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Through external analysis of two-mode data one attempts to map the elements of one mode 
(e.g., attributes) as vectors in a fixed space of the elements of the other mode (e.g., stimuli). This 
type of analysis is extended to three-mode data, for instance, when the ratings are made by more 
individuals, It is described how alternating least squares algorithms for three-mode principal com- 
ponent analysis (PCA) are adapted to enable external analysis, and it is demonstrated that these 
techniques are useful for exploring differences in the individuals' mappings of the attribute vectors 
in the fixed stimulus space. Conditions are described under which individual differences may be 
ignored. External three-mode PCA is illustrated with data from a person perception experiment, 
designed after two studies by Rosenberg and his associates whose results were used as external 
information. 

Key words: multidimensional scaling, individual differences, three-mode factor analysis, person 
perception. 

A classical problem in multidimensional scaling (MDS) concerns the interpretation of  

the derived stimulus configurations. This problem is usually handled by procur ing sepa- 

rate ratings of  the stimuli on  a set of attributes, and mapp ing  those attributes as vectors 

into the stimulus space (for an early application see Rosenberg, Nelson & Vivekanantan,  

1968). This approach  may  be called external analysis (cf. Carroll, 1972, p. 114). To achieve 

the same goal procedures to relate external variables or  dldments suppldmentaires to solu- 

tions .of correspondence analysis have been developed by Benzrcri (1976, p. 36 ft.; 

Benzrcri & Benzrcri, 1980, p. 5 if.) and have been extended to two-way versions of  multi- 

way tables by Cazes (1982). One  kind of  extension of  such external procedures is to use 

other  models  than the vector model  (e.g., unfolding models) and represent the attributes 

not  as vectors but as points in the given configurations. This opt ion is implemented in the 

well-known computer  p rogram P R E F M A P  (Carroll, 1972). 

A second kind of  extension is to represent linear combinations of  the attributes as 

vectors in the stimulus space instead of  mapping  each attr ibute separately. This can be 

done, for instance, by means of  canonical  correlat ion analysis (Schiffman, Reynolds, & 

Young,  1981, p. 282 ft.) or  th rough  redundancy analysis (Rao, 1964; van den Wollenberg, 

1977). 

A special situation arises when the data  matrix is three-way/three-mode,  for instance, 

when the stimuli are rated on each attr ibute by a number of judges. This case is usually 
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handled by aggregating the ratings over the judges in order to obtain one attribute score 

for each stimulus. Thus, the judges are treated as replications of each other, and the 

problem is reduced to finding a representation of the mean (or median) attribute scores in 

the stimulus space. Since individual differences between judges are neglected in this pro- 

cedure, averaging seems only adequate if the judges can be assumed to form a more or 

less homogeneous group. Homogeneity in this context means that there are no systematic 

individual differences between judges or that such differences are small or only of a special 

kind (as will be discussed below). 

If we want to represent a judge's ratings of the stimuli on an attribute as a vector in 

the stimuli space, then individual differences between judges will consist of differences in 

direction and/or  differences in length of the attribute vectors. Differences in direction indi- 

cate that the judges involved interpret the stimulus space and/or  the attribute in different 

ways, because the projections of the (fixed) stimuli on the attribute vectors are different. 

When the attribute vectors differ only in length, the projections of the stimuli are the same 

for all judges. Therefore, aggregating the ratings of judges is only useful if their attribute 

vectors differ in length and have at most minor fluctuations in direction. In such a case, 

the direction of the "mean" vector will be representive for the individual vectors. How- 

ever, when the attribute vectors of judges differ considerably in direction, aggregation 

makes less sense, because the mean vector will not be representive for the ratings of at 

least a number of judges. Therefore, we prefer a method of external analysis that does 

justice to possible differences in directions, and indicates whether or not a group of judges 

may be regarded as homogeneous in this respect. 

Instead of fitting the attribute vectors of each person separately we propose to use a 

third kind of extension, namely external three-mode principal component analysis (PCA) 

(Kroonenberg, 1983; Kroonenberg & de Leeuw, 1980; Tucker, 1966). 1 This method, 

which was first presented by Kroonenberg, van der Kloot  and Brouwer (1983), is pre- 

ferred because it does not only yield a "mean" or "common" representation of the at- 

tributes, but also indicates whether and to what extent individual judges differ with re- 

spect to their "use" of this common representation. Moreover, possible individual differ- 

ences can be decomposed into a (small) number of components, each of which corre- 

sponds to a particular pattern of relations between the stimuli and the attributes. 

In the present paper we will discuss external analysis with the three-mode PCA pro- 

grams (TUCKALS2 and TUCKALS3) developed by Kroonenberg and de Leeuw (1980). 

Similar external analysis options based on the same algorithmic principles are included in 

other programs for three-way data: ALSCOMP (Sands & Young, 1980), ALSCAL 

(Young & Lewyckyj, 1979), INDSCAL-CANDECOMP (Carroll & Chang, 1970), MUL-  

TISCALE (Ramsay, 1982), and PARAFAC (Harshman & Lundy, 1984a). It should be 

noted, however, that these programs are based on simpler models, and that, to our  knowl- 

edge, there exist no formally published applications of these methods. 

We will start with a discussion how individual differences are accounted for in the 

models underlying TUCKALS2 and TUCKALS3,  and we will present some technical 

aspects of adapting the TUCKALS algorithms for several forms of external analysis. Fi- 

nally, we will describe applications of such analyses and compare their results with those 

of an "unconstrained" analysis. 

T U C K A L S 2  

The model underlying the TUCKAL2 algorithm is 

Z k "~ G C k H '  , (k = 1 . . . . .  n) (1) 

where Zk (e.g., the ratings of subject k) is the k-th "slice" of the (~ x m x n) three-way data 

matrix Z, and -~ indicates that the right-hand side is a least-squares approximation of the 
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left-hand side. The orthonormal (E x s) matrix G and the orthonormal ( m x  t) matrix H 

represent the loadings of the elements of the first two modes (e.g., stimuli and attributes), 

and Ck is the k-th slice of the (s x t x n) core matrix C. CR, which is associated with 

element k of the third mode, describes the way in which G and H are related for subject k. 

k of C k indicates the strength and sign of the relationship between the p-th For  instance, cpq 

component of the first mode and the q-th component of the second mode for subject k. 

When G and H are columnwise orthonormal, (ckq) 2 is the amount of explained vari- 

ation by the combination of components gp and h~ for subject k. Within this model, 

external analysis is possible by fixing either G or H, or both. If we let G equal a set of 

fixed stimulus loadings, the objective of an external analysis is to obtain estimates of all 

Ck and of H, the loadings of, say, the attributes on a specified number of components. H 

describes the best fitting attribute space for all subjects simultaneously, and Ck describes 

the way in which a particular subject k links the components of the attribute space to the 

components of the dimensions of the fixed stimulus space. The estimates of H and Ck can 

be used to plot the directions of the attributes and their components for subject k in the 

common stimulus space. 

Since H is the common matrix of attribute loadings, individual differences between 

the subjects show up as differences between the Ck matrices. Differences between these 

matrices correspond to individual differences among the judges that involve both the 

directions and/or the lengths of their attribute vectors. In the remainder of this section we 

will discuss several types of such individual differences. 

Differences in length only. It can be shown that two judges, k and k', have attribute 

vectors that differ only in length if and only if 

Ck H' = Ck, H'Akk, (k, k' = 1 . . . . .  n) (2) 

with Akk, being a diagonal matrix of dimensions m x m, which may be different for each 

combination of k and k'. When the elements of Akk, differ among each other, the differ- 

ences in vector length vary from attribute to attribute. Some attribute vectors may be 

larger for subject k and some may be larger for subject k'. Also, the extent to which a 

vector of subject k is larger than the corresponding vector of subject k' varies from at- 

tribute to attribute. A special case occurs when all the elements of ARk, a r e  the same. In 

that case (2) reduces to 

Ck H' = i~kk, C k, H' or Ck ~- i~kk' C k ' ,  (3) 

which means that the lengths of all vectors of subject k are proportional by a factor '~kk' to 

the length of those of subject k'. Figure 1 shows an example of this type of differences. 

Differences in direction. Three special cases will be considered here. 

1. The simplest case arises when all Ck matrices are diagonal, so that the judges differ 

only with respect to the diagonal entries of their Ck. This case is a variant of the CANDE- 

COMP/PARAFAC model (Carroll & Chang, 1970; Harshman, 1970; Harshman & 

Lundy, 1984a) with orthogonal G and H. A diagonal Ck indicates that the dimensions of 

the stimuli and those of the attributes coincide, and that the subjects differ only with 

respect to the weights they assign to these common dimensions. Figure 1 displays the 

attribute components and the separate attribute vectors in the stimulus space for three 

diagonal matrices Ck. It is clear that the attribute components have the same orientation, 

though this need not be the case for the attribute vectors themselves. The configurations 

of the separate vectors of Ck H' and Ck, H' appear to be substantially different. When Ck is 

proportional to Ck, the vectors of subject k and k' will be oriented in the same manner; 
this is, however, only a sufficient condition and not a necessary one. 
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2. Another type of individual differences occurs if each Ck matrix is equal to a prod- 

uct of the form 

Ck r ~ I 1 2 ~ I 1 2  = ,- 'k , - , - ' ~  , ( 4 )  

where D k is a diagonal matrix containing the non-negative weights given by subject k to 

the dimensions of the stimulus and attribute spaces, and R is a symmetric matrix that 

indicates how the attribute components are oriented with respect to the stimulus space 

(and vice versa). This model differs from the former one in that the attribute components 

may be nonorthogonal to each other (see Tucker, 1972, p. 7). Different D~ matrices corre- 

spond to different weights assigned to the attribute dimensions. This is graphically repre- 

sented by a different stretching or shrinking of those axes (see Figure 2). This model is a 

variant of the so-called PARAFAC2 model presented by Harshman (1972) and Harshman 

and Lundy (1984a). 

3. The most general case of individual differences occurs when all Ck matriceS are in 

principle unrestricted with respect to their form or to the elements they contain. In this 

~ase it is possible that the Ck matrix of subject k is a combination of a few basic types of C 

matrices. This possibility underlies the model fitted by TUCKALS3, which we will discuss 
in the next paragraph. 

T U C K A L S 3  

The model that underlies the TUCKALS3 algorithm is 

Z -~ GC(E' ® H'), (5) 

where Z is the (: x m x n) three-way data matrix rearranged as a row supervector con- 

sisting of n frontal slices of order : x m; this will be denoted by Z ~ R exm*. G and H are 

the orthonormal ( :  x s) and (m x t) matrices containing the loadings of the stimuli and 

the attributes. ® is the Kronecker product. E is the orthonormal (n x u) matrix of com- 

ponent loadings for the elements of the third mode, for example the subjects, and C = 

{cpq,} is the (s~ x t x u) core matrix that displays the relationships between the compo- 

nents of the three modes rearranged as a row supervector consisting of u (s x t) matrices, 

that is, C ~ ~ ~t~. The c~a, represents the amount of explained variation of the combi- 

nation of the p-th component of the first mode, the q-th component of the second mode, 
and the r-th component of the third mode. 

Another way of writing (5) is 

Z k  ~-- G ( e k l C  1 -I- ek2 C 2 d- " '"  -I- eku C~)H' (k = 1 . . . . .  n) (6) 

What this model amounts to is that to each component of E corresponds a particular 

slice of C (i.e., C1, Cz . . . . .  Cu) that describes the relationships between the stimulus and 

attribute components as "seen" by a subject who has zero loadings on the other compo- 

nents of E. If E has only one component, that is, when the subject space is one- 
dimensional, (6) is reduced to 

Zk "" G(ek C)H'. (7) 

In this special case all Ck matrices are proportional to each other, which implies that for 

all subjects the same attributes have the same direction. 

Technical Aspects 

In the TUCKALS2 and TUCKALS3 algorithms the parameters are estimated by 
minimizing least squares loss functions in which the component matrices are restricted to 

be orthonormal. These orthonormality restrictions may be made without loss of gener- 
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ality; they are imposed to identify the minimization equations and for computational  

efficiency. They may be relaxed after the parameter  values have been determined. 

TUCKALS2.  The loss function minimized in TUCKALS2 has the form 

f ( G , H , C ) =  ~ [[Z k - G C k n ' l [ 2  with G'G=I~ and n ' n = I , ,  (8) 
k = l  

where I1" II indicates the Euclidean norm, and I ,  is the a x a identity matrix. The mini- 

mization of f over G, H and C may be written as (see Kroonenberg & de Leeuw, 1980, p. 

71) 

min f ( G, H, C) = 
G,H,C 

min {minf(G, H, C)}, 
G,H C 

--minIm: o,  
= min ~ II Zk - GG'Zk HH' [I 2, 

G,H k = l  

= min tr Z'k Z k  - -  tr H' Z'k GG'Zk H ; 
G,H k=l k 1 

= tr ~ Z'k ZR -- max tr H'QH 
k = l  G,H 

(9) 

with Q = ~,,~, = 1 Z'k GG'Zk, and G and H orthonormal.  Alternatively, (8) may be written as 

min tr Z~ Zk -- tr G' Zk HH'Z'k G (10) 
G,H k = l  k 1 

= tr ~ Z'k ZR -- max tr G'PG 
k = l  G 

with P = ~ = 1 Zk HH'Z'k. 

(11) 

When G is fixed Q is fixed as well, and the maximization in (9) becomes a standard 

eigenvalue-eigenvector problem. Its solution H is the eigenvector matrix corresponding to 

the t largest eigenvalues of Q. Similarly, when H is fixed P is fixed as well, and thus the 

maximization in (11) has as its solution the eigenvector matrix G corresponding to the s 

largest eigenvalues of P. The TUCKALS2 algorithm alternates between the maximiza- 

tions in (9) and (t 1) until convergence is reached. After convergence C = (C 1, C 2 . . . . .  C,) 

is computed as Ck = G'Zk H (k = 1 . . . . .  n), which follows from the minimization of the 

loss function (8) over C for known G and H (for further details see Kroonenberg, 1983, 

chap. 4, or Kroonenberg & de Leeuw, 1980). 

If in an external analysis G is fixed, only (9) needs to be solved as it is not necessary 

to solve (11). Similarly, when H is fixed only (11) needs to be solved, and when both G and 

H are fixed only C needs to be computed. In these cases it is not necessary to use an 

alternating least squares procedure such as TUCKALS2.  The TUCKALS2 program may, 

however, be fruitfully used for external analysis when one wants to compare the results 

with those of an analysis without fixed components (an unconstrained analysis; see also 

below). 

TUCKALS3.  The loss function minimized in TUCKALS3 has the form 

h(G, H, E, C) = II Z - 2 II 2 (12) 
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with Z, = GC(E' ® H') and Z, 2 ~ R e×'', C ~ R s't" (13) 

As indicated in detail in Kroonenberg and de Leeuw (1980) optimal values for G = {giv}, 

H = {h~q} and E = {ek,} may be found by alternating between the following three steps of 

the TUCKALS3 algorithm. 

Step 1: Maximize tr G'PG over G 

with P = {Z(E ® H)}{Z(E ® H)}' and Z e R e ×" .  

Step 2: Maximize tr H'QH over H 

with Q = {Z(G ® E)}{Z(G ® E)}' and Z e R "×"¢. 

Step 3: Maximize tr E'RE over E 

with R = {Z(H®G)}{Z(H®G)} '  and Z e R "×e'. 

(15) 

(16) 

Comparison with steps (9) and (11) shows that in TUCKALS3 simultaneously three differ- 

ent eigenvalue-eigenvector problems have to be solved. C may be found from 

C = G'Z(E ® H), (17) 

after convergence of the algorithm for G, H and E. 

External analysis with TUCKALS3 can now have three basic forms. First, only one 

component matrix, say G, is fixed. This means that (14) may be skipped and that the other 

two component matrices can be found by solving (15) and (16) iteratively, and computing 

C by (17) after convergence. Secondly, two of the component matrices, say G and H, may 

be fixed, in which case only (16) and (17) need to be solved. Finally, when all three compo- 

nent matrices are fixed, only C needs to be computed via (17). Thus only in the case that 

just one component matrix is held fixed there is any need to use an alternating least 

squares algorithm. In the other two cases it may still be worthwhile to use the TUCK-  

ALS3 program in order to compare a constrained solution (i.e., a solution with fixed 

components) with a solution without fixed components. 

Comparing solutions 

As was shown above, a sufficient condition for aggregating stimulus ratings across 

subjects is met when the individual Ck are proportional to each other. Whether this is the 

case can be determined from a TUCKALS3 analysis: If the subject mode is one- 

dimensional, all CR are proportional. The opposite case consists of all subjects having 

different CR matrices that cannot be decomposed into a small number of underlying di- 

mensions. If this is true, the fit of an (external) TUCKALS2 solution should be (much) 

greater than the fit of an (external) TUCKALS3 solution in one (or a few) dimensions. 

Therefore, in practical applications of external three-mode PCA one would want to com- 

pare the fit measures of TUCKALS2 and TUCKALS3 solutions. 

The fit of a solution is defined to be tr Z'2,, that is the sum of the squared fitted data. 

Furthermore, the fit is equal to the sum of the squared elements of the core matrix, and is 

also equal to the sums of the component weights in each mode. The weights of the com- 

ponents of the first, second, and third mode are the eigenvalues associated with the eigen- 

vectors G, H, and E of P, Q, and R as defined in (14), (15), and (16) respectively (for further 

details see Kroonenberg, 1983, chap. 6). 

Even when the main goal of a study is external analysis, it is sometimes worthwhile 

to perform one or more internal or unconstrained analyses as well. Fit and dimensionality 

of an unconstrained solution indicate whether the fit of an external solution can be sub- 

stantially improved by "freeing" the fixed configuration. In this context one could con- 
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ceivably use the descriptive fit measures presented by Bentler and Bonett (1980) and 

Bonett and Bentler (1983), but we will not pursue this topic here. 

Centering for external analysis 

A special problem in three-mode PCA (here discussed in terms of TUCKALS2) is the 

centering of the input data (see Harshman & Lundy, 1984b; Kroonenberg, 1983, chap. 6; 

Kruskal, 1981, 1983a), because the way in which Z is centered has consequences for the 

centroids of G and/or H. For instance, centering each column of Zk yields a G matrix that 

is columnwise centered, whereas centering each row of Zk yields an H with zero column 

sums. Double centering of each Zk causes the centroids of both G and H to be in the 

origins of their respective spaces. 

As a general principle for external analysis, it seems advisable to center the Zk in 

such manner that an unconstrained analysis would yield a G (and/or H) that is centered 

in the same manner as the fixed G (and/or H) in the external analysis. This ensures that if 
the fixed space happens to be identical to the solution of the unconstrained analysis, no 

differences will arise in the estimates of the other parameters. A feasible way to achieve 

this, is to center the external configuration (if necessary) and center the data such that the 

corresponding configuration of the unconstrained solution is centered as well. 

A similar problem exists with regard to possible rotations of the fixed G and/or H 

components. Because in TUCKALS2 and TUCKALS3 G and H are restricted to be 

columnwise orthonormal, it is necessary to orthonormalize the fixed G and/or H as well. 

The particular orientations of the axes of the fixed spaces are irrelevant for the fit, because 

rigid rotations of G and H are taken care of by corresponding transformations of the Ck. 

TABLE I 

Centered and Orthonormalized Configurations 

of Fourteen Traits in Two Studies by Rosenberg 

Trait 

Rosenberg Rosenberg & 

et al., 1968 Sedlak, 1972 

Dim. I Dim. 2 Dim. I Dim. 2 

Intelligent 

Honest 

Helpful 

Sincere 

Humoristic 

Happy 

Good- nat u red 

Warm 

Na i ve 

Unintel l igent 

Irresponsible 

Moody 

Cold 

Domineering 

~ O 

~ O 

~ O 

11 

18 

23 

25 

19 

29 

26 

28 

18 

33 

38 

31 

36 

23 

64 

14 

04 

-01 

- 15 

-13 

- 17 

- 19 

-.21 

-.35 

-.33 

.16 

.30 

.27 

35 

31 

17 

27 

12 

O5 

- 33 

.26 

-.01 

-.38 

-.29 

.13 

-.19 
-.46 

.53 

.04 

-.06 

-.12 

-.22 

-.22 

-.20 

-.31 

-.14 

-.19 

-.17 

.23 

.42 

.39 

Note. These coordinates were derived from the 

presented in the Rosenberg and Sedlak paper. 

figures 
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TABLE 2 

Orthonormalized Configuration of Nine 

Attributes used by Rosenberg and Sedlak 

Attribute Dim. I Dim. 2 

Intellectual good .365 -.151 

Social good .301 -.454 

Soft .013 -.551 

Passive -.463 -.085 

Impulsive .362 .155 

Bad -.268 .484 

Introvert -.379 -.199 

Dominant .327 .393 

Decided .329 .089 

Example 

In order to illustrate external analysis with TUCKALS2 and TUCKALS3 we col- 

lected ratings of fourteen stimuli on nine attributes by seventeen subjects. External struc- 

tures were available, both for the stimuli and the attributes, from two studies by Ro- 

senberg and his colleagues (Rosenberg et al., 1968; Rosenberg & Sedlak, 1972). 

Method 

Stimuli. The stimuli were the 14 personality trait adjectives that were included in 

both studies of Rosenberg. In these studies, dissimilarities between the traits were submit- 

TABLE 3 

Fit and Component Weights in 

Ten External and Two Unconstrained TUCKALS Analyses 

analysis 

component we ghts on two dimensions 

stimuli attributes subjects 

I 2 I 2 I 2 total 

TUCKALS2: 
unconstrained 
G68 fixed 
G72 fixed 
H72 fixed 
G68 and H72 
G72 and H72 

TUCKALS3: 
unconstrained 
G68 fixed 
G72 fixed 
H72 fixed 
G68 and H72 
G72 and H72 

407 .155 

384 .098 

173 .124 

388 .132 

373 .048 
160 .087 

401 .162 

380 .I02 

211 .085 

272 .247 

203 .218 

095 .152 

.562 

.482 

.297 

.520 

.421 

.247 

.404 .140 .{389 .156 .526 .019 -545 

• 383 .084 .372 .095 .453 .015 .467 

.166 .119 .206 .079 .274 .011 .285 

.385 .117 .262 .240 .483 .018 .502 

• 372 .038 .197 .213 .391 .019 .410 

.158 .080 .089 .148 .226 .011 .237 

Note. Fit and component weights are expressed as proportions 

explained variation. 
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ted to MDS, which resulted in two two-dimensional configurations of traits. The stimuli 

are listed in Table 1 together with their (centered and orthonormalized) coordinates. 

Attributes. Ratings were obtained on nine attributes, the same attributes that were 

used by Rosenberg and Sedlak (1972) for interpreting the trait configuration. These at- 

tributes included the five properties that Rosenberg et al. (1968) had used for the same 

purpose. Table 2 contains a list of these attributes and their (orthonormalized) loadings 

on the first two principal components that were computed from the three varimax rotated 

factors presented in the 1972 paper. 

Subjects. The subjects were 8 male and 9 female psychology and education students. 

They received a booklet consisting of an instruction followed by 14 pages, each contain- 

ing one stimulus preceding the nine rating scales. The order of the stimuli, and the orders 

of the scales on each page were randomized. A final page contained questions about the 

subject's sex, age, and frequency of use of the stimulus and attribute words. The subjects 

completed the questionnaires individually at home or at the psychology department. They 

were rewarded with a copy of the Rosenberg and Sedlak paper (1972). 

Results 

Five external TUCKALS2, five external TUCKALS3 and two unconstrained analy- 

ses were run. In the external analyses, the fixed values for G and H were the stimulus 

coordinates of Rosenberg's 1968 and 1972 studies (G68 and G72, respectively), and the 

factor loadings of the attributes found in 1972 (H72). Since G72 and H72 were obtained 

from different samples of subjects, we also submitted combinations of G68 and H72 for 
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Individual vectors of the attributes intellectual good, passive, and impulsive in the G68 stimulus space. 
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Individual vectors of the attributes social good, bad, and dominant in the G68 stimulus space. 

external analysis. In all analyses both the stimulus and the attribute spaces were chosen to 

be two-dimensional. In the TUCKALS3 analyses the subjects were represented in two 

dimensions as well. 

Measures of the fit and component weights of each analysis, expressed in terms of 

proportions explained variation, are given in Table 3. This table shows that there are six 

external analyses that approximate the fit of the corresponding unconstrained solutions. 

Those are the TUCKALS2 and TUCKALS3 analyses with G68 and/or  H72 as fixed 

spaces. The fit values of the constrained solutions with H72 fixed are somewhat higher 

than those of the solutions with G68 fixed. This suggests that the loadings of the at- 

tributes are more stable or general than the loadings of the stimuli. Furthermore it is 

shown that there are only slight differences in fit between the TUCKALS2 and 

TUCKALS3 solutions, both in the external and in the unconstrained analyses. As the 

subject mode of the TUCKALS3 solutions appears to be essentially one-dimensional (i.e., 

the ratios of the component weights of the subject mode vary from 20 : 1 to 30 : 1) one 

may conclude that the Ck matrices of the subjects are roughly proportional to each other. 

Therefore, the attribute ratings may be aggregated over the subjects. 

In order to inspect the results graphically, we have plotted the attribute vectors for 

each individual into the G68 stimulus space using HC'k as the coordinates (see Figure 3, 4 

and 5). These figures show that the vectors for a particular attribute fall in a relatively 

narrow region. The largest variation is found for "dominant" for which the vectors of the 

individuals have a maximum angle of approximately 90 degrees. Figure 6, finally, shows 

the representation of the attributes in the stimulus space according to the first subject 

component from the TUCKALS3 analysis. The coordinates of the attributes were com- 
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FIGURE 5 

Individual vectors of the attributes soft, introvert, and decided in the G68 stimulus space. 

puted as ~7= 1 (ekl HC'1)/17, see (6). Superimposing this figure on Figures 3, 4 and 5 would 

show that the TUCKALS3 attributes are roughly the mean directions of the bundles of 

individual vectors. These mean directions are very similar to the directions found by 

Rosenberg et al. in 1968. Also the amount of variation explained by each attribute in 

Rosenberg's and in our study, is the same order of magnitude. 

Apart from being an illustration of external three-mode PCA, our example yielded 

some results that are of substantive interest. In the first place the results show that the 

outcomes of three independent studies, that differ in time, place, subjects, design, etcetera, 

are substantially similar. That is, the structure of the data in our example resembles the 

structure of the stimuli found by Rosenberg et al. (1968) and the structure of the attributes 

found by Rosenberg and Sedlak (1972). The core matrix of the unconstrained TUCK- 

ALS3 solution indicated that the axes of the attribute and the stimulus spaces practically 

coincide. Those axes can be interpreted as an evaluation and a dominance-submission 

dimension, and thus closely resemble the structures found by, for instance, Wiggins (1979) 

and van der Kloot and Kroonenberg (1982). In addition our analyses show that the vari- 

ation among the subjects is relatively small. 

Discussion 

We have demonstrated that external analysis (or fix) options can be built into the 

TUCKALS2 and TUCKALS3 algorithms, and that these techniques can be used to ex- 

plore individual differences in the perception of stimuli in terms of a set of attributes. In 

particular, external three-mode PCA is useful for deciding whether the judgments of dif- 
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FIGURE 6 
Attributes in the G68 stimulus space according to the first TUCKALS3 subject component. With the exception 

of honest and gonat (good-natured), the stimuli are labeled by the first five letters of their names (see Table 
1). The fourteen stimuli are labeled by numbers corresponding to their order of appearance in Table 2. 

ferent subjects may be aggregated or not. We have argued that  aggregation is appropriate 

when different judges have attribute vectors that differ only in length and not in direction. 

We have presented this "difference-in-length" versus "difference-in-direction" prob- 

lem primarily within the framework of external analysis. The considerations presented 

are, however, equally valid in an unconstrained analysis in which one desires to represent 

the elements of one mode in the space of another mode that is not externally fixed. 

Even though we have presented external three-mode PCA in terms of judges who 

rate a number of stimuli on a number of attributes, this approach is not limited to such 

data. Next to data with judges or subjects in the "replication mode," one may also apply 

external three-mode PCA to profile data O.e., scores of subjects on variables) that are 

replicated in different situations or experimental conditions, or to multivariate longitudinal 
data with time as the replication mode. 

There is a number of extensions possible for the methods we have described. In the 

first place, the orthonormality restrictions on the fixed space(s) may not always be realis- 

tic. To accommodate other than orthonormal fixed spaces, extensive adaptations of the 

algorithms are needed, the details of which have not been worked out yet. Secondly, it 

could be argued that comparisons between solutions should not only be based on propor- 

tions of fitted sums of squares, but should also involve the corresponding degrees of 
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freedom. The quest ion of the correct n u m b e r  of degrees of freedom in three-mode data, 

however, has not  yet been solved completely (Kruskal,  1976, 1977, 1983b). 

Because in external three-mode PCA a set of at t r ibutes is fitted into a fixed and 

un t rans formed stimulus space, it has been suggested (F. W. Young, personal communi -  

cation,  July 1983) that  there might  exist a relat ionship between our  method and  re- 

d u n d a n c y  analysis (van den Wollenberg,  1977) and  that  it might be regarded as a three- 

way extension of the latter. This  relationship,  however, is not  straightforward because 

different loss functions are minimized.  As this issue is unrela ted to the main  thrust  of this 

paper, it will be discussed elsewhere. 

The substant ive results of our  example show that  external three-mode PCA is a 

useful technique that  enables one (a) to interpret  s t imulus spaces on  the basis of a t t r ibute  

rat ings by more  than  one judge,  (b) to explore individual  differences among  those judges,  

and  (c) to integrate the results of different and  independent ly  conducted studies. Tha t  

external three-mode PCA does not  always yield nice results is shown by Kroonenbe rg  et 

al. (1983), who performed an external analysis on the data  from a Cola tasting experiment  

by Schiffman et al. (1981). 

1 There also exists a French school dealing with three-mode or triadic PCA, but its work consists mainly of 
unpublished doctoral theses, and is not publicly available (e.g., Qlacon, 1981 ; Jaffrenou, 1978; Miz~re, 1981). 
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