) with /3 N l/R, and the integral of this times kfQ(kx) wilI be bounded 

by something proportional to -PX e , which is no surprise if we look at the left 

hand side of Eq. (6). Hence (ignoring bounded factors), the q dependence will 

be determined by t((z - q2)& , (z -q2)* ; z - q2), which falls off at least a rapidly 

as const/iq for large q; (it is also easy’to see from other ways of writing Q(q,p) 

that there is no difficulty at q2 = z). Similarly, for large p, the exponential 

term becomes exp(- (p2- z)~ r COS#~), and an asymptotic behavior at least as 

rapidly decreasing as con&/p is also guaranteed once we note that r cases is 

bounded from below by R. Hence Qislht (p, q) 5 C/qp, which guarantees the 

existence of a resolvent kernel for Eq. (12). 

It is also important to note that if we make the decomposition5 

t(k, (k) in Rqs. (13) and (l4), we can investigate 

in which kinematic regions the geometrical factor will make the result sensitive 

to the off-shell extension f, and where the resolvent kernels will depend primarity 



on the on-shell dependence r d z -q2). This will determine where the optimum 

regions lie for determining the on-shell factor for unstable systems (e. g. R-R 

phase shifts in nN - nnN final states), ‘and where to investigate off-shell be- 

havior for systems in which the on-shell behavior is known (e. g. the three- 

nucleon system). As developed above, the analysis is non-relativistic, but 

since the final equation depends only on the half off-shell t matrices, the 

external analysis can be used in relativistic systems to the extent that one 

has confidence in covariant definitions of the off-shell extension of two-particle 

t matrices (e. g, via the Blankenbecler-Sugar equation). Hence, it can be 

immediately applied to problems of overlapping resonances in the Dalitz plot 

and the determination of elementary particle resonance parameters; note that 

there is no double counting, and all relative phases are explicitly given. This 

application, and the inclusion of spin, do not affect the compactness proof 

given above, but are obviously too complicated to be developed in a short 

article. 

I am indebted to L. D. Faddeev, L. P. Kok, and T. Osborn for useful 

discussions of some aspects of this problem. These discussions were made 

possible by the Physics Department of the University of Birmingham, who sup- 

ported my attendance at the Conference on the Three-Body Problem in Nuclear 

and Particle Physics at Birmingham in July, 1969, and by the attendees of that 

conference who supplied the financial backing by their registration fees. 



-lo-. 

REFERENCES 

1. 

2. 

3. 

4. 

5. 

L. D. Faddeev, Zh. Eksperimi, Teor. Fiz. 2, 1459 (1960) [Translation: 

Soviet Physics JETP 12, 1014 (l961)] , 

H. P. Noyes, Introductory Talk, International Conference on the Three- 

Body Problem in Nuclear and Particle Physics,. University of Birmingham, 

July 8-10, 1969, and SLAC-PUB-667. 

J. M. Blatt and V. F. Weisskopf, Theoretical Nuclear Physics (Wiley and 

Sons, New York, 1952), p. 790. 

H. P. Noyes and H. Fiedeldey in Three-Particle Scattering in Quantum 

Mechanics, J. Gillespie and J. Nuttall, Eds., W. A. Benjamin, Inc., 

New York (l968), p. 195; for the earlier corresponding reduction of the 

Faddeev equations to two variables, see A. Ahmazadeh and J. A. Tjon, 

, B1085 (1965) and T. Osborn and H. P. Noyes, Phys. Rev. 

Letters fi, 215 0966). 

H. P. Noyes, Phys. Rev. Letters E, 538 0965). 

FIGURE CAPTION 

Figure 1 - Scattering in the three channel (relative coordinate x3) produces an 

outgoing wave which can scatter from the particles in the one channel 

(relative coordinate xl) so long as they are within the range of forces, 

R. The effect falls off as l/y1 regardless of the range of forces, and 

hence is non-local. 
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