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CHAPTER 1 

INTRODUCTION  
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Technology has become extremely important in determining the competitive advantage of 

companies in a growing number of industries. Products are becoming increasingly complex and 

require more and more sophisticated technologies. Emerging technologies challenge the 

competitive positions of incumbents more than ever and have opened up new windows of 

opportunities for innovative firms. In an attempt to deal with these forces of �creative destruction� 

firms are increasingly forced to combine internal technological strengths with those of other firms 

as R&D costs soar rapidly and technological dynamics speed up.  

The ongoing increase in the number of newly established strategic technology alliances 

among companies has led to the emergence of dense inter-organizational networks in which 

companies position themselves in order to benefit from the specific know-how of competent 

partners. A number of recent studies have investigated the relationship between a portfolio of 

technology alliances and (technological) firm performance (Hagedoorn and Schakenraad, 1994; 

Shan et al., 1994; Powell et al., 1996; Mitchell and Singh, 1996; Stuart, 2000). In similar vein, 

many publications have argued that a centrally positioned firm may have access to a larger and 

wider base of knowledge than a company in the periphery of an alliance network (Duysters and de 

Man, 2003). Others (Stuart, 2000) find evidence that alliances with partners that are technologically 

well endowed have a larger positive impact on post-alliance performance of the focal firm than 

those with partners that are less well endowed. Companies with a large stock of technological 

resources are often considered to be highly attractive potential alliance partners. Similarly, we 

could argue that the alliances of a focal firm�s partners matter, since these indirect contacts provide 

access to an even broader range of information. These and other arguments which will be put 

forward in the thesis lead us to believe that not only the dyadic level of alliances matter, but 

increasingly aspects of ego-networks or the entire network play a major role in determining the 

technological performance of a firm. Whereas most previous studies have taken on a dyadic 

perspective on alliances we take on a network approach to firm�s innovative performance. In 

particular we will focus on the effect of specific networking strategies on the degree of 

technological performance of firms. Therefore, we derive the following research question:  

 

What is the effect of particular alliance networking strategies on 

the degree of technological performance of firms? 

 

In order to come up with an answer to this research question three aspects will be studied in 

this thesis. First, it is important for firms to make a distinction between the internal development of 

technological knowledge and the external acquisition of technological know-how.  
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INTERNAL LEARNING / EXTERNAL LEARNING 

In large companies, management is gradually replacing the traditional inward focus of its 

technological competence building by a more outward-looking approach that draws heavily on 

technologies from networks of universities, startups, suppliers, and competitors. Hence, 

technological performance is increasingly based on a combination of internal and external learning: 

internal learning based on a firm�s own R&D efforts, external learning on the technology acquired 

from alliance partners. Both types of learning are considered to be complements reinforcing each 

other�s productivity (Cohen and Levinthal, 1990; Duysters and Hagedoorn, 2000). However, little 

is known about the interaction between and the mutual reinforcing effect of internal learning and 

external learning. Thus, chapter two of this thesis is devoted to finding an answer to the following 

question: 

How do internal learning and external learning mutually affect a 

firm�s technological performance? 

 

For firms with low degrees of technological competences and social capital � in terms of the 

number of alliances they have � entering new alliances can be greatly beneficial since they provide 

access to new and valuable technological knowledge. However, these firms may be less attractive 

to other firms to cooperate with, because of their low technological know-how. Firms with unique 

internal knowledge resources, on the other hand, are likely to be attractive to other firms that expect 

to benefit from getting access to these unique resources (Baum et al., 2000). However, as these 

firms are already well endowed with technological capital, they have fewer incentives to cooperate 

in order to improve their own rate of innovation (Ahuja, 2000). As a result, a company that is well 

endowed with technological competences is likely to benefit only marginally from extending its 

alliance network beyond a critical threshold.  

Hence, both types of firms need to find a balance between internal and external 

development of technological know-how, and the optimal mix will be different for both types. 

Although it is very unlikely that companies can develop their technological resources completely 

in-house, those that have unique technological resources need only a relatively small alliance 

network to ensure high rates of innovation. On the other hand, companies with moderate levels of 
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technological knowledge may opt for investing in much larger alliance networks. Whether internal 

and external learning have mutually reinforcing effects under all circumstances is still open for 

debate. We believe that beyond a critical threshold both types of capital substitute each other and 

extending social capital may become a liability. This will be addressed in chapter two. 

 

After discussing this first aspect of the central research question, we can further explore how 

companies can optimally use this externally acquired knowledge. This leads us to the second aspect 

that will be studied in this thesis, i.e. the optimal positioning of a company in an innovation 

network in order to deepen the existing knowledge base (exploitation) or to widen the existing 

knowledge base (exploration).  

EXPLORATIVE AND EXPLOITATIVE TECHNOLOGICAL PERFORMANCE 

Teaming up with competent partners allows firms to share the costs and risks involved in Research 

and Development and enables them to increase their speed-to-market considerably. Many of these 

technology based alliances are referred to as �learning alliances� through which companies can 

speed up their capability development and exploit knowledge developed by others (Grant and 

Baden-Fuller, 1995). 

However, considering inter-organizational networks of technology-based alliances as a set 

of �learning alliances� is clearly a simplification. We therefore follow March (1991) in 

distinguishing between exploitative and explorative learning, and argue that the value of a firm�s 

alliance network is contingent on the type of learning. Exploitation is associated with the 

refinement and extension of existing technologies, whereas exploration can be seen as the 

experimentation with new alternatives. There are considerable differences between both types of 

learning (March, 1991; Chesbrough, 2003), which, in turn, have important implications in the way 

a company can tap into the technological capabilities of its alliance partners. Because there are 

marked differences between exploitative and explorative learning, we assume that the role of 

alliances and the structure of the alliance network is contingent on the type of learning.  

 

How do networking strategies affect explorative and exploitative 

learning? 
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In chapter three we suggest, in line with Ahuja�s (2000a) study, that three more aspects of a 

company�s technology-based alliance network should be analyzed in detail. We will argue that (1) 

the number of direct ties, (2) the indirect ties maintained by the firm, and (3) the degree of 

redundancy among the firm�s partners all have a differential impact on explorative and exploitative 

learning. 

We argue that the distinction between explorative and exploitative learning may be an 

important contingency factor in explaining the value of (non-)redundant ties. Companies have to 

make choices between bridging structural holes between the dense areas of an alliance network on 

the one hand and creating cohesive ties to benefit from its social capital in the network on the other 

hand. In other words, firms should make decisions about how and when to make use of redundant 

and non-redundant ties in their external acquisition of technology. In particular we argue that, since 

companies have to find a balance between explorative and exploitative learning (March, 1991), 

redundant and non-redundant links play a complementary role in inter-organizational learning 

processes: redundant information improves exploitative learning, non-redundant information 

enhances a firm�s explorative learning. 

 

Network positioning is often studied from a deterministic point of view. In the existing literature 

we find that firms can exert little influence on the entire network. However, as opposed to the small 

influence firms have on the network as a whole, firms can actually play a part in their direct 

surroundings. Therefore the third aspect studied in this thesis is network positioning from the 

perspective of the ego-network. This implies that no longer the entire network with all the indirect 

contacts (i.e., contacts of partners, thus the partner�s partners) are taken into consideration, but the 

effectiveness of network strategies at the level of the direct contacts (that can be influenced) are the 

focus of this study. 

 

LOCAL ACTION 

Inspired by seminal work of Granovetter (1985), Coleman (1988) and Burt (1992a, b) many authors 

have subsequently dealt with the question of which specific structural network positions enable 

firms to achieve the highest level of performance. The existing literature seems to take on a rather 

deterministic approach to network structure and positioning where firms are primarily influenced 
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by the exogenous network structure they are part of. Most of the work in this area thus neglects the 

endogenous micro-level dynamics of organizational action (Bae and Gargiulo, 2003). In this thesis 

we argue that these endogenous micro-level dynamics prove to be instrumental in building the 

overall network structure. In order to fill this gap in the existing academic literature we follow Bae 

and Gargiulo (2003) by arguing that networks are basically the outcome of the combined local 

alliance actions of all individual players in the network. In order to assess the role of these micro-

level dynamics on technological performance we decided to focus on the outcomes of local alliance 

action on the innovative performance in chapter four. The main question we seek to answer in the 

fourth chapter is: 

 

What is the role of local alliance action on technological 

performance? 

 

In this part of the thesis we argue that the efficiency of alliance strategies is primarily 

dependent on two major factors, i.e. the local actions of a focal firm (ego) and the local actions of 

its alliance partners (alters). Local actions can be associated with the establishment (or dissolution) 

of direct ties (ego-alter) whereas the local actions of the alliance partners are associated with 

indirect ties (alter-alter). Of course, direct and indirect ties are interrelated. Some of the actions of a 

focal firm�s alliance partners might be beneficial to the focal company and some of the actions 

might have a negative effect on the focal firm�s network position. 

Rowley et al. (2000) argue that local density rather than global (network wide) density 

influences the performance of the focal firm. Ego-network measures are consistent with this view. 

We therefore leave behind the network level, and descend to the level of the ego-network, which 

provides a micro-level analysis of local actions and their impact on the innovative performance of 

companies. 

 

EMPIRICAL TESTING 

The various issues as described above are empirically studied by using two main longitudinal 

datasets. Both these datasets contain information on the alliance activity and patent activity of the 

companies under study.  
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The first part of the research in this thesis (aspect one as mentioned above) is performed in 

the ASIC-industry (application-specific integrated circuits), a branch of the micro-electronics 

industry that develops and produces custom-made chips for customers. The data that is used 

consists of observations for 99 ASIC-related firms in the period 1988 until 1996. ASIC-related 

patents were used exclusively since we wanted to compare the effectiveness of R&D cooperation 

within the ASIC-field on the technological performance of firms as well as the effect of internal 

development on technological performance. 

The second part of the empirical research (the above mentioned aspects two and three) in 

this thesis was performed on a dataset with 116 firms in the chemicals, automotive and 

pharmaceutical industries. The firms were observed over a period of twelve years, from 1986 until 

1997. The patent and alliance activity data were complemented with company data such as 

financial data (from Worldscope, COMPUSTAT and data published on the companies� websites) 

and the country of origin. In this instance both patent-activity and alliance-activity were measured 

broader than the industries under study to be able to measure explorative technological 

performance. 

 

 

In the final chapter, we will summarize the most interesting findings of the next three chapters. The 

three research questions will be put together and commented starting from a unifying framework 

about optimal alliance portfolios. We will explore issues like the balancing between internal and 

external (technological) learning, portfolio size, indirect ties, redundancy in the alliance network 

and the capabilities of the alliance partners. Finally, a number of avenues for future research will be 

explored: the current thesis has its limitations and it seems that empirical research about the effect 

of particular alliance networking strategies on the degree of technological learning is still in its 

infancy. We will provide a number of directions in which future research may evolve.   
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CHAPTER 2 

TECHNOLOGICAL CAPABILITY BUILDING THROUGH NETWORKING 

STRATEGIES WITHIN HIGH-TECH INDUSTRIES 1 

 

Abstract 

Learning through networks has been a research topic for several years now. Technological 

learning is more and more based on a combination of internal and external learning and firms 

need to develop both technological and social capital for that purpose. This chapter analyses the 

relationship between both types of capital and their impact on the technological performance of 

companies in high-tech industries. We claim and find strong empirical evidence that technological 

capital and social capital mutually reinforce each other�s effect on the rate of innovation for 

companies with small patent and alliance portfolios. However, when companies have a strong 

patent portfolio and an extensive network of alliances then both types of capital become substitutes. 

We also found that there are two possible equilibria: the first one emphasizes the development of 

strong internal technological capabilities supported by a small alliance portfolio. The second is the 

mirror image of the first one: these firms focus mainly on technology acquisition through alliance 

partners supported by a minimum of internal technological capabilities. Both strategies can co-

exist in an industry. Finally, we find empirical evidence that companies who explore novel and 

pioneering technologies have a higher rate of innovation in subsequent years.  

                                                 
1 This chapter is based on a paper written with Wim Vanhaverbeke and Geert Duysters 
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INTRODUCTION 

This study aims to relate technological performance of companies in high-tech industries to their 

degree of technological and social capital. More specifically, we focus on three main research 

topics. First, we consider whether a firm�s technological and social capital are mutually enforcing 

factors that together determine the rate of innovation, or whether they can be considered as 

substitutes. We also address the question of whether there is an optimal mix of resources, which 

produces above average results. Second, following Stuart (2000) we argue that not so much the size 

of the alliance portfolio, but the technological performance of the partnering firms to whom a focal 

firm is connected determines the rate of innovation of the latter. Finally, we aim to find out whether 

companies that explore new technologies have higher rates of innovation than companies that are 

primarily engaged in exploiting and strengthening their existing technology base.  

The apparent importance of knowledge, especially in high tech industries, has given rise to a 

stream of research focusing on knowledge as the single most important resource within an 

organization (Kogut and Zander, 1996; Conner and Prahalad, 1996) and has led to the emergence of 

the knowledge based theory of the firm (Grant, 1997). In a similar vein, a number of recent studies 

have investigated the relationship between a portfolio of technology alliances and (technological) 

firm performance (Hagedoorn and Schakenraad, 1994; Shan et al., 1994; Powell et al., 1996; 

Mitchell and Singh, 1996; Stuart, 2000). Firms are increasingly forced to combine internal 

technological strengths with those of other firms as R&D costs soar rapidly and technological 

dynamics speed up. Products require more and more sophisticated technologies and emerging 

technologies have the potential to undermine the competitive positions of incumbents. Many of 

these alliances are �learning alliances� through which companies can speed up their capability 

development and exploit knowledge developed by others (Grant and Baden-Fuller, 1995). Because 

in today�s turbulent technological environment no single firm is able to come up with all the 

required technological capabilities themselves, firms are increasingly induced to form these 

�learning alliances�. In order to overcome the lack of specific technological capabilities they try to 

tap into other companies� technological assets. Market transactions are generally considered to be 

only a weak alternative to alliances because most valuable knowledge is cumulative and tacit in 

nature. This specific nature makes it hard to transfer between organizations through market 

transactions (Mowery, 1988; Mowery et al., 1995; Osborn and Baughn, 1990).  
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Technological performance is more and more based on a combination of internal and 

external learning: internal learning by the internal development of new products and processes as a 

result of internal R&D, external learning from the technology acquired through technology 

alliances. Both types of learning are considered complements reinforcing each other�s productivity 

(Cohen and Levinthal, 1990; Duysters and Hagedoorn, 2000). Moreover, companies can only tap 

into other companies� technology base successfully if they have sufficient absorptive capacity 

(Lane and Lubatkin, 1998). In its turn, absorptive capacity results from investments in internal 

technological know-how. Hence, internal technological knowledge and external technology 

acquisition via alliances are considered complements. But surprisingly, there are to our knowledge 

no large-sample empirical studies that focus on the combined effect of internal and (quasi) external 

knowledge acquisition on the technological innovative performance2.  

 

THEORETICAL BACKGROUND AND HYPOTHESES 

Technological and social capital 

This chapter builds on the knowledge-based view of the firm. Over time accumulated knowledge 

assets constitute the source of a firm�s sustainable competitive advantage in the marketplace (Kogut 

and Zander, 1996; Spender, 1996). Firm specific knowledge assets are of strategic interest � they 

are distinctive competences � because they are rare, imperfectly tradable and hard to imitate and 

must be build within the organization internally as long as part of the technological know-how is 

not articulated or tacit in nature. The development of knowledge assets (or technological capital) is 

difficult, time consuming and expensive. Moreover, developing technological capabilities is a risky 

venture because R&D up-front costs may be huge and the technological and commercial outcomes 

may be highly uncertain (Mitchell and Singh, 1992).  

                                                 
2 Ahuja (2000) focuses on the impact of technical, commercial and social capital of companies on the formation of new 

alliances. Commercial resources are those required to convert technical innovations to products and services. They 

consist of manufacturing and marketing capabilities and entail manufacturing facilities and service and distribution 

networks (Mitchell, 1989; Teece, 1986). In what follows we focus on the relationship between technical and social 

capital and neglect the linkages with commercial capital. 
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Because of the cumulative character of technology, the current technological position of a 

company is shaped by the path it has traveled (Teece et al., 1997). Hence, path dependency is 

crucial: previous investments in and strategic choices about technology development not only 

explain the current position of a company, but they also constrain the future options of companies. 

Therefore, companies that failed to build up a technological capability in the past may find it 

difficult to catch up later by internal development (Shan, 1990). Furthermore, existing 

technological capabilities may reduce a firm�s capacity to adapt to new commercial challenges or to 

rejuvenate its capabilities in the face of new, �competence destroying� technologies (Abernathy and 

Clark, 1985). 

Accumulated technological competence can therefore be seen as the result of past 

innovative activities of a firm (Podolny and Stuart, 1995; Stuart et al., 1999). As a result, we can 

expect that firms with well developed technological assets will be more innovative than other firms 

under conditions of relative technological stability � i.e. when companies can build on their 

previously developed knowledge. This argument suggests the following hypothesis. 

 

Hypothesis 1: The greater the technological capabilities of a firm at t-1 the higher 

its rate of innovation at t.  

 

Being centrally positioned in a network of technology alliances has been recognized as a 

distinctive and important form of capital � social capital � of innovative companies (Gulati, 1995, 

1999). Especially in fast changing technological fields internal R&D efforts need to be 

complemented by external means of technology acquisition. The creation of a strategic alliance 

network can facilitate the access to technological resources across industries or technological field. 

Alliances are often used by companies as instruments to acquire technological knowledge and to 

develop new skills that reside within the partnering companies (Hamel, 1991; Hagedoorn and 

Schakenraad, 1994; Powell et al., 1996). Previous research established that alliances often have a 

positive impact on the performance of companies (Baum and Oliver, 1991; Mitchell and Singh, 

1996; Uzzi, 1996; Powell et al., 1996; Hagedoorn and Schakenraad, 1994). These authors found in 

different research settings a positive relationship between technological alliances and rates of 

innovation. A notable exception is the work of Stuart (2000) who found no significant relationship 

between the number of alliances and the growth rate or rate of innovation of semiconductor firms.  

A portfolio with too many alliances may lead to saturation and overembeddedness (Kogut et 

al., 1992; Uzzi, 1997). Therefore, at high levels of embeddedness marginal benefits of forming new 

linkages will be low and marginal costs of additional links will be relatively high (Ahuja, 2000). 
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Nahapiet and Ghoshal (1998: 245) argue that the collective social capital resulting from dense 

networks can limit a firm�s �openness to information and to alternative ways of doing things, 

producing forms of collective blindness that sometimes have disastrous effects�. At the same time 

managerial costs increase significantly because not only individual alliances need management 

attention, but management also has to coordinate across linkages (Harrigan, 1985). Gomes-

Casseres (1996) has shown that there is a natural limit to the number of alliances that a company 

can manage successfully. Therefore, we argue that there is a non-linear relationship between the 

social capital of a company and its rate of innovation. Highly embedded companies or firms with 

poorly developed social capital will have the lowest rates of innovation. In particular firms at 

intermediate levels of embeddedness will show the highest rates of innovation. This argument 

suggests the following hypothesis:  

 

Hypothesis 2: The involvement of a company in technology-based alliances at t-1 

is related in a curvilinear way (inverted-U shaped) to its rate of 

innovation at t. 

 

As discussed above, technological performance is increasingly based on a combination of 

internal and external learning. Both types of learning have been described in the literature as 

complements reinforcing each other�s productivity (Cohen and Levinthal, 1990; Duysters and 

Hagedoorn, 2000).  

Whether social and technological capital would have mutually reinforcing effects under all 

circumstances is however open for debate. Firms with low degrees of technological competences 

and social capital, in terms of the number of alliances they have, will benefit considerably from 

entering new alliances since they provide access to new and valuable technological knowledge. 

Firms with poorly developed technological capital have strong incentives to get access to the 

technological capital of other firms through interorganizational alliances (Mitchell and Singh, 

1996). These companies will also profit from strengthening the internal knowledge base as this 

increases their absorptive capacity so that its partners� knowledge can better be valued and 

assimilated (Lane and Lubatkin, 1998).  

Firms with unique internal knowledge resources are likely to be attractive to other firms that 

expect to benefit from getting access to these resources through means of alliances (Baum et al., 

2000). As a result, firms with unique technological resources have more opportunities to 

collaborate than firms with poorly developed resources. However, firms that are already well 

endowed with technological capital have fewer incentives to cooperate in order to improve their 
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own rate of innovation (Ahuja, 2000). Because these companies have already developed leading 

edge technological competences they are likely to learn to a lesser extent from their partners than 

vice versa (Hamel et al., 1989; Kale et al., 2000; Khanna et al., 1998).  

As a result, a company that is well endowed with technological competences is likely to 

benefit only marginally from extending its alliance network beyond a critical threshold because it 

increases the chance that internally developed and externally acquired technology may overlap or 

that the marginal value of getting access to another company�s knowledge base is smaller than the 

cost to set up and manage the alliance (Harrigan, 1985). Hence, although it is very unlikely that 

companies can develop their technological resources completely in-house those that have unique 

technological resources need only a relatively small alliance network to ensure high rates of 

innovation. Beyond a critical threshold both types of capital substitute each other and extending 

social capital may become a liability. This argument suggests the following hypothesis: 

 

Hypothesis 3: At low levels, internal technological capabilities (technological 

capital) and external acquisition of technology through 

technological alliances (social capital) reinforce each other�s effect 

on the rate of innovation. At high levels, they weaken each other�s 

effect. 

 

Combining hypotheses 2 and 3, we expect that companies can realize the highest rates of 

innovation by two different types of strategies that can coexist in the same industry. The first 

strategy is based on a considerable alliance network and small (potentially specialized) 

technological capital. This provides the company with ample opportunities to tap into its partners� 

technology resources or to co-develop innovations by combining (complementary) skills. The 

second strategy emphasizes the internal development of innovations in the company. The company 

has an extensive patent portfolio and needs only a few alliances to ensure that it has the required 

technology to strengthen or to continue its strong technological performance. Companies with 

moderate values for both types of capital, failing to stick to one of these two strategies, are �stuck in 

the middle�. Thus:  

 

Hypothesis 4: Companies with extensive (small) internal technological 

capabilities and a small (extensive) alliance network have the 

highest rates of innovation. Both profiles may successfully coexist 

in an industry.  
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Stuart (2000) argues that the technological (and economic) performance of companies is not 

so much determined by the size of the alliance network but rather by the characteristics of the focal 

company�s alliance partners3. If companies enter alliances to get access to other firms� technology, 

then those with a large stock of technological resources are highly attractive as potential alliance 

partners. Stuart finds evidence that alliances with partners that are technologically well endowed 

have a larger positive impact on post-alliance performance of the focal firm. In high-tech industries 

the technological competencies of alliance partners determine in part the focal company�s potential 

to learn. Teaming up with skilled innovative companies with unique technological assets offers a 

company the best opportunities to learn and thus to invigorate its competitive position.  

 

Hypothesis 5: The stronger the technological capabilities of a company�s alliance 

partners at t-1, the higher its rate of innovation at t. 

 

EXPLORING NEW TECHNOLOGIES 

We have already argued that a mutual positive feedback between experience and competence 

exists. This virtuous cycle enables companies to build up unique technological skills, which 

potentially lead to competitive advantages in the marketplace. The increased ease of learning within 

particular technologies facilitates the exploitation of these technologies compared to the exploration 

of new technologies (Levinthal and March, 1993; March, 1991). 

The downside of this path dependency is that it increases the likelihood of a company 

falling in the so-called familiarity trap (Ahuja and Lampert, 2001). It is argued that experience and 

competence in a specific set of technologies lead to the emergence of a dominant and increasingly 

rigid technological paradigm. This, in turn, reduces the probability of a company�s willingness to 

experiment with other problem solving approaches. This absence of experimentation reduces the 

chance that a company will discover new technological opportunities that are assumed to be large 

in high tech industries (Jaffe, 1986; Lunn and Martin, 1986; Levin et al., 1985). 

                                                 
3 Similarly, Baum et al. (2000) argue that the performance of biotechnology start-ups is positively influenced by the 

technological capabilities of the partnering companies. 
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To avoid familiarity traps companies can explore novel technologies, i.e. technologies that 

are new to the organization even though they may have been in existence earlier (Ahuja and 

Lampert, 2001). Experimenting with novel technologies allows a company to value the potential of 

these technologies in a more accurate way (Cohen and Levinthal, 1990). Explorative companies are 

better positioned to discover the technological and commercial potentials of novel technologies. 

They may also be better prepared to value the potential competitive threat of disruptive 

technologies (Bower and Christensen, 1995; Christensen and Overdorf, 2000) or competence 

destroying technologies early on (Abernathy and Clark, 1985; Tushman and Anderson, 1986). 

Exploring novel technologies challenges the dominant problem-solving paradigm in companies 

(Lei et al., 1996). Unfamiliar technologies may force a firm to search for new cognitive maps that 

open up new avenues for research. Hence, we may expect that companies that experiment with 

novel technologies are better positioned to have a higher rate of innovation than firms that invest all 

their efforts in exploiting existing, familiar technologies. 

Exploring novel technologies, however, is only advantageous up to a point. Investing 

excessively in exploration of novel technologies may lead to confusion: exploration of unfamiliar 

technologies and exploitation of familiar ones have to be balanced to be productive. As argued by 

March (1991) and Levinthal and March (1993) firms engaging in exploration exclusively, only 

suffer from the costs associated with experimentation without exploiting its benefits. Moreover, 

there will always be a trade-off between investing in deepening and upgrading the existing 

technologies to safeguard profits today and exploring new technologies to secure future profits 

(Rowley et al., 2000; Levinthal and March, 1981). Finally, scattering R&D resources on many 

novel technologies may eventually lead to diseconomies of scale within the individual technologies 

(Ahuja and Lampert, 2001). Therefore, we argue that: 

 

Hypothesis 6: A firm�s rate of innovation at t is related in a curvilinear way 

(inverted-U shaped) to its exploration of novel technologies at t-1.  

 

Innovative firms generally search for technological solutions within the scope of what has 

been invented before. They tend to build on their own technological successes and on those of 

others4. Previous solutions offer technologists or scientists an anchor to move forward. As a result, 

building on technological antecedents is less risky than working on a de novo innovation 

(Hoskisson et al., 1993; Hoskisson et al., 1994). 

                                                 
4 An average of 18 patent citations for the 1850 patents in the sample of ASIC related patents. 
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Ahuja and Lampert (2001) refer to the tendency of firms to search near to old solutions as 

the propinquity or nearness trap. Often interesting technological fields remain unexplored when 

companies rely too much on old solutions. The literature however suggests that important 

inventions emerge, in particular, from these unexplored areas (Utterback, 1994). Experimenting 

with pioneering technologies � i.e. technologies that do not build on existing technologies (Ahuja 

and Lampert, 2001) � is one possible way to circumvent the dangers of the propinquity trap. 

Experimenting with pioneering technologies is an attempt to jump to different technological 

trajectories (Dosi, 1988; Foster, 1986; Sahal, 1985). Since pioneering technologies offer 

fundamentally new solutions they may generate large future profit streams for the innovative 

company. At the same time, they entail large risks typical for radical innovations: However, when a 

company increases the number of experiments it also inflates the probability that a major, 

successful innovation will pop up sooner or later. We expect that a company having successfully 

patented a �pioneering technology�-innovation will increase its rate of innovation in the subsequent 

years.  

 

Hypothesis 7:  A firm�s rate of innovation at t is positively related to its success in 

pioneering new technologies at t-1. 

 

EMPIRICAL SETTING 

Definition and characteristics 

The hypotheses were tested on the population of ASIC-producers that were active in the period 

1988-1996. ASICs � i.e. application-specific integrated circuits � are a special type of ICs 

(integrated circuits) accounting for about 12 % of worldwide IC sales in 1995. The term 'ASIC', as 

now in use in the industry, is a misnomer. In reality these ICs are customer-specific rather than 

application-specific since an ASIC is a device made for a specific customer5.  

                                                 
5 A device which is made for one particular type of system function (e.g. disk-drives, CD-players, video compressing) but is 

sold to more than one customer, is called an ASSP (application-specific standard product, sometimes also called ASIPs - 
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The ASIC market is a typical high-tech industry where technology is the driving force 

shaping competition among firms. R&D-to-sales ratios are exceptionally high. The ASIC market 

can be divided into different submarkets. According to the "Integrated Circuit Engineering 

Corporation" (ICE) the ASIC market includes the following categories of ICs: arrays, custom ICs, 

                                                                                                                                                                  
application-specific integrated processors). Although ASSPs are manufactured using ASIC technology, they are ultimately 

sold as standard devices to large numbers of users. 

I. Semicustom IC: A monolithic circuit that has one or more customized mask layers, but does not have 
all mask layers customized, and is sold to only one customer. 

 Gate arrays: A monolithic IC usually composed of columns and rows of transistors. One 
or more layers of metal interconnect and are used to customize the chip. 

 Linear array: An array of transistors and resistors that performs the functions of several 
linear ICs and discrete devices. 

II. Custom IC: A monolithic circuit that is customized on all mask layers and is sold to only one 
customer. 

 Standard cell IC: A monolithic circuit that is customized on all mask layers using a cell 
library that embodies pre-characterized circuit structures. 

 Full custom IC: A monolithic circuit that is at least partially �handcrafted�. Handcrafting 
refers to custom layout and connection work that is accomplished without the aid of 
standard cells. 

III. Programmable Logic Device (PLD): A monolithic circuit with fuse, antifuse, or memory cell-based 
logic that may be programmed (customized), and in some cases, reprogrammed by the user. 

 Field Programmable Gate Array (FPGA): A PLD that offers fully flexible 
interconnects, fully flexible logic arrays, and requires functional placement and routing. 

 Electrically Programmable Analog Circuit (EPAC): A PLD that allows the user to 
program and reprogram basic analog devices. 

Table 2.1 ASIC definitions 

Figure 2.1    ASIC diagram 
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and programmable logic devices (PLDs). Formal definitions are given in Table 2.1 and 

diagrammed in Figure 2.1. 

The development and production of ASICs requires the interplay between different 

economic agents. The most important participants are the ASIC design houses, IC manufacturing 

facilities, electronic system houses and CAD-tool vendors. This list can be enlarged by a number of 

auxiliary and/or intermediate players, such as companies offering services in the microelectronics 

field, firms that translate customers' needs into the specifications for the design of ASICs, and 

university labs. The interplay between different agents is shown in Figure 2.2. 

Given these characteristics of the industry, most strategic alliances in the ASIC-industry are 

high-tech, since firms are likely to link up with each other in order to keep up with the latest 

technologies (Duysters and Hagedoorn, 1996).  

 

DATA, VARIABLES AND MODELING 

Data 

Three types of data are combined in this chapter. The technology alliances between the different 

players in the ASIC technology field cumulated over the previous five years capture social capital. 

CAD-tool vendor

Foundry

Customer:

System house

ASIC design house

Research labs

Specialized intermediate company

Figure 2.2   The ASIC technology field 
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Technological capital is measured by means of the cumulated US patents related to ASIC 

technologies of each company. Finally, a set of financial data is gathered for each ASIC producer. 

The data on strategic alliances were selected from the MERIT-CATI databank on strategic 
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technology alliances (Duysters and Hagedoorn; 1993)6. The selection included strategic alliances 

(SAs) which major focus was on (technological developments in) the ASIC-industry. The MERIT-

CATI databank covers the period between 1975 and 1996: For that period 288 ASIC related 

strategic technology alliances were detected. There were 130 different firms involved in these SAs.  

A sharp increase in SAs occurred in the early and mid-eighties (see figure 2.3). Their 

popularity diminished in the late eighties and the early nineties. SAs in the ASIC industry are 

mainly non-equity agreements (79.2%) of which the majority is joint development agreements 

(56.9% of all SAs). Joint ventures, which account for 12.8% in the ASIC industry, are the most 

important form of equity SAs. The distribution of different types of SAs is presented in figure 2.4. 

To measure technological capital, we used patent data from the U.S. Patents Database for all 

companies involved in the design and production of ASICs, also those based outside the US7. 

Working with U.S. patents � the largest patent market � is preferable to the use of several national 

patent systems. Nations differ in their application of standards, systems to grant patents and value 

of the protection granted (Basberg, 1987; Griliches, 1990). Especially in industries where 

companies operate on a global scale, such as the ASIC-industry, U.S. patents may be a good proxy 

for companies� worldwide innovative performance8.  

Financial data of ASIC producers have been gathered from different sources among which 

the annual ICE reports (McClean, 1985-1998). The data contain the ASIC-sales of these 

companies, their total IC-sales, the distribution of the ASIC-sales across the three segments, and 

total sales. We furthermore included the nationality of each company.  

 

                                                 
6 Strategic technology alliances include joint research projects, joint development agreements, cross licensing, (mutual) 

second source agreements, technology sharing, R&D consortia, minority holdings and joint ventures, but no licensing 

agreements or production and marketing agreements. 
7 The patents were selected by means of a query on �ASIC� and related concepts/definitions such as �gate array�, �linear 

array�, �FPGA�, �PLD�, �full custom�, �SPGA� and �EPAC�. 
8 Patents can be categorized by means of the International Patent Classification, an internationally recognized 

hierarchical classification system comprising 118 broad sections and 624 subclasses nested within the classes. It is 

furthermore possible to subdivide the subclasses into 67.000 groups. ASIC-related patents are classified in a relatively 

small set of subclasses (75 in total). 
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Variable definitions and operationalization 

To test the hypotheses we constructed a number of variables. Table 2.2 summarizes them. 

 

Dependent variable 

Explaining the technological performance capacity of different ASIC producers requires an 

operationalization of the change in size of a company�s technological capital. Changes in 

technological capital are operationalized by patents granted to an innovating company. However, 

the patent is recorded in the database at the time the company applied for the patent (rather than the 

year when it was granted to the firm) because a patent application is a signal that a company has 

successfully developed a technological innovation. The dependent variable is a count variable 

measured by the number of patents that a company applied for in a particular year9. 

 

Independent variables 

The first 5 hypotheses suggest a relationship between a firm�s prior technological capital past, its 

social capital and the technological characteristics of its alliance partners on the one hand and its ex 

post technological performance on the other hand. 

Cumulative technological capital is calculated as the number of ASIC-related patents that an 

ASIC-producer obtained in the previous 4 years. Patents granted to a company are used to measure, 

in an indirect way, the technological competence of a company (Narin et al., 1987). A moving 

window of 4 to 5 years is the appropriate time frame for assessing the technological impact in high-

tech industries (Podolny and Stuart, 1995; Stuart and Podolny, 1996; Henderson and Cockburn, 

1996; Ahuja, 2000). Studies about R&D depreciation (Griliches, 1979, 1984) suggests that 

knowledge capital depreciates sharply, losing most of its economic value within 5 years. As a 

result, a 4 or 5-year period is appropriate to assess technological relevance. In this chapter we use 

the cumulated patents obtained by a firm during the last 4 years as a measure for the technological

                                                 
9 Of course, we only keep track of patents that have been granted by the U.S. Patent Office before the end of 2000. The 

observation period is 1988-1996. We do not expect to have a significant bias at the end of that period, because most 

patents are granted within a period of 2 to 3 years (average time for all patents in the sample is 26 months). Of the 1381 

patents that were filed between 1/1/1988 and 31/12/1996 only 50 (or 3.6%) were granted after 4 years. 
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Table 2.2 Definitions of dependent and independent variables 
 
Variable name Variable description Expected effect 
   
Number of patents Count of the number of patents related to the ASIC-industry a firm filed for in the current year (t). 

Only patents that were granted to the company are taken into consideration  
-------- 

Cumulative patentst-1 Count of the number of ASIC-related patents that a firm filed for during the previous four years (t-4 to 
t-1) 

Positive 

Cumulative technology alliancest-1 Count of the number of ASIC-related technology alliances a firm established in the five previous years 
(t-5 to t-1) 

Positive 

(Cumulative technology alliancest-1)2 Squared term of the previous variable Negative 
(Cum. technology alliances t-1) * 
 (cum. patents t-1) 

Interaction between the number of ASIC-related patents a firm files for during the last 4 years and the 
number of alliances it formed in the previous 5 years 

Negative 

Innovative performance of alliance 
 partners 

Sum of the patent citations received by the firm�s alliance partners Positive 

Novel technologiest-1 Number of patents filed during the last 3 years in patent classes in which the company had not patented 
in the previous 4 years 

Positive 

(Novel technologiest-1)2 Squared term of the previous variable Negative 
Pioneering  technologiest-1 Number of a firm�s patents that cite no other patents Positive 
Log ASIC salest-1 Natural logarithm of the ASIC sales of the firm Positive 
Firm size (log sales)t-1 Natural logarithm of the total sales of the firm Positive 
ASIC market growtht-1 Annual growth rate of the ASIC market Positive 
Firm is a captive producer Dummy variable denoting that the firm is not selling ASICs on the market Negative 
Firm is Asian Dummy variable denoting that the firm is headquartered in Asia  
Firm is European Dummy variable denoting that the firm is headquartered in Europe  
Firm is GA-producer Dummy variable denoting that the firm is producing only gate arrays  
Firm is SC-producer Dummy variable denoting that the firm is producing only standard cells  
Firm is PLD-producer Dummy variable denoting that the firm is producing only PLDs  
Firm is GA and SC producer Dummy variable denoting that the firm is producing gate arrays and standard cells  
Firm is GA and PLD producer Dummy variable denoting that the firm is  producing gate arrays and PLDs  
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competence of an ASIC producer. Variables using a 3 and 5-year time window were also calculated 

to check for the sensitivity of this variable to the length of the time period. These variables are 

highly correlated with the 4-year time window (r = 0.94 for the 3 year window and 0.96 for the 5 

year window), suggesting that the measurement of technological capital is not sensitive to the 

choice of a particular time window. 

Following Gulati (1995), we computed social capital from matrices including all alliance 

activities of the ASIC-producers prior to a given year. In constructing measures of social capital 

based on past alliances, a number of choices have been made. First, we do not consider different 

types of alliances separately10. Second, some authors weigh each type of SA according to the 

�strength� of their relationship (see Contractor and Lorange, 1988; Nohria and Garcia-Pont, 1991; 

Gulati 1995). As some technology alliances are more important than others in creating and 

transferring technological know-how we followed this weighting procedure to construct the social 

capital variable11. The third choice relates to the length of the period during which the existing 

alliance portfolio is likely to have an influence on the current technological performance of a 

company. All past alliances can be included into the calculation of social capital assuming that all 

prior ties, no matter how long ago they were established, have an impact on current firm behavior. 

However, we chose for a moving window approach, assuming that only �ongoing� alliances have an 

impact on the technological performance of the focal firm. For the alliance activities of the ASIC 

producers we have an indication about the termination of 62 (21.5%) alliances in the observation 

period 1988-1996. We assumed they have an impact on the rate of innovation as long as they were 

not terminated. For the other alliances we assume that the lifespan of alliances is usually no more 

than five years (Kogut, 1988, 1989).  

The innovative performance of a company�s partners can be modeled in different ways. 

Basically, we follow the method developed by Stuart (2000). The innovative performance of a firm 

i at time t is denoted as dit. For each year in the observation period 1988-1996, an Nx1 vector dt 

                                                 
10 Figure 5 gives an overview of the different alliance types: alliances vary from equity joint-ventures and minority holdings 

with a strong organizational commitment and interdependence between allies to non-equity alliances which imply only 

moderate levels of organizational commitment (although stronger than arms' length licensing agreements). 
11  Type    Weight Type    Weight 

 Cross licensing   1 R&D contract    4 

 Technology sharing   2 Joint development agreement 4 

(Mutual) second source agreement 3 Minority holding   5 

State intervention R&D   3 Joint venture   6 

Research corporation  3 
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represents the innovation scores of the N firms in the sample. Combining these innovation scores 

with alliance activity in the ASIC-industry allows the construction of compact, time-varying 

innovation measures of the alliance partners of each company. These measures are computed by 

creating first a NxN (firm-by-firm) time changing symmetrical alliance matrices, labeled Wt=[wijt]. 

The innovative performance of the alliance partners of each ASIC-producer at time t (pt) is 

the product of the alliance matrix with the corresponding vector of innovative performance scores. 

As a result pt is a time-changing vector containing the summed innovative performance scores for 

the allies of each ASIC producer. 

The innovative performance of the partners can be measured in different ways. One possible 

way is to count the patents received by each of the companies during the previous 4 or 5 years 

(Stuart and Podolny, 1996; Ahuja, 2000; Baum et al., 2000). An alternative is to weight these 

patents by the number of times they have been cited by more recent patents. Patent citation counts 

are important indicators of the technological importance of an innovation (Narin et al., 1987; Albert 

et al., 1991). A small inconvenience of patent citations is that the patents applied for in the last 

years of the observation period 1988-1996 have a shorter �citation-period� than those that have been 

filed for in the beginning of that period. The majority of citations appear in the first five years after 

the patent was granted: as a result, although we cannot exclude a potential bias we expect that this 

will not have a major impact on the results.  

Novel technologies measure the degree to which a company experiments with technologies 

that were not used previously (Ahuja and Lampert, 2001). To construct this variable we used the 

International Patent Classification (IPC), which is an internationally recognized hierarchical 

classification system. We computed this variable using the subclass level of the IPC. Novel 

technologies were calculated as the number of new technology �subclasses� that were entered in the 

previous 3 years and a company was assumed ��to have entered a new subclass when it first 

applies for a patent in a subclass in which it had not patented in the previous 4 years� (Ahuja and 

Lampert, 2001: 533). This four-year time window results from the fact that technological 

knowledge depreciates rapidly: not being active in a technology subclass for a considerable period 

of time will significantly shrink a company�s viable knowledge in that technological field. A time 

window of 4 to 5 years is considered an appropriate time span over which the technology is 

valuable for a company in high-tech industries (Stuart and Podolny, 1996; Ahuja, 2000).  

Ahuja and Lampert (2001) define pioneering technologies as technologies that do not build 

on prior technologies. Patent regulations require companies to indicate how much they are indebted 

to the technological heritage by citing the patents they build on. Companies that apply for a patent 
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that cite no other patents are exploring technological fields that have been left untouched so far. 

Therefore this variable is computed as the number of a company�s patents that cite no other patents. 

 

Control variables 

We included four types of dummy variables. A first variable indicates in which economic region 

the company is headquartered. Following the Triad-concept of the world economy, a company can 

be headquartered in North America, Asia or Europe � the default is North America. Firms from a 

different home country may differ in their propensity to patent. Next to that, Asian and European 

firms may be less inclined to patent in the USA even when the semiconductor industry is widely 

recognized as a global industry. 

Annual dummy variables were included to capture changes over time in the propensity of 

companies to patent their innovations. The number of ASIC-technology related patents increased 

from 50 patents in 1988 up to 342 in 1995. In 1996 the number dropped again to 289 patents. Part 

of this growth is the result of the growing importance of ASIC-products and the accelerating 

changes in this technological field. Moreover, firms are increasingly aware of the earnings they can 

reap from by improving intellectual property management (Grindley and Teece, 1997; Teece, 1998; 

Rivette and Kline, 2000). 

Next, dummy variables were used to indicate which type of ASIC-producer a company is. 

Firms can be involved exclusively in the production of gate arrays, standard cells or PLDs, or they 

can be involved in more segments at the same time. Segments are important in the sense that firms 

in each segment face different technologies, different competitors and different competitive or 

technological dynamics. Therefore, firms can vary in their propensity to patent simply because they 

are active in other segments. 

A last dummy variable is included to control for possible biases due to the fact that some 

large companies produce ASICs only for their internal needs (captive market), i.e. for internal 

supply as parts in their electronic systems. These captive producers are a small minority of ASIC-

producing companies but are nonetheless important in terms of technological capabilities (e.g. IBM 

and DEC). They establish technological alliances for the same reasons as ASIC-vendors. 

We furthermore included two organizational variables. First, the natural logarithm of 

�corporate sales� was included as a control variable. Large companies have the possibility to invest 

large amounts of money in R&D. Assuming that there exists a positive correlation between 

technological input and output (Pakes and Griliches, 1984) large firms will have a higher rate of 
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innovation than small firms12. The second control variable is the natural logarithm of the ASIC-

sales of a company. Firms with a considerable stake in the ASIC-market can defend or improve 

their market position by rejuvenating or reinforcing their technological capital. This, in turn, 

requires a high rate of innovation. 

Finally, we introduced the annual growth rate of the ASIC market. High growth rates offer 

companies new economic opportunities stimulating them to invest more in R&D, which in turn 

should lead to more patents granted to the firm. As a result, we expect a positive coefficient for this 

variable. 

 

Model specification and econometric issues  

The dependent variable is a count variable and takes only nonnegative integer values � i.e. the 

number of patents a firm filed for in a particular year. A Poisson regression approach provides a 

natural baseline model for such data (Hausman et al., 1984; Henderson and Cockburn, 1996). Since 

we use pooled cross-section data with several observations on the same firms at different points in 

time, we modeled the data using a random effects Poisson estimator with a robust variance 

estimator. 

The basic Poisson model for event count data can be written as follows:  
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where the parameter λit represents the mean and the variance of the event count and yit the observed 

count variable. It is furthermore assumed that: 

 

λit = β�xit         (2) 

 

with xit being a vector of independent variables. 

                                                 
12 No R&D figures were available for the few privately owned companies in the sample. However, corporate sales are a 

good proxy for R&D expenditures: for the companies of whom figures where available the correlation between sales en 

R&D expenditure was 0.91. 
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The above specification assumes that the mean and variance of the event count are equal. 

However, for pooled cross-section count data the variance often exceeds the mean. This 

overdispersion is particularly relevant in the case of unobserved heterogeneity13. Therefore, a 

random effects Poisson estimator with robust variance estimator is used: it does not assume within-

firm observational independence for the purpose of computing standard errors. For the random 

effects Poisson estimator equation (2) is changed into: 

 

λit = β�xit + ui        (3) 

 

where ui is a random effect for the ith firm. 

 

Unobserved heterogeneity may be the result of differences between companies in their innovation 

generating capabilities, and as a consequence, also in their propensity or ability to patent. Such 

unobserved heterogeneity, if present and not controlled for, can lead to overdispersion in the data or 

serial correlation. Including the sum of alliances that a firm entered in the last four years (moving 

window approach) as an additional variable is a common method of controlling for unobserved 

heterogeneity (Heckman and Borjas, 1980).  

Part of the differences between companies or between different years can be captured by 

including dummy variables in the model. First, the propensity to patent may be partly determined 

by the nationality of ASIC-producing companies. It is for instance reasonable to assume that Asian 

or European companies are less inclined to file for patent in the USA. Similarly, we introduced 

annual dummy variables to account for changes over time: they may capture the ever growing 

importance of intellectual capital forcing companies to file more patents over the years, or 

macroeconomic conditions that may affect the ASIC industry as a whole.  

RESULTS 

Table 2.3 presents a correlation matrix and descriptive statistics for the different variables. Table 

2.4 shows the results from the random effects Poisson regressions testing the different hypotheses. 
                                                 
13 The presence of overdispersion does not bias the regression coefficients but the computed standard errors in the 

Poisson regression are understated, so that the statistical significance is overestimated. 
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Model 1 in table 2.4 functions as a baseline model and includes the three types of dummy 

variables (annual dummy variables are not reported), control variables such as corporate sales, 

ASIC-sales, annual market growth rate, and the technological capital (cumulative patent count) as 

an unobserved heterogeneity control variable. In this model, the existing technological capital of a 

company has a positive and highly significant effect on its innovative performance. This supports 

the first hypothesis: companies that have an extensive technological capital get relatively more 

patents than other companies14. 

Firm size (corporate sales) also has a positive and significant impact on the rate of 

innovation: although this suggests that large companies are technologically and financially better 

equipped to innovate in the ASIC technology field, this is not entirely true. Since we did not control 

for R&D expenditures, firm size will take the effect of R&D expenditures along. This implies that 

the positive coefficient also accounts for increasing investments in R&D to positively influence 

technological performance. Annual dummy variables have no significant impact. The same holds 

for captive producers and the ASIC market growth. The significant coefficients of some industry 

segment indicate that the patenting rate is not homogenous for the whole ASIC market: however, 

the impact is no longer significant when additional independent variables are included in other 

models. Asian firms have a similar patent rate as their American counterparts, but European firms 

patent significantly less. Finally, overdispersion is a feature of our data: the dispersion parameter ! 

is significantly different from zero indicating that the assumptions of a simple Poisson model do 

not hold and that we have to allow for overdispersion. A random effects Poisson estimator is an 

appropriate way to do so. 

Model 2 includes the technology alliances formed by each company during the last five 

years. We also included the squared term because the 2nd hypothesis suggests an inverted-U 

shaped relationship between the patent rate and the technological capital of a company. The 

findings strongly support this hypothesis: firms at intermediate levels of embeddedness have the 

highest rate of innovation. Firms with poorly developed alliance networks as well as overembedded 

firms have lower rates of innovation. 

Model 3 adds the interaction term between �social capital� and �technological capital� in 

order to understand how they jointly affect the rate of innovation of companies. The negative and 

highly significant coefficient corroborates hypothesis 3 and 4. Before we explain their joint effect 

on the rate of innovation we first have a look at their partial effects. 

                                                 
14 Poisson regressions assume a multiplicative relationship between the dependent variable and the regressors, so that 

the partial effect of a variable can be understood as a multiplier rate. 
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Table 2.3 Descriptive statistics and correlation matrix 

 

Variable Mean S.D. Min. Max. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

 

1 Number of patents 1.22 3.40 0 42  
2 Cumulative technology 
 alliancest-1 4.05 6.90 0 38 0.25 

3 Cumulative patentst-1 3.93 8.15 0 72 0.67 0.33 
4 Log ASIC salest-1 2.95 2.03 -0.65 7.43 0.38 0.43 0.49 
5 ASIC market growtht-1 0.14 0.03 0.10 0.21 -0.16 0.09 -0.02 -0.06 
6 Firm size (log sales)t-1 6.20 3.30 -0.65 12.60 0.19 0.40 0.37 0.52 -0.02 
7 Novel technologiest-1 0.86 1.31 0 11 0.48 0.39 0.61 0.41 -0.05 0.36 
8 Pioneering technologiest-1 0.08 0.10 0 2 0.12 0.01 0.11 0.11 0.12 0.12 0.12  
9 Firm is a captive producer 0.12 0.32 0 1 -0.01 -0.01 0.01 -0.31 -0.01 0.21 -0.00 0.01 
10 Innovative performance of 
 alliance partners 46.91 129.48 0 1251 0.26 0.48 0.36 0.28 0.01 0.26 0.37 0.01 -0.01 

11 Firm is Asian 0.22 0.42 0 1 0.02 0.00 0.17 0.14 0.00 0.40 0.10 0.12 -0.04 -0.01 
12 Firm is European 0.17 0.38 0 1 -0.11 0.15 -0.12 -0.01 0.01 0.10 -0.12 -0.04 0.10 0.04 -0.25 
13 Firm is GA-producer 0.12 0.32 0 1 -0.10 -0.16 -0.14 -0.07 0.00 -0.13 -0.13 0.01 -0.03 -0.12 -0.12 -0.14  
14 Firm is SC-producer 0.18 0.39 0 1 -0.13 -0.15 -0.16 -0.12 -0.03 -0.20 -0.19 -0.04 -0.01 -0.12 -0.21 0.14 -0.17 
15 Firm is PLD-producer 0.07 0.25 0 1 0.31 -0.01 0.17 0.16 -0.02 -0.13 0.13 -0.02 -0.10 0.09 -0.14 -0.12 -0.10 -0.13  
16 Firm is GA and SC producer 0.30 0.46 0 1 0.06 0.07 0.17 0.44 -0.00 0.38 0.24 0.10 -0.13 0.09 0.35 -0.04 -0.23 -0.31 -0.17 
17 Firm is GA and PLD  
 producer 0.08 0.09 0 1 0.04 0.09 0.00 0.07 0.04 0.00 0.03 -0.01 -0.03 0.02 -0.05 -0.04 -0.03 -0.04 -0.02 -0.06 

 

 

N = 830 observations 

All correlations with magnitude > |0.077| are significant at the 0.05 level 
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To demonstrate the impact of both types of capital we first focus on their partial effects on 

the rate of innovation (i.e. multiplier of the patent rate)15. Technological capital moderates the 

relationship between social capital and the rate of innovation of the firm. This basically has two 

consequences. First, a larger technological capital decreases the positive impact of social capital on 

the rate of innovation. In other words, companies with small internal technological capabilities � 

e.g. start-ups, technological laggards or incumbents that want to get access to a new technology 

developed by other companies � profit most from their network of technological alliances. Second, 

higher technological capital requires lower social capital to �maximize� the rate of innovation.  

Similarly, social capital moderates the impact of prior technological capital on the rate of 

innovation of a company. The relationship is positive for companies that did not establish a 

network of alliances. It gradually drops the stronger the company is embedded in its alliances 

network. The relationship becomes negative for companies that are highly embedded � according to 

model 3 the relationship becomes negative when the company has more than 16 �weighted� 

technology alliances. Companies that are moderately embedded in an alliance network can tap from 

the internal technological resources as well as from the knowledge of their partners: their social 

capital weakens the relation between prior technological capital and the current rate of innovation. 

The total impact of both types of capital on the rate of innovation is visualized in figure 2.5. 

The graph compares the patenting rate of companies with no technological and social capital � the 

benchmark � to patenting rates of companies that have invested previously in one or both types of 

capital. A positive (negative) patenting rate indicates that the rate of innovation of a company is 

higher (lower) than that of the benchmark. 

The figure shows a number of interesting points. First, there is a �curve of optimal solutions� 

maximizing the rate of innovation for each ratio of technological and social capital: left (right) of 

that curve companies can improve their rate of innovation by increasing (decreasing) their 

technological or/and social capital. Moreover, the �optimal� size of the alliance network decreases 

with an increase of technological capital. If a company has no patents the optimal number of 

�weighted� alliances is 29. This number is reduced to 6 alliances when the company has a 

technological capital of 50 patents. Companies can improve their rate of innovation by investing in 

social or/and technological capital when the size of their existing internal technological capabilities 

and social network is small. Hence, technological capital and social capital have mutually 

reinforcing effects on the rate of innovation. On the contrary, when a company has strong internal  

                                                 
15 The partial effect of the prior technical capital (TC) in Table 4, Model 3 is exp[TC(0.0262-0.0016SC)], where SC is 

the social capital. The partial effect of social capital is exp[SC(0.0994-0.0017SC-0.0016TC)]. 
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Table 2.4 Determinants of the patent rate of ASIC producers, 1988-1996 
 
Variable Model 1  Model 2 Model 3 Model 4 Model 5  
  
Cumulative patentst-1 0.0162*** 0.0153*** 0.0262*** 0.0292*** 0.0309*** 
  (0.0048) (0.0052) (0.0053) (0.0054) (0.0073) 
Cumulative technology  0.0786*** 0.0994*** 0.0965*** 0.0872*** 
 alliancest-1  (0.0172) (0.0201) (0.0246) (0.0302) 
(Cumulative technology  -0.0018*** -0.0017** -0.0017** -0.0012* 
 alliancest-1)2  (0.0006) (0.0007) (0.0008) (0.0007) 
(Cum. technology alliances t-1)   -0.0016*** -0.0019*** -0.0020*** 
 * (cum. patents t-1)    (0.0003) (0.0003) (0.0003) 
Innovative performance of    0.00061*  
 alliance partners    (0.00033)  
Novel      0.2229** 
 technologiest-1     (0.0888) 
(Novel      -0.0230* 
 technologiest-1)2     (0.0135) 
Pioneering     1.3429** 
 technologiest-1     (0.5546) 
Log ASIC salest-1 0.1269** 0.1087*** 0.1212** 0.1319** 0.1281* 
  (0.0541) (0.0575) (0.5874) (0.0584) (0.0658) 
Firm size  0.2936*** 0.2381*** 0.1935*** 0.1841*** 0.1554*** 
 (log sales)t-1 (0.0569) (0.0535) (0.0553) (0.0552) (0.0568) 
ASIC market growtht-1 8.3684 6.9522 5.294 7.3250 3.6514 
  (60.7947) (66.9714) (76.8344) (63.1954) (93.0791) 
Firm is a captive -0.5178 -0.3482 -0.1770 -0.1305 -0.0460 
 producer (1.0519) (0.9906) (0.3082) (0.9108) (0.8288) 
Firm is Asian 0.9609 -0.6905 -0.4957 -0.4454 -0.3269 
  (0.8214) (0.7896) (0.8021) (0.7879) (0.6925) 
Firm is European -1.7333*** -1.6781*** -1.6275** -1.6088** -1.4219** 
  (0.6326) (0.6643) (0.7011) (0.6874) (0.6314) 
Firm is GA-producer 0.5137* 0.5375* 0.4132 0.3429 0.0813 
  (0.2772) (0.2990) (0.3447) (0.3438) (0.3250) 
Firm is SC-producer -0.5131** -0.4198* -0.4573* -0.4677** -0.3706 
  (0.2343) (0.2248) (0.2425) (0.2341) (0.2976) 
Firm is PLD-producer 0.8335 0.8496* 0.7167 0.6707 0.6608 
  (0.5972) (0.4697) (0.4776) (0.4778) (0.4762) 
Firm is GA and SC -0.1456 -0.0250 -0.1116 -0.1777 -0.2186 
 producer (0.1541) (0.1544) (0.1608) (0.1697) (0.1915) 
Firm is GA and PLD 0.8286 0.3909 0.3623 0.3272 0.4156 
 producer (1.4550) (2.4542) (2.7874) (2.7063) (2.8703) 
Constant -4.3035 -4.1684 -3.8625 -4.1907 -3.5583 
  (11.5597) (12.7302) (14.6083) (12.0047) (17.6953) 
α  1.7460*** 1.4786*** 1.3206*** 1.2837*** 0.9574*** 
  (0.3759) (0.3376) (0.3082) (0.3025) (0.2508) 
 
Number of firms 99 99 99 99 99 
Number of firms-years 830 830 830 830 830 
Log-likelihood 370.87 382.50 392.20 394.51 410.38 
Chi-squared 741.74 765.00 784.40 789.02 820.75 
 
 
Notes:  ***   p  < 0.01;  **   p  < 0.05;  *   p  < 0.10  

�Year dummy variable�-coefficients are not statistically significant. They are not reported in the 
table. 
The models use a random effects Poisson estimator. The sample is an unbalanced panel with 99 
ASIC producers and 830 firm-years (units of observation). 
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technological resources and an extensive alliance portfolio it can only improve its rate of 

innovation by reducing its alliance network. In that case the two types of capital are substitutes as 

they overlap in the technology they provide to the focal company. These findings corroborate 

hypothesis 3. 

Second, the plane in figure 2.5 has a typical saddle shape. The rate of innovation reaches its 

highest values for two types of strategies: the first strategy is based on relatively high levels of 

social capital combined with low levels of technological capital. The other strategy in contrast 

combines strong internal technological capabilities with a minimum of social capital. Hence, these 

two strategies may successfully coexist in an industry and strategies that are based on equal 

emphasis of both types of capital are clearly less successful in terms of technological performance. 

These results provide strong support to hypothesis 4. 

Third, firms may over-invest in social capital as has been argued in the literature (Kogut et 

al., 1992; Harrigan, 1985): there exists an area in figure 2.5 where the effect of social capital is 

negative. For companies with no patents this area starts at high levels of embeddedness (59 

�weighted� alliances) but this threshold decreases with the increase of technological capital of a 
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company. 

Model 4 introduces the innovative performance of the alliance partners. The positive but 

only weakly significant coefficient indicates that we have some support � although not very 

convincing � that a company benefits from the technological strengths of its alliance partners. 

Other variables held constant a one-standard deviation increase in the innovative performance of a 

firm�s alliance partners results in an 8.2 percent increase in the rate of innovation (= 

exp(0.00061*129.48) = 1.08219). 

As a result we could state that companies connected to technologically advanced partners 

seem to innovate at a higher rate than those connected to less prominent companies. However, we 

need to be cautious about these outcomes. There is a high bi-variate correlation between the total 

number of alliances a company established during the previous five years and the accumulated 

innovative performance scores of its partners over that same period. Therefore we executed the 

same two additional steps as Stuart (2000) to test whether or not this result is driven by collinearity. 

First, we omitted the variables based on the cumulative technological alliances (social capital). In 

that case, the coefficient of the �innovative performance of the partners�- variable remains positive 

but is no longer significant (not reported). Second, we replaced the variable �innovative 

performance-of-partners� in Model 4 with the �average innovative performance score computed 

over the set of partners in each firm�s alliance portfolio� (Stuart, 2000: 803). The advantage of this 

variable is that even though it is not correlated with the total count of alliances (r = 0.02), it still 

gives a flavor of the innovative performance of the alliance partners. Again, the coefficient is 

positive but not significant. As a result, it is not safe to claim any support for hypothesis 5. 

Model 5 tests the two final hypotheses. We have argued that firms experimenting with novel 

technologies are more likely to have a higher rate of innovation. These firms are able to value the 

potential of novel technologies in a more accurate way. They perceive the potential threats of 

disruptive technologies more easily, and they are more open to new avenues for research. However, 

too much experimentation with unfamiliar technologies is counterproductive: it should be in 

balance with the exploitation of familiar technologies. In line with this argument we expect a 

positive sign for the coefficient of the �novel technologies�-variable and a negative sign for the 

squared term. Model 5 indicates strong support for hypothesis 6. Moreover, the magnitude of the 

effect is substantial: other variables held constant, one-standard deviation increase above the mean 
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in the experimentation with novel technologies results in a 26.5 percent increase in a company�s 

rate of innovation16. 

 

Finally, hypothesis 7 suggests that experimenting with pioneering technologies increases the 

rate of innovation of a company. The results in Model 5 support this hypothesis. A one-standard 

deviation increase in the experimentation of pioneering technologies leads to a 14.4 percent 

(=exp[1.3429*0.10]) increase in the rate of innovation. Hence, companies that successfully 

patented a �pioneering technology�-innovation increase their rate of innovation in the subsequent 

years.  

 

DISCUSSION AND CONCLUSIONS  

The increasing requirements of the organizational environment have forced companies in high tech 

industries to establish networks of technology alliances. The internal development of technological 

resources is interwoven with the external acquisition of technologies through alliances. Both 

technological and social capital determine the rate of innovation of companies. In the literature, 

both types of capital have been conceived as complements: they are mutually reinforcing each 

other�s effect on the rate of innovation of a company (Cohen and Levinthal, 1990; Lane and 

Lubatkin, 1998; Duysters and Hagedoorn, 2000). 

In this chapter we claim that the effect of an increase in the internal technology capabilities 

of a company or an extension of the alliance portfolio on its rate of innovation depends on the size 

of its existing technological and social capital. For low degrees of internal technological 

capabilities and/or small alliance portfolios increases in either one of both types of capital will 

increase a company�s rate of innovation. Technological and social capital are found to mutually 

reinforce each other�s impact on the technological performance of a company. However, we also 

found strong empirical support for the change in interaction between both types of capital in the 

                                                 
16 The partial effect of the novel technologies (NT) in Table 4, Model 5 is exp[NT(0.2229 -0.023.NT)]. For an average 

company this implies a rate of innovation increase of 19.1 percent (exp[0.86(0.2229-0.0230*0.86)]). For a company 

that is highly involved in experimenting with novel technologies (one-standard deviation above the mean) this increase 

is 45,6 percent (exp[2.17(0.2229-0.0230*2.17]). The highest possible value for the partial effect (71.6 percent) is 

reached for companies having experimented with 4.85 novel technologies. 
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case technological capabilities and the alliance network of a company increase. At high levels, 

technological and social capital are substitutes: the company with strong technological resources 

does not need an extensive portfolio of alliances to come up with a strong technological 

performance. Similarly, companies that learned how to acquire technology from their allies can 

curtail their internal research and development efforts compared to companies with a small alliance 

network. 

We also found strong support for the possibility of local equilibria. Two main strategies are 

found to provide an optimal rate of innovation. The first emphasizes the development of strong 

internal technological resources in combination with a small alliance portfolio. The other 

emphasizes the establishment of an extensive alliance network supported by a minimal amount of 

technological capital. 

Stuart (2000) argued that the technological performance of a company is not so much 

determined by the size of the alliance network but rather by the characteristics of the focal firm�s 

alliance partners. Contrary to his findings we find no credible support for this claim. It is possible 

that in the specific context of the ASIC industry the technological prominence of the partners are 

less important because of the continuous stream of �competence destroying� innovations by new 

entrants. Another possibility is that slightly different variables will confirm the importance of 

technological characteristics of the partners. One possible alternative is to calculate differences 

between the technological capital of the focal firm and that of its partners.  

Finally, companies that experiment with novel and pioneering technologies are found to 

have a higher rate of innovation in subsequent years. This is an interesting finding because it 

indicates that companies, which almost exclusively focus on the exploitation of their existing 

technologies, are likely to get trapped in their own technological competences. This supports the 

idea of Leonard-Barton (1992) that core competencies can turn into core rigidities if companies are 

not rejuvenating their existing capabilities by exploring new technological fields. 

 

This chapter clearly contains a number of limitations. One important limitation is that we did not 

model the �interorganizational absorptive capacity� of companies explicitly. We assumed (and 

found empirical evidence) that the technological capital in a company has a moderating effect on 

the relationship between its social capital and its rate of innovation. Modeling explicitly the 

industry and organizational factors that have an impact on the absorptive capacity of a company 

could improve our understanding of the interaction between technological capital and alliance 

portfolios. 
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Future research on the dyadic level (dyad-year as unit of observation) could also 

complement the firm level analysis about the relationship between technological resources and 

alliance networks. An analysis on the dyadic level allows us to focus on the question how the 

probability of the formation of new alliances is affected by (the difference between) the existing 

technological capital of the allying companies.  
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CHAPTER 3 

EXPLORATIVE AND EXPLOITATIVE LEARNING STRATEGIES IN 

TECHNOLOGY-BASED ALLIANCE NETWORKS 17 

 

Abstract 

This chapter aims to improve our understanding of how exploitative and explorative learning of 

firms is enhanced through their social capital. Both types of learning differ considerably from each 

other and we argue that the distinction between them may be an important contingency factor in 

explaining the value of direct, indirect and (non-)redundant technology-based alliances. In 

particular we argue that, since companies have to find a balance between explorative and 

exploitative learning (March, 1991), redundant and non-redundant links play a complementary 

role in inter-organizational learning processes: redundant information improves exploitative 

learning, non-redundant information enhances a firm�s explorative learning. The empirical results 

support the predictions about the contingency of the value of redundant information for both types 

of learning. Direct and indirect ties improve both types of learning but the impact on explorative 

learning is much higher. We find that direct ties have a moderating effect on indirect ties only in 

the case of exploitative learning. However, the empirical results indicate that the relationship 

between (non)-redundancy and explorative and exploitative learning are more complicated than a 

simple one-to-one relationship. Redundancy in alliance networks is a multi-dimensional concept: 

network density negatively affects exploitative learning and dependence on one or few alliance 

partners reduces both exploitative and explorative learning. 

                                                 
17 This chapter is based on a paper written with Wim Vanhaverbeke and Geert Duysters 
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INTRODUCTION 

As competition becomes increasingly knowledge-based and companies get involved in accelerating 

technology races reducing time to market, they face considerable problems to develop all the 

required knowledge and capabilities internally (Mowery, 1988; Mytelka, 1991; Teece, 1992; 

Gomes-Casseres, 1996; Hagedoorn and Duysters, 2002). Chesbrough (2003) coined the term �open 

innovation� to indicate that companies � even the largest and most technologically advanced ones � 

must complement their in-house R&D with technologies that are developed externally. In large 

companies, management is gradually replacing the traditional inward focus of its technological 

competence building by a more outward-looking approach that draws heavily on technologies from 

networks of universities, startups, suppliers, and competitors. Hence, technological learning is 

increasingly based on a combination of internal and external learning: internal learning based on a 

firm�s own R&D efforts, external learning on the technology acquired from alliance partners. Both 

types of learning are complements reinforcing each other�s productivity (Cohen and Levinthal, 

1990). 

Technology based alliances between companies are one way to tap into these networks. A 

growing number of firms are realizing that alliances can be employed as effective learning 

mechanisms (Hagedoorn, 1996; Powell et al., 1996; Hagedoorn and Duysters, 2002). However, 

considering inter-organizational networks of technology-based alliances as a set of �learning 

alliances� is clearly a simplification. In this study we focus on March�s (1991) distinction between 

exploitative and explorative learning. Exploitation is associated with the refinement and extension 

of existing technologies, whereas exploration is concerned with the experimentation with new 

alternatives. There are considerable differences between both types of learning (March, 1991; 

Chesbrough, 2003), which, in turn, have important implications in the way a company can tap into 

the technological capabilities of its alliance partners. Although there are numerous studies that have 

investigated the relationship between a firm�s portfolio of technology alliances and its 

(technological) performance (Hagedoorn and Schakenraad, 1994; Shan et al., 1994; Mitchell and 

Singh, 1996; Powell et al., 1996; Stuart, 2000), only few of them pay particular attention to the 

exploitative or explorative nature of the inter-organizational learning in alliance networks (e.g. 

Rowley et al., 2000; Ahuja and Lampert, 2001; Hagedoorn and Duysters, 2002). 
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The main aim of this chapter is to improve our current understanding of how exploitative 

and explorative learning of firms is enhanced (or hampered) by the use of technology-based 

alliances and the social structure of the alliance network. In this chapter we argue that the value of a 

firm�s alliance network is contingent on the type of learning (Burt, 1997, 2000; Gabbay and 

Zuckerman, 1998; Hansen et al., 2001). Since exploitative and explorative learning are quite 

different in nature, alliances (both direct and indirect ones) are expected to have a different impact 

on both types of learning.  

Moreover, we will also focus on the effect of redundant ties in alliance networks. In the 

literature on social networks there are two opposing views on the benefits of redundant ties. On the 

one hand, there is the structural hole theory of Burt (1992a) where firms can reap rents because of 

the absence of ties among its contacts. As a result, companies benefit from non-redundant ties in 

their networks. This view is at odds with the social capital theory of Coleman (1988, 1990) where 

firms benefit from cohesive (redundant) ties with their alliance partners. However, a number of 

scholars (Burt 1998, 2000; Ahuja 2000a; Hansen et al., 2001) suggest that the two forms of social 

capital are not necessarily contradictory, but they rather play different roles in different settings or 

have different purposes. We argue that the distinction between explorative and exploitative learning 

may be an important contingency factor in explaining the value of (non-)redundant ties. Companies 

have to make choices between bridging structural holes between the dense areas of an alliance 

network on the one hand and creating cohesive ties to benefit from its social capital in the network 

on the other hand. In other words, firms should make decisions about how and when to make use of 

redundant and non-redundant ties in their external acquisition of technology.  

In the next part, we will derive some basic hypotheses on the effect of firms� alliance 

network structure on their innovative performance. In the empirical part of the study we will test 

these hypotheses using strategic technology alliance data and patent data of companies in three 

different industries over a time-span of 12 years.  
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THEORETICAL BACKGROUND AND HYPOTHESES 

Strategic alliances and their role in exploitative and explorative learning  

Several studies indicate that interfirm linkages are efficient means to develop and absorb new 

technological capabilities (Harianto and Pennings, 1990; Powell et al., 1996; Ahuja, 2000b). The 

growing importance of external knowledge acquisition poses a number of important challenges to 

companies. One of the most prominent questions relates to the degree in which firms are able to 

absorb their newly acquired knowledge, i.e. the degree of their absorptive capacity (Cohen and 

Levinthal, 1990). Lane and Lubatkin (1998) and Cockburn and Henderson (1998) argue that 

external networks enhance an organization�s absorptive capacity. In fact, experience in transferring 

knowledge through technology-based alliances can increase the absorptive capacity of the firms 

involved in two ways. First, by increasing the knowledge base communication between partners 

becomes easier. Second, experience with alliances results in the development of specific routines 

that support knowledge transfer (Simonin, 1999).  

In the case of exploitative learning, companies team up with partners to share R&D costs 

and risks, to obtain existing, complementary know-how (Teece, 1986), or to speed up the R&D-

process in industries where time-to market is crucial. If a company establishes alliances with 

partners to strengthen its existing technology base (i.e. exploitative learning), it already owns much 

of the required expertise and know-how. The in-house technological capabilities guarantee that the 

problem the alliance partners wish to focus on is clearly defined, possible solutions are known and 

that the partners have a fairly good understanding of the tasks at hand (Hansen et al., 2001). 

Acquaintance with the technology implies that the knowledge involved is to a large extent explicit 

and codified (Nonaka, 1994). The inter-organizational learning process can be planned and 

controlled to a large extent and targets can be set at the start. 

Explorative learning is different. This type of learning is not about improving the efficiency 

of the current businesses, but it is a search for new, technology based business opportunities. 

Exploring new technology entails problems that are novel to the company and because of that 

particular characteristic knowledge is usually contested, tacit and hard to articulate. In explorative 

learning the outcome cannot be predicted at the start, but it is an entrepreneurial search process for 

business opportunities in technological areas that are relatively new to the company. Besides, the 

tacit and contested knowledge involved in the process also implies that the contact between the 
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partners will often be iterative and informal (discussing ideas, exchanging views, reformulation of 

the strategy when unforeseen problems emerge, etc.).  

So far, we argued that an organization has to find a balance between explorative and 

exploitative learning, that these two learning types are different in nature, returns and 

organizational requirements, and that technology-based alliances are increasingly important to 

absorb external technological knowledge. Because there are marked differences between 

exploitative and explorative learning, we assume that the role of alliances and the structure of the 

alliance network is contingent on the type of learning. In line with Ahuja�s (2000a) study, we 

suggest that three aspects of a company�s technology-based alliance network should be analyzed in 

detail. We will argue that (1) the number of direct ties and (2) indirect ties maintained by the firm 

and (3) the degree of redundancy among the firm�s partners have a differential impact on 

explorative and exploitative learning. 

 

Direct ties 

By means of strategic technology alliances, firms are able to generate scale and scope advantages 

by internal development of core technologies, while increasing their strategic flexibility by means 

of learning through alliances. External knowledge acquisition might be even more important in the 

case of developing technological capabilities that are new to the company � i.e. explorative 

learning. Different arguments point in that direction. First, organization theorists (Levinthal and 

March, 1993; Cohen and Levinthal, 1990) have argued that there is a positive feedback loop 

between experience and competence. Experience in a particular knowledge domain leads to 

increased absorptive capacity and enhanced competencies in this specific domain. A higher level of 

competence, in its turn, will lead to increased usage of the specific knowledge and therefore 

increases the level of experience. In spite of the positive effect of this cycle on the specific 

technological competences of companies, firms may fall into the so-called familiarity trap (Ahuja 

and Lampert, 2001): this cycle favors specialization and inhibits experimentation with unfamiliar 

technologies. Hence, strong technological capabilities tend to facilitate cognitive inertia, path 

dependency and low levels of experimentation (Stuart and Podolny, 1996). In this way, local search 

and organizational routines may eventually lead firms to miss out on new windows of opportunities 

related to experimenting with technologies beyond their core technologies. Teaming up with 

competent partners might then prove the only way to go beyond the current knowledge base. 

Second, exploitative knowledge creation can be based primarily on internal technology 
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competencies. Companies involved in exploitative knowledge creation have much of the required 

knowledge in-house and teaming up with partners is only one (although maybe an important) of 

many alternative ways of strengthening their technological capabilities. Third, companies are often 

found to be very careful in sharing core technologies because of the dangers of partners �stealing� 

the specific know-how in which a company has a competitive advantage. This problem is expected 

to be important in exploitative learning because in that case partners are likely to have similar 

technology profiles. This problem is furthermore aggravated because the cooperating companies 

are frequently (potential) competitors. Therefore, we expect that in teaming up with companies in 

non-core technologies sharing of technology will pose fewer problems than in the case of core 

technologies. Next, knowledge resulting from exploitative and explorative learning is different in 

nature. Exploring realms of knowledge that a company has not yet explored often generates new, 

breakthrough innovations. Finally, the nature of explorative learning implies that partnering 

companies usually get involved in a long-lasting and informal relationship. Exploration involves 

tacit knowledge, high uncertainty, and problems that are novel to the focal firm; this implies that 

successfully broadening the technology base of a company depends on the �quality� of the 

relationship with its alliance partners (much more than in the case of exploitative learning). Over 

time and through prior experience with alliances firms develop capabilities or routines to manage 

alliances. As a result, companies that established many alliances in the past develop routines and 

alliance management skills which in turn lead to higher innovative output for the partnering 

company. We expect that these skills have a stronger impact on explorative learning because of its 

tacit and experimental nature. 

Therefore, we hypothesize: 

 

Hypothesis 1a:  The past involvement of a firm in technology-based alliances (its 

social capital) has a stronger positive impact on the broadening of 

its knowledge base than on the strengthening of its core 

technologies. 

 

However, once firms are involved in an excessive number of technology alliances firms can 

start to suffer from information overload and diseconomies of scale. This occurs in particular when 

a firm tries to deal with too many unfamiliar streams of knowledge (Ahuja and Lampert, 2001). 

Management attention and integration costs also seem to grow exponentially once a certain optimal 

level of alliances has been established (Duysters and de Man, 2003). An alliance portfolio with too 

many alliances may lead to saturation and overembeddedness (Kogut et al., 1992; Uzzi, 1997). 
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Therefore, at high levels of embeddedness marginal benefits of forming new linkages will be low 

and marginal costs of additional links will be relatively high (Ahuja, 2000a). As a result, we expect 

an inverted-U shape relationship between the social capital of companies and their exploitative and 

explorative learning. 

 

Hypothesis 1b: The past involvement of a firm in technology-based alliances (its 

social capital) is related in a curvilinear way (inverted-U shape) to 

the strengthening of its knowledge base. 

 

Indirect ties 

Not only direct ties have an impact on the technological performance of partnering companies. 

Indirect ties also play a role because alliances can be a channel of communication between a focal 

firm and many indirect contacts, i.e. the partners of its partners, and so forth (Mizruchi, 1989; 

Haunschild, 1993; Gulati, 1995a). The distinction between direct and indirect ties is important 

because two companies that have the same number of direct contacts might still differ in the 

number of companies they can reach indirectly depending on the size and scope of their partners� 

alliance networks (Gulati, 1999). A firm may have numerous alliances with partners that are not 

well connected to other companies. In contrast, a company may have a limited number of alliance 

partners, linking the focal company to a wide range a companies that have themselves alliances to 

other companies, and so forth. As a result, the social capital of a company is not only determined 

by its direct ties but also by the number of companies it can reach in the network through indirect 

ties.  

Indirect ties are important for both exploitative and explorative learning, but the impact on 

the latter is expected to be larger. First, if a company can reach many other companies through 

indirect ties it can often receive information about the findings of a broad set of research projects in 

the network (Ahuja, 2000a). Their indirect ties may also serve as a �radar� function for companies 

in the sense that relevant technological developments are brought to the attention of the focal firm. 

Next, the tacit and experimental nature of explorative learning implies that companies in search for 

opportunities beyond their existing technology base will have a difficult time recognizing and 

valuing the technology of potential partners as long as they are not connected through a common 

alliance partner. As a result, since indirect ties seem to play an essential role in the process of 

explorative learning, we hypothesize: 
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Hypothesis 2a: The larger the number of indirect ties of a firm the higher their 

effect on the strengthening of its knowledge base. 

 

Hypothesis 2b: The larger the number of indirect ties of a firm the higher their 

effect on the broadening of its knowledge base. 

 

Hypothesis 2c: The number of indirect ties is more positively related to the 

broadening of a firm�s knowledge base than to the strengthening of 

its knowledge base. 

 

As argued by Ahuja (2000a), firms that are involved in many direct ties are likely to benefit less 

from their indirect ties than firms characterized by a more limited number of direct ties. The 

argumentation is twofold: First, firms that have many direct ties are likely to gain less new or 

additional information from their indirect ties. For firms establishing many direct ties, the 

information that can be obtained from indirect ties may be very similar to the knowledge already 

obtained by its direct contacts and is therefore more likely to be redundant. Second, firms with 

many direct ties may be more constrained in their ability to profit from new information through 

their indirect ties. When a company has many direct connections, the information that reaches the 

company through the network also reaches the partners of the focal firm�s allies, who may be 

potential competitors. 

We argue that the impact of direct ties on indirect ones is likely to depend on the context of 

exploitative or explorative learning. The contingency may result from the different mix of targets a 

company wants to reach through its alliance network. When a company intends to broaden its 

technology base, it is primarily interested in finding and getting access to new information and 

technologies. If a company explores new technologies through its alliance network, problems are 

novel to the firm and technological benefits might not be straightforward (Hansen et al., 2001). 

There is a high degree of exploration as the company departs from its existing knowledge base, and 

much of the knowledge involved in exploratory tasks is tacit, hard to articulate and can only be 

acquired through experience (Nelson and Winter, 1982; Von Hippel, 1994; Hansen, 1999; Hansen 

et al., 2001). A company will typically have many contacts with its alliance partners before an idea 

evolves into a valuable innovation. This, in turn, implies that having many direct contacts does not 

necessarily constrain the information stemming from indirect contacts. On the contrary, several 

direct ties provide different ways of exploring tacit and uncertain technological knowledge. 
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Moreover, when a company explores new technological areas, it establishes in many cases alliances 

with companies that are not competitors: it is therefore unlikely that competitors will capture the 

knowledge involved. Moreover, the sticky nature of the knowledge prevents an easy diffusion 

among partners. 

In contrast, when a company deepens its existing technology base much of the knowledge 

involved is likely not to be tacit, ��because the focal actor has much of the expertise required and 

hence is likely to understand the problem, possible solutions, and the causal mechanisms among the 

parameters involved in the task� (Hansen et al., 2001: 26) . In this case, the information gained 

from many direct ties will substitute for information from indirect ties. Moreover, as the knowledge 

is explicit in nature it is also easily diffused among partners. Finally, the competitive threat is real 

since the focal company is partnering with companies that are likely to have a similar technology 

profile. This leads to Hypothesis 3: 

 

Hypothesis 3a: The impact of the number of indirect ties of a firm on strengthening 

a firm�s knowledge base is weakened by the number of direct ties.  

 

Hypothesis 3b: The impact of the number of indirect ties of a firm on broadening a 

firm�s knowledge base is not weakened by the number of direct 

ties.  

 

Network structure of social capital 

There is an ongoing debate in the academic literature about the impact of redundant and non-

redundant network ties. Burt (1992a, 1992b, 2000) argues that a tie will provide access to new 

information and entrepreneurial opportunities to the extent that it offers non-redundant sources of 

information. In other words, Burt suggests that firms benefit from their alliances when they are 

connected to companies that are themselves not connected to the same network, i.e. that the alliance 

spans a structural hole. On the contrary, Coleman (1988, 1990) and Bourdieu and Wacquant (1992) 

argue that companies can benefit from establishing alliances with companies that are densely tied to 

each other. The structural hole theory of Burt (1992a, 2000) where firms can reap �entrepreneurial� 

rents because of the absence of ties among its contacts is apparently at odds with the network 

closure theory of Coleman (1988, 1990) where firms benefit from cohesive (redundant) ties with 

their partners. However, a number of scholars (Burt 1998, 2000; Hansen, 1999; Ahuja, 2000a; 
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Hansen et al., 2001) suggest that the two theories about the network structure of social capital are 

not necessarily contradictory, but they rather play different roles that may be valuable in different 

settings or for different purposes.  

In a similar vein, we argue that the distinction between explorative and exploitative learning 

may be one of these contingency factors determining the value of the network structure of a firm�s 

alliance portfolio. In particular we argue that the value of redundant and non-redundant ties is 

contingent on the type of inter-organizational learning in which the company is interested. In other 

words, firms should make decisions about how and when to make use of redundant and non-

redundant ties in their external technology acquisition, depending on the type of learning.  

In exploration, companies try to get a first, quick understanding on many different 

alternatives. �Information is relatively broad and general in nature, because the emphasis is on 

identifying alternatives rather than fully understanding how to develop any one innovation. This 

task does not have a well-defined solution space so firms perform broad searches of their 

environments in order to identify a variety of future options.� (Rowley et al., 2000: 373-374). Since 

explorers want to cover a relatively broad range of technologies, it can be argued that non-

redundant ties are advantageous in explorative learning. First, following the arguments advanced by 

Granovetter (1973) and Burt (1992a, 2000), companies in search for new knowledge � explorative 

learning � will benefit more from non-redundant ties spanning structural holes than from dense 

network ties because the latter are less likely to provide new, non-redundant information or 

knowledge. Second, when firms are only exploring technological realms and do not need a full 

understanding of the technology, they may tolerate some information noise and do not need 

redundant sources to evaluate the information (Rowley et al., 2000). Network inertia is a third 

reason why ties bridging structural holes may be advantageous in explorative learning: benefits of 

explorative learning will be larger the more the focal learning firm can search for knowledge 

outside its existing network relations. Risk hedging might be considered a last reason why firms 

engage in non-redundant relationships: by employing several technology alliances at the same time 

firms hedge the risks associated with missing out on important new technological developments 

(Nicholls-Nixon and Woo, 2003). 

In contrast, we argue that redundant ties offer considerable advantages when a company is 

primarily interested in the refinement and the extension of its existing technologies and 

competencies. Exploitative learning implies that companies refine and strengthen their existing 

technology base and for that purpose they need specific and fine-grained information that will 

provide a deeper knowledge of this particular technology. In contrast with explorative learning, 

exploitative learning ��requires a deeper understanding of specific information rather than a wider 
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grasp of general information� (Rowley et al., 2000: 374). Dense, clique-like structures of the ego-

network provide the best network structure to meet the information requirements for exploitative 

learning. Exploitative learning is about strengthening and refining the firm�s core technology; this 

implies both high-quality, fine-grained information and trust-based governance (Uzzi, 1997; 

Larson, 1992). Information theorists argue that information noise is reduced and high-quality 

information is obtained when firms have access to multiple and redundant information sources 

(Shannon, 1957). When a firm�s partners are mutually connected to each other, they provide 

redundant information. Thus, dense ego-networks help a company to evaluate the obtained 

information and to get a deep understanding of a specific technology. Moreover, these dense 

networks serve as an alternative social control mechanism alleviating the risks associated with 

opportunistic behavior (Williamson, 1985); trust is crucial in exploitative learning because a firm�s 

core technologies are one of the major sources of its current competitiveness and profits. Partners 

have to be trusted before they can touch the �heart� of the company. Therefore, we hypothesize: 

 

Hypothesis 4: If a company intends to strengthen its existing technology base the 

replication of existing ties (creating redundancy) is more effective 

than the use of non-redundant ties.  

 

Hypothesis 5: If a company intends to broaden its technology base the use of non-

redundant ties is more effective than the replication of existing ties. 

 

DATA, VARIABLES AND METHODS 

Data 

The hypotheses were tested on a longitudinal dataset consisting of the alliance and patenting 

activities of 116 companies in the chemicals, automotive and pharmaceutical industries. These 

focal firms were observed over a 12-year period, from 1986 until 1997. The panel is unbalanced 

because of new start-ups and mergers and acquisitions. This sample was selected to include the 

largest companies in these three industries that were also establishing technology based strategic 

alliances (alliance data were retrieved from the MERIT-CATI database, which contains information 
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on nearly 15 thousands cooperative technology agreements and their �parent� companies, covering 

the period 1970-1996, see Hagedoorn and Duysters (2002) for a further description.). Information 

on the establishment of alliances is hard to obtain for small or privately owned companies. Previous 

studies on inter-firm alliances also focused on leading companies in an industry (Gulati, 1995b; 

Gulati and Gargiulo, 1999; Ahuja, 2000a). 

All social capital measures were calculated based on the alliance matrices that were 

constructed from the MERIT-CATI database. For each of the three sectors an alliance matrix was 

constructed for each year, containing all the technology-based alliances of the focal firms in year t-

1, i.e. the year previous to the year of observation. In constructing measures of social capital based 

on past alliances, a number of choices have been made. First, we do not consider different types of 

alliances separately since this would require additional research and hypothesis building on the 

issue of which alliance type is more instrumental in exploring new technological fields and which 

types are effective modes for deepening firms� existing set of technologies. Making a distinction 

between different types of alliances is likely to improve the analysis � as has been suggested in the 

context of �open innovation� (Chesbrough, 2003) � but this is beyond the scope of our chapter. 

Given the constraints of this contribution this is put forward as future research. Second, we did not 

weigh each type of SA according to the �strength� of their relationship as some authors did (see 

Contractor and Lorange, 1988; Nohria and Garcia-Pont, 1991; Gulati 1995b): Combining the 

strength of the alliances and the redundancy in the alliance network opens up new research avenues 

that go beyond the scope of this contribution. The third choice relates to the length of the period 

during which the existing alliance portfolio is likely to have an influence on the current 

technological performance of a company. The lifespan of alliances is assumed to be usually no 

more than five years (Kogut 1988, 1989). Therefore we chose for a moving window approach, in 

which alliances were aggregated over the five years prior to a given year, unless the alliance 

database indicated another life-span (Gulati, 1995b).  

All patenting data were retrieved from the US Patent Office Database for all the companies 

in the sample, also those based outside the US. Working with U.S. patents � the largest patent 

market � is preferable to the use of several national patent systems ��to maintain consistency, 

reliability and comparability, as patenting systems across nations differ in the application of 

standards, system of granting patents, and value of protection granted� (Ahuja, 2000a: 434). 

Especially in industries where companies operate on an international or global scale U.S. patents 

may be a good proxy for companies� worldwide innovative performance. 

For companies in the three sectors the financial data came from Worldscope, COMPUSTAT 

and data published on the companies� websites.  
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The dependent variables were calculated for year t, the year of observation. All the 

independent variables as well as the control variables were calculated for the year previous to the 

year of observation to allow for the effect to take place. The social capital measures were based on 

the alliance matrix of year t-1, which contains alliances that were established in year t-5 to t-1, 

since we assume a life-span of 5 years, unless indicated differently in the MERIT-CATI database. 

 

Variables 

Dependent variables 

The different hypotheses test in one way or another the effect that direct ties, indirect ties and the 

network structure have on the deepening and broadening of the technology base of different 

companies in the chemical, automotive and pharmaceutical industry. Yearly patent counts were 

used to derive the two dependent variables. Technological profiles of all focal companies were 

computed to find out whether a new patent in the year of observation has to be categorized as 

�exploitative� or �explorative�. These technological profiles were created by adding up the patents 

that a firm received in each patent class during the five years prior to the year of observation. A 

moving window of 5 years is the appropriate time frame for assessing the technological impact 

(Podolny and Stuart, 1995; Stuart and Podolny, 1996; Henderson and Cockburn, 1996; Ahuja, 

2000a). Studies about R&D depreciation (Griliches, 1979, 1984) suggest that knowledge capital 

depreciates sharply, losing most of its economic value within 5 years. The classes were determined 

at three-digit level, which resulted in 358 classes. 

These technology profiles allow us to make a distinction between exploitative and 

explorative technology classes. Classes in which a company had not received a patent in the 

previous five years and did receive a patent in the year of observation were considered 

�explorative� patent classes. We chose the year when the company filed for the patent rather than 

the year when it was granted, because the innovation in the company has been realized when the 

company files for a patent rather than when it is granted. Explorative patent classes kept this 

�status� for 3 consecutive years. Since knowledge remains relatively new and unexplored for a firm 

immediately after patenting, patent classes kept their explorative �status� for 3 consecutive years, 

parallel to Ahuja and Lampert�s (2001) concept of novel and emerging technologies. All the classes 
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in which a company had successfully applied for a patent the previous five years and successfully 

applied for a patent in the year of observation were considered �exploitative� patent classes.  

The dependent variables �broadening of technology base� and �deepening of technology 

base� were then made up by adding up all the patents applied for in the year of observation in the 

explorative and exploitative patent classes respectively. 

Although the use of patent as an indicator of learning and innovative output has been 

criticized on many different ground (for an overview see Griliches, 1990) they are generally viewed 

as the single most appropriate measure of innovative performance at the company level (Ahuja and 

Katila, 2001; Hagedoorn and Duysters, 2002) in particular in a single industrial sector context 

(Basberg, 1987; Cohen and Levin, 1989; Ahuja and Katila, 2001). We must acknowledge that 

although patents are increasingly used as a proxy for learning it does not equate learning. In our 

view it is a proxy for the output of learning (knowledge stock increase). 

 

Independent variables 

The impact of social capital on innovative output of companies has been explored among others by 

Ahuja (2000a) and Ahuja and Lampert (2001). In this chapter, innovative output of a company is 

split up into the deepening or strengthening of the existing technology base and the exploration of 

new technological fields. We have argued that the former should benefit from a dense ego-network, 

while the latter is will be spurred by the presence of the structural holes. For an accurate 

understanding of the impact of redundant and structural hole spanning alliances on both dimensions 

of innovative firm behavior, the firm�s ego network should be decomposed into distinct and 

separate elements. Following Ahuja (2000a), we make a distinction between direct ties, indirect ties 

and the redundancy of ties in the technology based alliances network. All measures are calculated 

on the alliance matrices of year t-1. 

 

Direct ties 

The first dimension of social capital is �direct ties�. We prefer to use the number of allies that the 

focal firm is directly connected to (i.e., the size of the ego-network) as a measure for direct ties, 

above the use of the degree centrality (number of alliances between the focal firm and its allies). 

We also introduce the squared term of the number of allies since hypothesis 1b suggests an inverted 

U-shaped relationship between innovative performance and the number of direct ties.  

 



 63

Indirect ties  

A second dimension of the social capital of a company consists of firms it can reach indirectly in 

the alliance network through its alliance partners and their partners. There are different possibilities 

to operationalize the breadth of coverage of indirect ties. We chose for a variable that measures the 

impact of indirect ties while taking into account the decline in tie strength across more distant ties. 

We only report the findings for the distance-weighted centrality (see tables 3a and 3b). We tested 

the robustness of the findings with other centrality measures that do ��not account for the 

weakening or decay in tie strength between firms that are connected by increasingly large path 

distances.� (Ahuja, 2000a: 438) and obtained similar results. The measure, which we call �distance 

weighted centrality�, is provided by Burt (1991). The variable �� attaches weights of the form 1 � 

(fi/(N+1)) to each tie, where fi is the total number of nodes that can be reached up to and including 

the path distance i, and N is the total number of firms that can be reached by the focal firm in any 

number of steps� (Ahuja 2000a: 438). The result is that alliance partners receive smaller weights 

the longer the path distance to the focal firm. The �distance weighted centrality� can be calculated 

by adding up all alliances at several distances weighted by their path distances (Ahuja, 2000a).  

 

Social capital: network closure versus structural holes 

The literature offers several possibilities to operationalize the (non-)redundancy of alliances. Most 

� if not all � researchers that have been involved in empirical studies on inter-organizational 

networking and social capital have chosen for a single measure of social capital (Burt, 1992a; 

McEvily and Zaheer, 1999; Gulati, 1999; Ahuja, 2000a; Baum et al., 2000). In this chapter, we 

develop different (non-)redundancy measures to formalize the notion of social capital. We refer to 

Borgatti et al. (1998) for an extensive analysis of network measures that can be used to formalize 

the notion of social capital.  

Burt (1992a, 1992b) argues that the two empirical conditions that indicate a structural hole 

(or non-redundancy) are cohesion and structural equivalence. Both conditions reveal that there are 

structural holes by indicating where they are absent. The cohesion criterion indicates that two 

partners of the focal firm ��are redundant to the extent that they are connected [to each other] by a 

strong relationship. A strong relationship indicates the absence of a structural hole.� (Burt, 1992b: 

66). Structurally equivalent partners of the focal firm on the other hand have the same alliance 

connections to every other company in the network. Even in absence of an alliance between these 

two firms they will provide similar information to the focal firm because they are linked (directly 

and indirectly) to the same other companies in the overall alliance network. Thus cohesion focuses 
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on the direct ties between a focal firm�s partners, structural equivalence concerns the indirect ties of 

a focal firm�s partners with more distant companies in the alliance network. 

The first measure of social capital, proportion density (Burt, 1983; Hansen, 1999), captures 

redundancy by cohesion indicating the presence of alliances between a focal firm�s allies. Alliance 

partners are redundant to the focal firm when alliances have been established between them. 

Proportion density is calculated as the number of ties (not counting ties involving the focal 

company) divided by the number of pairs where �pairs� are potential ties. The values for this 

variable range from 0 to 1, where 1 indicates that all allies are directly linked to each other.  

Another variable to measure social capital in terms of cohesion is �network efficiency� of a 

firm�s network (Burt, 1992a). This is calculated by dividing the �effective size� (a variable 

measuring the number of non-redundant ties in a firm�s ego-network by subtracting the redundancy 

in the network from the number of partners the focal firm is connected to) by the number of 

partners in the firm�s ego-network. This efficiency ratio ranges ��from a maximum of one, 

indicating that every contact in the network is non-redundant, down to a minimum approaching 

zero, indicating high contact redundancy and therefore low efficiency� (Burt, 1992a: 53).  

Burt (1992a) offers two variables that capture different aspects from redundancy. The first 

one is network constraint: this variable describes the extent to which a network is concentrated in 

redundant contacts. More constrained networks span fewer structural holes and, thus, we expect a 

positive impact of the �network constraint�-variable on the strengthening of a technology base and a 

negative effect on the broadening of technology base. The other variable is �network hierarchy�. It 

measures the extent to which the redundancy can be traced to a single contact in the network: high 

values indicate that redundancy is concentrated around one or a few alliance partners. We expect 

that network hierarchy should be positively related to the strengthening of a technology portfolio 

(hypothesis 4) and negatively to its broadening (hypothesis).  

Another variable measuring redundancy by cohesion, �Clique overlap centrality�, is a 

variable that measures the information available to firms from their position in the network (Everett 

and Borgatti, 1998; Gulati, 1999). It measures the extent to which the actor is a member of 

overlapping cliques in the network. The idea is that a firm that belongs to many cliques is one that 

is located in the midst of dense clusters of firms that have ties with each other. Thus, clique overlap 

centrality indicates embeddedness in dense regions of a network. In this sense �clique overlap 

centrality� measures redundancy � network closure argument. Hence, firms with a high value for 

clique centrality overlap have access to redundant information and, therefore, we expect a positive 

(negative) relationship with exploitative (explorative) learning. �Clique overlap centrality� is 

calculated using UCINET VI identifying the Luce and Perry (1949) cliques. Those cliques identify 
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groups of firms that are linked to each other by alliances. The minimum clique size we specified 

was three. The scores for the clique centrality of each firm were expressed as a ratio to the score of 

the most central firm in the network. 

Apart from redundancy based on cohesion, redundancy can also be based on structural 

equivalence as argued by Burt (1992a, 1992b). We provide two redundancy measures based on 

structural equivalence. The first variable that captures redundancy by structural equivalence is 

provided by Hansen (1999). Applied to an inter-organizational setting, we can calculate the 

correlations for all firms in the alliance network. Thereby we exclude the alliances between the 

focal firm and its partners because we intend to measure the extent to which the alliance partners of 

the focal firm are connected to other firms in the overall network. Correlations can be converted 

into a redundancy measure by taking the average of the correlations between pairs of direct partners 

(allies) of the focal company. The values for this variable range from +1 (high redundancy) to �1 

(non-redundancy). Consequently, opposite signs should be expected when the redundancy measure 

is based on correlations instead of Euclidean distances. Thus we expect a negative sign when a 

company explores new technological fields and a positive sign when it depends on its existing 

technological capabilities.  

Walker et al. (1997) have developed a variable that also measures social capital based on 

structural equivalence albeit in a completely different way. Their structural equivalence measure 

refers to the pattern of partner sharing: structural equivalent firms have relationships with the same 

other firms in the network. �Therefore, measuring structural equivalence in practice almost always 

depends on the assessment of relative partner overlap� (Walker et al., 1997: 115). To measure in 

how far firms in a group share partners requires one can examine the dispersion of inter-group 

densities (Gi) around the network average. An equation that calculates density dispersion is: 
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 where i γ j    (1) 

 

�In this equation, Gi is the measure of the dispersion of intergroup densities for the ith group 

in the network, ni is the number of firms in the ith group, mj is the number of partners in the jth 

partner group , dij is the density of the intersection of the ith and the jth groups, and d* is the overall 

density of the network� (Walker et al., 1997: p. 115). Summing Gi over all groups produces a 

measure of network structure: 
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Dividing equation (1) by equation (2) produces a measure of each group�s percentage 

contribution to network structure. This variable varies between 0 and 1, and represents the 

dispersion of group densities normalized by the way in which a network is structured in a particular 

industry and year (Walker et al., 1997: 116). For further explanation of this measure we refer to 

Walker et al. (1997). 

For our purpose, this variable represents the dispersion of alliances across different 

structurally equivalent (SE) groups of partners. All else equal, the more the SE group of the focal 

firm has alliances to all different SE groups of partners, the lower the value for this variable. High 

densities that are concentrated into one or a few partner groups (i.e., high values for this variable) 

mean that the focal firm (and its structurally equivalent group of partners) has established many 

alliances with selected structurally equivalent groups of partners.  

We have to be cautious with this variable however, for several reasons. First, it does not 

measure social capital of an individual (focal) firm but it indicates how the relations of the SE 

group to which it belongs are distributed among partner groups. Second, this variable ��penalizes 

small groups of firms with small partner groups� (Walker et al., 1997: 115). This variable tends to 

zero for SE groups that only establish alliances among themselves because we excluded diagonal 

values in the density matrix. The value for this variable increases (to a maximum of one) the larger 

the size of the focal group of SE and the more it has dense ties with a single but large group of SE 

firms. 

 

Control variables 

While the primary focus of this study is to analyze the effect of social capital and its network 

structure on exploitative and explorative learning, there may also be other factors that could affect 

these two types of learning. We included three types of dummy variables. A first dummy variable 

indicates in which economic region the company is headquartered. Following the Triad-concept of 

the world economy, a company can be headquartered in North America, Asia or Europe � the 

default is Asia. Firms from a different economic region may differ in their propensity to patent. 

Annual dummy variables were included to capture changes over time in the propensity of 

companies to patent their innovations. Finally, we included a dummy variable to indicate whether a 

company is a car manufacturer or chemical firm (default is the pharmaceutical industry).  
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Furthermore, we included a number of correlating organizational variables in one factor. 

First, the natural logarithm of �corporate revenues� � a proxy for firm size - was included in the 

factor. Firm size is expected to enhance exploitative learning (Acs and Audretsch, 1991). Large 

firms have the financial means and vast technological and other resources to invest heavily in 

R&D. However, they usually experience problems in diversifying into new technological areas 

inhibiting experimentation and favoring specialization along existing technological trajectories 

(March, 1991; Levinthal and March, 1993; Ahuja and Lampert, 2001). As a result we expect that 

large firms have an advantage over small ones in exploiting technological dynamics with a 

cumulative nature, but they may be at a disadvantage with respect to experimenting and exploring 

new technological fields. 

The second organizational variable included in the factor is the natural logarithm of R&D 

expenditures of year t-1. Assuming that there exists a positive correlation between technological 

input and output (Pakes and Griliches, 1984) we expect that firms that invest heavily in R&D will 

have a higher rate of innovation. Also R&D investments play a role in the ability of companies to 

recognize, value and assimilate external knowledge. This absorptive capacity of companies is 

crucial to acquire and integrate external knowledge, especially when the knowledge is tacit. Firms 

conduct R&D to be more able to use the technology of other companies (Cohen and Levinthal, 

1990; Kim, 1998; Mowery and Oxley, 1995). This absorptive capacity argument is particularly 

relevant in the case of explorative learning because the knowledge to transfer is tacit and the focal 

firm has not yet built any capabilities in these technological areas. Therefore we also included 

previous technical capital, i.e. the number of patents received in the previous five years, as an 

indicator of absorptive capacity. 

Technological diversity between the firm�s partners in the alliance network has to be 

introduced as another control variable according to Ahuja (2000a). His argument is twofold. First, 

if a firm�s allies are active in widely different technological fields, they may remain unconnected, 

generating structural holes in a focal firm�s alliance network. Next, if partners are highly 

heterogeneous in their technology base, collaboration is unlikely because they do not have the 

required absorptive capacity to learn from each other (Cohen and Levinthal, 1989; Lane and 

Lubatkin, 1998; Stuart, 1998). As a result, structural hole measures might reflect the negative 

impact of technological distance between its allies rather than social structural effects as postulated 

in hypotheses 4 and 5.  

Yao (2003) provides an interesting way to calculate the technological distance between a 

focal firm�s partners. �The knowledge distance among a firm�s direct alliances (excluding the firm 

itself) is the average distance among those firms. We take the sum of each dyadic distance between 
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a firm�s direct contacts and divide the value by the total number of direct alliances of the firm. 

Since each pair of firms is counted twice, we also divide the value by 2 to get the final technology 

distance among a firm�s alliance� (Yao, 2003: 12). The technological distance between companies 

can be calculated as follows: 
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Where j and k represent the jth and kth partner (j γ k) of the focal firm i. Pit is the number of 

partners the focal firm year t. Ct is number of patent classes issued to the set of all sample firms in 

year t. Njct and Nkct represent the number of patents in the cth patent class filed for respectively by 

the jth and kth partner in year t.  

 

Model estimation 

The two dependent variables are count variables and take only nonnegative integer values � i.e. the 

number of patents a firm filed for in a particular year in patent classes in which it has issued patents 

during the past 5 years (exploitative learning) and the other ones (explorative learning). A Poisson 

regression approach provides a natural baseline model for such data (Hausman et al., 1984; 

Henderson and Cockburn, 1996). Since we use pooled cross-section data with several observations 

on the same firms at different points in time, we modeled the data using a random effects Poisson 

estimator with a robust variance estimator. 

The basic Poisson model for event count data can be written as follows:  
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Where the parameter λit represents the mean and the variance of the event count and yit the 

observed count variable. It is furthermore assumed that: 

 

λit = β�xit         (2) 

 

with xit being a vector of independent variables. 

The above specification assumes that the mean and variance of the event count are equal. 

However, for pooled cross-section count data the variance often exceeds the mean. This 

overdispersion is particularly relevant in the case of unobserved heterogeneity. The presence of 

overdispersion does not bias the regression coefficients. Rather the computed standard errors in the 

Poisson regression are understated, so that the statistical significance is overestimated. Therefore, a 

random effects Poisson estimator with robust variance estimator is used: it does not assume within-

firm observational independence for the purpose of computing standard errors. For the random 

effects Poisson estimator equation (2) is changed into: 

 

λit = β�xit + ui        (3) 

 

where ui is a random effect for the ith firm and reflects the firm-specific heterogeneity. 

Unobserved heterogeneity may be the result of differences between companies in their 

innovation generating capabilities, and as a consequence, also in their propensity or ability to 

patent. Such unobserved heterogeneity, if present and not controlled for, can lead to overdispersion 

in the data or serial correlation. Including the sum of alliances that a firm entered in the last five 

years (moving window approach) as an additional variable is a common method of controlling for 

unobserved heterogeneity (Heckman and Borjas, 1980). 

Differences in patenting behavior between companies or between different years are 

captured by including dummy variables in the model. First, the propensity to patent may be partly 

determined by the nationality of the companies or the industry to which they belong. Similarly, we 

introduced annual dummy variables to account for changes over time: they may capture the ever-

growing importance of intellectual capital or changing macroeconomic conditions. 
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RESULTS 

Table 3.1 represents the description of the different variables. Table 3.2 provides the descriptive 

statistics and the correlations between all the variables for the 662 observations in the sample. 

Although the sample represents the prominent firms in the three sectors, there is quite some 

variance on most of the key variables. The �distance weighted indirect ties� are not highly 

correlated with the number of direct ties but, among the structural hole variables, clique overlap 

centrality correlates strongly with the number of direct ties. 

Table 3.2 shows high correlations between several regressors. These inter-correlations 

might affect the empirical results. In particular the variables �revenues�, �R&D-expenditures� (or 

even R&D intensity), �cumulative patents�, and the technological distance among the partners are 

highly correlated. In order to avoid multicollinearity, we were looking for (a) latent variable(s) by 

means of a factor analysis. The results indicate that cumulated patents, revenues and R&D 

expenditures form one latent variable (Cronbach�s alpha = 0.78). Factor scores were used as a new 

variable. The correlation between age and the latent variable is 0.25. The correlation between 

technological distance among partners and the latent variable is �0.03.   

Tables 3.3a en 3.3b represent the results of the regression analysis using random-effects 

Poisson estimations respectively for the deepening of the technology base and the broadening of it. 

The basic model with only control variables is presented in model 1. There are no statistically 

significant differences between the three industries (chemical industry, car manufacturing and 

pharmaceutical industry) concerning the innovation rate both in deepening and broadening their 

technology base. However, the sign of the intercept dummy variables indicates that pharmaceutical 

companies (the default) slightly more inclined to file for patents in new patents classes than 

companies in the other two industries. The differences between the pharmaceutical industry and the 

two other industries are not significant, but they reflect the continuous search of pharmaceutical 

companies to tap into the new business opportunities that are embedded in emerging technologies 

such as biotechnology.  

The country of origin of the different companies plays a role in explaining both types of 

innovation. European companies have a lower innovation rate compared to Asian companies for 

exploitative patents. Asian companies are also a bit more active than European and US-based 

companies in broadening their technology base. However, these differences are not statistically 

significant. 
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The latent variable capturing the effects of size (revenues, R&D expenditures, and patent 

portfolio) is strongly and positively linked to the deepening of the technology base of companies in 

these three industries. This coefficient can also be interpreted as an elasticity of the firm size with 

respect to the innovation rate. The coefficient is much smaller than unity indicating that 

Table 3.1 Definitions of dependent and independent variables 
 
 
Variable name Variable description  

   
Exploitative learning Count of the number of patents a firm filed for in year t within patent 

classes in which is has been active in the five years prior to the given 
year 

dependent 
variable 

Explorative learning Count of the number of patents a firm filed for in year t within patent 
classes in which is has not been active in the five years prior to the 
given year 

dependent 
variable 

Cumulative patents Count of the number patents that a firm filed for during the previous 
five years (t-5 to t-1)  

 

(Cumulative patents)2 Squared term of previous variable  
Indirect ties �Distance weighted centrality�: Count of indirect ties but weighted to 

account for the decline in tie strength across progressively distant 
ties 

 

Proportion density Density of ties among a focal firm�s direct partners expressed as a 
proportion of all possible ties between them 

 

Network efficiency �Effective size� divided by the number of partners in the focal-firm�s 
ego-network (Burt, 1992a, p. 53) 

 

Network constraint The extent to which a network is concentrated in redundant contacts 
(Burt 1992a) 

 

Network hierarchy The extent to which the redundancy can be traced to a single contact 
in the network (Burt, 1992 a) 

 

Clique overlap 
 centrality 

The number of cliques to which a firm belongs, normalized to the 
industry maximum (Gulati, 1999) 

 

Structural equival. 
 (corr.) 

Average correlation of every pair of profiles of the direct partners of 
the focal firm (Hansen, 1999) 

 

Pattern partner 
 sharing 

Dispersion of densities between different structurally equivalent 
groups normalized by the network structure (Walker et al., 1997) 

 

   

Age The number of years since a company is founded  
Firm size 
 (ln revenues) 

Natural logarithm of the total sales of the firm in t-1 (x 1000 Euro)  

R&D expenditures 
 (ln) 

Natural logarithm of the total R&D expenditures in t-1 (x 1000 
Euro) 

 

Year Dummy variable indicating a particular year (1986-1997)  
Chemical company Dummy variable set to one if the firm is a chemical company  
Car manufacturer Dummy variable set to one if the firm is a car manufacturer  
Europe Dummy variable set to one if the firm is headquartered in Europe  
US Dummy variable set to one if the firm is headquartered in the US  
 
 
Note: All network variables are based on alliance network representing all the technology-based alliances 

that were established in an industry during the five years prior to year t 
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Table 3.2 Descriptive statistics and correlation matrix 
 
 
Variable Mean S.D. Min. Max. 1 2 3 4 5 6 7 8 9 10 11 12 13  
 
1 # of exploitative patents 102.23 156.81 0 1136   
2 # of explorative patents  9.19 14.92 0 125 0.24  
3 Direct ties 14.16 13.42 2  113 0.51 0.25  
4 Indirect ties 68.31 32.01 0 177 -0.12 0.03 -0.17 
5 Proportion density 14.60 23.10 0 100 -0.16 -0.09 -0.11 -0.15  
6 Network efficiency 0.884 0.167 0.1 1 0.15 0.08 0.05 0.16 -0.96 
7 Network constraint 0.224 0.181 0 1.125 -0.33 -0.19 -0.56 -0.11 0.51 -0.34  
8 Network hierarchy 0.022 0.057 0 1 0.14 0.06 0.38 -0.08 0.27 -0.27 -0.08 
9 Clique overlap centrality 2.85 4.49 0 28 0.43 0.20 0.87 -0.25 -0.01 -0.04 -040 0.19 
10 Structural equival. (corr.) 0.152 0.193 -0.012 1 -0.12 -0.06 0.05 -0.22 0.92 -0.92 0.38 0.26 0.15  
11 Pattern partner sharing 0.314 0.143 0.003 0.5 0.07 0.08 0.18 0.30 -0.04 0.00 -0.22 -0.09 0.17 -0.05  
12 Age 79.75 45.82 0 236 0.13 -0.06 0.12 0.01 0.02 -0.03 -0.05 -0.02 0.09 0.05 0.04  
13 Factor (Firm size,  
 # patents, R&D int) -7.32e-10 1 -10.077  3.317 0.66 0.26 0.50 -0.21 -0.10 0.08 -0.28 0.23 0.40 -0.02 0.04 0.31 
14 Techn. distance partners 0.022 0.009 0 0.063 0.02 0.04 -0.11 0.27 -0.13 0.18 -0.01 -0.01 -0.20 -0.21 -0.06 0.05 -0.11 
15 Chemical company 0.376 0.458 0 1 0.03 -0.02 -0.05 -0.11 0.07 -0.07 -0.08 -0.31 0.04 0.08 -0.10 0.16 0.10 
16 Car manufacturer 0.270 0.444 0 1 0.05 0.03 0.25 -0.33 0.13 -0.20 0.11 0.27 0.36 0.20 0.07 0.04 0.33 
17 Firm is European 0.233 0.423 0 1 -0.26 -0.02 0.01 -0.11 0.13 -0.18 -0.07 0.10 0.02 0.18 -0.05 -0.07 -0.03 
18 Firm is US-based 0.429 0.495 0 1 0.04 0.01 -0.02 0.17 -0.18 0.20 -0.06 -0.12 -0.11 -0.23 0.01 -0.05 -0.14 
19 Year 1986 0.081 0.273 0 1 -0.03 -0.02 -0.08 -0.27 0.05 -0.04 0.10 0.32 -0.08 0.08 -0.26 -0.05 -0.06 
20 Year 1987 0.087 0.282 0 1 -0.03 -0.02 -0.06 -0.26 0.04 -0.04 0.07 0.29 -0.03 0.06 -0.04 -0.04 -0.03 
21 Year 1988 0.081 0.273 0 1 0.00 0.01 -0.03 -0.09 0.07 -0.06 0.03 0.17 -0.01 0.05 0.05 -0.03 -0.05 
22 Year 1989 0.081 0.273 0 1 0.01 0.02 -0.00 -0.03 0.05 -0.04 -0.01 0.09 0.03 0.02 0.07 -0.02 -0.05 
23 Year 1990 0.087 0.282 0 1 -0.01 -0.03 0.02 -0.01 0.03 -0.02 0.01 0.03 0.09 0.03 0.01 0.01 -0.02 
24 Year 1991  0.087 0.282 0 1 -0.01 -0.04 0.00 -0.00 -0.05 0.05 -0.00 -0.01 0.04 -0.05 0.02 0.03 0.00 
25 Year 1992 0.082 0.275 0 1 0.01 -0.07 -0.00 0.02 -0.07 0.06 -0.02 -0.07 -0.02 -0.06 0.14 0.04 0.03 
26 Year 1993 0.084 0.277 0 1 0.00 -0.07 0.00 0.01 -0.05 0.05 -0.02 -0.11 -0.00 -0.04 -0.17 0.04 0.02 
27 Year 1994 0.081 0.273 0 1 0.01 0.01 0.01 0.10 -0.05 0.05 -0.03 -0.13 -0.01 -0.04 -0.20 0.02 0.02 
28 Year 1995 0.082 0.275 0 1 0.05 0.15 0.02 0.09 -0.01 0.01 -0.03 -0.06 -0.04 -0.03 0.10 -0.00 0.04 
29 Year 1996 0.082 0.275 0 1 -0.00 0.07 0.05 0.17 -0.00 -0.00 -0.06 -0.23 -0.01 -0.02 0.04 -0.00 0.04 
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Table 3.2 Descriptive statistics and correlation matrix (continued) 
 

 
Variable 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 
 
15 Chemical company -0.17 
16 Car manufacturer -0.15 -0.47  
17 Firm is European -0.14 0.11 0.13 
18 Firm is US-based 0.17 -0.14 -0.18 -0.48  
19 Year 1986 0.00 0.01 -0.00 0.03 -0.02  
20 Year 1987 -0.02 -0.00 0.03 0.01 -0.02 -0.09  
21 Year 1988 -0.00 -0.02 0.01 -0.02 0.01 -0.08 -0.09  
22  Year 1989 -0.10 -0.01 -0.00 -0.01 0.00 -0.08 -0.09 -0.08  
23 Year 1990 -0.09 -0.00 0.01 -0.00 -0.01 -0.09 -0.10 -0.09 -0.09  
24 Year 1991  0.01 -0.00 0.01 -0.02 0.01 -0.09 -0.10 -0.09 -0.09 -0.10  
25 Year 1992 -0.02 -0.00 0.01 -0.01 -0.00 -0.09 -0.09 -0.09 -0.09 -0.09 -0.09  
26 Year 1993 0.02 -0.01 0.01 -0.02 0.00 -0.09 -0.09 -0.09 -0.09 -0.09 -0.09 -0.09  
27 Year 1994 0.06 0.00 -0.00 -0.02 0.01 -0.09 -0.09 -0.09 -0.09 -0.09 -0.09 -0.09 -0.09  
28 Year 1995 0.04 0.01 -0.02 0.02 -0.00 -0.09 -0.09 -0.09 -0.09 -0.09 -0.09 -0.09 -0.09 -0.09  
29  Year 1996 0.04 0.02 -0.02 0.02 0.01 -0.09 -0.09 -0.09 -0.09 -0.09 -0.09 -0.09 -0.09 -0.09 -0.09  
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 �exploitative� patenting is less than proportionately growing with firm size. This is in line with 

previous research (Acs and Audretsch, 1991). On the contrary, the size of a company is not related 

to the patenting frequency in new patent classes (see table 3.3b). This finding is in line with the 

organizational learning literature: established organizations have difficulties in diversifying into 

new technological areas, inhibiting experimentation and favoring specialization along existing 

technological trajectories (Levinthal and March, 1993; March, 1991; Ahuja and Lampert, 2001). 

According to our results, small and large companies have the same probability of patenting in new 

technology classes. Small firms can be as successful as large ones with respect to experimenting 

and exploring new technological fields. 

The age of companies has no impact on deepening the technology base, but it is negatively 

related to the broadening of the technology base. Hence, older companies have more problems than 

younger ones to look beyond the existing technological portfolio. A last control variable is the 

technological distance between partners. Its effect on deepening the technology base of companies 

is negative and significant, suggesting that absorptive capacity is likely to play an important role in 

external technology acquisition within technological areas in which the company already has some 

expertise. However, the same regressor has no impact at all on the broadening of companies� 

technology base. As a result, it is advantageous to carefully select alliance partners who have a 

similar technology profile when a company intends to deepen its technology base. This is no longer 

true for companies that intend to experiment with technological areas beyond their technology 

base: allying with partners with quite different or similar technology profiles will not influence the 

success of the company�s technological diversification strategy.  

The estimated alpha coefficient is positive and significant for both exploitative and 

explorative learning. This indicates that important firm-level unobserved effects are present in the 

data and that a panel estimator is preferred above a pooled Poisson estimator.  

Model 2 introduces direct ties (the social capital of a company) and indirect ties as 

regressors. Social capital is measured as the number of alliances a company established in the five 

previous years. Besides the linear term we also inserted the quadratic term to measure the impact of 

overembeddedness (Kogut et al., 1992; Uzzi, 1997). The coefficients for these variables are 

significant in both tables: More ties help companies to both deepen and broaden their technology 

base up to a certain point, beyond which the effect of overembeddedness dominates.  

The coefficients for the �indirect ties� as an explanatory variable are positive and significant 

in both tables. Hypotheses 2a and 2b are empirically supported: The impact is significantly larger 

on the broadening compared to the strengthening of the technology base. As a result, also 

hypothesis 2c is corroborated. Hence, social capital of a company is not only determined by its 
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direct ties but also by the number of firms it can reach in the alliance network. Moreover, the 

impact of indirect ties is significantly larger in case a company is involved in exploring new 

technological fields. The uncertainty involved in explorative research and its tacit nature pushes the 

focal firm to search for solutions among the partners of its partners. Hence, partners of a focal firm 

are not only valuable because of their technological know-how but also because of their social 

capital especially when the focal company is exploring new technologies. 

Model 2 also introduces an interaction term between direct and indirect ties and is an 

empirical test for hypothesis 3. We have argued � following Ahuja (2000a) � that the number of 

direct ties moderates the impact of indirect ties, at least in the case of exploitative learning 

(hypothesis 3a). This is supported by model 4 in table 3.3a. Because a focal firm has a good 

understanding of what type of knowledge is required and since the information involved is fairly 

explicit in exploitative learning, direct ties may easily overlap the knowledge that could be acquired 

from indirect contacts. However, the coefficient of this interaction term in table 3.3b is also 

negative and significant. This is not in line with our expectations of hypothesis 3b. In the case of 

broadening the technology base, implying tacit knowledge and high levels of uncertainty, direct 

contacts are also moderating the need to have alliance partners with extensive networks of partners. 

In other words, there are different possible strategies for companies: they can choose to establish 

few alliances with partners that have extensive alliance networks with other companies, or they 

may establish more alliances with partners whom themselves are only connected to few other 

companies. This is the case for both the strengthening of the existing technology base as for the 

broadening of it. 

Returning to the direct ties, the maximums are reached at medium levels of social capital � 

i.e. 15 alliances for strengthening and 27 alliances for broadening the technology portfolio, 

calculated at the average level of indirect ties � indicating that overembeddedness may play a role 

at higher levels of social capital, especially when the company intends to strengthen its existing 

technology base. However, these maximums increase significantly if the level of indirect ties drops: 

if the �distance weighted centrality drops to �10�, maximums are reached at 41 and 62 alliances 

respectively. Hence, when companies are not situated in the dense pack of the alliance network, 

they need more direct ties to reach the maximal innovation rate.  

The impact of social capital (only direct ties) on both types of learning differs considerably: 

according to model 2 companies can at best increase the patenting rate with 3.1% (calculated at the 

average level of indirect ties) in case they intend to strengthen their knowledge base. In contrast, 

companies can broaden their technology base through a network of technology alliances � with a 

maximum increase of 9.0%. The level of indirect ties plays a crucial role here: when the �distance 
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Table 3.3a Determinants of the patent rate of firms – strengthening the technology base, 1986-1997 
 
 
Variable Model 1  Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8  Model 9 
 
Direct ties 
Cumulative alliances /1000  12.1445*** 11.8128*** 12.3351***  12.3503***  12.7228*** 11.2050***   
   (1.2178) (1.2183) (1.2209)  (1.2186)  (1.2274) (1.2422)  
(Cumulative alliances/1000)2  -0.1339*** -0.1312*** -0.1349***  -0.1339***  -0.1362*** -0.1263***  
   (0.0097) (0.0097) (0.0097)  (0.0097)  (0.0097) (0.0099)  
Indirect ties 
Distance weighted centrality  0.0020*** 0.0018*** 0.0020***  0.0020***  0.0020*** 0.0018***  
   (0.0003) (0.0003) (0.0003)  (0.0003)  (0.0003) (0.0003)  
((Distance weighted centrality)    -0.1184*** -0.1131*** -0.1185***  -0.1153***  -0.1183*** -0.1156***  
 * (cumulative alliances))/1000 (0.0093) (0.0093) (0.0093)  (0.0093)  (0.0093) (0.0093)  
 
Redundancy 
 Via cohesion 
Proportion density   -0.1175***    
    (0.0385)  
Network efficiency    0.1171** 
     (0.0558) 
Network constraint     -0.5524*** 
      (0.0506) 
Network hierarchy      -0.5635*** 
       (0.1313) 
Clique overlap centrality       -0.0028*  
        (0.0015)   
Via structural equivalence 
Correlation (Hansen)       
  -0.1585*** 
  (0.0412)  
Pattern of partner sharing         0.1457*** 
          (0.0371) 
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Control variables 
Car manufacturer 0.2240 0.1384 0.1992 0.1475 0.2132 0.1466 0.2275 0.1506 0.1347 
  (0.3931) (0.3803) (0.3836) (0.3792) (0.3849) (0.3801) (0.3923) (0.3791) (0.3802)  
Chemical industry 0.6108 0.5069 0.5176 0.5072 0.6015 0.5127 0.6041 0.5112 0.5093 
  (0.4088) (0.3888) (0.3877) (0.3875) (0.4005) (0.3890) (0.4072) (0.3875) (0.3888) 
Europe -1.5788*** -1.4280*** -1.4661*** -1.4182*** -1.5887*** -1.4327*** -1.5602*** -1.4173*** -1.4261*** 
  (0.4391) (0.4173) (0.4198) (0.4162) (0.4289) (0.4173) (0.4374) (0.4161) (0.4171)  
US  -0.0914 -0.0352 -0.0611 -0.0334 -0.0773 -0.0376 -0.0847 -0.0329 -0.0321 
  (0.3575) (0.3449) (0.3462) (0.3438) (0.3511) (0.3448) (0.3567) (0.3437) (0.3449) 
Age  0.0031 0.0021 0.0016 0.0021 0.0029 0.0021 0.0030 0.0021 0.0021 
  (0.0043) (0.0040) (0.0040) (0.040) (0.0042) (0.0040) (0.0043) (0.0040) (0.0040) 
Factor (Firm size, # patents 0.4311*** 0.6636*** 0.6667*** 0.6671*** 0.4370*** 0.6580*** 0.4546*** 0.6630*** 0.6632*** 
 R&D intensity)  (0.0206) (0.0276) (0.0276) (0.0277) (0.0206) (0.0276) (0.0240) (0.0276) (0.0276) 
Techn. distance -3.8682*** -2.6439*** -2.8607*** -2.8234*** -3.4006*** -2.9729*** -4.0680*** -3.0092*** -2.5805*** 
 between partners (0.7261) (0.7420) (0.7416) (0.7465) (0.7350) (0.7438) (0.7335) (0.7472) (0.7433) 
Constant 3.8368*** 3.6954*** 3.7768*** 3.5878*** 3.9142*** 3.7072*** 3.3837*** 3.7067*** 3.6529*** 
  (0.4644) (0.4440) (0.4486) (0.4455) (0.4568) (0.4437) (0.4631) (0.4424) (0.4439) 
 
alpha 1.7263***� 1.6000*** 1.5785*** 1.5895*** 1.6610*** 1.5987*** 1.7172*** 1.5888*** 1.5994*** 
  (0.2518) (0.2362) (0.2353) (0.2349) (0.2437) (0.2327) (0.2507) (0.2347) (0.2361) 
 
Number of firms 74 74 73 74 74 74 74 74 74 
Number of firms-years 662 662 655 662 662 622 662 662 662   
Wald chi-squared 1343.24 1657.32 1632.59 1662.12 1463.19 1669.63 1350.22 1671.69 1674.98 
    
 
Notes:  Standard error between brackets 
***   p  < 0.01;  **   p  < 0.05;  *   p  < 0.10  
�Year dummy variable�-coefficients are not reported in the table. 
The models use a random effects Poisson estimator. The sample is an unbalanced panel. 
� Significance of the likelihood test of alpha = 0. High significance indicates that the panel estimator is preferred over the pooled estimator.     
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weighted centrality drops to �10�, companies can improve performance with 25% (55%) when they 

intend to strengthen (broaden) their technology base. Because of the interaction term between direct 

and indirect terms, it is important to consider their joint effect: at an average level of indirect ties, 

this total effect of �social capital� (indirect ties included) amounts to 25.1% for the strengthening 

and 39.4% for the broadening of the technology base.  

These results support hypothesis 1a, which predicted a stronger effect of social capital on 

explorative learning compared to exploitative learning. The difference is considerable indicating 

that the impact of external acquisition of technological know-how through alliances is larger when 

companies are experimenting in new technological areas compared to the strengthening of their 

existing technological capabilities.  

Models 3 to 9 allow us to test hypotheses 4 and 5. We have seven variables that measure the 

network structure of social capital in different ways; five of them are based on cohesion and two on 

structural equivalence. �Proportion density� gives an idea of the density of ties among a focal firm�s 

alliance partners. From hypothesis 4, we expect a positive and significant relation between a dense 

network of ties among a focal firm�s partners and its ability to strengthen its existing technology 

base. The opposite should be true when a company intends to broaden its technology base. We find 

a negative and significant coefficient in model 3 in table 3.3a. The coefficient in model 3 of table 

3.3b has a positive sign but is not statistically significant. Hence, the results of model 3 in both 

tables are not corroborating hypotheses 4 and 5. The opposite seems to be true: when a firm�s 

partners are connected to each other a company becomes less successful in strengthening but not in 

broadening its technology base. Connections between partners even seem to foster the process of 

broadening the technology base, but the relationship is weak and hence, no hard conclusions, can 

be drawn.  

�Network efficiency� is another variable measuring the non-redundancy within a firm�s ego-

network. High values for this variable indicate that a firm�s direct contacts provide non-redundant 

information. We expect a negative and significant coefficient in table 3.3a according to hypothesis 

4. Again, the empirical results are not supporting the hypothesis: the coefficient is positive and 

significant. The coefficient in table 3.3b is expected to be positive: also here we find the opposite 

sign although the coefficient is not significant. Hence, both regressors � proportion density and 

network efficiency � indicate (contrary to the hypotheses) that non-redundancy among a firm�s 

partners improves the strengthening of a firm�s technology base. Broadening the technology base is 

not enhanced by non-redundancy � as was expected by hypothesis 5. Rather the opposite seems to 

be true but the evidence is not conclusive.   
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The direct and indirect ties are eliminated in Model 5 because of the strong correlation 

between �network constraint� and these variables. The coefficients for �network constraint� are in 

both tables negative and significant and the absolute value of the coefficient in table 3.3a is 

(significantly) larger than the one in the other table. The negative sign is expected for the 

broadening of the technology portfolio, but not for the strengthening of it. Moreover, based on 

hypotheses 4 and 5 we expect that the negative impact should be stronger in the case of the 

broadening of the technology base. Before we try to explain these results we move to the results of 

model 6. 

The results for �network hierarchy� (model 6) are closely related to those of the �network 

constraint�-variable. The coefficients have a negative sign and are significant. The absolute values 

of both coefficients are not significantly different from each other. These results indicate that 

innovation performance always suffers from a strong dependence on one or a few alliance partners. 

Hence, companies should try to avoid to become too dependent on one alliance partner: redundancy 

seems to be fine in a number of �explorative strategies� as long as the focal firm can avoid 

dependence on one or a few dominant partners.  

Now we can come back to the explanation of the results for the �network constraint 

variable�. Network constraint varies with three qualities of the alliance network: size, density and 

hierarchy. Size is captured by the direct ties and density is related to proportion density and 

network efficiency. Hence, the negative sign for network constraint in table 3.3a is in line with the 

negative impact of both density and hierarchy on the strengthening of the alliance portfolio. In table 

3.3b density and hierarchy have an opposite impact on the broadening of the technology portfolio; 

the negative sign of the �network constraint�-variable indicates that the hierarchy effect is 

dominant.    

The direct and indirect ties are eliminated in model 7 because of the strong correlation 

between clique overlap centrality and these variables. A high value for the variable �clique overlap 

centrality� indicates that a company is in the midst of dense clusters of ties and is confronted with a 

lot of redundant information. Consequently, according to hypothesis 4 we expect a positive and 

significant relation between high clique overlap centrality and the strengthening of the technology 

portfolio. Again, this is not corroborated by the result in table 3.3a. We also find a negative effect 

on the broadening of a firm�s technology portfolio, as expected by hypothesis 5. However, this 

coefficient is not statistically significant. 

Model 8 measures the effect of the first of two variables that captures redundancy based on 

structural equivalence. The calculation of structural equivalence is based on the correlation 

coefficient of every pair of profiles of the direct partners of the focal firm: high (low) values 
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Table 3b Determinants of the patent rate of firms – broadening of the technology base, 1986-1997 
 
 
Variable Model 1  Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 
 
Direct ties 
Cumulative alliances/1000   15.5020*** 14.5247*** 15.5406***  15.2677***  15.48569***16.7151***  
   (4.9709) (5.0049) (4.9773)  (4.9660)  (4.9736) (5.0427)  
(Cumulative alliances/1000)2  -0.1140** -0.1047** -0.1139**  -0.1103**  -0.1142** -0.1233***  
   (0.0449) (0.0451) (0.0449)  (0.0448)  (0.0449) (0.0454)  
Indirect ties 
Distance weighted centrality  0.0036*** 0.0036*** 0.0034***  0.0036***  0.0037*** 0.0039***  
   (0.0006) (0.0009) (0.0009)  (0.0009)  (0.0009) (0.0009)  
((Distance weighted centrality)    -0.1350*** -0.1284*** -0.1212***  -0.1311***  -0.1364*** -0.1384***  
 * (cumulative alliances))/1000 (0.0391) (0.0395) (0.0385)  (0.0391)  (0.0392) (0.0392)  
 
Redundancy 
 Via cohesion 
Proportion density   0.13792 
    (0.0994) 
Network efficiency    -0.2028 
     (0.1405) 
Network constraint     -0.2499*  
      (0.1285) 
Network hierarchy      -0.4675* 
       (0.2565) 
Clique overlap centrality       -0.0016  
        (0.0049) 
 Via structural equivalence 
Correlation (Hansen)      
  0.0819 
         (0.1102) 
Pattern of partner sharing         -0.1787 
          (0.1264) 
 



 81

  

Control variables 
Car manufacturer -0.1649 -0.1495 -0.1226 -0.1713 -0.1622 -0.1308 -0.1616 -0.1582 -0.1497 
  (0.3138) (0.3180) (0.3306) (0.3207) (0.3103) (0.3182) (0.3143) (0.3187) (0.3185) 
Chemical industry -0.1224 -0.0923 -0.0876 -0.1042 -0.1267 -0.0846 -0.1225 -0.0967 -0.0976 
  (0.3228) (0.3287) (0.3304) (0.3309) (0.3187) (0.3291) (0.3231) (0.3294) (0.3293 
Europe -0.4064 -0.5221 -0.5523 -0.5267 -0.3991 -0.5238 -0.4066 -0.5282 -0.5260 
  (0.3676) (0.3687) (0.3803) (0.3713) (0.3628) (0.3692) (0.3677) (0.3695) (0.3695) 
US  -0.3525 -0.4025 -0.4188 -0.4019 -0.34333 -0.4033 -0.3543 -0.4047 -0.4065 
  (0.2865) (0.2898) (0.2983) (0.2918) (0.2834) (0.2901) (0.2868) (0.2903) (0.32903) 
Age  -0.0065** -0.0078*** -0.0080*** -0.0078*** -0.0065** -0.0078*** -0.0666** -0.0078*** -0.0078*** 
  (0.0029) (0.0029) (0.0029) (0.0029) (0.0029) (0.0029) (0.0029) (0.0029) (0.0029) 
Factor (Firm size, # patents, 0.0610 0.0975 0.0921 0.0978 0.0555 0.0920 0.0665 0.0989 0.0947 
 R&D intensity) (0.0580) (0.0671) (0.0664) (0.0669) (0.0574) (0.0664) (0.0612) (0.0672) (0.0668) 
Techn. distance -1.2734 -1.8148 -1.9670 -1.5180 -1.0451 -2.2889 -1.3556 -1.5882 -2.2838 
 between partners (2.2508) (2.2879) (2.2897) (2.2987) (2.2641) (2.2950) (2.2646) (2.3092) (2.3077) 
Constant 2.8328***� 2.6524*** 2.6720*** 2.8355*** 2.8623*** 2.6693*** 2.8412*** 2.6437*** 2.7144*** 
  (0.3296) (0.3368) (0.3482) (0.3618) (0.3278) (0.3372) (0.3304) (0.3375) (0.3402) 
 
alpha 1.0505*** 1.0500*** 1.0828*** 1.10641*** 1.0301*** 1.0527*** 1.0515*** 1.0539*** 1.0533*** 
  (0.1665) (0.1681) (0.1741) (0.1702) (0.1640) (0.1683) (0.1668) (0.1687) (0.1685) 
 
Number of firms 74 74 73 74 74 74 74 74 74  
Number of firms-years 662 662 655 662 662 662 662 662 662 
Wald chi-squared 232.76 252.50 250.26 254.43 236.70 255.65 232.88 252.94 254.40 
Chi-squared vs. previous  126.90*** 6.68***�� 2.46  60.32*** 7.84*** 0.08 24.31*** 
nested model  
  
 
Notes:  Standard error between brackets  
***   p  < 0.01;  **   p  < 0.05;  *   p  < 0.10  
�Year dummy variable�-coefficients are not reported in the table. 
The models use a random effects Poisson estimator. The sample is an unbalanced panel.  
� Significance of the likelihood test of alpha = 0. High significance indicates that the panel estimator is preferred over the pooled estimator. 
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represent (non-)redundancy. Contrary to hypothesis 4, the impact of this variable on the 

strengthening of the technology portfolio is negative and significant. The coefficient is positive but 

not statistically significant in table 3.3b. Again, the results are pointing in the opposite direction of 

the hypotheses.  

The last model shows the effect of �the pattern of partner sharing� on exploitative and 

explorative learning. This variable is different from the other network structure variables because it 

does not measure social capital of an individual (focal) firm but how relations of the structurally 

equivalent group to which it belongs are distributed among different partner groups. We have 

argued that high values of this variable indicate the presence of a �learning highway� between two 

important groups of firms with different technological capabilities. Since firms of both ends of the 

�highway� are structurally equivalent, they can easily learn from each other through spillover 

effects. We have mentioned before that this is an advantageous situation for improving technology 

performance � and especially for broadening the technology base. The coefficients in table 3.3a 

indicate that being part of the �learning highway� fosters the strengthening of a firm�s technology 

base, but not the broadening of it. The coefficient in table 3.3b is negative but not significant. 

 

We can conclude that redundant information from alliance partners does not spur the strengthening 

of a focal firm�s technology portfolio. On the contrary, there is evidence that non-redundancy 

improves the innovativeness of the company. This requires some more explanation in the next 

section. We found no hard evidence for a relation between (non)-redundancy and the broadening of 

the technology base. The coefficients in table 3.3b have the wrong signs and suggest that � contrary 

to hypothesis 5 � exploring new technologies might benefit from redundant ties. However, these 

coefficients are not significant and we have to be cautious in drawing any conclusions. The results 

for network hierarchy indicate that being tied up to a few dominant alliance partners has a negative 

impact on the innovation performance of a company.   

 

CONCLUSION 

This chapter focuses on the impact of firms� social capital on the strengthening and broadening of 

their technology portfolio. March (1991) argues that each company needs to balance both the 

exploitation of its current capabilities and the exploration of new ones to stay competitive in the 
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short and the long run. There are considerable differences between both types of �learning� (March, 

1991; Chesbrough, 2003), which, in turn, have important implications for the way in which a 

company has to get access to and profit from the technological capabilities of its alliance partners. 

We argued that the value of a firm�s alliance network is contingent on the type of learning. Since 

broadening and strengthening of the technology base are different in nature, we assume that the role 

of alliances and the structure of the alliance network are contingent on the type of learning: we 

argued that redundant information coming from alliance partners that are mutually linked to each 

other in dense networks improves the strengthening or deepening of the existing technological 

capabilities within a firm. On the contrary, non-redundant information enhances the exploration of 

new technological areas and requires that the firm�s ego-network spans structural holes. 

We formulated several hypotheses about the impact of direct ties, indirect ties, and the 

alliance network structure on the success of firms� explorative an exploitative learning. We found 

empirical evidence that direct ties spur both types of learning although there is an optimal level of 

social capital beyond which the effect of overembeddedness dominates. For companies this means 

that one has to weight the benefits of adding another alliance to the costs of creating and managing 

this alliance. Gomes-Casseres (1996) has shown that there is a natural limit to the number of 

alliances that a company can manage successfully. We also found evidence that the optimal number 

of direct ties depends on the number of indirect ties (centrality in the alliance network): central 

players need less direct ties to get access to a broad range of actors and technologies. Furthermore, 

there is strong evidence that social capital has a much larger impact on the exploration of new 

technological fields than on the strengthening of a firm�s existing technological portfolio. We can 

conclude that external acquisition of technological know-how through alliances is more important 

when companies are experimenting in new technological areas than when they intend to strengthen 

their existing technological capabilities. Many companies have already adapted a strategy of 

constructing a �radar-screen� which consists of multiple strategic alliances. Alliances allow firms 

to �scan� their environment for new windows of opportunities. At relatively low costs they can get 

a �sneak preview� of a broad array of new technologies without investing large amounts of money. 

Furthermore, it allows them to tap into the technological resources of other companies in areas in 

which they themselves do not have an established core competency. Complementary knowledge 

from partners can allow companies to combine their knowledge into new technologies or products 

that each partner individually would not have been able to produce to create. 

Indirect ties also have a beneficial effect on both types of �learning� but the impact on the 

exploration of new technological fields is significantly larger. Interestingly, the empirical results 

show that direct ties also have a moderating effect on the impact of indirect ties (which resembles 
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the results of Ahuja (2000a)). This suggests that companies that establish alliances with partners 

that are at the center of the alliance network need fewer ties than those that have ties with 

companies that in turn have no other alliances.  

Finally, we did not find empirical evidence that firms profit from redundant ties when they 

are primarily interested in the refinement and strengthening of its existing technology base and 

competencies, while non-redundant ties are advantageous in explorative learning. On the contrary, 

non-redundancy improves the technological performance of the companies when they intend to 

strengthen their existing technological competencies. There is some evidence (but not conclusive) 

that redundancy spurs exploration of new technological fields. Consequently, we can conclude that 

the value of the network closure (Coleman, 1988, 1990) and the structural hole theory of social 

capital (Burt, 1992a, 2000) is contingent on the type of organizational learning, but the empirical 

results go in the opposite direction of the argumentation in hypotheses 4 and 5. We suggested that 

that the exploration of new technologies requires boundary-spanning alliances. In line with Burt�s 

(1992a, 2000) suggestion that firms can reap �entrepreneurial� rents because of the absence of ties 

among their contacts, innovative firms that would like to explore new technological opportunities 

should therefore be engaged in non-redundant ties.  

We found no support for this argument. On the contrary, non-redundant ties are beneficial 

for companies that aim at strengthening their technologies. So, why non-redundancy is not 

favorable for companies exploring new technological areas? Part of the answer has been provided 

by the literature: Cohen and Levinthal (1990) mentioned already that absorptive capacity is not 

only a question of getting access to new technologies, but also of evaluating and incorporating 

externally generated technical knowledge. Detecting new technologies and getting access to them is 

different from the evaluation and assimilation process. The question here is what firms do when 

they want a fuller understanding and want to move beyond �detection phase� towards evaluation 

and assimilation of new technologies. In an �explorative� setting knowledge is new and highly tacit. 

This requires triangulation in order to be able to understand and value the new knowledge. Such 

triangulation can only be obtained from redundant, multiple sources (Duysters and Hagedoorn, 

2003; Gilsing, 2003; Nooteboom and Gilsing, 2004). In exploitation on the other hand, knowledge 

is (more) codified, there is more stability through a dominant design and contingencies can be 

better foreseen. More importantly, there are industry-standards, selected technical norms and so on, 

which decrease the need for continuous checks with existing ties. Because of this, redundancy can 

be reduced and must be reduced, in view of the need for efficiency and competition. These 

arguments are in line with our empirical results. As a result, further research should have a closer 

look at technological exploration in its different phases.  
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In contrast with most studies we calculated several variables that measure (non)-redundancy 

in alliance networks in different ways. The results show that redundancy can have different 

meanings. We draw two conclusions from this: First, these variables measure redundancy in 

different ways, and it is not a priori clear that these different �dimensions� of redundancy should 

have the same effect on exploitative or explorative learning. Redundancy by cohesion or by 

structural equivalence represents one of these differences that are worth probing further. Second, 

the empirical results in prior studies may be influenced by the choice of the variable.     

That �redundancy� is a multi-dimensional concept is illustrated by the variables �network 

hierarchy� and �pattern of partner sharing�. The negative impact of network hierarchy on both types 

of learning indicates that companies should avoid to be allied to one or a few dominant partners. 

Walker et al. (1997) use �pattern of partner sharing� to detect partner overlap. The concept does not 

measure social capital of an individual (focal) firm but it indicates how the relations of the 

structural equivalent group to which the firm belongs are distributed among partner groups. 

Applied to inter-organizational learning, we argue that this variable measures a particular network 

structure that is quite different from the other redundancy measures. High values for this variable 

represent a type of �learning highway� between two groups of firms with different technological 

capabilities. Firms not only learn from their direct and indirect partners, but they can also take 

advantage from the knowledge spillovers from structurally equivalent partners who have dense 

contacts with other structurally equivalent partner groups. The empirical evidence shows that high 

values for the �pattern of partner sharing�-variable stimulate the two types of learning but the 

impact is significantly larger on explorative learning.  

 

This study has of course its limitations. First, we focused only the redundancy of the information in 

a firm�s alliance network. We did not pay attention to the strength of the ties: there is empirical 

evidence that the value of strong and weak ties depends on the type of learning (Hansen et al., 

2001, Rowley et al., 2000). Combining the strength of the alliances and the redundancy in the 

alliance network opens up new research avenues that go beyond the scope of this contribution. 

Rowley et al. (2000) made a first attempt in this direction: they suggest and find evidence that 

strong ties are especially important for the purpose of exploitation. The situation is different in the 

case a company intends to explore new technologies: the time and resources invested in strong ties 

(compared to weak ties) �would decrease the number of alternative contacts a firm can realistically 

maintain and therefore limits its reach into divergent sectors of the environment.� (Rowley et al., 

2000: 375). The need for weak ties has been observed in industries that are characterized by rapid 

technological changes (Afuah, 2000). However, their analysis is hardly comparable with the one we 
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presented here: future research might make use of the combination of the strength of ties and their 

degree of redundancy in order to explain their value in strengthening and broadening a company�s 

technology base.  

Furthermore, we have made a distinction between �explorative� and �exploitative� patents. 

However, exploration may cover many different issues. First, we have no indication whether or not 

the �explorative� patent class in which a company was granted a patent, is in technological terms 

closely related to the other classes in which the company is already active. The �proximity� of 

patent classes can be measured (Jaffe, 1986, 1989; Verspagen, 1997) and, as a result, one can 

calculate the level of exploration of a company�s patents in a particular year compared to its current 

patent portfolio. Instead of having separate regressions for exploitative and explorative patents, one 

could simply measure the impact of different regressors on the �level of exploration�. Second, we 

made no distinction between technologies that are new to a firm but may have been in existence 

earlier and those that have never been explored before by any other firm � i.e. the difference 

between novel technologies and nascent or emerging technologies (Ahuja and Lampert, 2001). 

Exploration means something different in both situations and successful alliance strategies will 

obviously differ. Hence, there is a need to further differentiate the notion of technological 

exploration. 

Moreover, we did not consider different types of alliances separately and their specific 

effect on exploring new technological fields and on the deepening of a firms� existing set of 

technologies. Making a distinction between different types of alliances is likely to improve the 

analysis � as has been suggested in the context of �open innovation� (Chesbrough, 2003) � but this 

requires the use of a different data-set. 

Another possible area that deserves attention is that a firm�s experience in the past with the 

creation of explorative patents (and not only exploitative ones) is likely to generate expertise in 

exploring new technological fields � compared to companies that stick to their existing 

technological competencies. This routine-based argument suggests that splitting up the number of 

patents in the past into an explorative and an exploitative part should allow us to analyze the impact 

of the experience of companies with �explorative strategies� on their efficiency in exploring new 

technological fields. The same argument may, of course, hold for companies specializing in the 

strengthening of the existing technological base.  

Finally, we have paid no attention to the cognitive distance between a company and its 

partners although it is beyond doubt that, compared to exploitative learning, partners should have a 

different technology profile than the focal-firm in explorative learning. This raises the question 
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what the optimal �cognitive distance� should be between alliance partners, when they or involved in 

exploitative or explorative learning (Nooteboom 1999, 2000).  
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CHAPTER 4 

LOCAL ACTION IN TECHNOLOGY ALLIANCE NETWORKS: AN EMPIRICAL 

INVESTIGATION 18 

 

Abstract 

This chapter studies the effect of local alliance action on the technological performance of 

companies. We go beyond the commonly used network level of analysis and focus on the ego-level 

aspects of strategic technology alliances. Our main focus is on the empirical outcomes of local 

actions with respect to technology alliances. In this chapter we aim to discern efficient strategies of 

local action that allow firms to become more innovative in three different industry settings; 

chemicals, motor vehicles and pharmaceuticals. The results of our analysis show that redundancy 

in an ego-network is related in a curvilinear way to innovative performance but density of networks 

between alliance partners negatively affects the innovative performance. Exploitative and 

explorative learning also seem to require a different ego-network structure. 

 

 

                                                 
18 This chapter is based on a paper written with Wim Vanhaverbeke and Geert Duysters 
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INTRODUCTION 

Over the past decades we have witnessed a rapid proliferation of strategic technology alliances. The 

unprecedented increase in the number of newly established alliances has led to the creation of 

dense alliance networks in which virtually all firms are linked to each-other by means of direct or 

indirect relationships. Traditionally, alliance research has been pre-occupied with the study of why 

and when alliances are formed (Duysters et al., 2001). More recently, researchers have engaged in 

the analysis of with �whom� firms are likely to form alliances (Gulati, 1995; Walker et al., 1997; 

Gulati and Gargiulo, 1999; Bae and Gargiulo, 2003). Most scholars in this tradition have taken on 

an overall social network perspective in dealing with alliance formation patterns. Despite a growing 

number of empirical studies on network positioning strategies (e.g. Uzzi, 1996, 1997; Gulati, 1999; 

Hite and Hesterly, 2001) only a few of these studies actually connect network strategies and 

network positions to technological performance measures.  

In this chapter we will fill this void by focusing on the effects of alliance formation patterns 

from an ego-network perspective. More in particular, we will focus on the outcomes of local 

alliance action on the innovative performance of the companies under study. This study will also 

contribute to the ongoing debate in the academic literature on the efficiency of networking 

strategies. The debate focuses on the discussion of whether firms should concentrate on building 

strong ties with preferential partners or should opt for relationships that overarch structural holes. 

Scholars in the first tradition often make use of �network closure� arguments (Coleman, 1988) that 

argue that through the replication of existing ties highly cohesive groups of firms emerge that work 

together under conditions of trust, commitment and free sharing of knowledge. On the other hand, 

scholars taking on a �structural holes� perspective (Burt, 1992) suggest that firms may enjoy 

brokerage advantages by taking advantage of opportunities that arise from bridging disconnected 

parts of the network (Duysters et al., 2003). This allows firms to obtain non-redundant, high-yield 

information and facilitates information access, timing, referrals and control benefits (Burt, 1992). 

Empirical contributions in this debate have generated a mixed bag of findings. There is, however, 

increasing consensus that a �contingency approach� might be most effective. This implies that the 

efficiency of network strategies is dependent on the environmental conditions in which firms 

operate. In order to account for these different environmental conditions we will focus our study on 

three different industry settings, i.e. chemicals, motor vehicles and pharmaceuticals. In contrast to 
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most work in this area, which takes on an overall network perspective, we will focus on the 

particular set of actions of the network that surrounds focal organizations, the so-called ego-

network (Garcia Pont and Nohria, 1999; Rowley et al., 2000; Bae and Gargiulo, 2003).  

In this chapter we will first derive some basic hypotheses on the effects of local action in 

technology alliance networks. We will then provide the empirical results followed by a discussion 

of the main findings and conclusions. 

 

THEORETICAL BACKGROUND AND HYPOTHESES 

The growing importance of alliance networks has induced many scholars in the field of 

organization science, strategic management and sociology to study the structure of these networks 

and their implications for firm performance. The structural and relational position of firms in 

alliance networks has been the focus in the majority of studies in this particular field. Inspired by 

seminal work of Coleman (1988), Granovetter (1985) and Burt (1992) many authors have 

subsequently dealt with the question of which specific structural network positions enable firms to 

achieve the highest level of performance. Most of the work in this area has taken on an overall 

network perspective that tends to neglect the endogenous micro-level dynamics of organizational 

action (Bae and Gargiulo, 2003). In this chapter we argue that these endogenous micro-level 

dynamics prove to be instrumental in building the overall network structure. In order to fill this gap 

in the existing academic literature we follow Bae and Gargiulo (2003) by arguing that networks are 

basically the outcome of the combined local alliance actions of all individual players in the 

network. This at first sight obvious aspect of alliance networks has received relatively little 

attention in the dominant network literature. The existing literature seems to take on a rather 

deterministic approach to network structure and positioning where firms are primarily influenced 

by the exogenous network structure they are part of.  

In this chapter we argue that the efficiency of alliance strategies is primarily dependent on 

two major factors, i.e. the local actions of a focal firm (ego) and the local actions of its alliance 

partners (alters). Local actions can be associated with the establishment (or dissolution) of direct 

ties (ego-alter) whereas the local actions of the alliance partners are associated with indirect ties 

(alter-alter). Of course, direct and indirect ties are interrelated. If, for example, the focal firm 

undertakes a direct link with another company that has many direct links with firms with which the 
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focal company has no contact, these indirect links might be very efficient because they facilitate the 

bridging of a structural hole. Therefore, this single direct link brings about many important indirect 

links to the company. On the other hand, if an alliance partner establishes alliances with firms that 

are already tied to the focal firm these ties might be considered to be redundant (from a structural 

holes perspective). Some of the actions of a focal firm�s alliance partners might be beneficial to the 

focal company and some of the actions might have a negative effect on the focal firm�s network 

position. Negative actions of alliance partners might lead to subsequent actions of the focal firm in 

order to neutralize the moves of its alliance partners.  

This provides us with an inherent dynamic setting in which both types of links (direct and 

indirect) are considered to be important. Therefore we will focus our analysis on the effects of local 

actions of both the focal firms and their alliance partners on the former�s innovative performance. 

Our main focus will therefore be on the combined set of actions of the network that surrounds focal 

organizations, the so-called ego-network (Garcia Pont and Nohria, 1999; Rowley et al., 2000; Bae 

and Gargiulo, 2003). Rowley et al. (2000) argue that local density rather than global (network 

wide) density influences the performance of the focal firm. Ego-network measures are consistent 

with this view. We therefore leave behind the network level, and descend to the level of the ego-

network, which provides a micro-level analysis of local actions and their impact on the innovative 

performance of companies.  

 

Hypotheses 

From an ego-network perspective, a focal company can either engage in new direct ties that are 

disconnected from its current network, i.e. the new tie has no direct connections to its existing set 

of alliance partners (A in figure 4.1), or can establish a link with a company that is already 

connected to at least one of its alliance partners (B in figure 4.1). From a structural holes 

perspective, the first tie (Ego-A) can be considered as a non-redundant tie that is likely to bring in 

novel, non-redundant information to the focal company. The latter tie (Ego-B) on the other hand, is 

considered to be redundant and does not result in the creation of new separate clusters to the ego-

network. 

However, closure advantages may stem from increased collective social capital that 

facilitates trust and improves cooperation. Through the formation of these ties cohesive subgroups 
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emerge that maintain strongly cohesive ties 

among themselves. The firms involved in those 

strong ties relationships are more likely to share 

information or to act in concert (Knoke and 

Kuklinsky, 1982). As argued by Krackhardt 

(1992: 218) these ��. strong ties constitute a 

base of trust that can reduce resistance and 

provide comfort in the face of uncertainty�. Trust 

and comfort tend to facilitate information sharing 

and therefore can be seen as a stimulus for 

successful alliances.  

On the other hand, scholars taking on a 

�structural holes� perspective (Burt, 1992) suggest that firms may enjoy brokerage advantages 

because of their access to non-redundant information (Duysters et al., 2003). This non-redundant or 

high-yield information is said to facilitate information access, timing, referrals and control benefits 

(Burt, 1992). In high-tech environments most new business opportunities come about as a result of 

new combinations of knowledge. It therefore seems to be important to link up with other clusters in 

the network. Firms may decide to act as a local bridge between different clusters of the network. By 

teaming up with a competent partner from another cluster, firms can benefit from the know-how of 

the complete cluster. The lack of �social capital� might fuel opportunism though, as well as a lack 

of commitment among alliance partners. Liberal exchange of technological know-how is simply 

too difficult to facilitate in those relationships characterized by only small amounts of trust. The 

potential benefits of �weak ties� might also be restricted because of resource limitations in terms of 

the managerial resources that firms can deploy in the search process for new partners. Matching, 

complementary (non-redundant) partners might be very hard to find and may easily exhaust 

available managerial resources.  

Many of these problems are caused because information about relevant technological assets 

is often tacit and not readily available, and because the information provided by the potential 

alliance partner may be opportunistically biased. The more information asymmetry problems are 

faced, the more difficult the process of partner valuation will be. It is clear that in a setting where 

firms aim to overarch structural holes by teaming up with partners to whom the firm is unfamiliar 

problems associated with information asymmetry are considerably higher.  

Furthermore, it is often argued that strong ties lead to increased similarity among partners. 

This might be a disadvantage in terms of the novelty of information exchanged. However, it might 

Ego 

B 

A 

Figure 4.1 An ego-network perspective
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prove to be a significant advantage to the firms involved because of the potential lack of absorptive 

capacity among companies. In order to reap the full benefits of alliances firms need to have a 

sufficient degree of absorptive capacity (Cohen and Levinthal, 1990). Close contact between 

partners often leads to increased absorptive capacity because densely connected firms act similarly 

and develop similar preferences (Knoke and Kuklinski, 1982). Similarity leads to some degree of 

knowledge overlap between alliance partners and is therefore positively related to the absorptive 

capacity of partners. Structural hole networking strategies seem to be less effective because of the 

often too wide gap in absorptive capacity among alliance partners.  

Too much overlap between alliance partners might, however, result into patterns of 

�overembeddedness� in which firms face a lack of learning opportunities. In spite of the high levels 

of trust and commitment in these alliances too much knowledge overlap may hamper the efficient 

transfer of new ideas and technologies. The low informational value of the ties in a redundant ego-

network is likely to have a detrimental effect on the overall learning efficiency in these networks. 

In other words, the information yield of the ties is likely to be low. Therefore we argue that 

although redundancy can be very helpful in raising the overall level of trust, commitment and 

absorptive capacity, the value of redundancy is likely to decrease once a certain threshold level is 

passed. Above this specific level, we expect that the ego-network is likely to become 

�overembedded� and that the informational value of ties starts to decrease. Therefore, we expect a 

curvilinear relationship between the creation of redundancy in an ego-network and the innovative 

performance of ego. Thus: 

 

Hypothesis 1: The creation of redundancy in an ego-network has a positive 

curvilinear effect (inverted-U shape) on the innovative performance 

of the focal company. 

 

Whereas most of the alliance literature has traditionally focused on the effect of direct ties 

on company performance, there is increasing consensus among authors that indirect ties play an 

equally important role in determining the effects of network positioning of companies (Mizruchi, 

1989; Haunschild, 1993; Gulati, 1995). In similar vein, we might argue that a firm�s local action 

has only a partial effect on its ego-network. Although a focal company can control its own direct 

ties, it is often unable to control all of the alliance actions of its partners. In fact, some actions by 

other players might even neutralize specific moves that are made by the focal organization (Bae 

and Gargiulo, 2003). 
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Granovetter (1992) was among the first to go beyond the relational embeddedness level in 

which firms are characterized in terms of their direct links with other companies. Granovetter 

emphasized that apart from relational embeddedness firm�s effectiveness in a network is also 

dependent on two other mechanisms; structural embeddedness and positional embeddedness. 

Whereas positional embeddedness focuses on the impact of particular network positions that 

organizations occupy in the overall structure of the network, structural embeddedness is concerned 

with the effects of indirect ties, or the tendency of actors around the focal firm to cooperate with 

each other (Granovetter, 1992; Duysters et al., 2003). Those particular ties among alliance partners 

can either strengthen the position of ego, or can have a diminishing effect on the local action of the 

focal company.  

Ties among alliance partners tend to increase the density of the network surrounding the 

focal organization. This may result in the formation of strong, densely connected cliques consisting 

of firms that are all mutually connected. From a closure perspective increased density often leads to 

the accumulation of shared social capital (Burt, 1997). Social capital encompasses many aspects of 

a social context, such as social ties, trusting relations, and value systems that facilitate actions of 

individuals located within that context (Tsai, 1998). Increased social capital decreases the chances 

of opportunistic behavior and facilitates trust among partners (Chung et al., 2000). Structural 

embeddedness therefore facilitates norm creation at the network level, whereas relational 

embeddedness facilitates trust at the dyadic level (Rowley et al., 2000). Especially in dynamic 

industry environments companies tend to learn as much as possible from a number of �trusted� 

sources instead of optimizing their non-redundant ties (Hagedoorn and Duysters, 2002). 

In spite of the noted advantages of ties among alters, authors in the structural holes tradition 

(e.g. Burt, 1997) have, however, pointed at the dangers of increased redundancy of information and 

to the effects of decreasing opportunities for information brokerage due to the establishment of ties 

among alters. Dense networks created by multiple ties among alters are often characterized as being 

redundant and inefficient (Hagedoorn and Duysters, 2002).  

In high-tech environments firms might become locked-in in their own closed social system 

and start to suffer from �over-embeddedness�, rigidity and collective blindness (Uzzi, 1997; 

Duysters and Lemmens, 2003). Over-embeddedness often leads to the development of core 

rigidities (Leonard-Barton, 1995) and drives firms into so-called competency traps (Levitt and 

March, 1988). This leads to decreasing opportunities for learning and innovation (Duysters and 

Lemmens, 2003). 
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We make a distinction between two types of indirect ties in an ego network19; an indirect tie 

can be the bridge between otherwise separate clusters of alliance partners, but it can also take place 

within a cluster of alliance partners that would remain a cluster even when that tie was removed 

from the ego network20. The two types of indirect ties do not have the same effect on the position of 

the focal firm in the ego-network. When an alliance is the single bridge between two individual 

partners or clusters of partners, it increases redundancy in the ego-network. That effect is already 

analyzed in hypothesis 1. When an alliance is just reinforcing the cohesiveness within a cluster, i.e. 

when there are other alliances that hold the cluster together as a whole, then redundancy is not 

increased but the ties between partners belonging to the same cluster are strengthened. 

The former forecloses possible brokerage advantages for ego; the latter increases the density 

within a cluster and therefore decreases the potential yield of information that can be obtained from 

the network. From a structural holes perspective, increasing density among the alliance partners can 

have a negative effect on the focal company�s innovative performance. The network closure theory 

predicts that there should be a positive relationship between both types of indirect ties and the 

innovative performance of companies. 

The relationship between indirect ties and innovative performance might be a bit more 

complex than as predicted by these opposing theories. To some extent density within a component 

of alliance partners can be beneficial for the innovative performance of the focal firm. Redundancy 

might be necessary as argued by the network closure theory. However, too much redundancy leads 

to �overembeddedness� which is detrimental for the innovative performance of partnering firms 

(Kogut et al., 1992; Uzzi, 1997). Very dense components are thus likely to suffer from marginal 

informational benefits. Therefore, we hypothesize: 

 

Hypothesis 2a: Increasing cohesiveness between alliance partners in the same 

cluster has a negative impact on the focal firm�s technological 

innovative performance.  

 

                                                 
19 This distinction is similar, but not identical, to the distinction Bae and Gargiulo (2003) make between between-

cluster indirect ties and within-cluster indirect ties. 
20 A cluster of alliance partners can be formalized as a �weak component clique�, i.e. a subgroup in which all members 

can reach each other at least indirectly without passing through the focal firm (Bae and Gargiulo, 2003, p. 11). 
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Hypothesis 2b: Increasing cohesiveness among alliance partners in the same 

cluster has a curvilinear effect (inverted-U shape) on the 

technological innovative performance of the focal firm. 

  

As discussed above, empirical contributions in the Coleman/Burt debate have generated a mixed 

bag of findings. There is, however, increasing consensus that a �contingency approach� might be 

most effective. This implies that the efficiency of network strategies is dependent on the 

environmental conditions in which firms operate. We would like to extent this argument by 

reasoning that the effects of local action are also, for a large part, dependent on the innovation 

strategies that firms undertake. In particular, we would like to introduce the discussion on 

explorative and exploitative learning (March, 1991). Whereas explorative learning is associated 

with experimentation and novel technologies, exploitation is concerned with the refinement and 

extension of existing technologies. Under conditions of explorative learning companies tend to 

depart from their existing knowledge base and move into resource areas where they can find tacit 

and novel knowledge (Levinthal and March, 1993). Exploitative learning, on the other hand, is 

characterized by an extension of existing know-how that entails less uncertainty and a lower degree 

of �tacitness� (Hansen et al., 2001). The important differences in the specific nature of both types of 

learning (March, 1991; Chesbrough, 2003) significantly influence the way in which a company can 

tap into the technological capabilities of its alliances partners (Rowley et al., 2000; Ahuja and 

Lampert, 2001; Hagedoorn and Duysters, 2002; Vanhaverbeke et al., 2003). More in particular, we 

argue that this contingency is reflected in differences in the value of indirect ties (Vanhaverbeke et 

al., 2003). 

In the case of explorative learning firms need to team-up with companies that are 

knowledgeable in those technological areas in which the focal firm has little or no expertise. When 

companies get involved in explorative learning they try to get a first, quick understanding on many 

different alternatives. �Information is relatively broad and general in nature, because the emphasis 

is on identifying alternatives rather than fully understanding how to develop any one innovation. � 

This task does not have a well-defined solution space so firms perform broad searches of their 

environments in order to identify a variety of future options.� (Rowley et al., 2000: 373-374). Non-

redundant ties are advantageous in these broad scanning activities in order to cover a broad 

technological field with a minimum of alliances. As a result, companies in search for new 

knowledge will benefit more from non-redundant ties spanning structural holes than from dense 

network ties (Granovetter, 1973; Burt, 1992, 2000). Hence, redundancy is not expected to be 

valuable in explorative learning. Increasing density between alliance partners (without increasing 
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redundancy) is also of no value to the focal company. The latter does not need to team up with 

partners that are already familiar with each other through established alliances. 

In contrast, redundant ties may be beneficial for the focal company when it is primarily 

interested in deepening existing technological knowledge. Contrary to explorative learning, 

exploitative learning ��requires a deeper understanding of specific information rather than a wider 

grasp of general information� (Rowley et al., 2000). Exploitative learning entails strengthening and 

refining the firm�s existing core technology, which implies both high-quality, fine-grained 

information and trust-based governance (Uzzi, 1997; Larson, 1992). High density among the 

alliance partners in the ego-network provides an efficient network structure to meet these 

information requirements. Information theorists argue that information noise is reduced and high-

quality information is obtained when firms have access to multiple and redundant information 

sources (Shannon, 1957). Dense ego-networks help a company to evaluate the obtained information 

and to get a deeper understanding of a specific technology. Furthermore, dense ego-networks serve 

as a trust creating mechanism alleviating the risks associated with opportunistic behavior 

(Williamson, 1985); trust is crucial in exploitative learning as partners exchange highly sensitive 

technological knowledge. Redundancy and density in the ego network are expected to have a 

positive impact on exploitative learning. However, as argued before, redundancy might only be 

valuable up to a particular level since �overembeddedness� reduces the marginal value of additional 

indirect ties. Therefore, we hypothesize:  

 

Hypothesis 3a: Redundancy in the ego-network of the focal firm is related in a 

curvilinear way (inverted U-shape) to exploitative learning. 

Increasing redundancy has a negative effect when a focal firm is 

involved in explorative learning strategies. 

 

Hypothesis 3b: Increasing density among alliance partners (without increasing the 

redundancy level) has a positive impact on exploitative learning. 

Increasing density among alliance partners has a negative effect on 

explorative learning. 
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DATA, VARIABLES AND MODELING 

Data 

In order to test our main hypotheses we constructed a longitudinal dataset which consists of 

alliance and patenting activities of 116 companies in the chemicals, automotive and pharmaceutical 

industries. These focal companies were observed over a 12-year period, from 1986 until 1997. 

However, due to new start-ups, mergers and acquisitions the panel is unbalanced. This specific 

sample was selected to include the largest companies that were establishing technology based 

strategic alliances in the three industries mentioned (alliance data were retrieved from the MERIT-

CATI database21). For small or privately owned companies it is hard to obtain information on the 

establishment of a sufficient number of alliances. This is one of the reasons why other studies on 

inter-firm alliances also focus on leading companies in an industry (Gulati, 1995; Gulati and 

Gargiulo, 1999; Ahuja, 2000). 

All network measures were calculated on the basis of the alliance matrices that were 

constructed from the MERIT-CATI database. For each of the three sectors an alliance matrix was 

constructed for each year, containing the technology-based alliances that were established by the 

focal firms prior to a given year as well as the alliances established by other companies that belong 

to the industry. In constructing network measures, a number of choices have been made. First, 

different types of alliances were not considered separately. Second, the �strength� of the 

relationships of strategic alliances was not weighted as some authors did (see Contractor and 

Lorange, 1988; Nohria and Garcia-Pont, 1991; Gulati, 1995). The third choice relates to the length 

of the period during which the existing alliance portfolio is likely to have an influence on the 

current technological performance of a company. We chose for a moving window approach in 

which alliances were aggregated over the five years prior to a given year, unless the alliance 

database indicated another life-span (Gulati, 1995). The lifespan of alliances is assumed to be 

usually no more than five years (Kogut 1988, 1989).  

                                                 
21 The data on alliances are taken from the MERIT-CATI database which contains worldwide information on nearly 15 

thousands cooperative technology agreements and their �parent� companies, covering the period 1970-1996. The 

alliances in the database are primarily related to technology cooperation. See Hagedoorn and Duysters (2002) for a 

further description. 
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All patenting data were retrieved from the US Patent Office Database for all the companies 

in the sample, also those based outside the US. Working with U.S. patents � the largest patent 

market � is preferable to the use of several national patent systems ��to maintain consistency, 

reliability and comparability, as patenting systems across nations differ in the application of 

standards, system of granting patents, and value of protection granted� (Ahuja, 2000: 434)22. 

Especially in industries where companies operate on an international or global scale U.S. patents 

are a good proxy for companies� worldwide innovative performance. 

For companies in the three sectors the financial data are gathered from Worldscope, 

COMPUSTAT and from company websites. The data contain yearly revenues, converted to the 

European Euro in order to standardize. Furthermore the nationality of each company and its age are 

included. 

 

Variable definition and operationalization 

Dependent variable 

Technological innovative performance is measured by the patent intensity of a firm. This measure 

was chosen because it controls for firm size. Small firms generate a smaller amount of patents than 

larger firms. Therefore the impact of the alliance portfolio of small firms can not be compared to 

the impact of the alliance portfolio of large firms. Thus we need to control for firm size to 

standardize innovative outcome. Patent intensity enables the comparison of technological 

performance and technological learning of companies (Aspden, 1983; Pavitt, 1988; Acs and 

Audretsch, 1989; Napolitano and Sirilli, 1990; Cantwell and Hodson, 1991; Patel and Pavitt, 1991, 

1995). Patent intensity is calculated by means of dividing the innovative performance of a firm, i.e. 

the patents that were granted in a given year, by the size of the firm, i.e. the revenues generated by 

that firm in the same year. In other words, the patent intensity is innovative performance controlled 

by firm size.  

                                                 
22 See also Basberg (1987) and Griliches (1990). 
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For exploitative technological performance the measure exploitative patent intensity is 

calculated. The number of patents a firm filed for in year t within patent classes in which it had 

been active in the five years prior to the given year is divided by the revenues generated by the firm 

in that same year to make the measure comparable to patent intensity. For explorative technological 

performance the number of patents a firm filed for in year t within patent classes in which it had not 

been active in the five years prior to the given year is divided by the revenues generated by the firm 

in that same year. 

 

Independent variables 

The first independent measure estimates the extent to which the direct ties of a focal firm�s ego 

network are redundant. Since we observe ego-networks with only first-level alters (its alliance 

partners) traditional measures of redundancy do not apply. Traditional measures take into account 

larger parts of the network or the entire network itself. Therefore a redundancy-measure applying to 

ego-networks only was developed, i.e. egonet redundancy. This measure calculates the proportion 

of direct ties that are redundant given the ego-network. It considers only one tie to a weak 

component clique, i.e. a group of alliance partners that are themselves connected, as non-redundant. 

The other ties are considered to be redundant. Consider the ego-network in figure 4.2a. This ego-

network contains two weak component cliques, i.e. Ego-A-B-C-D and Ego-E-F. E can be reached 

through F in weak component clique Ego-E-F, and F can be reached through E. Therefore one of 

these contacts is considered redundant.  

To calculate the egonet redundancy measure, first we need to measure the number of direct 

ties linking the focal firm to its alliance partners in the ego network. This is the degree centrality of 
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Figure 4.2a Ego-network 
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Figure 4.2b Direct ties 
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ego (Freeman, 1979)23. Figure 4.2b represents direct ties in solid lines. Next, we need to calculate 

the number of non-overlapping weak component cliques in the focal firm�s ego-network. A weak 

component clique is a group of alters (here the alliance partners) that are all connected to the ego 

(focal firm) under study, and every alter can reach the other alter in a number of steps without 

going through ego (Wasserman and Faust, 1994). Ego can thus reach all actors in such a weak 

component clique through any partner, making all other partners �redundant�. The solid lines of 

figure 4.2c show the 2 weak component cliques in our example. Thus all ties to the alters in a weak 

component clique are redundant except for one. In other words, one weak component clique stands 

for one non-redundant direct tie, all other direct ties being redundant. To calculate how many direct 

ties are redundant we subtract the number of weak 

component cliques from the total number of direct 

ties of the ego network (since only one tie per weak 

component clique is non-redundant). However, the 

number of redundant direct ties only makes sense 

when related to the network size. Therefore, we 

divide the number of redundant direct ties by the 

total number of direct ties. This results in a measure 

with values ranging from zero to one. A low value 

implies there is no or little redundancy, increasing 

values indicate increasing redundancy.  

                                                 
23 This and other network variables can be calculated with the network analysis software package Ucinet 6 (Borgatti et 

al., 2002). 
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The second independent variable, component-density, measures the �density� of the weak 

component cliques of an ego�s ego-network. First, we need to understand how a weak component 

clique is composed. The minimum number of ties necessary to form a weak component clique 

always equals the number of alters minus one. Consider figure 4.2a again. In order for ego-A-B-C-

D to form a weak component clique, we need at least three ties connecting A, B, C and D (we do 

not involve ego in this calculation). Thus, in the weak component clique ego-A-B-C-D there are 

four alters, and therefore three (4-1) ties are necessary to form a weak component clique. These are 

shown by the solid lines in figure 4.2d. All the ties beyond this minimum number of ties needed to 

connect the alters within a clique are referred to as �within-clique ties�. Thus, if a weak component 

clique contains g alters and h ties, there are h-(g-1) within-clique ties. In figure 4.2a there is one 

within-clique tie, i.e. tie A-C represented by a solid line. This is the real number of within-clique 

ties. However, the maximum possible number of within-clique ties in one weak-component clique 

is (g-2)!. In order to calculate the �density� of the weak component cliques of an ego-network we 

add up all the real within-clique ties, and divide this by the sum of the maximum possible number 

of within-clique ties of all the weak-component cliques of the ego-network. The formula for 

component-density is: 
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where i is the ego firm, ini is the number of indirect ties in the ego-network of ego firm i, di 

is the number of direct ties in the ego-network of ego firm i, ci is the number of components of the 

ego-network of ego firm i, and sci is the size of each component in the ego-network of ego firm i.  

The values for component-density again range from 0 to 1. High values imply that the 

weak-component cliques of the focal firm are characterized by high density. A value of one 

indicates that maximum density is reached. 

 

Control variables 

To control for differences between industries intercept dummy variables were included to indicate 

whether a company is a car manufacturer or chemical firm (default is the pharmaceutical industry) 

and to control for differences in the strategic value of innovation and patenting propensity among 

the three industries.  
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Two other types of dummy variables were used. A dummy variable indicating in which 

economic region the company is headquartered was used to control for regional differences. 

Following the Triad-concept of the world economy, a company can be headquartered in North 

America, Asia or Europe � the default here is Asia. Firms from a different economic region may 

differ in their propensity to patent. Also annual dummy variables were included to capture changes 

over time in the propensity of companies to patent their innovations.  

Furthermore, we included an organizational variable, the natural logarithm of �corporate 

sales�, as a proxy for firm size. Larger firms have more financial means and vast technological and 

other resources to invest in R&D than smaller firms. Therefore, assuming that there exists a 

positive correlation between technological input and output (Pakes and Griliches, 1984) large firms 

will have a higher rate of innovation than small firms. However, returns diminish when investment 

increases. Thus, as the dependent variable patent intensity is already controlled for by firm size, we 

expect a negative relation between firm size and patent intensity. 

Also technological capital, i.e. patents received in the five years previous to the year of 

observation, was used as a control variable. Technological capital measures the technological 

competence of a company (Narin et al., 1987). Studies about R&D depreciation (Griliches, 1979, 

1984) suggest that knowledge capital depreciates sharply, losing most of its economic value within 

5 years. Thus, a moving window of 4 to 5 years is the appropriate time frame for assessing the 

technological impact in high-tech industries (Podolny and Stuart, 1995; Stuart and Podolny, 1996; 

Henderson and Cockburn, 1996; Ahuja, 2000). Because of the cumulative character of technology, 

the current technological position of a company is often dependent on its previous level of 

technological know-how (Teece et al., 1997). A positive relation between previous technical capital 

and technological learning is expected. The last control variable to be included is related to the age 

of a company. Ever since Schumpeter Mark I and Mark II there is an unresolved and ongoing 

debate in the literature about the relationship between age and innovative performance. Some 

authors have addressed the important role of young entrepreneurial companies in the innovation 

process, whereas others have appraised the important role of older, large, efficient companies in 

this same process.  
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Model specification 

The dependent variables take only nonnegative continuous values, i.e. the newly acquired patents in 

the year of observation divided by the revenues generated by that firm in the same year. For 

exploitative patent and explorative patent intensity the newly acquired patents were divided into 

exploitative and explorative classes as described above. A GLS random effects regression for cross-

sectional time-series approach provides a natural baseline model for such data. The basic model can 

be written as follows: 

 

),()(),().( tieuXY ititi +++= βα  
 

where ei,t is the standard error term with normal distribution and µi are independent draws from a 

normal distribution with zero mean and standard error σu. Random effects control for the potential 

non-independence of repeated observations on the same company. 

RESULTS 

Basic models 

Table 4.1 describes the variables used in the regressions. Table 4.2 provides the descriptive 

statistics and the correlations between all the variables for the 100 firms and the 912 observations in 

the sample. Although overall there is no high correlation between the variables, component density 

is highly correlated (-0.60) with egonet redundancy. However, the VIF (variance inflation factor) 

value for component density was calculated, which is a more advanced measure for 

multicollinearity than simple correlations (Stevens, 1992). It is generally believed that if the VIF 

value exceeds the value of 10, the variable should be excluded from the analysis. However, the VIF 

value for component density was 1.69, and therefore egonet redundancy and component density 

were included simultaneously in the models. 

Table 4.3a provides an overview of the results of the regression analysis using GLS random 

effects estimations for cross-sectional time-series for patent intensity. Year dummy variables were 

included in the regression but are not represented in this table. Model 1 represents the basic model 
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Table 4.1 Definitions of dependent and independent variables 
 
 
Variable name Variable description  
 
Technical learning Count of the number of patents a firm filed for in year t within all patent classes dependent variable 
Exploitative learning Count of the number of patents a firm filed for in year t within patent classes in which it dependent variable 
  was active in the five years prior to year t  
Explorative learning Count of the number of patents a firm filed for in year t within patent classes in which it dependent variable 
  was active in the five years prior to year t 
Egonet redundancy Share of the direct contacts that are redundant in year t-1 
(Egonet redundancy)2 Squared term of previous variable 
Component density Average relative density within the components of a focal firm, i.e. the actual number of ties  
  within  a component divided by the potential number of ties, averaged over all components  
  of the focal firm 
(Component density)2 Squared term of previous variable 
Cumulative patents Count of the number of patents that a firm filed for during the previous five years (t-5 to t-1) 
Age  The number of years since a company is founded   
Firm size (ln revenues) Natural logarithm of the total sales (x 1000 Euro) of the firm in t-1   
R&D expenditures (ln) Natural logarithm of the total R&D expenditures (x 1000 Euro) of the firm in t-1  
Year  Dummy variable indicating a particular year (1986-1997)  
Chemical company Dummy variable set to one if the firm is a chemical company 
Car manufacturer Dummy variable set to one if the firm is a car manufacturer 
Europe Dummy variable set to one if the firm is headquartered in Europe 
US  Dummy variable set to one if the firm is headquartered in the US 
 
 
Note: All network variables are based on alliance network representing all the technology-based alliances that were established in an industry during the five years prior to 
 year t 
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Table 4.2 Descriptive statistics and correlation matrix 
                  
                  
Variable Mean S.D. Min Max 1 2 3 4 5 6 7 8 9 10 11 12 13 
                   
1 Technical learning 0.203 1.874 0 52.885              
2 Exploitative learning 0.092 0.835 0 24.038 0.89             
3 Explorative learning 0.111 1.167 0 28.846 0.82 0.47            
4 Ego redundancy 0.250 0.281 0 0.917 -0.02 -0.02 -0.01           
5 (Ego redundancy)2 0.141 0.208 0 0.840 -0.05 -0.05 -0.04 0.95          
6 Component density 0.810 0.336 0 1 0.00 0.01 -0.02 -0.60 -0.56         
7 (Component density)2 0.769 0.393 0 1 0.00 0.01 -0.02 -0.65 -0.61 0.99        
8 Firm size (ln revenues) 7.949 2.517 -1.570 11.912 -0.45 -0.37 -0.41 0.32 0.32 -0.29 -0.31       
9 Cumulative patents 352 616 0 5110 -0.05 -0.04 -0.06 0.17 0.12 -0.28 -0.28 0.43      
10 Car manufacturer 0.282 0.450 0 1 -0.10 -0.09 -0.08 0.30 0.34 -0.27 -0.27 0.42 0.09     
11 Chemical company 0.288 0.453 0 1 -0.09 -0.08 -0.08 0.09 0.04 -0.03 -0.04 0.09 0.03 -0.46    
12 Age 74 47 0 239 0.01 0.05 -0.06 0.04 0.01 -0.04 -0.06 0.32 0.14 0.04 0.08   
13 European based firm 0.223 0.416 0 1 0.20 0.18 0.16 0.07 0.04 0.00 -0.02 -0.13 -0.22 0.02 0.10 -0.05  
14 US based firm 0.432 0.496 0 1 -0.07 -0.07 -0.05 -0.22 -0.19 0.12 0.14 -0.16 0.00 -0.18 -0.13 -0.09 -0.45 
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in which only the control variables are introduced. Some results are worth mentioning. The 

coefficient of firm size is negative and significantly related to patent intensity as expected. Thus 

increasing firm size results in decreasing innovative output. This confirms the idea that smaller 

firms are usually more innovative than large companies (Ahuja and Lampert, 2001). Next, we find 

a positive and significant relation between previous technical capital and the patent intensity of a 

firm. Thus previous knowledge stimulates the technological innovative performance of a firm. 

Knowledge accumulation building on previous knowledge is the basis for technological 

development. Because of the cumulative character of technology, the current technological position 

of a company is shaped by the path it has traveled (Teece et al., 1997). When companies can build 

on their previously developed knowledge investments in the past should lead to a higher innovation 

rate in the present. 

Model 2 introduces the linear term for the �egonet redundancy� variable. The results show a 

positive and significant relation between egonet redundancy and patent intensity implying that 

redundancy in the direct ties of an ego network stimulates the technological innovative 

performance of a company. 

In hypothesis 1 we predict a positive though curvilinear relation between the creation of 

redundancy in an ego-network and the innovative performance of the focal company. In model 3 

we included both the linear and the squared term of egonet redundancy in the regression in order to 

account for the curvilinear effect. We find there is a positive and significant relation between 

egonet redundancy and patent intensity. This corroborates hypothesis 1. Thus redundancy in the 

direct ties of an ego network stimulates patent intensity. However, the significance of the squared 

term of egonet redundancy implies that redundancy in the direct contacts is only beneficial up to a 

maximum point. This point is reached when approximately 52% of the direct ties are redundant24. 

Model 4 returns to the linear model and adds �component density� as a regressor25. 

Although egonet redundancy keeps its positive coefficient, its significance decreases and becomes 

weak. For component density we find a negative and weakly significant relation. Thus increasing 

density in the components of an ego network is not beneficial for the patent intensity of a focal 

                                                 
24 52% = 0.4500 / 2*0.4314. 
25 In table II the correlation between component density and egonet redundancy is -0.60. This would plead against 

inclusion of component density in the same regression analysis as egonet redundancy. However, the VIF (variance 

inflation factor) value for component density was calculated, which is a more advanced measure for multicollinearity 

than simple correlations (Stevens, 1992). It is generally believed that if VIF exceeds the value of 10, the variable should 

be excluded from the analysis. However, the VIF value for component density was 1.69, and therefore component 

density was included in the regression. 
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Table 4.3a Determinants of the patent intensity of firms, 1986-1997 
 
 
Variable Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 
Egonet redundancy  .1455*** .4500*** .0946* .3947*** .3945*** 
   (.0472) (.1395)  (.0544)  (.1427) (.1426) 
(Egonet redundancy)2   -.4314**  -.4323** -.4226** 
    (.1860)   (.1893) (.1857) 
Component density    -.0830* -.0259 -.0803* 
     (.0445) (.2055) (.0443) 
(Component density)2     -.0502  
      (.1854)  
Control Variables 
Firm size (ln sales) -.1745*** -.1808*** -.1789*** -.1799*** -.1781*** -.1780*** 
  (.0151) (.0161) (.0161)  (.0161)  (.0162) (.0162) 
technical capital .0001*** .0001*** .0001** .0001** .0001** .0001** 
  (.0000) (.0000) (.0000)  (.0000)  (.0000) (.0000) 
Car manufacturer .1895** .1759** .1843** .1671** .1763** .1757** 
  (.0773) (.0828) (.0832)  (.0833)  (.0836) (.0837) 
Chemical industry .0296 .0184 .0118 .0156 .0092 .0092 
  (.0731) (.0770) (.0774) (.0774) (.0777) (.0777) 
Age  .0021*** .0022*** .0021*** .0022*** .0021*** .0021*** 
  (.0006) (.0007) (.0007) (.0007) (.0007) (.0007) 
Europe .0873 .0716 .0684 .0742 .0701 .0710 
  (.0752) (.0794) (.0798) (.0798) (.0801) (.0802) 
USA  -.1026 -.0987 -.0950 -.0975 -.0940 -.0939 
  (.0677) (.0719) (.0723) (.0723) (.0725) (.0727) 
Constant 1.3650*** 1.3998*** 1.3679*** 1.4737*** 1.4371*** 1.4399*** 
  (.1338) (.1431) (.1443)  (.1485)  (.1498) (.1498) 
 
R2   0.3022 0.3207 0.3223 0.3233 0.3250 0.3247 
d.f.  894 811 810 810 808 809 
Wald chi2 177.15*** 177.90*** 183.48*** 181.31*** 186.75*** 186.67*** 
Number of firms 100 97 97 97 97 97 
Number of firm-years 912 830 830 830 830 830 
Average number of obs per group 9.1 8.6 8.6 8.6 8.6 8.6 
 
   
Notes:  Standard error between brackets 
*** p < 0.01; ** p < 0.05; * p < 0.10  
�Year dummy variable�-coefficients are not reported in the table. 
The models use a GLS random effects estimator. The sample is an unbalanced panel with 116 firms and 1137 firm-years (units of observation) 
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firm. In other words, the more alliance partners cooperate among each other within the same 

component (beyond the level that is strictly necessary to create a component) the less 

technologically innovative the focal firm becomes.  

Model 5 introduces the squared term for both egonet redundancy and component density. 

Again the curvilinear relation for egonet redundancy is significant. However, the significance for 

component density disappears. Therefore, model 6 omits the squared term for component density 

assuming a linear relationship between component density and the innovative performance of the 

focal companies. In model 6 the significance for component density increases although it remains 

weak.  

In short, hypothesis 1b is corroborated by the data. Redundancy in an ego network of a focal 

firm�s alliance portfolio improves the innovative performance of the company up to a point, where 

after redundancy becomes a liability. Component density negatively affects the innovative 

performance of companies � although the relationship is only weakly significant. This implies that 

a focal company is better off to be linked to groups of alliance partners that are not or only poorly 

connected to each other by means of alliances. This empirical result confirms the arguments in 

favor of the structural holes theory as argued in hypothesis 2a (Burt, 1992). 

Table 4.3b and 4.3c provide the results for the analysis of respectively exploitative and explorative 

learning (hypothesis 3). Again we make use of GLS random effects estimations for cross-sectional 

time-series. Model 1 represents the basic model including only the control variables. 

It is useful to mention some of the differences between the analyses for exploitative learning and 

explorative learning. First, for explorative learning (see table 4.3c) the coefficient of the �car 

manufacturer� dummy variable is positive and significant, while not significant for exploitative 

learning (table 4.3b). Therefore, car manufacturers seem to be inclined to explore more new 

technical domains than their counterparts in the pharmaceutical and the chemical industry, all else 

equal. Consequently, the stronger inclination of the car manufacturers to explore new technical 

domains is also the reason why we find a significant coefficient for this dummy variable in table 

4.3a where all patents are taken into account. 

For both explorative and exploitative learning the coefficient of the control variable �age� is 

positive and significant. However, the coefficient for explorative learning is smaller than for 

exploitative learning. Hence, age seems to be advantageous for both exploitative and explorative 

technological learning but its impact is larger for exploitative learning compared to explorative 

learning. A possible explanation is that start-ups or young companies usually stick to their knitting 

in one particular technical field because they do not have the technical know-how and financial 
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resources to diversify into other, new, technological fields. This implies that older companies profit 

from economies of scope and scale in R&D. 

As for regional dummy variables there are no significant differences between the three economic 

regions for exploitative learning. However, for explorative learning European firms are doing better 

than Far-East and US based companies, while the latter still have a lower level of explorative 

learning than Far-East based companies. This is a bit surprising given the technological lead and 

entrepreneurial resilience of the US economy: another possible explanation for this empirical result 

is that companies in these three industries in Europe and the Far East had to diversify their 

innovation efforts into technical fields in the period 1986-1997 whereas their American 

counterparts had already done that before. 

Model 2 in table 4.3b adds �egonet redundancy� as a regressor to the analysis. The coefficient is 

positive and significant implying that some redundancy in the direct contacts of a focal�s ego 

network stimulates the deepening of firms� current technological portfolio. We also introduced 

component density as a single regressor. The sign is negative, which means that increased 

cooperation between a focal firm�s alliance partners is detrimental for the deepening of its current 

knowledge base. However, the negative coefficient was not significant and the Wald chi2 

decreased to a level below that of the basic model. Therefore we decided not to include this model 

in table 4.3b. 

When both variables are introduced in model 326 �egonet redundancy� keeps its positive sign and 

the value of the coefficient does not change drastically. �Component density� has a negative sign 

but is not significant at all. Therefore, we omit this variable again in model 4. 

Model 4 introduces the squared term for egonet redundancy. The linear term is positive and 

significant, whereas the squared term is negative and significant. Thus there exists a curvilinear 

relation between the redundancy in the direct ties of a focal firm and exploitative learning. These 

results corroborate hypothesis 3a. The optimal point is at approximately 49%27. The same was done 

for component density. The linear and squared term were introduced in a separate regression (not 

displayed in table 4.3b). However, no significant results were found, and the Wald chi2 decreased 

compared to models 2 and 3. Model 5 adds both the linear term and the squared term for 

component density but both coefficients are not significant. As a result, we stick to model 4. 

Model 2 in table 4.3c introduces �egonet redundancy� into the regression with explorative learning 

as the dependent variable. The coefficient is positive and highly significant. We also introduced the  

                                                 
26 For the inclusion of component density with a high correlation with egonet redundancy see note 22. 
27 From model 4: 49% = 0.2622/ (2*0.2692). 
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Table 4.3b Determinants of the exploitative patent intensity of firms, 1986-1997 
 
 
Variable Model 1 Model 2 Model 3 Model 4 Model 5 
 
Egonet redundancy  .0723** .0696** .2622*** .2614*** 
   (.0299) (.0345) (.0881) (.0902) 
(Egonet redundancy)2    -.2692** -.3035** 
     (.1176) (.1198) 
Component density   -.0044  .1842 
    (.0282)  (.1296) 
(Component density)2     -.1729 
      (.1169) 
 
Control Variables 
Firm size (ln sales) -.0778*** -.0828*** -.0827*** -.0811*** -.0819*** 
  (.0104) (.0112) (.0112) (.0112) (.0112) 
technical capital .0001** .0001** .0001* .0001* .0000* 
  (.0000) (.0000) (.0000) (.0000) (.0000) 
Car manufacturer .0625 .0573 .0568 .0614 .0645 
  (.0569) (.0607) (.0612) (.0610) (.0614) 
Chemical industry -.0090 -.0126 -.0127 -.0175 -.0171 
  (.0542) (.0569) (.0573) (.0573) (.0575) 
Age  .0014*** .0014*** .0014*** .0014*** .0014*** 
  (.0005) (.0005) (.0005) (.0005) (.0005) 
Europe .0696 .0634 .0634 .0624 .0585 
  (.0558) (.0588) (.0591) (.0591) (.0594) 
USA  -.0487 -.0456 -.0456 -.0428 -.0435 
  (.0505) (.0535) (.0538) (.0538) (.0540) 
Constant .6346*** .6649*** .6688*** .6411*** .6376*** 
  (.0952) (.1018) (.1048) (.1027) (.1056) 
 
R2   0.2273 0.2454 0.2455 0.2456 0.2484 
Wald chi2 92.01*** 95.83*** 95.40*** 101.06*** 103.04*** 
Number of firms 100 97 97 97 97 
Number of firm-years 912 830 830 830 830 
Average number of 9.1 8.6 8.6 8.6 8.6 
obs. per group 
    
 
Notes:  Standard error between brackets 
*** p < 0.01; ** p < 0.05; * p < 0.10  
�Year dummy variable�-coefficients are not reported in the table. 
The models use a GLS random effects estimator.  
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Table 4.3c Determinants of the explorative patent intensity of firms, 1986-1997 
 
 
Variable Model 1 Model 2 Model 3 Model 4 
 
Egonet redundancy  .0777***  .0362 
   (.0287)  (.0333) 
Component density   -.0816*** -.0661** 
    (.0235)  (.0273) 
      
Control Variables       
Firm size (ln sales) -.0718*** -.0730*** -.0729*** -.0730*** 
  (.0059) (.0060) (.0061) (.0061) 
technical capital .0001*** .0001*** .0000*** .0000*** 
  (.0000) (.0000) (.0000) (.0000) 
Car manufacturer .0735*** .0586** .0580** .0534** 
  (.0250) (.0265) (.0268)  (.0267) 
Chemical industry .0072 -.0038 -.0016 -.0052 
  (.0230) (.0238) (.0241)  (.0239) 
Age  .0005** .0005** .0005** .0005** 
  (.0002) (.0002) (.0002) (.0002) 
Europe .0489** .0429* .0433* .0430* 
  (.0238) (.0245) (.0250)  (.0246) 
USA  -.0378* -.0352* -.0379* -.0359* 
  (.0206) (.0214) (.0218)  (.0215) 
Constant .5492*** .5496*** .6341*** .6156*** 
  (.0504) (.0526) (.0579)  (.0591) 
 
R2   0.2438 0.2541 0.2569 0.2586 
Wald chi2 211.50*** 212.17*** 213.28*** 217.79*** 
Number of firms 100 97 97 97 
Number of firm-years 912 830 830 830 
Average number of obs per group 9.1 8.6 8.6 8.6 
 
 
Notes:  Standard error between brackets 
*** p < 0.01; ** p < 0.05; * p < 0.10  
�Year dummy variable�-coefficients are not reported in the table. 
The models use a GLS random effects estimator. 
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squared term of egonet redundancy as a second regressor (not displayed in table 4.3c) but this 

hardly improved the model as the squared term was not significant.  

Model 3 introduces component density as a single regressor. The coefficient for this variable is 

negative and highly significant. Again, we introduce the squared term of component density in a 

separate regression, but the variable has no significant coefficient and therefore this model is not 

included in table 4.3c. Thus, while we do not find a significant impact of component density in the 

case of exploitative learning, this variable has clearly negative impact on explorative learning. 

Having partners that are densely connected to each other hampers explorative learning. Hence, this 

type of learning is improved when allies are only loosely coupled to each other. 

Next, the egonet redundancy variable and the component density variable were introduced 

simultaneously into model 428. The significance of egonet redundancy disappears, while the 

negative coefficient for the component density variable remains significant. Hence, for explorative 

learning we only find a positive and significant effect for egonet redundancy when we do not 

account for component density. However, model 4 performs better than model 2, thus we believe 

that redundancy on the ego-network level has no effect on the exploration of new fields. 

The differences in the optimal network structures between explorative and exploitative 

learning are clear. Redundancy in the direct ties of a focal company�s network stimulates 

exploitative learning up to a maximum point. Beyond that threshold increasing redundancy has a 

negative impact on exploitative learning. This corroborates hypothesis 3a for exploitative learning. 

This is not the case for explorative learning: Redundancy has no effect on explorative learning. 

Increasing density or cohesion between the allies of the focal firm has no significant effect on 

exploitative learning, while this does have a significant negative effect on explorative learning. 

Hence, hypothesis 3b is corroborated for explorative but not for exploitative learning. 

Finally, we should explain why there is no support for the hypothesized negative impact of 

redundancy on explorative learning. Most likely the answer has to be sought in the very nature of 

explorative learning. Redundant ties are likely to be detrimental for firms that intend to discover 

new and promising new technological areas with a minimum of alliances. However, is exploration 

merely discovering new technological areas? In order to apply for a patent in a new patent class (= 

explorative patent) companies not only have to detect and evaluate new technologies but they also 

have to absorb it and turn it into new innovations (patents). The question here is what firms do 

when they want a fuller understanding and want to move beyond �light exploration�. In such a 

setting knowledge is new and highly tacit. This requires triangulation in order to be able to 

                                                 
28 For the inclusion of component density with a high correlation with egonet-redundancy see note 22. 
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understand and value the new knowledge (Gilsing, 2003). Such triangulation can only be obtained 

from redundant, multiple sources. Moreover, given the tacitness of knowledge, it is difficult if not 

impossible to use contracts as governance instruments, creating a need for trust-based governance. 

Hence, the need for triangulation in exploration is crucial and requires multiple, redundant contacts 

in order to reduce information noise. Therefore, redundancy might be beneficial for companies that 

search for innovations in new technological areas.  

 

DISCUSSION AND CONCLUSION 

In this chapter we have investigated the effects of local action in technology alliance networks on 

the innovative performance of focal companies. The overall results show that local action does 

indeed have a significant effect on the level of technological innovative performance of companies. 

This seemingly obvious result has, however, been largely neglected in the existing academic 

literature. The majority of the existing alliance literature has focused on network positions as 

positions that are primarily influenced by the overall network structure as opposed to being shaped 

by local action. The first approach is to a large extent deterministic, the second one is more 

voluntaristic in nature. The outcome of the empirical analysis in this chapter is an important finding 

because it shows that individual firms can decide, for a large part, on their position in an alliance 

network.  

We focus on two types of indirect ties in the ego-network of innovating firms. The first type 

increases ego-redundancy: these alliances connect two partners or groups of partners of the focal 

firm that were not linked otherwise. The other type increases component density: these alliances 

between partners do not increase the redundancy in the ego network, but increase the density within 

a group of partners. The results (table 4.3a) indicate that the distinction between the two types of 

indirect alliances is important to understand the effect of alliance networks on the technological 

innovative performance of companies. With respect to the closure versus structural hole debate 

about efficient networking strategies the results for the ego-redundancy measure indicate that firms 

pursuing an alliance strategy based on redundant ties seem to outperform firms that take on a 

structural holes-related strategy. This result can be explained by the fact that the tacit nature of 

technology requires firms to have a sufficient degree of absorptive capacity (Cohen and Levinthal, 

1990) in order to benefit from the know-how of alliance partners. Close contact between partners 
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often leads to increased absorptive capacity because densely connected firms act similarly and 

develop similar preferences (Knoke and Kuklinski, 1982). Similarity leads to some degree of 

knowledge overlap between alliance partners and is therefore positively related to the absorptive 

capacity of partners. Structural hole networking strategies seem to be less effective because of the 

often too wide gap in absorptive capacity among alliance partners.  

The relationship between ego-redundancy and the innovative performance of companies is 

not linear but curvilinear. After a certain threshold the impact of redundancy on innovation 

performance becomes negative; the marginal value of an additional alliance between alliance 

partners is lower than the additional cost of setting up the alliance. Thus, after a certain threshold 

level is reached firms start to suffer from overembeddedness and the informational value of ties 

starts to decrease. Firms that are too similar tend to suffer from decreased strategic opportunities 

through the lack of information access, timing, referrals and control (Burt, 1992: 62)  

The results (table 4.3a) furthermore show that growing density levels within groups of 

alliance partners has a negative effect on the innovative performance of the focal firm. Redundancy 

in the direct ties plays a role but how dense partners are linked to each other plays no role at all. 

This is an interesting finding, because it is frequently argued, in line with the network closure 

theory (Coleman, 1988; Bourdieu and Wacquant, 1992) that dense, clique like networks of partners 

stimulates the innovative performance. We find, however, that increasing density levels within 

groups of partners has no beneficial effect.  

Finally, we examined the effect of ego-redundancy and component-density on explorative 

and exploitative learning. The two types of learning differ considerably from each other and the 

optimal network structure to spur exploitative learning is clearly not optimal in the case of 

explorative learning. We hypothesize a curvilinear relation (inverted U-shape) between redundancy 

in the ego-network of the focal firm and its exploitative learning, but increasing redundancy is 

expected to have a negative effect in the case of explorative learning. Similarly, increasing density 

within groups of alliance partners is hypothesized to have a positive impact on exploitative learning 

and a negative effect for explorative learning. The results indicate that exploitative and explorative 

learning require different network structures. However, the expected effects are not always 

corroborated by the results: exploitative learning benefits from increasing redundancy up to a 

certain level (curvilinear effect) whereas component density has no effect at all. On the contrary, 

explorative learning is not affected by network redundancy but increasing density between partners 

is detrimental for its success. 

We suggested in hypothesis 3a that ego redundancy should have a negative effect on 

explorative learning. The fact that the empirical analysis shows a positive (but not always 
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significant) sign indicates that explorative learning is not confined to the detection and evaluation 

of new technologies only. Firms can apply for explorative patents, as defined in this chapter, if they 

discovered and evaluated new technological areas. However, since we defined explorative learning 

in such a way that a technological field remains its explorative status for an extended period of 

time, the generated new insights based on the understanding of the newly acquired technology also 

serves as explorative learning. In such setting, when companies move beyond �light exploration� 

and desire a fuller understanding of a new technological area, knowledge is new to the firm and 

usually highly tacit. This requires triangulation in order to understand and value the new 

knowledge. Such triangulation and possibly hedging can only be obtained from redundant, multiple 

sources. This explains the unpredicted positive, though not always significant, sign for the effect of 

egonet redundancy on explorative learning. 

Naturally this study has its limitations. First, we focused on the redundancy of the 

information in the ego-network of firms� alliance networks only. We did not pay attention to the 

strength of the ties: there is empirical evidence that the value of strong and weak ties depends on 

the type of learning (Rowley et al., 2000). Next, we paid no attention to the cognitive distance 

between a company and its partners although it is beyond doubt that, opposite to the case of 

exploitative learning, partners should differ in technology profile in explorative learning. This 

raises the question of what the optimal �cognitive distance� should be between alliance partners 

when involved in exploitative or explorative learning (Nooteboom 1999, 2000). Finally, benefits 

stemming from alliances might be limited through resource limitations in terms of the managerial 

and financial resources that firms can deploy in the search process for new partners. Matching, 

complementary partners might be very hard to find and may soon exhaust available resources. 

Many of these problems are caused because information about relevant technological assets is often 

tacit and not readily available. Also the information provided by the potential alliance partners may 

be opportunistically biased. The more information asymmetry problems are faced, the more 

difficult the process of partner valuation will be. This is clearly the case when companies enter new 

technological areas: problems associated with information asymmetry are considerably higher 

when a company is teaming up with partners that have a complete different knowledge base. 
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CHAPTER 5 

CONCLUSION 
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The three previous chapters provide different analyses of the effect of alliance network structure 

positions on the technological learning of firms. More in particular, we intended to give an answer 

on the following research question: 

What is the effect of particular alliance networking strategies on 

the degree of technological learning of firms? 

This research question was split up into three sub-questions. Each of the preceding chapters 

dealt with one of the sub-questions. Chapter two analyzed how internal learning and external 

learning mutually affect a firm�s technological performance. In chapter three we tried to find the 

effect of networking strategies on explorative and exploitative learning. The role of local alliance 

action on the technological performance of a company was discussed in the fourth chapter. 

 

Instead of dealing with these research questions one by one, we will put the findings of the analyses 

in a portfolio perspective. 

 

OPTIMAL ALLIANCE PORTFOLIOS 

As mentioned before, firms can no longer rely on their internal development of technological 

capabilities. Rather, firms need to complement their internal R&D with an alliance portfolio to keep 

up with the rapid pace of technological change. The results of the empirical research of the three 

previous chapters provide some preliminary guidelines for firms on how to build an optimal 

alliance portfolio. Next, we will try to translate the findings of the empirical analyses into a number 

of dimensions that are crucial for the management of an alliance portfolio. 

 

Balancing internal and external learning 

The first step towards building an alliance portfolio is determining in how far a particular company 

needs external resources for learning. The results from the analysis in chapter two show that there 

are two optimal strategies for combining internal and external learning. The first strategy 

emphasizes the internal development of strong technological resources combined with a small 
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alliance portfolio; the other strategy focuses on the establishment of an extensive alliance network 

supported by a minimal internal development of technological knowledge. Hence, there is no single 

optimal strategy to follow. Different optimal strategies exist that can co-exist in one and the same 

industry. 

However, we also found support for differences in the effect between internal and external 

learning for different sizes of the existing technological and social capital. For low degrees of 

internal technological capabilities and/or small alliance portfolios an increase in either one of both 

types of capital will increase a company�s rate of innovation. Therefore, at low levels technological 

and social capital are found to mutually reinforce each other�s impact on the technological 

performance of a company. With increasing levels of both types of capital on the other hand, we 

found strong empirical support for the change in interaction between both types of capital. At high 

levels, technological and social capital become substitutes: companies can rely on a focus on either 

type of capital to come up with a strong technological performance. Furthermore, there is evidence 

that companies can overextend their alliance portfolio: the innovative performance rapidly 

decreases when the portfolio is becoming too large. 

As a result, firms need to make an inventory of their existing technological knowledge as 

well as the existing set of alliances, and explore the possibilities of extending (or shrinking) the 

alliance portfolio up to an optimal level. 

 

“Optimal” portfolio size 

The empirical analyses in the previous chapters indicate that companies that established many 

alliances in the past develop routines and alliance management skills which in turn lead to higher 

innovative output. However, since overembeddedness is a potential problem companies need to 

build an alliance portfolio up to an optimal level. We find strong evidence, both in chapter two and 

three, that portfolio size matters indeed. However, parallel to the findings of Gomes-Casseres 

(1996) we find there is an optimum of alliances a firm can manage successfully, after which the 

added value of an extra alliance diminishes and decreases the effectiveness of the portfolio as a 

whole. Furthermore, we make a distinction between optimum size of the alliance portfolio for firms 

that prefer to concentrate on exploitative learning, i.e. strengthening the existing knowledge base, 

and firms that wish to focus on explorative learning, i.e. broadening the existing knowledge base. 
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The analyses indicate that the optimum level of the alliance portfolio is smaller for exploitative 

learning than for explorative learning. Since companies depend to a larger extent on partners for 

explorative learning � companies have less developed internal technological know-how about these 

explorative technological areas and exploration is usually related to tacit knowledge that can only 

be transferred by means of a close interaction with partners � more ties are necessary in the case of 

explorative learning. Moreover, we found that the impact of social capital on explorative learning is 

larger than on exploitative learning. 

However, this optimum size is also dependent on the number of indirect ties. In chapter 

three we find evidence that indirect ties have a positive impact on both exploitative and explorative 

learning. This implies that information can be acquired through partners from players with whom a 

firm is not connected. However, we also find that the number of direct partners has a moderating 

effect on the effectiveness of the number of indirect partners. Therefore direct ties may substitute 

indirect ties, and vice versa. Thus, firms with partners that are well-connected to the rest of the 

network may be equally successful to firms with a larger set of partners that are less well-connected 

to the rest of the network. This implies that the optimum portfolio size grows as the number of 

indirect partners diminishes. As a result, innovating companies have the possibility to choose 

between many ties to companies that are not central in the alliance network themselves and a small 

number of ties with companies that are in the �pack� of it.  

Hence, the optimum portfolio size is dependent on a number of factors. First, the chosen 

learning strategy determines to a large extent what the optimum is. Exploitative learning requires a 

smaller number of alliances than explorative learning. Second, the connectedness of the partners 

determining the centrality of the focal firm in the overall alliance network influences the optimum 

size as well. Well connected partners lower the optimal number of alliances for both explorative 

and exploitative learning. 

The results of the previous chapters only show some stylized facts about the optimum size 

of the alliance portfolio for an �average� company. In reality this optimum size depends on a whole 

range of parameters. For example, the size of the firm itself matters to a great extent, putting limits 

on the resources available, both financial and managerial, to build an alliance portfolio as well as 

on the capabilities to internalize the knowledge that is received through the alliances. The optimum 

size also depends on the industry and the economic region in which the companies are located 

(different national systems of innovation). Firms may have different management styles through 

which they are inclined to establish alliances or opt for licensing or M&As. Hence, a direct 

translation of the empirical results into management prescriptions is not possible, but they 

nevertheless give valuable information on how management should take optimum size of the 
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portfolio into account, how exploration and exploitation ask for a different approach, and how 

direct ties always have to be considered jointly with indirect ties. 

 

Indirect ties 

The analysis in chapter three shows that indirect alliances are a good tool for companies to scan the 

environment for new ideas and technologies. The observed impact of indirect ties is significantly 

larger in case a company is involved in exploring new technological fields than when a firm 

deepens its existing technology base. Hence we may conclude that firms focusing on explorative 

learning should find partners that have themselves an extensive network of partners. These �highly 

connected� partners are vital in providing information about other companies that might possess 

relevant technologies for the focal firms. This is particularly interesting in explorative learning 

since the focal firm does � in comparison with exploitative learning � not know much about the 

interesting and relevant technological competencies and the companies that have expertise in these 

areas. 

However, the results of the previous chapters also indicate that it is advantageous when a 

focal firm�s partners are mutually connected to each other to some extent compared to a situation 

where its partners are exclusively connected to other firms in the network that have no direct 

connection with the focal firm.  

 

Redundancy 

A next question in the formation of an alliance portfolio is the degree to which partners, both direct 

partners and indirect partners, should be redundant in the information provided. This is again 

dependent on the learning strategy a firm wishes to pursue as well as on the type of redundancy.  

Redundancy can be considered on different levels. We can distinguish between redundancy 

based on cohesion and redundancy based on structural equivalence. Redundancy based on cohesion 

occurs between two actors, i.e. when they are themselves connected to each other, whereas 
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redundancy by structural equivalence occurs when two actors are connected to the same others, 

thus providing the same information to the focal firm.  

In chapter three we test with different measures for the effectiveness of both types of 

redundancy and non-redundancy on exploitative and explorative learning. Contrary to our 

expectations, most measures point to non-redundancy enhancing exploitative learning. For 

explorative learning we did not find conclusive results, although the results point tentatively 

towards redundancy spurring the broadening of the knowledge base. It is also important to mention 

that some variables show divergent results for the two types of learning while other variables � like 

network hierarchy � indicate that the effect goes in the same direction for both of them. A variable 

like �pattern of partner sharing� indicates (contrary to most other results) that redundancy fosters 

exploitative learning, not explorative learning. In chapter four we introduce yet another measure of 

redundancy, which is also based on cohesion. However, this redundancy measure differs from the 

others in that it adds the components of the ego-network as a new dimension of redundancy The 

analysis in chapter four finds that redundancy is positively and curvilinearly related to a firm�s 

exploitative patent intensity. Some redundancy in the partners of the ego-network therefore 

stimulates the deepening of the technology base, but only up to a maximum. We did not find a 

significant result for the effect of redundancy between direct partners and explorative learning.  

In short, we have mixed results for the impact of redundancy on both exploitative and 

explorative learning. There are significant differences between exploitative and explorative 

learning, but the signs of the coefficients are not always as expected. From these different findings 

we may conclude though that redundancy is a subtle concept that has many dimensions as explored 

by the different �redundancy� variables in chapters three and four. There are more dimensions to 

redundancy which need to be considered in the measurement of its effects than was assumed so far 

in the hypotheses. The question why non-redundancy is not favorable for companies exploring new 

technological areas as was suggested by the hypotheses in chapter three could be raised. One 

possible explanation is that detecting new technologies and getting access to them is different from 

the evaluation and assimilation process. The question here is what firms do when they want a fuller 

understanding and want to move beyond �detection phase� towards evaluation and assimilation of 

new technologies. In an �explorative� setting knowledge is new and highly tacit. This requires 

triangulation which can only be obtained from redundant, multiple sources (Duysters and 

Hagedoorn, 2003; Gilsing, 2003; Nooteboom and Gilsing, 2004). In exploitation on the other hand, 

knowledge is (more) codified, there is more stability through a dominant design and contingencies 

can be better foreseen. Because of this redundancy can be reduced. These arguments are in line 

with our empirical results. As a result, further research should have a closer look at technological 
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exploration in its different phases. We probably have looked too narrowly at the first phases where 

companies detect and get access to new technologies. Assimilation and integration of new 

technologies most likely require more redundant network structures. This is clearly an interesting 

area for future research. 

 

Technological capabilities partners 

So far, we explained different aspects of the alliance network structure which are important in 

explaining an optimal alliance portfolio. Stuart (2000) suggests that not only the network structure 

but also the characteristics of the focal firm�s alliance partners matter.  

In the second chapter we tested for one such characteristic, i.e. the previous technological 

capabilities of the partners. We used the patent portfolio of the partnering companies and tested for 

its effect on the innovative performance of the focal companies. The measured effect was not 

significant. However, this may be caused due to the fact that we used a measure that averages the 

innovative performance of all the partners in the network. A more refined measure will probably be 

more effective in order to test for a relation between the success of the alliance partner�s innovative 

performance and the focal firm�s performance. 

In the third chapter we used the average technological distance between the partners of the 

focal firm as a control variable. Ahuja (2000a) argues that larger technological diversity between 

the firm�s partners generates structural holes in a focal firm�s alliance network. Moreover, if 

partners are highly heterogeneous in their technology base, collaboration is unlikely because they 

do not have the required absorptive capacity to learn from each other (Cohen and Levinthal, 1989; 

Lane and Lubatkin, 1998; Stuart, 1998). In this way, structural hole measures might reflect the 

negative impact of technological distance between its allies rather than social structural effects. The 

results suggest that partnering with companies that have a similar technological profile is likely to 

play a stimulating role in external technology acquisition within technological areas in which the 

company already has some expertise. When a company intends to strengthen its existing 

technology base it should carefully choose partners with similar technology profiles. However, we 

did not find that technological distance has an impact on the broadening of companies� technology 

base. Explorative learning is almost by definition more experimental and uncorrelated technology 

profiles of a company�s partners will not harm the innovative performance of the focal firm. We 
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may conclude that it is advantageous to carefully select alliance partners who have a similar 

technology profile when a company intends to strengthen its technology base. This is no longer true 

for companies that intend to experiment with technological areas beyond their technology base: 

allying with partners with quite different or similar technology profiles will not influence the 

success of the company�s technological diversification strategy. 

 

In short, we discussed that internal learning and external learning should be matched. At low levels, 

they mutually reinforce each other, at higher levels they become substitutes. Next, we discussed 

four dimensions of an alliance portfolio. The portfolio size is, irrespective of the available resources 

within the company, dependent on the chosen learning strategy as well as on the extent to which the 

partners are connected. Indirect ties are a useful means to scan the environment for new ideas and 

technologies, thus enhancing explorative learning. As for redundancy we can conclude that it is a 

multi-dimensional concept. There exists no simple one-to-one relationship between (non) 

redundancy and the strengthening or broadening of the technology base. The relationship seems to 

be more complex and it should be unraveled into different sub-concepts. We distinguished � 

parallel with Burt�s (1992) concept of network constraint � two dimensions, i.e. density and 

hierarchy. They clearly have a different effect on technological performance. Group membership 

(operationalized by �pattern of group membership�, Walker et al. (1997)) also seems to play a role 

in determining the technological innovative performance of companies. This is in line with recent 

research about the impact of block membership on companies� technological performance 

(Lemmens, 2003). Increasing technological distance is detrimental for exploitative learning, while 

the difference in technology base between partners is not important in explorative learning. 

The results of the analyses cannot directly be translated into management lessons about the 

optimum composition of an alliance portfolio. Portfolio composition, scale and scope economies in 

building an alliance portfolio, the renewal of a portfolio that gradually becomes obsolete through 

external technological trends or disruptive technologies: they are all topics that are extremely 

interesting. However, we did not spend attention to it because we had to restrict our attention to a 

few narrow research topics. In the next section we will discuss some limitations of this thesis.  
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LIMITATIONS AND AVENUES FOR FUTURE RESEARCH 

Methodological issues 

We use panel data in the three chapters and the unit of observation is the �firm-year� in each one of 

them. This has a number of consequences. First, we used rough measures for the overall 

technological innovative performance as dependent variables in the tests. The number of new 

patents (exploitative or explorative) and the patent intensity give us an indication of how alliance 

portfolios enhance the technological learning of companies. However, these measures did not 

provide us with an idea of the distribution or internal composition of the alliance portfolios. Some 

groups of alliances might be much more important than others for the competitive advantage of a 

firm. So far, we did not differentiate different groups of alliances from each other which may be 

necessary to have a full understanding of alliance portfolio management.  

Whereas we used patents extensively in our study, both in the dependent variables and in 

the independent variables, we did not put weights to the importance of these patents. This would, 

however, be more accurate, since not every patent contributes to learning in the same way. With the 

use of patent citations, i.e. the citation of one patent to the other to indicate on what knowledge the 

new patent is based, we could measure the �importance� of a patent. A company in the possession 

of an often cited patent will have highly relevant technological knowledge in-house. Therefore this 

firm may be more attractive as a potential alliance partner than other firms. Thus, dependent 

variables based on the quantity of patents can be refined by weighting the patents. 

Next, we only could take care of averaged independent variables. Take technological 

distances between partners as an example. Although the average of technological distances between 

partners may be the same for two focal companies, the distribution (or variance) of these 

technological distances may be very different. Our study draws conclusions based on the average of 

technological distances but it is clear that also other characteristics of the partners and their 

technological profiles might be interesting dimensions to study. 

As for the measures we used, there are some more possibilities to improve our current 

study. First of all, the dichotomous nature of our exploitative learning/explorative learning 

dependent variable confines our methods of analysis. A continuous variable measuring the extent to 

which knowledge accumulation is exploitative or explorative would allow for more types of 

regression methods. So far, we had no indication whether or not the �explorative� patent class in 
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which a company was granted a patent, is in technological terms closely related to the other classes 

in which the company is already active. The �proximity� of patent classes can be measured (Jaffe, 

1986, 1989; Verspagen, 1997) and one can calculate the level of exploration of a company�s 

patents in a particular year compared to its current patent portfolio. Instead of having separate 

regressions for exploitative and explorative patents, one could simply measure the impact of 

different regressors on the �level of exploration�. Furthermore, we made no distinction between 

technologies that are new to a firm but may have been in existence earlier and those that have never 

been explored before by any other firm � i.e. the difference between novel technologies and nascent 

or emerging technologies (Ahuja and Lampert, 2001). Exploration means something different in 

both situations and successful alliance strategies will obviously differ. Another possible area that 

deserves attention is that a firm�s experience in the past with the creation of explorative patents 

(and not only the total number of patents) is likely to generate expertise in exploring new 

technological fields � compared to companies that stick to their existing technological 

competencies. This routine-based argument suggests that splitting up the number of patents in the 

past into an explorative and an exploitative part should allow us to analyze the impact of the 

experience of companies with �explorative strategies� on their efficiency in exploring new 

technological fields. The same argument may, of course, hold for companies specializing in the 

strengthening of the existing technological base. 

 

Conceptual issues 

Central to the topic of discussion in this thesis is external learning. In chapter two the reinforcing 

and moderating effect between internal and external learning on technological performance is 

studied. Chapters three and four build further on this argument by examining how network 

positions resulting from the external learning of a set of companies influence the learning process 

of these firms. Therefore, external learning is a common theme in the three chapters of this thesis. 

However, we limited the study to the effects of alliances exclusively. There are more ways of 

external technological knowledge acquisition, however. Traditionally, mergers and acquisitions 

were regarded another potential way of acquiring knowledge externally. Research has shown, 

though, that mergers and acquisitions did not always result in the efficient knowledge transfer 

(Vanhaverbeke et al., 2002; Hennart and Reddy, 1997). Recently attention has been drawn to new 



 129

forms of corporate external venturing. This implies companies set op a venture capital fund to 

stimulate employees to take up internally developed ideas and develop them further in a new 

venture. However, the VC-financing is also used increasingly for small investment in emerging 

technologies (educational investments in research labs, explorative research at universities, or start-

ups). This allows companies to have an early view on new, emerging technologies that may be 

relevant for the firm. These small investments create options for the firm to spin in the external 

venture when the idea proves to be successful. It is considered an excellent way to overcome 

rigidness of large companies to depart from �common practice�. Next, companies do not need to 

take the risk of changing their strategy as long as the success of a new idea is uncertain. Hence, 

companies profit more and more from the choice between different modes to explore and absorb 

externally developed technologies. Alliances are only one mode to acquire externally developed 

technologies and the choice is certainly no longer one between strategic alliances and M&As 

(Chesbrough, 2003; Van de Vrande et al., 2004) 

Next, we made no distinction between the different types of alliances. We do not distinguish 

between equity and non-equity alliances, or any other typology that might have refined the analysis. 

We do believe though that such a classification would be useful when studying firm�s learning 

strategies. Exploitative learning will require a different composition of alliance portfolios with 

respect to alliance types than does explorative learning. We focused only on the redundancy of the 

information in a firm�s alliance network. We did not pay attention to the strength of the ties: there 

is empirical evidence that the value of strong and weak ties depends on the type of learning 

(Hansen et al., 2001; Rowley et al., 2000). Combining the strength of the alliances and the 

redundancy in the alliance network opens up new research avenues that go beyond the scope of this 

thesis. Rowley et al. (2000) suggest and find evidence that strong ties are especially important for 

the purpose of exploitation. They argue that weak ties are advantageous in case a company intends 

to explore new technologies. The need for weak ties has been observed in industries that are 

characterized by rapid technological changes (Afuah, 2000). Future research might make use of the 

combination of the strength of ties and their degree of redundancy in order to explain their value in 

strengthening and broadening a company�s technology base.  

Relative network positions of the focal firm and its partners may result in an interesting 

study as well. Again we believe that both types of learning require different sets of relative network 

positions. The relative positions of the focal firm and the partnering firms may have an effect on the 

technological learning of the focal firm. A centrally positioned firm has different opportunities as 

well as different requirements for an alliance portfolio, compared to a firm which operates in the 

periphery of the same alliance network. Also, the strategy a firm wishes to pursue determines to a 
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great extent the requirements of a portfolio. Two equally positioned firms will have different results 

if their alliance portfolio differs in network positions of partners. When the focal firm is centrally 

positioned and has alliance partners that are also centrally positioned this might lead to different 

results than when an equally centrally positioned firm chooses to team up with peripheral players. 

Similarly, focusing on the technology profiles of both the focal firm and the partners may be 

considered as a natural extension of our research (see also Yao, 2003) 

Another issue we neglected to take into account in our study is the stages of the technology 

life cycle in which companies under study operate. Neither did we take into account the 

development stage (embryonic, growth, mature, aging) of the industries at study. We believe, 

however, that different stages of the technology life cycle put different demands on the portfolio 

structure of a company as well as influence the network structure in which the company operates.  

The neglect of the development or evolution of industries brings along another issue, 

namely disruptive technologies. These have an effect on the evolution of alliance networks (Gulati 

and Gargiulo, 1999). As such, disruptive technologies play a role in the technological capability 

process as well. Firms need to react to technological continuities in order to maintain or possibly 

build a competitive position. Various authors picked up the topic of corporate strategies related to 

disruptive technologies (Tushman and Andersen, 1986; Bower and Christensen, 1995; Christensen 

and Overdorf, 2000; Christensen et al., 2000). Also, a number of authors dealt with the evolution of 

networks (Gulati and Gargiulo, 1999; Baum et al., 2002). However, both groups of authors 

neglected the effect of technological discontinuities on alliance networks. 

Future research on the dyadic level (dyad-year as unit of observation) could also 

complement the firm level analysis about the relationship between technological resources and 

alliance networks. An analysis on the dyadic level allows us to focus on the question how the 

probability of the formation of new alliances is affected by (the difference between) the existing 

technological capital of the allying companies. Hence, this opens up the possibility to explore the 

opposite causality � from technology performance to alliance network structuring � as has been 

suggested in the introduction of this thesis. 

We have already mentioned that technological distance among partners as well as between 

the partners and the focal firm are likely to play a role in the structuring of the alliance network 

(Yao, 2003). It might be interesting to observe in how far technology and the technological profiles 

of players determine the network structure of an industry. Next, do technology profiles determine 

network positions? Companies with a large stock of technological resources are highly attractive as 

potential alliance partners if companies enter alliances to get access to other firms� technology. 

Also, a company with specialized technological know-how may become interesting as this know-
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how becomes increasingly important in a sector, thus moving a peripheral player to a more central 

network position. This is in particular true in situations where new, disruptive technologies emerge 

and force companies to reshape their alliance portfolio. And can a firm obtain a desired network 

position by reshaping its technology profile? This view is based more on the attractiveness of 

players within an industry than on the conscious partner selection of the focal firm itself though. 

This is part of ongoing research about disruptive technologies and the evolution of network 

structure as has been explored by Vanhaverbeke et al. (2003). 

The above presumed effect of the technological profile of a company on network structure 

combined with the findings of this thesis that network structure has an effect on learning implies 

technological learning, technology profiles and network structure should be modeled dynamically. 

Simple one-directional models are no longer sufficient in such settings. This also means that the 

modeling of the empirical research will take a different shape, where structural equation modeling 

(e.g., LISREL) may be one way to explore these multiple interactions between companies. 
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SAMENVATTING 

 

Technologische innovatie is de laatste decennia steeds belangrijker geworden voor bedrijven. Om 

competitief te zijn op de wereldmarkt dienen bedrijven continu te innoveren. Nieuwe technologieën 

zijn echter zodanig complex geworden, dat bedrijven steeds vaker samenwerking met partners 

zoeken om tot innovatie te komen. Allianties verlagen het risico van innovatie doordat partners 

kosten kunnen delen, en vaak het tempo van innovatie verhogen (time-to-market). Daarnaast 

hebben bedrijven niet altijd alle benodigde kennis in huis, en het combineren van complementaire 

kennis met partners kan leiden tot de beoogde innovatie die anders nooit bereikt zou worden. Ook 

kunnen allianties een frisse kijk op zaken bieden, of fungeren als een radarfunctie voor het vinden 

van nieuwe ideeën of technologieën. Om een leidende rol te kunnen spelen in de wereldwijde 

economie combineren bedrijven derhalve hun technologische kennis.  

Dit alles heeft geresulteerd in een sterk groeiend belang van strategische technologie allianties, en 

het ontstaan van innovatie netwerken van bedrijven. Samenwerken is echter niet altijd even 

gemakkelijk. Voor bedrijven is het vaak moeilijk te bepalen met wie samen te werken. 

Partnerkeuze is inherent aan netwerkpositionering, met andere woorden, door zorgvuldig te kiezen 

met wie samen te werken kan een bedrijf zelf bepalen welke positie het inneemt in het innovatie 

netwerk. De belangrijkste onopgeloste vraag in de literatuur is echter hoe netwerkpositionering het 

innovatievermogen in bedrijven beïnvloedt. Hier is tot op heden weinig onderzoek naar gedaan, en 

vormt het onderwerp van dit proefschrift. Met andere woorden, in dit proefschrift wordt een 

antwoord gezocht op de volgende vraag: wat is het effect van alliantie netwerkstrategieën op de 

technologische performantie van bedrijven? 

 

Om te komen tot een antwoord op deze centrale vraag zullen drie aspecten aan de orde komen. 

Allereerst is het voor bedrijven belangrijk om de afweging te maken tussen het intern ontwikkelen 

van technologische kennis, of het (extern) samenwerken met bedrijven om tot innovatie te komen. 

Pas wanneer op deze vraag een antwoord is gegeven kunnen we kijken naar de vraag hoe bedrijven 

optimaal gebruik kunnen maken van deze extern geacquireerde technologische kennis. Derhalve zal 

als tweede aspect van de centrale vraag worden gekeken naar de optimale positionering van een 

bedrijf in een innovatienetwerk met als doel de bestaande kennis te verbreden of te verdiepen. 
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Hierbij wordt vaak een deterministische kijk op zaken genomen. In de literatuur zien we dat 

bedrijven relatief weinig invloed kunnen uitoefenen op het netwerk in zijn geheel. Bedrijven 

hebben echter wel de mogelijkheid om een bepalende rol in hun directe omgeving te spelen. 

Daarom zal als derde en laatste aspect nogmaals worden gekeken naar netwerkpositionering, echter 

op een egonetwerk niveau. Dit betekent dat niet meer het netwerk in zijn geheel, met alle indirecte 

contacten (contacten van partners), in beschouwing zal worden genomen, maar zal worden gekeken 

naar de effectiviteit van netwerkstrategieën op het beïnvloedbare niveau van de directe partners. 

 

Bovengenoemde deelvragen zijn empirisch onderzocht met behulp van twee longitudinale datasets. 

Deze datasets bevatten informatie over de alliantieactiviteit en patentactiviteit van de bestudeerde 

bedrijven. Het eerste deel van het onderzoek is verricht in de ASIC-industrie (applicatie gerichte 

geïntegreerde chips) een tak van de micro-elektronica industrie die zich bezig houdt met het op 

maat maken van chips naar klantenwens. De verzamelde data hebben betrekking op 99 ASIC-

gerelateerde bedrijven die geobserveerd werden in de periode tussen 1988 en 1996. Het tweede 

deel van het onderzoek is uitgevoerd op een dataset met 116 bedrijven in de chemische industrie, 

de auto industrie en de farmaceutische industrie, die geobserveerd werden over een periode van 

twaalf jaar, van 1986 tot 1997.  

 

Het eerstgenoemde aspect, de relatie tussen interne R&D en externe acquisitie van technologie, is 

in hoofdstuk twee empirisch onderzocht. Hierbij wordt gebouwd op �path-dependency� theorie van 

het bedrijf (Teece et al., 1997). Het voortbouwen op bestaande technologische kennis (technisch 

kapitaal) werd afgezet tegen het succes van een alliantieportfolio (sociaal kapitaal) in de 

internationale ASIC-industrie in de periode 1988-1996. Sterk empirisch bewijs werd gevonden 

voor het wederzijds versterkend effect van sociaal en technisch kapitaal bij lage niveaus van 

bestaande technologische kennis en alliantie portfolio�s. Bij hogere niveaus van bestaande 

technologische kennis en grotere alliantie portfolio�s werken beide vormen van kapitaal als 

substituten. 

 

Een andere belangrijke empirische bevinding is het bestaan van twee mogelijke evenwichten die 

vertaald kunnen worden als optimale strategieën voor bedrijven om te innoveren: de eerste bestaat 

uit een sterke focus op interne ontwikkeling van technologische vaardigheden ondersteund door een 

kleine alliantie portfolio. De tweede optimale strategie bestaat uit de opbouw van een sterk alliantie 

portfolio ondersteund door een lage mate van interne ontwikkeling van technologische capaciteiten. 

Beide strategieën kunnen naast elkaar bestaan in een industrie. 
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Verder werd empirisch bewijs gevonden dat het experimenteren met nieuwe technologieën, zowel 

nieuw voor het bedrijf als nieuw voor de industrie, leidt tot verhoogd innovatief succes in de daarop 

volgende jaren. 

 

Om een antwoord te vinden op het tweede hoofdaspect van dit proefschrift, hoe bedrijven zich 

dienen te positioneren om te komen tot optimale innovatie, wordt technologisch performantie 

opgedeeld in het verbreden van technologische kennis (exploratie) en het verdiepen van 

technologische kennis (exploitatie). Bij exploitatie zoeken bedrijven naar partners die aanvullende 

kennis in huis hebben of R&D kosten willen delen. Daardoor kan er een versnelling plaatsvinden in 

termen van time-to-market en kosten (Teece, 1986). Een vereiste om samenwerking succesvol te 

laten verlopen is een bepaalde mate van gezamenlijke overlappende kennis, waardoor bedrijven 

duidelijk kunnen communiceren en de doelstelling helder gesteld kan worden (Hansen et al., 2001). 

Exploratie behelst het zoeken naar nieuwe technologische opportuniteiten. Hier krijgen partners te 

maken met kennis die nieuw is, waarbij problemen op voorhand onbekend zijn, en de kennis nog 

niet te expliciteren is. Resultaten kunnen niet voorspeld worden, wat het gehele proces (en de 

einduitkomst) erg onzeker maakt. In plaats van te concentreren op een van beide strategieën, dienen 

bedrijven een balans te vinden tussen exploratie en exploitatie (March, 1991; Chesbrough, 2003).   

 

Dit onderzoek is ingebed in de sociale netwerkliteratuur. Binnen deze academische stroming wordt 

al jarenlang een discussie gevoerd tussen aanhangers van twee scholen die beide een verschillend 

belang hechten aan de redundantie van contacten. Allereerst zijn er de aanhangers van Burt, die 

argumenteert dat contacten die onderling niet verbonden zijn (direct of indirect) unieke informatie 

zullen opleveren. Aanhangers van deze theorie vinden dat een bedrijf zich zodanig dient te 

positioneren dat het in staat is om door alliantievorming delen van het netwerk met elkaar te 

verbinden die op geen andere manier met elkaar verbonden zijn. Dit zou leiden tot een optimale 

efficiëntie in de spreiding van relaties.  

Coleman�s theorie neemt het tegenovergestelde standpunt in. Aanhangers van deze school beweren 

dat onderling verbonden contacten juist leiden tot wederzijds vertrouwen, o.a. door de sociale 

controle die hieruit voortvloeit. Er is kortom geen of nauwelijks ruimte voor opportunistisch 

gedrag. Daarnaast gaan bedrijven eenzelfde richting uit �denken�, wat meer zekerheid geeft over het 

succes van een technologie die nog in de kinderschoenen staat. Immers, wanneer meer bedrijven 

aan eenzelfde technologie werken, dan is de kans dat deze technologie steun krijgt groot. De laatste 

jaren heeft zich een contingentiestandpunt ontwikkeld dat er voor pleit dat beide theorieën 
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toepasbaar zijn, afhankelijk van de omstandigheden waaronder ze worden toegepast. Ditzelfde 

standpunt wordt ook in dit proefschrift ingenomen. 

Bovengenoemde discussie impliceert dat bedrijven een keuze dienen te maken tussen het 

overbruggen van structurele gaten in het netwerk, of het creëren van sterk samenhangende relaties 

om profijt te trekken van sociale controle in het netwerk. Met andere woorden, bedrijven dienen 

keuzes te maken over wanneer en hoe gebruik te maken van redundante en niet-redundantie relaties 

bij het extern acquireren van technologie.  

 

Het effect van sociaal kapitaal (het gebruik van redundante en niet-redundante contacten) op beide 

typen technologisch performantie (kennisverbreding en kennisverdieping) is gemeten met behulp 

van een longitudinale dataset die de grootste spelers in de chemische industrie, auto-industrie en 

farmaceutische industrie bevat. Er is sterk bewijs gevonden voor het bevorderende effect van zowel 

direct als indirecte contacten op technologische performantie van bedrijven. Echter, het effect voor 

exploratie is significant hoger.  

Ook wordt een matigend effect van directe contacten op indirecte contacten gevonden. Dit 

impliceert dat naarmate een bedrijf meer directe contacten heeft, het effect van de indirecte 

contacten kleiner wordt. Dit heeft alles te maken met het absorptievermogen van een organisatie. In 

feite leidt dit er toe dat een bedrijf kan kiezen tussen twee optimale alliantieportfolio strategieën: 

een kleine set van partners die zelf een groot netwerk van allianties hebben, of een grote set van 

partners die zelf kleine netwerken hebben. 

 

Het derde aspect dat onderzocht wordt in dit proefschrift is netwerkpositionering op egonetwerk 

niveau. Dit niveau is grotendeels genegeerd in de netwerk literatuur en het overige academische 

werk. Echter, vanuit bedrijfsstrategisch standpunt is juist dit niveau van groot belang. Het is 

namelijk niet vanzelfsprekend dat de partners van een bedrijf de informatie die zij van hun 

contacten (dus de indirecte contacten van het bestudeerde bedrijf) binnenkrijgen ook zullen 

doorspelen naar het bestudeerde bedrijf. Vooral in multinationals zal de informatie die voortvloeit 

uit de ene alliantie een lange tijd nodig hebben tot het terecht komt bij de werknemers die 

deelnemen in een andere alliantie. Daarnaast kan een bedrijf niet altijd overzien met welke 

contacten een partner samenwerkt, laat staan dat een bedrijf hierop invloed kan uitoefenen. Dit alles 

pleit ervoor om netwerkpositionering ook op egonetwerk niveau te bekijken. 

 

Ook bij het bestuderen van dit niveau werd gewerkt met de dataset voor bedrijven in de chemische 

industrie, de auto industrie en de farmaceutische industrie. De resultaten van de empirische analyse 



 153

duiden op een curvilineaire relatie tussen redundantie op het egonetwerk niveau en 

innovatievermogen van een bedrijf. Dit betekent dat een toenemende mate van redundantie een 

positief effect heeft op innovatieve performantie van bedrijven tot een bepaald niveau. Daarna gaat 

toenemende redundantie het innovatievermogen negatief beïnvloeden. Behalve redundantie in de 

directe contacten is ook het effect van verbondenheid van partners onderling op de innovatieve 

performantie van bedrijven gemeten. Een toenemende mate van verbondenheid beïnvloedt het 

innovatievermogen negatief, maar niet altijd significant. Dit gaat in tegen de bovengenoemde leer 

van Coleman die claimt dat compacte groepen van goed verbonden partners juist innovatiever 

zouden zijn dan andere bedrijven. 

Deze resultaten voor de algehele technologische performantie van bedrijven zijn later uitgesplitst 

naar het verbreden van technologische kennis en het verdiepen van technologische kennis. Er is 

bewijs gevonden dat deze twee typen van technologische ontwikkeling verschillende vormen van 

netwerk strategie vereisen. In het geval van het verdiepen van bestaande kennis dient een bedrijf 

met name aandacht te schenken aan de redundantie van de directe contacten. Wederom werd een 

positieve maar curvilineaire relatie gevonden tussen redundantie en verbreden van kennis, wat 

bevestigt dat redundantie een positief effect heeft tot een bepaald maximum. Daarna gaat 

redundantie de technologische verdieping nadelig beïnvloeden. De verbondenheid van partners 

heeft geen invloed op het verdiepen van kennis. Voor het verbreden van kennis werd een heel ander 

verband gevonden. Redundantie in de directe contacten bleek geen significante invloed te hebben, 

terwijl verbondenheid van partners het verbreden van kennis nadelig beïnvloed. 

 

In zijn algemeenheid kunnen we concluderen dat door bestudering van de effecten van alliantie 

netwerkstrategieën op technologische performantie van bedrijven dit proefschrift zowel een 

conceptuele als empirische bijdrage heeft geleverd aan het academische werk en de praktijk van 

bedrijven die zoeken naar een optimale balans voor hun innovatiestrategieën. 
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