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Abstract 

Many physical properties (e.g., hardness, texture, rheology, and spreadability) of lipid-

based products largely depend on the extent of crystallization and transformation of 

lipids, and their network formation.  Therefore, many studies have focused on 

controlling the crystallization of lipids in order to determine the functionality of lipid 

crystals.  Both internal and external factors greatly affect the processes of lipid 

crystallization.  The most important internal factors are polymorphism, which depends 

on variation in fatty acid moieties, and the composition or blending of different lipid 

materials. Important external factors are thermal treatment, additives, application of 

shear, sonication, and pressure.  This paper briefly reviews recent advances in research 

on these external factors.  We discuss the results by considering the relationships 

between external factors and thermodynamics, as well as kinetic properties of the 

crystallization and transformation of polymorphic forms of lipid crystals. 

 

 

1. Introduction 

Lipids are widely employed in the food, pharmaceutical, and cosmetic industries as 

lipophilic materials.  The physical properties (e.g., melting, morphology, rheology, and 

texture) of many lipid-based solid products (e.g., confections, creams, and spreads) are 

greatly influenced by the polymorphism of lipid crystals and the crystallization 

processes. To control the physical properties of lipids, many researchers have focused 

on (i) the determination of molecular and crystal structures, (ii) the influence of external 

factors on crystallization and transformation, (iii) the formation of crystal networks 

from nanoscale primary crystals to mesoscale and macroscale structures, and (iv) their 

rheological and texture properties, which are basically determined by the crystal 

networks of lipids [1].  

Nutritional concerns have resulted in a growing demand to reduce the content of 

trans and saturated fatty acids in fat-based food products.  The crystallization rates of 

trans and saturated fats are higher than those of low-melting fats, so it is necessary to 

enhance the crystallization rates and thus strengthen the crystal network of trans-free 

and low-saturated products by applying external factors to the crystallization processes 

of lipids. Therefore, many studies have been conducted to clarify the influences of 

various external factors on the polymorph-dependent crystallization of lipids.   
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This paper briefly reviews recent advances in research on such external factors as 

dynamic temperature variation (e.g., cooling, heating, and thermal cycle), additives, 

shear, sonication, and pressure, all of which greatly affect the polymorphic 

crystallization of lipids, especially triacylglycerols (TAGs).  Readers who are interested 

in the polymorphism of various lipids and their crystal structures, and their physical 

properties are directed to recent book chapters and reviews [2-5]. 

 

2. Elementary processes of crystallization and transformation of polymorphic lipids 

  The macroscopic aspects of the polymorphism of lipid crystals involve crystallization 

and the subsequent transformation, which involve the major elementary processes 

illustrated in Fig. 1.  Considering certain driving forces expressed by supercooling (ΔT) 

(= Tm-Tc, where Tm is melting temperature and Tc is crystallization temperature), we can 

initiate nucleation of crystals, followed by crystal growth from supercooled liquid. The 

rates of nucleation and crystal growth are highly dependent on polymorphic forms, as 

discussed later. Based on polymorph-dependent crystallization, one may find optimal 

crystallization conditions in accordance with estimated crystallization rates of the 

polymorphic forms, when attempting to crystallize a specific polymorphic form. 

Knowing the details of the transformation mechanisms, we can control the 

transformation processes either to maintain the first-occurring polymorphic form if it is 

the desired polymorphic form, or to cause transformation from undesired forms to the 

most desired forms after crystallization. 

  To apply external factors to crystallization, it is necessary to predict and clarify how 

every elementary process is affected by every external factor. For example, applying 

hydrostatic pressure raises Tm, thus increasing ΔT and subsequently the rates of 

nucleation and crystal growth. The pressure effect must be polymorph-dependent, 

because the extent of the increase in Tm due to pressure differs from one polymorph to 

another; thus, the crystallization and transformation rates can be affected by pressure 

differently among the polymorphic forms (see below).  

  

2.1 Nucleation and crystal growth 

Crystallization is initiated with the nucleation of crystals from supercooled liquid, 

which occurs through stepwise processes of formation of molecular clusters and 

transformation into crystal nuclei [6]. Many important structural properties of lipid 

crystals (e.g., number and size distribution, morphology, and spatial distribution) are 
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directly influenced by nucleation behavior. 

A major problem in controlling the polymorphic crystallization of lipids is 

clarification of how a specific polymorphic form starts to nucleate in comparison with 

other polymorphic forms.  The Ostwald step rule is useful in clarifying the behavior of 

multiple polymorphic forms when they are crystallized from vapor, solution, and melt 

phases. This rule dictates that less stable polymorphic forms crystallize much faster than 

more stable forms when the driving force for crystallization is supplied by decreasing 

the temperature, and that less stable forms stepwise transform to more stable forms 

during the storage processes after crystallization.  

Actually, the kinetic behavior of polymorphic nucleation of various systems (e.g., 

biominerals [7, 8] and drug materials [9, 10]) often follows this rule. For example, a 

metastable vaterite form crystallizes faster than the more stable calcite in CaCO3. 

However, more detailed studies are needed to examine the effects of external factors, 

and it is necessary to establish some rules regarding the influences of kinetics on 

polymorphic crystallization and to study situations where the Ostwald step rule may be 

complemented. 

Recent studies on the polymorphic crystallization of lipids under various external 

factors have indicated that the Ostwald step rule is insufficient, and more detailed 

studies are needed to examine the effects of external factors on polymorphic 

crystallization. One example is the effects of cooling rate on the competitive nucleation 

rates of three polymorphs of a TAG (Fig. 2) [1]. 

A general tendency in melting temperature (Tm) is that the Tms of less stable forms are 

lower than those of more stable forms.  For the three typical polymorphs of TAGs, Tm is 

lowest for α, intermediate for β’, and highest for β. When crystallization occurs from 

the neat liquid, the relative rates and extent of crystallization of these three polymorphs 

are determined by the rate of nucleation, which is governed by the magnitude of 

activation free energy for nucleation, ΔG
#
.  

We may reasonably assume that the values of ΔG
#
 are smallest for α, intermediate for 

β′, and largest for β (Fig. 2a). The nucleation rate thus increases with increasing ΔT 

most rapidly for α and most slowly for β (Fig. 2b). The rate of nucleation J is most 

simply expressed as  

J = A exp(-ΔG
#
/RT),   (1) 
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where ΔG
#
 is the activation free energy for nucleation, A is a kinetic factor including 

transfer rates of mass and heat and attachment/detachment rates of lipid molecules 

among clusters and liquid, R is the gas constant, and T is temperature [6]. ΔG
#
 can be 

expressed by  

ΔG
# 
= Kγ3

/(Δμ)
2 
,             (2)  

where K is a constant, γ is interfacial energy between the crystal nucleus and liquid, and 

Δμ is the chemical potential difference between the supercooled liquid and crystal 

expressed in  

Δμ = ΔHmΔT/Tm,             (3) 

where ΔHm is enthalpy of melting. 

Having determined the polymorph-dependent nucleation rates, we may now 

determine the nucleation rates for the three typical polymorphs of TAG (α, β’, and β) at 

different crystallization temperatures. Since Tm is highest for β, nucleation starts in the 

range of Tc far above those of α and β’. Then β’ and α start to nucleate with decreasing 

Tc, and competitive nucleation occurs in a range of Tc below Tm of β’ and α (Fig. 2b).  

From graphical consideration, we assume that the most preferred nucleation of β may 

occur in the range of Tc between Tm of β and the crossing temperature of the two 

nucleation rates of β and β’. On further cooling, the nucleation of α starts quite rapidly 

below Tm of α. Therefore, it can be assumed that the preferred nucleation for β’ may 

occur in the range of Tc between the crossing temperatures of the nucleation rates of β 

and β’ and those of α and β’. 

From the polymorph-dependent nucleation rate and the effects of the cooling rate on 

preferred nucleation, we can assume that the preferred nucleation may change from α to 

β’ to β with a decreasing cooling rate.  This behavior was recently observed for many 

TAGs, as discussed below.  

  Crystal growth proceeds through the incorporation of lipid molecules at the interface 

of growing crystals after nucleation, which takes place at molecular-level step-kink 

positions (Fig. 1). We may predict that the additives may retard the incorporation of the 

lipid molecules at the step-kink positions when they are adsorbed at the kink position 

and reject the incorporation of lipid molecules.  

 

2.2 Solid-state and melt-mediated transformations 
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Two types of transformations can occur from less stable to more stable polymorphic 

forms; Fig. 3 depicts the crystal free energies of these two forms. Here, each 

polymorphic form has its own Tm; polymorphism having this property is called 

monotropism. Many lipid crystals exhibit monotropic polymorphism.   

Solid-state transformation occurs when the metastable form A is stored below its Tm. 

The rate of solid-state transformation is basically determined by the magnitude of 

activation free energy barrier ΔGss
#
. ΔGss

#
 may include the energies to enable 

conversions in the subcell and chain length structures, and other molecular structural 

changes that are necessary to cause transformation in a solid state. 

Another type of polymorphic transformation is melt-mediated transformation, which 

was originally defined by Sato and Garti specifically for lipid crystals [11]. Melt-

mediated transformation occurs as the temperature rises just above Tm(A), where the 

melting of A occurs, and crystallization of form B soon follows. In this case, the rate of 

transformation is determined by the magnitude of activation free energy barriers of 

melting ΔGm
#
, and crystallization of ΔGc

#
.  

One may expect that ΔGm
#
 of form A is much smaller than ΔGc

#
 of form B, so the rate 

of melt-mediated transformation from A to B may actually be governed by ΔGc
#
. ΔGc

#
 

includes activation energies for nucleation and crystal growth of the more stable forms 

from the liquid that forms soon after melting of the less stable forms. Comparing the 

rates of solid-state transformation and melt-mediated transformation is not easy, since 

the factors included in ΔGss
#
 and ΔGc

#
 are quite different. However, it can be expected 

that heterogeneous nucleation of the more stable forms reduces the values of ΔGc
#
; thus, 

melt-mediated transformation occurs more rapidly than in the solid state, as observed 

for SOS [12]. 

When applying polymorphic transformation to the processing of solid lipid products, 

tempering may correspond with melt-mediated transformation for margarine, fat spreads, 

and chocolate.   

From these fundamental points of view, it is quite important to understand how 

external factors affect crystallization and transformation of lipids, which are quite 

complicated because multiple processes of nucleation, crystal growth, and 

transformation are involved. This paper attempts to shed light on these phenomena from 

the viewpoints illustrated in Figs. 2 and 3.  

 

3. Effects of external factors 
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3.1 Thermal treatment 

The metastable and more stable polymorphic forms of lipids are greatly influenced by 

dynamic temperature variations, such as cooling rate, heating rate, and thermal thawing 

(tempering).  These effects are highly significant for applications in the pharmaceutical, 

biomedical, and food areas, since specific polymorphic forms should be crystallized by 

tailoring the most efficient thermal treatment.  

 

(1) Effects of cooling and heating rates 

The role of thermal treatment in the crystallization and transformation of lipids has 

been studied for model fats [13-17], natural lipids [18-24], emulsion [25], and end 

products [26, 27]. Perez-Martınez et al. studied the quantitative evolution of 

crystallization of cocoa butter (CB) with liquid oils at different cooling rates. They 

demonstrated that Tc and cooling rate had different effects on the three-dimensional 

organization of the crystal network, and on the proportion and size of β’ and β crystals 

of CB [24].  Tippetts and Martini studied the effects of cooling rate on the stabilization 

of oil-in-water (o/w) emulsions by combining the effects of the oil content (a mixture of 

anhydrous milk fat (AMF) and soybean oil), homogenization conditions, and Tc. They 

observed that higher oil content increased the stability of emulsions when the cooling 

rate was high, whereas emulsion stability increased with decreasing cooling rate for 

emulsions formulated with lower amounts of oil [25]. The key to understanding this 

opposing effect may be the nucleation and further growth of crystals fats, which affect 

emulsion stability. 

Cooling rates may act through the effects of ΔT, which increases with increasing 

cooling rates, causing increased crystallization rates. Transmission electron microscope 

(TEM) observation of nanometer-scale fat crystals grown from organic solution 

indicated that fast cooling rates and application of shear significantly decreased the 

dimensions of fat crystals [28, 29]. Figure 4 depicts changes in the length, width, and 

thickness of the crystals of fully hydrogenated canola oil (FHCO) [29]. FHCO was 

mixed with high oleic sunflower oil (HOSO) at different concentration ratios (solid 

mass fraction (SMF)), which was defined by SFC/100 (SFC: solid fat content), and 

crystallization was conducted at fast (10 ºC/min) and slow (1 ºC/min) cooling rates. 

Nanocrystal dimensions clearly became smaller as the cooling rate increased, and the 

extent of decrease was more pronounced at lower SMFs.  

Many researchers have focused on the kinetic processes of the crystallization of fats at 
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varying cooling rates to address crystallization behavior under isothermal and non-

isothermal conditions [30-37]. Most fats employed in actual production are complex 

systems including different TAG components, each of which possesses multiple 

polymorphic forms.  Therefore, crystallization behavior under non-isothermal 

conditions becomes quite complicated, due to crystallization of different TAG 

components and their polymorphic forms.  During cooling, the ΔTs of polymorphic 

forms of TAG components, and thus the rates of nucleation and crystal growth, vary 

differently with time, depending on the cooling rate. Marangoni et al. discussed the 

time-dependent driving force of nucleation by taking into account ΔT, the induction 

time of nucleation, and the cooling rate [34]. 

The effects of heating rates after crystallization appear either in solid-state or melt-

mediated transformations, whose kinetics are determined by activation energies for the 

transformation and the heating rates.   

Recently, particular interest has focused on the effects of cooling and heating rates on 

the nucleation and transformation of polymorphic forms of OPO (1,3-dioleoyl-2-

palmitoyl glycerol) [38], POP (1,3-dipalmitoyl-2-oleoyl glycerol) [39] and OOO 

(trioleoyl glycerol) and OOL (1,2-dioleoyl-3-linoleoyl-rac-glycerol) [40] by directly 

observing the crystallization processes with DSC and synchrotron radiation X-ray 

diffraction (SR-XRD). 

For example, POP possesses seven polymorphic forms (Tm): α (15.2ºC), γ (27.0ºC), 

δ (29.2ºC), β’2 (30.3ºC), β’1 (33.5ºC), β2 (35.1ºC), and β1 (36.7ºC) [41].  The 

crystallization and transformation pathways of the polymorphs of POP indicate that 

more stable forms developed in higher quantities when POP was slowly cooled and 

heated, whereas less stable forms developed at higher cooling and heating rates.  Figure 

5 presents DSC cooling and heating patterns and wide-angle SR-XRD patterns during 

cooling at 2ºC/min, and heating at 2ºC/min and 1ºC/min.  The SR-XRD patterns 

indicate that α was crystallized by cooling and transformed to γ and β (here, the two β 

forms were not separated), and finally β melted during the heating.  However, the 

transformation mechanisms from α to γ differ between the heating rates of 2ºC/min and 

1ºC/min, since the melting of α and successive crystallization of γ occurred at a heating 

rate of 2ºC/min (melt-mediated transformation).  This can be shown as an endothermic 

peak of melting of α, which was associated with an exothermic of re-crystallization of γ 

shown in Fig. 5(b). However, solid-state transformation occurred from α to γ at a 
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heating rate of 1ºC/min, as indicated by an exothermic peak in the DSC pattern in Fig. 

5(a). Table 1 indicates the crystallization and transformation behavior of POP 

polymorphs at different cooling and heating rates observed using DSC and SR-XRD 

[39]. 

Specifically, less stable α and γ forms were directly obtained at cooling rates of 15 to 

0.5ºC/min.  More stable forms of β’ (β’1 and β’2) or β (β1 and  β2) did not develop even 

at a cooling rate of 0.5ºC/min. Polymorphic transformations occurred either in solid-

state or melt-mediated transformation, which was influenced mainly by heating rate.   

Figure 6 illustrates the relationships between the nucleation rates of α, γ, and β’ of 

POP and the cooling rates and suggests that α can preferentially be nucleated in a low 

Tc region (α-dominating region), γ in an intermediate Tc region (γ-dominating region), 

and β’ in the highest Tc region (β’-dominating region). Therefore, we may expect that 

the cooling rates of 15ºC/min and 2ºC/min may reach the α-dominating region, and that 

those of 1ºC/min and 0.5ºC/min may reach the γ−dominating region. More stable 

polymorphs of the β’ and β forms could be obtained only by cooling POP at rates much 

lower than 0.5ºC/min. 

The complex transformation pathways observed during heating (summarized in Table 

1) can be understood by comparing the induction time for the transformation pathways 

with the time allocated to the samples for transformation (transformation time) at a 

defined heating rate [39].  

Induction time (τ) can be defined for solid-state transformation (τss), melt-mediated 

transformation (τmm), and melting (tm) as follows. 

τss = A1 exp (ΔGss
#
/RT) 

τmm = A2 exp (ΔGmm
#
/RT) = A2 exp [(ΔGm

#
+ΔGc

#
)/RT] 

τm = A3 exp(ΔGm
#
/RT). 

Here, A1 to A3 are coefficients, R is the gas constant, T is temperature,  ΔGss
#
 is the 

activation Gibbs free energy for solid-state transformation, ΔGmm
# 

= ΔGm
#
+ΔGc

#
 is that 

for melt-mediated transformation including melting of less stable forms and 

crystallization of more stable forms, and ΔGm
#
 is that for melting.   

Obviously, the induction time for the transformation increases as ΔG
#
 increases.  It is 

reasonable that ΔGm
#
 is much smaller than the others, and that  ΔGss

#
 and ΔGc

#
 increase 

when the polymorphic form becomes more stable, as the crystal packing of the more 
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stable form is more stabilized than that of less stable forms.  This may apply to α, γ, β', 

and δ  of POP in such a manner that ΔGss
#
 for γ→β',  γ→δ, and δ→β  may be greater 

than that of α→γ.  Similarly, ΔGc
#
 is clearly greater for β' and γ than for α.  Therefore, 

the following relationships can be obtained. 

τss ( α→γ) < τss (γ→δ) < τss (γ→β') < τss (δ→β) 

τmm ( α→γ) < τmm (γ→β') < τmm (γ→δ) < τmm (δ→β) < τmm (β'→β). 

 As the heating rate is increased, the time for the polymorphic form to transform into 

more stable forms is decreased, as expressed in r
-1

, where r is the heating rate.  There are 

three typical relationships between heating rate and induction time for the 

transformations. 

Case 1.  r
-1

 <τmm <τss 

This is applied to simple melting of γ at heating rates of 15 and 2ºC/min.   

Case 2. τmm < r-1
 <τss 

This is applied to the melt-mediated transformation pathways of α→β’ (15ºC/min) 

and α→γ (2ºC/min), γ→β (2ºC/min and 1ºC/min), γ→β' (0.5ºC/min), γ→β'+δ  

(0.1ºC/min), and  β'+δ→β (0.1ºC/min). 

Case 3.  τss < r-1
  

This is applied to very low heating rates of α→γ (1ºC/min and 0.1ºC/min) and γ→δ 

(0.1ºC/min). 

 Finally, the transformation pathways clearly tend to change from solid-state to melt-

mediated and simple melting when the starting polymorph changes from α to γ and the 

heating rate is increased (Table 1). 

 

(2) Thermal thawing (tempering) 

  Thermal thawing (cooling-heating-cooling cycle) can produce optimal polymorphic 

forms through melt-mediated or solid-state transformation. Such a process is often 

called tempering, as applied to confectionary fats [42] and creams [43]. The 

polymorphic crystallization of CB in chocolate production can be summarized as 

follows. CB crystals have six polymorphic forms From I through Form VI [44]. During 

tempering, the samples were rapidly cooled from elevated temperatures in order to 

cause crystallization of metastable Form IV of β’ type CB. The samples were then 

heated just above the Tm of Form IV in order to cause melt-mediated transformation 

from Form IV to Form V, and cooled again so that the CB crystals in chocolate were 
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eventually crystallized in Form V during final cooling. 

The dispersion stability of oil droplets containing semi-solid fats in oil-in-water 

(O/W) emulsion is affected by tempering [45].  Numbers and dimensions of lipid 

crystals change during heating and subsequent cooling processes, when melting and 

crystallization of the fractions of lipid crystals present in the oil droplets occur.  As a 

result, susceptibility for partial coalescence among the semi-solid droplets in the O/W 

emulsion is largely affected by the tempering. 

Tempering was also applied to form organogels using high-melting fats [46, 47]. 

During this tempering process, the least stable α crystals of high-melting fats were 

formed by very rapid cooling, and subsequent reheating caused melt-mediated 

transformation into β form. The β crystals were so tiny compared with those formed by 

simple cooling, that organogel (β-fat gel) was formed. 

  Figure 7 illustrates the formation process of β-fat gel composed of high-melting fat 

(fully-hydrogenated rapeseed oil rich in behenic acid (FHR-B)) and liquid oil (sal fat 

olein) [46]. The Tm of α form FHR-B crystals is 29°C and that of β form is 47°C at a 

concentration of 5wt.% of FHR-B in liquid oil. When crystallization was performed 

through process A, the molten mixture was slowly cooled to a temperature below Tm(β), 

large β crystals of FHR-B were formed, and no gel phase was formed. In contrast, the 

gel phase was formed after crystallization process B, in which the molten mixture was 

rapidly cooled to below Tm(α)  and heated to a temperature between Tm(βα)  and Tm(β). 

After this tempering process, many small β crystals were formed and randomly 

distributed in liquid oil, which was entrapped by the β crystal network of FHR-B. Such 

a network was formed due to melt-mediated transformation from α to β forms, because 

the nucleation rate of α crystals was high enough to cause the transformed β crystals to 

be randomly distributed, rather than aggregated as with slow cooling process A. 

  The above fundamental studies on the polymorphic crystallization of fats using pure 

TAG samples suggest that slow cooling rates do not crystallize more stable β’ and β 

forms, and that successive heating may cause transformation into more stable forms as 

the heating rate is decreased.  Other external effects such as additives or shear in 

addition to different thermal treatments may modify these properties, which may be 

open to further research. 

   

3.2 Additives 
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Foreign materials have been added to liquid before or during crystallization in order to 

modify the crystallization behavior of inorganic and organic substances [48]. In the area 

of lipid crystallization, Smith et al. recently published a comprehensive review of 

research on the effects of minor components and additives [49]. The minor components 

and additives they considered were free fatty acids; mono-, di- and triacylglycerols; 

phospholipids; and such emulsifiers as sorbitan fatty acid esters and sucrose fatty acid 

esters. Their effects on crystallization included microscopic aspects (e.g., nucleation, 

crystal growth, morphology, heat capacity, and polymorphic stability), as well as 

macroscopic aspects (e.g., visual aspects, melting profiles, post-hardening, and rheology 

of lipid crystals).  Since this review, further studies have been reported [50-53].   

In basic agreement with the main findings presented in the review by Smith et al., 

here we elaborate on the effects of additives on the polymorphic crystallization of lipids. 

It has often been observed that some additives promote the process, whereas others 

retard it, even when the adding conditions are similar [54].   

Conditions related to the effects of additives on the nucleation of lipid crystals (Fig. 8) 

may be understood by considering the following four factors. 

(1) Similarity in molecular shape and polymorphism 

It is reasonable to assume that similarity in molecular shape between the additive and 

the lipid, especially the fatty acid moiety, is required, as Smith et al. indicated [49].  For 

example, when the lipid contains long-chain saturated fatty acid moiety, an additive 

having the same or similar acyl chain structure may affect crystallization more than 

those containing short-chain or unsaturated fatty acid moieties.  Such effects were 

observed for polyglycerine fatty acid esters having different fatty acid moieties [55]. 

(2) Concentration of additive 

There may be a critical concentration of the additive, as determined by the solubility 

of the additive in supercooled liquid of the lipids at Tc.  When the solubility of the 

additive is high or the concentration of the additive is lower than the solubility limit, it 

may not crystallize prior to the lipid during cooling, but prevent the formation of crystal 

nuclei of the lipid through attractive molecular interactions between the additive and the 

lipid molecules, due to the similarity in molecular shape (de-clustering) (Fig. 8a).  Many 

food emulsifiers exhibit such retardation effects when added to the lipid at low 

concentrations [56, 57]. 

In contrast, an additive having low solubility may crystallize prior to the lipid when 

the concentration of the additive exceeds its solubility limit. Additive may then act as a 



www.ejlst.com                                                                 European Journal of Lipid Science and Technology 

 

 

 
  

 
c
c
e
p

t
e

 

 

 

 

 

  

 

 

 

 

 

 

  

d
A

  
A

r
ti

c
le

“template” promoting crystallization (templating) (Fig. 8b), as observed in bulk [53] 

and emulsion [50]. The same effect may alter the preferred nucleation of polymorphic 

crystallization from that without the additive, if the crystal structure of the additive can 

act as a template for the nucleation of a specific polymorphic form of lipid (Fig. 9), as 

already reported for bulk [58] and emulsion [59, 60]. 

(3) Cooling rate 

The cooling rate also influences the additive effects, as noted by Smith et al. [49], 

and such effects may occur through the following two mechanisms. 

First, additive effects are minimized when ΔT is high enough to induce spontaneous 

nucleation because undesired polymorphic crystals are formed without the effects of 

additives.  Therefore, the cooling rate and the range of ΔT may not exceed optimal 

values, over which spontaneous nucleation can occur and diminish the effects of the 

additives.   

Second, the cooling rate is related to the preferred nucleation of the polymorphic 

forms. For example, the nucleation rate of α is higher than that of β’; the relative 

occurrence of α exceeds that of β’ as Tc is lowered and the cooling rate is increased, as 

explained earlier (Fig. 2). However, this effect may be altered when the additive acts as 

a template and thus increases the nucleation rate of the more stable form more 

effectively than that of the less stable form. In this case, the nucleation rate of specific 

polymorphic form may increase with an increasing concentration of the additive and 

decreasing rate of cooling (Fig. 9).   

(4) Polymorphic matching  

When the additive acts as a template to promote the nucleation of lipid crystals, it may 

selectively promote the nucleation of specific polymorphic forms. A prerequisite for 

this to occur may be polymorphic matching between the template crystals and the lipid 

crystals. The results of previous studies [60, 61] may be interpreted by this mechanism. 

 

3.3 Application of Shear 

  The study of fat crystallization under shear was initiated half a century ago, as we 

described earlier [62]. Since this review, detailed work on natural fats has been reported 

by many researchers [52, 63-83]. These studies clearly demonstrate that applying shear 

increases the rates of polymorphic crystallization and transformation of lipids, and 

modifies the aggregation of nanocrystals of the crystal network. 



www.ejlst.com                                                                 European Journal of Lipid Science and Technology 

 

 

 
  

 
c
c
e
p

t
e

 

 

 

 

 

  

 

 

 

 

 

 

  

d
A

  
A

r
ti

c
le

Figure 10 depicts variations in XRD intensity, which were monitored during the 

crystallization of CB at 18ºC with shear applied (1440sec
-1

) [64]. Form III was the first 

of the six polymorphic forms of CB (I through VI) to crystallize.  The rate of increase of 

the XRD peak of Form III without shear was much lower than that with shear, 

confirming that shear promotes the crystallization of Form III. In addition, Form III 

converted to Form IV during further crystallization when no shear was applied. 

However, conversion from Form III to Form V was observed to be much more rapid 

than transformation without shear. 

The mechanisms of the effects of shear on the increase in rates of crystallization and 

polymorphic transformation of lipids are still unclear. The promotion may be due to 

increased rates of heat and mass transfer, which reduce ΔG
#
 for nucleation (Fig. 2a), 

thus promoting nucleation. Tiny nanocrystals then formed, causing transformation from 

less stable to more stable forms through recrystallization of more stable forms onto the 

surfaces of the less stable forms. This transformation may be facilitated by the 

enormous increase in surface area compared to the volume of nanocrystals. Promotion 

of polymorphic transformation may also be due to melt-mediated transformation, as 

shear may increase the local temperature within the crystallizing medium above Tm of 

Form III. 

Exciting findings related to shear include preferred orientation of fat crystal particles, 

which was discovered by in-situ observation of SR-XRD patterns acquired during the 

crystallization of various fats with two-dimensional (2D) detectors [64, 68].  Such 

effects resulted in oriented crystal network formation; therefore, porosity and oil 

migration were affected when fat crystallized in a laminar flow. 

Figure 11 indicates the effects of shear on the orientation of tiny fat crystals present in 

the shear flow, as determined by SR-XRD analysis. The fat was crystallized in a Couett 

cell with shear applied at different temperatures (Fig. 11a). The polymorphic structure 

and the orientation of the crystals growing in a Couett cell were obtained 

simultaneously using a 2-dimensional X-ray beam detector. The former was determined 

by observing the diffraction angle of 2θ (2θ-extension), and the orientation of crystals 

was determined with respect to shear direction by observing diffraction intensity at 

varying azimuthal angle positions (χ-extension) at the fixed θ angle. The degree of 

orientation can be assessed by defining Δχ (Fig. 11b).   

For example, AMF crystals grown with shear applied (1440sec
-1

) at 17ºC are β’ 
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polymorph, and the crystals are highly oriented, since sharp arc XRD patterns with 

narrow Δχ values are observed [73]. These results are in contrast to crystallization 

without shear, since α and β’ forms crystallized at the same time and no crystal 

orientation was observed.  

The effects of shear have practical significance for crystallization in edible fats 

because various macroscopic physical properties of fat crystals are changed [75-78, 81].  

The effects of laminar shear on crystalline orientation and the nanostructure of fat 

crystal networks of CB were quantified using cryogenic scanning electron microscopy 

(Cryo-SEM), which indicated oriented sheets of crystalline CB in the sample obtained 

in the laminar shear crystallizer, while spherulitic structures were observed in the 

statically crystallized sample. These effects increased breaking force, Young’s modulus, 

and elastic storage modulus (G’) of the solid CB materials [76, 77]. 

Furthermore, the effect of laminar shear on the migration kinetics of liquid oil through 

a polycrystalline colloidal fat crystal network was characterized and quantified. A shear 

rate of 340sec
-1

 was applied, and the CB was crystallized from melt (60 ºC) to 20ºC. 

The resulting solid sheet of CB was stored for seven days at 20ºC, and the crystal 

dimensions of CB were observed using TEM [76, 77]. Statistical analysis demonstrated 

that shear processing significantly reduced the dimensions of the nanoparticles of CB so 

that a length of 2085 ±128nm and a width of 164 ±6.4nm without shear were reduced to 

a length of 310 ±7.3nm and a width of 138 ±5.3nm under laminar shear. The aspect 

ratio (length/width) was thus greatly reduced, meaning that the crystal morphology 

changed from needle shape to plate shape. We can reasonably assume that the combined 

effect of the orientation and the morphological changes of CB crystals caused reduced 

rates of oil migration due to the formation of a more tightly packed crystal network.  

This study suggested that the migration rate of liquid oil through a polycrystalline fat 

crystal network can be modified using laminar shear flow. A lower migration rate was 

observed in shear-crystallized samples having smaller and better-oriented nanocrystals, 

which retard oil migration (Fig. 12) [4, 78]. 

 

3.4  Sonication 

  Ultrasound has been applied for characterizing microstructures and process control of 

food materials [84, 85]. For lipids, ultrasound waves have been used to characterize the 

physical properties of lipid crystals such as SFC [86-93] and to control the 

crystallization of lipids (sonocrystallization) [94-99].  Sonocrystallization modifies the 
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rates of polymorph-dependent crystallization, crystal size, and morphology in pure 

TAGs, confectionery fats, vegetable fats, and milk fats. 

   The kinetic processes of sonocrystallization of tripalmitin (PPP) and CB were 

examined with SR-XRD and optical microscopy [94]. The main observations of these 

preliminary experiments indicate that the nucleation rate of PPP was enhanced and 

induction time was shortened by ultrasound application when it was irradiated properly, 

and that the polymorphic Form V of CB was directly crystallized when ultrasound was 

applied under optimal conditions of temperature and a short period of sonication. 

  Martini et al. recently applied high-intensity ultrasound (HIU) to the crystallization of 

palm kernel oil (PKO), AMF, and shortening [96, 97]. The following results were 

observed. 

(a) HIU induced primary and secondary nucleation of fat crystals, generating smaller 

crystals. 

(b) Consequently, harder materials were formed when HIU was applied at higher Tc, as 

observed for AMF, and when HIU was applied after the first crystals were formed, 

as observed for PKO and shortening.   

(c) In addition, fat crystal networks in AMF and shortening obtained after HIU 

application exhibited steeper and sharper melting profiles than did nonsonicated 

samples.  

Figure 13 presents the effects of applying HIU at different temperatures on induction 

time and viscosity of the crystallized sample of AMF [96]. Induction time was clearly 

shortened when HIU was applied at 26°C and 28°C, and viscosity increased as 

sonication time and HIU were decreased. 

  In-situ observation of the sonocrystallization of PPP and LLL using SR-XRD indicated 

that polymorphic crystallization was remarkably modified by the irradiation of 

ultrasound [95]. Without ultrasound application, β’ and β forms were crystallized in the 

melt of each TAG. With ultrasound treatment of the melt, the following effects were 

observed: (i) marked decrease of induction times for crystallization of both PPP and 

LLL, (ii) increased nucleation rate, and (iii) crystallization of only β forms for both PPP 

with an initial crystallization temperature of 50°C and LLL with that of 30°C, and with 

ultrasound applied for 2sec.  

Based on the dynamic nucleation of PPP and LLL crystals induced by collapsing 

cavitation bubbles, we proposed that a pronounced decline in induction times and an 
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increase in nucleation rate result from the melting point shift due to high pressure pulses 

associated with collapsing bubbles [95].   

  The studies reviewed above clearly indicate that ultrasound does affect the 

crystallization of fats in many ways. However, we still do not know what mechanisms 

are responsible for these effects. To improve our knowledge and predictability in terms 

of desired polymorphism, induction times, and nucleation rates that are influenced by 

sonocrystallization, a better understanding of the following issues is crucial: (i) the 

establishment of a P-T phase diagram for polymorphic forms, since a primary effect of 

sonocrystallization may be due to high pressure when a sonication-induced cavity is 

collapsed, (ii) stability (lifetime) of different polymorphic forms as a function of ΔT and 

temperature, (iii) mechanism and lifetime of collapsing cavities, and (iv) the basic 

mechanism of dynamic nucleation near a collapsing bubble.  

 

3.5 Pressure 

  The application of pressure has been useful in food engineering, particularly because 

of the viability of sterilization and protein denaturation [100]. However, quite limited 

trials have been conducted to analyze lipid crystallization, due to difficulty in applying 

high pressure on a factory scale. Most machines that apply high pressure work only in 

batch processing, which is unsuitable for large-scale production of food lipids.    

However, in 2002 innovative technology was presented to produce food emulsion 

under ambient high pressure of 10 to 150MPa [101]. This high pressure was applied to 

promote fat crystallization in the emulsion, while the entire process was performed in 

continuous production lines, not by batch processing. This technology increased the rate 

of fat crystallization and decreased undesirable problems of grain growth of fat crystals 

that occur after crystallization. The result was improved efficiency of the production 

process in terms of time and energy. 

  Quite recently, Wierschem et al. conducted fundamental studies of pressure effects on 

fat crystallization [102, 103]. They observed induction times for crystallization 

(induction time for nucleation) and rates of increase in crystal size (crystal growth rate) 

of various fats, while applying pressure and observing the crystals using an optical 

microscope. The results suggested that the induction time was shortened and the growth 

rate was increased with increasing pressures.  

  The above two studies clearly indicate that the application of hydrostatic pressure 

promotes nucleation and crystal growth of lipids. It is reasonable to assume that the 
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underlying principle of these pressure effects is the increase in Tm by pressure, as 

defined by the Clausius-Clapeyron equation: 

dp/dT = ΔHm/TΔV,    (4) 

where dp/dT gives the slope in a p-T phase transition diagram, ΔHm is the molar 

enthalpy of melting, T is the temperature, and ΔV is the difference in molar volume 

between crystal and liquid states. When pressure is applied rapidly without any change 

in Tc, it reaches the entire volume of supercooled liquid at the sonic speed and increases 

Tm. ΔT then increases and enhances the driving force for nucleation and crystal growth 

(see Eq. 3). 

  It is necessary to determine how pressure increases ΔT for lipids. The lack of 

comprehensive data on pressure-temperature thermodynamic properties based on Eq. 4 

until recently is surprising. Greiner et al. are the first to perform molecular dynamic 

(MD) simulation on the density of liquid of principal TAGs to draw the solid-liquid 

phase equilibria of principal TAGs of LLL (trilauroyl-glycerol), PPP (tripalmitoyl-

glycerol), AAA (triarachidoyl-glycerol), SOS (1,3-dipalmitoyl-2-oleoyl-glycerol), POS 

(1-palmitoyl-2-oleoyl-3-stearoyl-rac-glycerol), and SOS (1,3-distearoyl-2-oleoyl-

glycerol) (Fig. 14)  [104, 105]. Tm increased almost linearly with pressure, and the 

increase in ΔT with a pressure difference of 1000bar ranged from 16K (POP) to 27K 

(PPP) and 37K (LLL), which is large enough to increase the rates of nucleation and 

crystal growth  

  One specific advantage of applying pressure is that, as mentioned above, the pressure 

is applied to the whole body of liquid of lipids quite quickly (1μsec per centimeter). 

This may be in contrast with thermal treatment, whose kinetics is governed by thermal 

conductivity of the liquid of lipids (4min per centimeter). However, the machines used 

to apply high pressure in the continuous production line must tolerate an inner pressure 

as high as several hundred bars, which may be the effective pressure range to promote 

fat crystallization.  

  Additional fundamental and application studies on the effects of pressure, including 

the technical problems of the production processes, are needed to improve the 

crystallization of lipids. In particular, to experimentally determine the values of ΔHm 

and ΔV appearing in eq. (4) for different lipid materials is quite important, since the 

effects of pressure on Tm can be predicted by the two values which may vary with the 

pressure and polymorphic forms of lipids. 
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4. CONCLUSION 

The crystallization and transformation of polymorphic lipid materials require further 

study regarding fundamental and application aspects. Several additional issues were not 

mentioned in this review. 

Novel additives that exhibit hydrophobic as well as hydrophilic interactions with lipid 

molecules may open new windows for further research. As for the polymorphism of 

lipid crystals, some basic questions remain unanswered (e.g., why symmetric and 

asymmetric TAGs have different polymorphic stability). Labor-consuming work on 

single crystal-based crystal structure determination using simple- and complex-shaped 

lipid materials and detailed observation of the polymorphic transformation pathways 

will provide decisive answers. Molecular-level observation and understanding of crystal 

growth processes with various external factors will provide new and deeper insight into 

polymorphic crystallization. 
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Figure captions 

 

Figure 1. Elementary processes of crystallization and transformation of polymorphic 

lipids. 

 

Figure 2.  Schematic illustrations of (a) activation free energy for nucleation (ΔG
#
) of 

polymorphic forms of α, β’ and β of triacylglycerols and (b) nucleation rate and cooling 

rate.  In (b), solid and dotted lines refer to nucleation rates and cooling rates, 

respectively. 

 

Figure3.  Relative stability of two polymorphic forms showing typical transformation 

pathways and corresponding activation energy for transformation (ΔG
#
).  

 

Figure 4. Effects of cooling rates on length (L), width (W) and thickness (T) of fat 

crystals in the blends of Fully hydrogenated canola oil (FHCO) and high oleic 

sunflower oil (HOSO).  

 

Figure 5. Polymorphic behavior of POP, (a) cooling at 2 ºC/min and heating at 2 ºC/min 

and (b) cooling at 2 ºC/min and heating at 1 ºC/min.  For both, A; DSC patterns and B; 

wide -angle SR-XRD patterns.   

 

Figure 6. Relationship between nucleation rates of POP polymorphs and different 

cooling rates . 

 

Figure 7. Formation mechanisms of β fat gel made of high-melting fat and liquid oil 

mixture.  (a) Temperature variation scheme and (b) crystallization behavior.  

 

Figure 8.  Schematic illustrations of the effects of additive on nucleation of lipid crystals.  

 

Figure 9. Schematic illustration of promotion mechanisms of nucleation rates of 

metastable A and more stable B polymorphs  (solid lines: without additive, dotted lines: 

with additive). 
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Figure 10  Effects of shear application (shear rate 1440 sec
-1

) on crystallization of cocoa 

butter at 18 ºC. Without shear (open) and with shear (filled). 

 

Figure 11 Observation of orientation of fat crystals grown under shear with SR-XRD 

techniques. (a) Diffraction experiments with a Couett cell and (b) analysis of 2-

dimensional diffraction patterns (θ: diffraction angle, χ: azymuthal angle). 

Figure 12.  A schematic illustration of the tortuosity of the diffusive path in cocoa butter 

crystallized under various shearing conditions. (a) Shear-mixed cocoa butter crystals 

and (b) oriented cocoa butter crystals formed under laminar shear. 

 

Figure 13 Effects of application of high intensity ultrasound (HIU) on crystallization 

behavior of anhydrous milk fat (AMF). (a) Induction time for crystallization at different 

Tc and (b) viscosity of crystallized AMF with different sonication conditions at Tc=30 

°C. 

 

Figure 14 Plots of the slope in the predicted  phase co-existence diagrams for (a) 

saturated monoacid  triacylglycerols  and (b) saturated-unsaturated mixed-acid 

triacylglycerols.  Abbreviations; see text. 

 

 



www.ejlst.com                                                                 European Journal of Lipid Science and Technology 

 

 

 
  

 
c
c
e
p

t
e

 

 

 

 

 

  

 

 

 

 

 

 

  

d
A

  
A

r
ti

c
le

 

 

 

 

 



www.ejlst.com                                                                 European Journal of Lipid Science and Technology 

 

 

 
  

 
c
c
e
p

t
e

 

 

 

 

 

  

 

 

 

 

 

 

  

d
A

  
A

r
ti

c
le

 

 

 



www.ejlst.com                                                                 European Journal of Lipid Science and Technology 

 

 

 
  

 
c
c
e
p

t
e

 

 

 

 

 

  

 

 

 

 

 

 

  

d
A

  
A

r
ti

c
le

 

 

 

 



www.ejlst.com                                                                 European Journal of Lipid Science and Technology 

 

 

 
  

 
c
c
e
p

t
e

 

 

 

 

 

  

 

 

 

 

 

 

  

d
A

  
A

r
ti

c
le

 

 

 



www.ejlst.com                                                                 European Journal of Lipid Science and Technology 

 

 

 
  

 
c
c
e
p

t
e

 

 

 

 

 

  

 

 

 

 

 

 

  

d
A

  
A

r
ti

c
le

 

 

 



www.ejlst.com                                                                 European Journal of Lipid Science and Technology 

 

 

 
  

 
c
c
e
p

t
e

 

 

 

 

 

  

 

 

 

 

 

 

  

d
A

  
A

r
ti

c
le

 

 

 

 

Figure 12 
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