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Abstract

This paper presents the implementation of nonlinear least squares and iterative linear least squares algorithms for exter-

nal kinematic calibration of a hybrid kinematics machine composed of two 3PRR planar parallel kinematics mechanisms 

by utilizing a laser tracker. First the hand-eye and robot-world transformations were obtained by a separable closed-form 

solution and refined by the nonlinear least squares. Subsequently, the geometric parameters of the machine’s mechanisms 

were estimated using the two algorithms. Due to the rank deficiency, we implemented the nonlinear least squares algorithm 

through a subset selection approach in which we performed the estimation in two steps. We iterated the closed-form solution 

of the linear least squares until the solution converges to the actual values. We have shown that the nonlinear least squares 

algorithm successfully refined the hand-eye and robot-world transformations and outperformed the iterative linear squares 

algorithm in the estimation of the geometric parameters of the mechanisms.

Keywords Calibration · Planar parallel mechanism · Hybrid kinematics · Least squares

1 Introduction

The parallel kinematics mechanisms (PKMs) which consist 

of a base, some legs, and a moving platform in a closed-

chain configuration have been proposed and developed to 

achieve more accuracy in the precision manipulation. Fur-

thermore, hybrid kinematics machines (HKMs) have been 

introduced and developed to integrate the advantages of both 

the serial kinematics mechanism (SKM) and PKM. Any of 

the three schemes can compose an HKM: (1) serially con-

necting two or more PKMs, (2) serially connecting a PKM 

with an SKM, or (3) serially combining two or more PKMs, 

or a PKM with an SKM, through a rigid connection. In the 

third scheme, the rigid connection is considered a type of 

serial connection. In some applications such as machining, 

a PKM is typically used together with an SKM or another 

PKM and therefore becomes an HKM. Moreover, more 

attention has been given to the use of lower degree-of-free-

dom (DOF) PKMs due to less complexity in their modeling. 

For a precision manipulation, an accurate pose of the mov-

ing platform is the aim to be achieved during its controlled 

motion. Since the control is commonly performed in the 

joint space, forward kinematics of the mechanism is required 

to transform the active joint positions to the pose of the mov-

ing platform. As the trajectory is commonly planned in the 

task space, inverse kinematics is needed to transform the 

planned trajectory to the joint space in which the control is 

applied. Consequently, the accuracy of the kinematics affects 

positioning accuracy. A kinematic calibration is commonly 

conducted to estimate the kinematic parameters accurately 

and subsequently, a compensation is performed by correct-

ing the software, which is, in this case, the kinematics of 

the machine.

In general, the kinematic calibration can be either an 

external calibration, a constrained calibration, or a self-cal-

ibration [1]. The external and constrained calibration can 

be conducted offline, and the number of calibration poses is 

usually limited. Here the number and the choice of the cali-

bration poses become an issue. The number of the calibra-

tion poses should be adequate, whereas the selection of the 

calibration poses is shown to be vital as it affects the quality 

of the calibration. According to Bai and Theo [2], the opti-

mal number of calibration poses is 10 or more. Moreover, 
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a full pose measurement typically requires less number of 

calibration poses to get an accurate estimation [1].

In a nutshell, the kinematic calibration is performed by 

firstly determining the parameters to be calibrated, followed 

by modeling, measurement (data collection), identification 

(estimation), and compensation (correction) [3, 4]. Various 

algorithms in the identification stage are used to minimize 

the residual error. To mention some of them in the kine-

matic calibration of PKMs and HKMs, Vischer and Clavel 

[5] used the Levenberg–Marquardt algorithm for kinematic 

calibration of a Delta robot. Yang et al. [6] used a linear 

least squares algorithm for kinematic calibration of a spa-

tial 3-DOF PKM. Patel and Ehmann [7] as well as Iurascu 

and Park [8] applied the total least squares algorithm for 

kinematic calibration of PKMs. Yu [9] used nonlinear least 

squares for kinematic calibration of a hexapod. Wang et al. 

[10] used minimal linear combinations of error parameters 

for kinematic calibration of a spatial 3-DOF PKM in a five-

axis HKM milling machine. Wang et al. [11] applied the 

Markov Chain Monte Carlo method for kinematic calibra-

tion of an HKM. Liu et al. [12] proposed the use of the 

genetic algorithm for kinematic calibration of a Stewart plat-

form while Fan et al. [13] proposed it for an HKM polishing 

machine.

While researchers [14, 15] investigate the kinematic 

calibration of five-axis SKMs, this paper discusses the kin-

ematic calibration of a five-axis HKM. This paper uses an 

external kinematic calibration of an HKM machine tool 

utilizing two different identification algorithms, namely a 

nonlinear least squares algorithm and an iterative linear least 

squares algorithm. In particular, a subset selection approach 

is proposed to overcome the rank deficiency in the nonlinear 

least squares algorithm. Furthermore, an iteration is intro-

duced to be used in the linear least squares to achieve a 

solution convergence. This scheme is the first novelty of this 

paper. The implementation of the two algorithms as well as 

a comparison of the estimation accuracy provided by both 

algorithms is presented. This comparative study is another 

contribution of this paper. The HKM machine tool was built 

by conjugating two lower-DOF, planar PKMs having a simi-

lar topology but different geometric parameters. The planar 

state of the PKMs as will be shown results in a configuration 

degeneracy which indicates unidentified parameters in the 

off-plane direction of the mechanism. A physical adjustment 

should be conducted to impose a certain value, typically zero 

for convenience, of the unidentified parameters. The imple-

mentation of the mentioned algorithms to this new topology 

of HKM composed of planar PKMs is another novelty of 

this paper.

Laser tracker, which is capable of providing a full pose 

measurement, was used to conduct the kinematic calibration. 

The laser tracker offers a high accuracy pose measurement 

with easy use, although it is relatively expensive [16]. It was 

mentioned earlier that a minimum of ten calibration poses 

should be used while a full pose measurement can reduce 

the required number of calibration poses. Accordingly, a full 

pose measurement of twelve unique poses is taken in this 

work. The unrepeated coordinate values for each DOF of the 

poses provide the uniqueness of the poses. The geometric 

parameters of the PKMs, which include the length of all the 

legs and the moving platform as well as the position of the 

joints connecting the legs with the moving platform, and the 

actual relative position between the two conjugated PKMs 

are the parameters to be calibrated. The model function to 

be used in the calibration is the forward kinematics of the 

machine’s mechanisms. Finally, the accuracy improvement 

was evaluated after performing the compensation.

This paper is organized into several sections. Section 1 

gives an introduction to the paper and describes its novelty. 

Section 2 provides the kinematics of the individual mecha-

nism and subsequently presents the solution of its forward 

kinematics by using both Euler angles and quaternions rep-

resentations. The quaternions are used to overcome the for-

mulation singularity. Section 3 presents the hand-eye and 

robot-world calibration which should be performed before 

the calibration of the mechanism geometric parameters. Sec-

tion 4 presents the kinematics of the complete mechanism 

with the external measurement device in the setup. Sec-

tion 5 presents the use of nonlinear least squares to refine 

the hand-eye and robot-world calibration and to estimate the 

mechanism geometric parameters. Section 6 presents the use 

of iterative linear least squares to estimate the mechanism 

geometric parameters. In Sect. 7, the estimates of the mecha-

nism geometric parameters obtained by both the nonlinear 

least squares and the iterative linear least squares are used 

for compensation. The accuracy of the position tracking cor-

responding to the estimates obtained by the two algorithms 

is compared. Finally, Sect. 8 concludes the paper.

2  Kinematics of the Individual Mechanism

2.1  Kinematics Equations

The HKM calibrated in this work is used for five-axis 

machining and composed by the third scheme of hybridiza-

tion. A PKM which serves as the workpiece platform (lower 

platform) is conjugated with another PKM as the spindle 

platform (upper platform). Both the lower and upper plat-

forms use planar PKMs because they are easier to design 

than spatial PKMs and more geometrical constraints on 

the DOFs will minimize the error due to joints’ errors. The 

lower and upper platforms use an identical PKM topology 

called the 3PRR, planar PKM as depicted in Fig. 1a and 

optimized to a simpler topology as shown in Fig. 1b. This 

PKM has three DOFs which adequately enable required 
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general motion consisting of translation in X-axis, trans-

lation in Y-axis, and rotation about the Z-axis, where the 

three axes are orthogonal and follow the right-hand rule. 

It consists of a fixed base, three legs, a moving platform, 

and several joints. The joints used in an order starting from 

the fixed base are prismatic (P) joints, revolute (R) joints 

which connect the sliders with the legs, and other revolute 

(R) joints which connect the legs with the moving platform. 

Therefore, the mechanism is called the 3PRR PKM. The 

prismatic joints are actuated, have translation along X-axis, 

and are implemented by using sliders moving along the 

base through guideway. The use of the sliders creates more 

workspace and enables the moving platform to move upward 

and downward as well as to tilt. The actuation is provided 

by linear motors which give more accuracy compared with 

pneumatic/hydraulic pistons and lead screws.

In this proposed mechanism, three legs are required to con-

strain the mechanism fully. Furthermore, two neighboring legs 

are maintained in a crossing configuration to avoid singularity 

as well as maximize the useful workspace and the stiffness of 

the mechanism. Point (x, y) in the moving platform is used to 

evaluate the general motion of the moving platform. Any other 

point in the moving platform can also be used as the moving 

platform is rigid. The selection of point (x, y) is mainly for 

more convenience. Besides, the orientation of the platform is 

defined as the angle made by the platform with respect to the 

fixed base. Upon the dimensional optimization of the mecha-

nism by considering its workspace, stiffness magnitude, and 

stiffness uniformity, the mechanism is simplified to a topology 

with two coincident upper joints as shown in Fig. 1b. As a 

result, xp2 = xp3 = xp. The optimization procedure is discussed 

in [17]. Figure 2 shows the hybrid scheme of the machine. The 

conjugation of the two planar PKMs in perpendicular direc-

tions easily creates the required spatial workspace and provides 

six DOFs.

The tool spindle is oriented horizontally to avoid redun-

dancy between the rotation of the spindle and the rotation of 

the upper mechanism. This results in the proposed five-axis 

machine configuration. The five-axis machine has translational 

DOFs in x, y, and z directions as well as rotational DOFs about 

the Z and Y axes. Moreover, there is a redundancy between 

the two mechanisms in the X translational motion. This redun-

dancy is advantageous as it provides an additional workspace 

in the x-direction. However, this also results in more com-

plexity in determining which mechanism to move when a 

translation in the x-direction is required. In this case, one can 

pre-determine which mechanism is fixed while another mecha-

nism is moved. A more systematic approach is a determination 

using an optimization scheme based on a defined objective 

to be optimized, such as energy consumption (control effort), 

accuracy, or stiffness.

The kinematics equations of the proposed parallel mecha-

nism can be obtained easily by the algebraic approach. Accord-

ing to the geometry of the mechanism shown in Fig. 1, the 

following geometric relations are found for the legs:

(1)L2

1
= (x + xp2

cos � − x
1
)2 + (y + xp2

sin �)2

Fig. 1  Schematic of the a general and b optimized mechanism topol-

ogy (with the Z-axis perpendicular to the paper through the origin)

Fig. 2  The prototype of the hybrid kinematics machine
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In this paper, only the forward kinematics of the mechanism 

is discussed as it is required in the kinematic calibration.

The kinematics of the mechanism has the following 

constraints:

where ymax and xmax are the vertical and horizontal limits 

of the machine volume having the numerical values of 

1200 mm and 1700 mm, respectively. Those constraints 

indicate that the mechanism should always be inside the 

specified machine volume, the sliders should not interfere 

with each other, and two adjacent legs must always be cross-

ing each other.

2.2  Forward Kinematics with Known θ

The complete forward kinematics of the mechanism at hand 

which includes the determination of the angle θ can be seen 

in [17]. In this paper, only the determination of x and y given 

the angle θ is presented for the kinematic calibration pur-

pose. In the case of a known θ, the value of x and y can be 

obtained through a more straightforward derivation. Let us 

rearrange the kinematics Eqs. (1), (2), and (3) in the follow-

ing set of equations:

Collecting x and y in (5)–(7) in the left-hand sides yields:

(2)L2

2
= (x − x

2
)2 + (y)2

(3)L2

3
= (x + xp3

cos � − x
3
)2 + (y + xp3

sin �)2

(4)

0 ≤ L
1
≤ ymax

0 ≤ L
2
≤ ymax

0 ≤ L
3
≤ ymax

0 ≤ xp2
≤ xp3

≤ xmax

L
1
+ L

2
− xp2

≤ xmax

L
1
+ L

3
− xp2

+ xp3
≤ xmax

(5)
x2

+ y2
+ 2xxp2

cos � + 2yxp2
sin �

− 2x
1
x − 2x

1
xp2

cos � = L2

1
− x2

1
− x2

p2
= c

1

(6)x2
+ y2

− 2x
2
x = L2

2
− x2

2
= c

2

(7)
x2

+ y2
+ 2xxp3

cos � + 2yxp3
sin �

− 2x
3
x − 2x

3
xp3

cos � = L2

3
− x2

3
− x2

p3
= c

3

(8)
x2 − (2x

1
+ 2xp2

cos �)x + y2 + (2xp2
sin �)y

= 2x
1
xp2

cos � + L2

1
− x2

1
− x2

p2
= c

4

Furthermore, subtracting (9) from (8) and (10) yields a 

more compact set of equations as follows:

where

Equations (11) and (12) have to be solved simultaneously 

as x and y exist in both of the equations. The solution is 

given by:

2.3  Forward Kinematics Using Quaternion

Observing the solution of the forward kinematics given in 

(13) and (14), we realize that division by zero occurs when 

θ = 0 and therefore b = 0. In this situation, x still can be 

solved by using (13) by converting zero θ to a minimal value 

near (above or under) zero. The effect of the closeness of θ to 

zero can be evaluated by observing the value of the solution, 

i.e. x and y, as well as the corresponding links’ dimension 

if we apply the solution. The latter shows a more obvious 

effect. After scanning some values of θ close to zero, it is 

shown that θ should not be larger than 1 × 10−5. This will 

give an accurate solution to four decimal places. Using a 

closer value of θ to zero increases further the accuracy. 

Table 1 shows the values of the link lengths corresponding 

(9)x2 − (2x
2
)x + y2 = L2

2
− x2

2
= c

2

(10)
x2 − (2x

3
+ 2xp3

cos �)x + y2 + (2xp3
sin �)y

= 2x
3
xp3

cos � + L2

3
− x2

3
− x2

p3
= c

5

(11)
(−2x

1
)x + (2xp2

cos �)x + (2x
2
)x

+ (2xp2
sin �)y = ax + by = c

4
− c

2
= c

(12)x2 − (2x
2
)x + y2 = L2

2
− x2

2
= c

2

a = −2x
1
+ 2x

2
+ 2xp2

cos �

b = 2xp2
sin �

c = c
4
− c

2

d = −2x
3
+ 2x

2
+ 2xp3

cos �

e = 2xp3
sin �

f = c
5
− c

2

(13)x =

(

f −
ec

b

d −
ea

b

)

(14)y =

c − ax

b
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to different values of θ near zero, given the expected actual 

values of L1= 600 mm, L2 = 600 mm, and L3 = 750 mm.

On the other hand, division by zero in (14) is very sensi-

tive. Even a minimal value of θ replacing an exact zero θ 

leads to a significant error in the solution, i.e. the value of 

y. Therefore, (14) cannot be used to solve for y in the case 

of zero tilting angle of the moving platform. In such a case, 

either one of the following two ways can be used. First, using 

an iterative technique by spanning over possible values of 

y and checking with the inverse kinematics. For any set of 

x, y, and θ, it should be observed if it retrieves a known set 

of x1, x2, and x3. However, the accuracy of this technique is 

affected by the interval of y used in the iteration. Besides, 

this technique is computationally intensive. Second, solving 

the forward kinematics by using quaternion. The reason for 

using the quaternion is because a formulation singularity 

causes this problem due to the use of Euler angle θ. There-

fore, avoiding using the Euler angle by using the quaternion 

will avoid the formulation singularity.

Recall the mechanism at hand defined by some position 

vectors as shown in Fig. 3. The geometric relations in the 

mechanism can also be written using a vectorial approach 

as follows:

(15)

rp = X
2
+ R

2
S

2

rp = X
1
+ R

1
S

1
− R

4
Sp2

rp = X
3
+ R

3
S

3
− R

4
Sp3

Using Euler angles, (15) can be expanded to the following:

From (16), we know that we have six equations with nine 

variables, i.e. x, y, θ, α1, α2, α3, x1, x2, and x3. However, three 

variables among the nine variables are known. In other words, 

we have six equations with six unknowns.

A quaternion can be written as:

where i, j, and k are the unit vectors in x, y, and z directions, 

respectively.

A rotation in a three-dimensional space can be repre-

sented by a rotation matrix R in terms of quaternions as 

follows:

The rotation of the legs and the moving platform of the 

mechanism, which is about the Z-axis, can be written in the 

quaternion notation in terms of the Euler angles α1, α2, α3, 

and θ as follows:

Substituting any of (19)–(20) into (18) as they have a 

similar form to get the corresponding rotation matrix, the 

rotation about the Z-axis can be written in a rotation matrix 

in terms of the quaternions as follows:

(16)

x = x
2
+ L

2
cos �

2

y = L
2

sin �
2

x = x
1
+ L

1
cos �

1
− xp2

cos �

y = L
1

sin �
1
− xp2

sin �

x = x
3
+ L

3
cos �

3
− xp3

cos �

y = L
3

sin �
3
− xp3

sin �

(17)q = q
0
+ q

1
î + q

2
ĵ + q

3
k̂ =

[

q
0

q
1

q
2

q
3

]T

(18)

R =

⎡⎢⎢⎣

1 − 2
�
q2

2
+ q2

3

�
2
�
q

1
q

2
+ q

0
q

3

�
2
�
q

0
q

2
− q

1
q

3

�
2
�
q

1
q

2
+ q

0
q

3

�
1 − 2

�
q2

1
+ q2

3

�
2
�
q

2
q

3
− q

0
q

1

�
2
�
q

1
q

3
− q

0
q

2

�
2
�
q

0
q

1
− q

2
q

3

�
1 − 2

�
q2

1
+ q2

2

�
⎤
⎥⎥⎦

(19)q
�
�i

�
=

⎡⎢⎢⎢⎣

q0(�i)

q1(�i)

q2(�i)

q3(�i)

⎤⎥⎥⎥⎦
=

⎡⎢⎢⎢⎣

cos
�
�i∕2

�
0

0

sin
�
�i∕2

�

⎤⎥⎥⎥⎦
; i = 1, 2, 3

(20)q(�) =

⎡
⎢
⎢
⎢
⎣

q
0
(�)

q
1
(�)

q
2
(�)

q
3
(�)

⎤
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎣

cos (�∕2)

0

0

sin (�∕2)

⎤
⎥
⎥
⎥
⎦

(21)R =

⎡
⎢
⎢
⎣

1 − 2q2

3
−2q

0
q

3
0

2q
0
q

3
1 − 2q2

3
0

0 0 1

⎤
⎥
⎥
⎦

Table 1  The link lengths corresponding to values of θ near zero when 

solving for x

θ = 1 × 10−3 θ = 1 × 10−4 θ = 1 × 10−5

L1 (mm) 600.0025 600.0003 600.0000

L2 (mm) 600.0000 600.0000 600.0000

L3 (mm) 750.0040 750.0004 750.0000

Fig. 3  The position vectors defined in the mechanism
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Now we can express the geometric relations (16) by utilizing 

the rotation matrices in terms of the quaternions (21):

Furthermore, we can write the unit norm constraints of the 

quaternions as follows:

Since in this case:

then we can rewrite (28)–(29) as follows:

To this point, we can see that we have ten equations with thirteen 

variables, i.e. x, y, q0(α1), q3(α1), q0(α2), q3(α2), q0(α3), q3(α3), q0(θ), 

q3(θ), x1, x2, and x3. However, three variables among the 13 variables 

are known. In other words, we have ten equations with ten unknowns.

For ease, x can be computed using (13). When θ is zero, 

we can replace it with a small value near zero to accurately 

compute x. Once θ and x are obtained, we can use any pair 

of (22)–(23), (24)–(25), or (26) – (27). Using (22)–(23) is 

easier since we do not involve q3(θ) for which we need to 

convert θ to get q3(θ). From (22), we have:

Substituting (33) into (31), we obtain the following:

(22)x = x
2
+ L

2
(1 − 2q

3
(�

2
)2)

(23)y = 2L
2
q

0
(�

2
)q

3
(�

2
)

(24)x = x
1
+ L

1
(1 − 2q

3
(�

1
)2) − xp2

(1 − 2q
3
(�)2)

(25)y = 2L
1
q

0
(�

1
)q

3
(�

1
) − 2xp2

q
0
(�)q

3
(�)

(26)x = x
3
+ L

3
(1 − 2q

3
(�

3
)2) − xp3

(1 − 2q
3
(�)2)

(27)y = 2L
3
q

0
(�

3
)q

3
(�

3
) − 2xp3

q
0
(�)q

3
(�)

(28)q0(�i)
2 + q1(�i)

2 + q2(�i)
2 + q3(�i)

2 = 1; i = 1, 2, 3

(29)q
0
(�)2 + q

1
(�)2 + q

2
(�)2 + q

3
(�)2 = 1

(30)
q

1
(�

1
) = q

2
(�

1
) = q

1
(�

2
) = q

2
(�

2
)

= q
1
(�

3
) = q

2
(�

3
) = q

1
(�) = q

2
(�) = 0

(31)q0(�i)
2 + q3(�i)

2 = 1; i = 1, 2, 3

(32)q
0
(�)2 + q

3
(�)2 = 1

(33)q
3
(�

2
) =

√

(

1

2
−

x − x
2

2L
2

)

(34)
q

0
(�

2
) =

√

(

1

2
+

x − x
2

2L
2

)

Now we can get y in terms of the knowns by substituting 

(34) into (23):

It is worth mentioning that (35) applies for all values of θ, 

not only for θ equal or close to zero. Therefore, it is more 

practical to use (35) instead of (14) to compute y for all 

cases.

3  Hand‑Eye and Robot‑World Calibration

The kinematic calibration presented in this paper utilized a Leica 

absolute laser tracker in combination with a T-Mac TMC30-F 

reflector to measure the platform poses. The laser tracker head is 

automatically controlled to track the pose of the reflector rigidly 

attached on the platform. Therefore, the laser tracker measures 

the pose of the reflector instead of the platform. The use of a 

similar laser tracker for the external kinematic calibration of a 

serial kinematics mechanism can be found in [18]. The laser 

tracker in combination with the reflector used in this work is 

capable of measuring all rigid body DOFs which include both 

position and orientation, i.e. three translational DOFs and three 

rotational DOFs. Figure 4 shows the local frame of the reflector. 

As shown in the figure, the origin of the reflector frame takes 

place at the center of the reflector prism whereas the three axes 

of the reflector frame are aligned with the geometry of the reflec-

tor. The accuracy of the laser tracker is ± 15 μm for the position 

and 0.01 degree for the rotation.

Since the laser tracker is an external device, the reflec-

tor pose is provided with respect to the measurement frame 

fixed to the laser tracker frame. Figure 5 depicts the trans-

formations among the machine base frame  FB, the platform 

frame  FP, the measurement frame  FM, and the reflector frame 

(35)y =

√

(

L2

2
−

(

x − x
2

)2
)

Fig. 4  The T-Mac TMC30-F reflector and its local frame
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 Fr. T1 is the transformation from the machine base frame 

to the platform. This is given by the forward kinematics of 

the mechanism. T2 is the transformation from the measure-

ment frame to the reflector frame. X1 is the transformation 

from the reflector frame to the platform, whereas X2 is the 

transformation from the measurement frame to the machine 

base frame. The platform or end-effector is commonly called 

a hand whereas the reflector is called an eye. A calibration 

to estimate the transformation X1 is accordingly called the 

hand-eye calibration. The measurement frame is also com-

monly called the world frame and consequently a calibration 

to estimate the transformation X2 is usually called the robot-

world calibration. Since the laser tracker at hand is capable 

of providing the six-DOF pose of the reflector, T2 is wholly 

known. Unfortunately, X1 and X2 are unknown. As a result, 

they should be estimated before calibrating the mechanism.

To solve for X1 and X2, at least three different poses of the 

mechanism should be measured and T1 should be available. 

In this case, T1 is obtained based on the nominal values of 

the mechanism geometry. Hence, the estimation of X1 and X2 

assumes that the nominal values of the mechanism geometry 

are good enough. These nominal values are to be calibrated 

later based on the obtained X1 and X2. The estimation of X1 

and X2 can be classified into two broad categories: separable 

(sequential) and simultaneous techniques. The former tech-

niques include [19–23] whereas the latter techniques include 

[24–31]. In the former techniques, X1 is first obtained and 

subsequently, X2 is computed based on the obtained X1. This 

approach is more straightforward but gives a less precise 

solution. On the other hand, the latter techniques estimate 

both X1 and X2 simultaneously. In this work, the former 

approach is applied only to obtain the initial values for the 

next algorithm proposed to refine the solution.

Let T1, T2, X1, and X2 be homogeneous transformation 

matrices which contain both rotation and translation com-

ponents. The estimation of X1 can be derived based on the 

following relation among the transformation matrices:

For a pair of mechanism poses as illustrated in Fig. 6, we 

have the following:

It can be observed from Fig. 6 that X1 and X2 are constant, 

whereas T1 and T2 change with the mechanism pose.

Upon manipulating (37a) and (37b), we have:

where

Notice that A and B are homogeneous transformation 

matrices. RA and RB are rotation matrices whereas tA and 

tB are position vectors. Equation (38), commonly known as 

AX = XB problem, is the hand-eye calibration problem.

A separable closed-form hand-eye calibration following 

[19] is employed here. Instead of describing the hand-eye 

calibration procedure in a derivation format, the proce-

dure is described briefly here in a sequential manner as the 

following:

Step 1 Find the transformation T1 of two different poses. 

This is obtained by the forward kinematics of the mecha-

nism using the nominal values of the mechanism geom-

etry, namely L1, L2, L3, xp2, and xp3.

(36)T
2
X

1
= X

2
T

1

(37a)T
21

X
1
= X

2
T

11

(37b)T
22

X
1
= X

2
T

12

(38)AX
1
= X

1
B

(39)A = T
−1

22
T

21
=

[

R
A

t
A

0 1

]

(40)B = T
−1

12
T

11
=

[

R
B

t
B

0 1

]

Fig. 5  Transformations T1, T2, X1, and X2 Fig. 6  Transformations in a pair of mechanism poses
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Step 2 Find the transformation T2 of the two poses. This 

is given directly by the measurement of the full pose of 

the reflector by using the laser tracker. In this work, the 

measurement of the reflector orientation is provided in 

quaternions.

Step 3 Compute the matrices A and B for the two poses 

by using (39) and (40).

Step 4 Convert the rotation matrices RA and RB into an 

axis-angle representation defined by a rotation angle α 

and a rotation axis (n1, n2, n3).

Step 5 Define P̄
A
 and P̄

B
 as follows:

Step 6 Define υ and S as follows:

Step 7 We have the following linear system:

With only a pair of poses, this linear system is singular. 

Therefore, at least two pairs of poses, i.e. three different poses, 

are required. Perform Step 1 to Step 7 for all n poses and 

accordingly stack (45) from all pairs of poses to compose the 

following overdetermined system:

Solve for ̄̄P
X

1
 by using linear least squares:

(41)P̄
A
= 2 sin

�
𝛼
(A)

2

�⎡⎢⎢⎣

n
(A)

1

n
(A)

2

n
(A)

3

⎤
⎥⎥⎦
; 0 ≤ 𝛼

(A)
≤ 𝜋

(42)P̄
B
= 2 sin

�
𝛼
(B)

2

�⎡
⎢⎢⎣

n
(B)

1

n
(B)

2

n
(B)

3

⎤
⎥⎥⎦
; 0 ≤ 𝛼

(B)
≤ 𝜋

(43)𝜐 =

⎡
⎢
⎢
⎣

𝜐x

𝜐y

𝜐z

⎤
⎥
⎥
⎦
= P̄A + P̄B

(44)S = skew(�) =

⎡
⎢
⎢
⎣

0 −�z �y

�z 0 −�x

−�y �x 0

⎤
⎥
⎥
⎦

(45)S
̄̄
P

X
1

= P̄
A
− P̄

B

(46)
⌢

S
̄̄
P

X
1

=

⎡
⎢⎢⎢⎣

S
1

S
2

⋮

S
n

⎤
⎥⎥⎥⎦
̄̄
P

X
1

= b =

⎡
⎢⎢⎢⎣

�
P̄

A
− P̄

B

�
1�

P̄
A
− P̄

B

�
2

⋮�
P̄

A
− P̄

B

�
n

⎤⎥⎥⎥⎦

(47)̄̄
P

X
1

=

(

⌢

S

T
⌢

S

)

−1

⌢

S

T

b

Step 8 Compute P̄
X

1

 as follows:

Step 9 Convert P̄
X

1

 to the rotation matrix of the transfor-

mation X1, namely R
X

1

:

where I is an identity matrix whereas skew
(

P̄
X

1

)

 is a 

skew-symmetric matrix defined in a similar fashion to 

(44). To this point, we solve for the rotation matrix of the 

transformation X1.

Step 10: Define a linear system involving the translation 

vector of the transformation X1, namely tX1, as follows:

Solve the linear system (50) by using linear least squares:

Equations (50) and (51) hold in general for three-dimen-

sional Euclidean space. Since the mechanism at hand is 

planar, the dimensions of (50) and (51) should be reduced 

to a two-dimensional Euclidean space. Having the mecha-

nism on the XY plane, the elements corresponding to the 

Z-axis in (50) and (51) should be suppressed. If it is not sup-

pressed and accordingly x, y, and z elements of tX1 are all to 

be solved, the system will be rank deficient. This indicates a 

configuration degeneracy. Physically, this means that there 

is no reference in the z-direction to which the z element of 

tX1 should be defined. As a result, an infinite number of pos-

sible values of z exist.

Equations (49) and (51) completely define the transforma-

tion matrix X1:

where, in the case of planar mechanism working on the XY 

plane:

(48)
P̄

X
1

=

2
̄̄
P

X
1

√

1 +
‖
‖
‖
̄̄
P

X
1

‖
‖
‖

2

(49)R
X

1

=

⎛⎜⎜⎜⎝
1 −

���P̄
X

1

���
2

2

⎞⎟⎟⎟⎠
I +

1

2

�
P̄

X
1

P̄
T

X
1

+

�
4 −

���P̄
X

1

���
2

skew
�
P̄

X
1

��

(50)Gt
X

1

=

(

R
B
− I

)

t
X

1

= d = R
X

1

t
A
− t

B

(51)t
X

1

=

(

G
T
G
)

−1

G
T
d

(52)X
1
=

[

R
X

1
t
X

1

0 1

]

(53)tX
1
=

⎡
⎢
⎢
⎣

tX
1
(x)

tX
1
(y)

0

⎤
⎥
⎥
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Equation (53) also implies that the zero coordinate of the 

Z-axis is aligned with the reflector.

After the hand-eye transformation X1 has been estimated, 

the robot-world transformation X2 can be easily estimated by 

rearranging (36):

Using n different mechanism poses in the measurement, 

we accordingly have n different T1 and T2. As a result, 

there will be n different X2. To obtain a single X2, which is 

expected to be constant, we average the elements of T1 and 

T2 in an element-wise manner to get an averaged, constant 

X2.

It is worth mentioning that the selected poses should be 

completely different from each other in all coordinates in 

order to get the best estimates. In this case, the x, y, and θ 

values should be completely different among the poses. In 

this work, twelve experimental measurement data was care-

fully taken in which the x, y, and θ values of the poses are 

entirely different.

4  Kinematics of the Combined Mechanism 
with the External Measurement Device

The pose measurement is always provided with respect to 

the measurement frame. Since the kinematic calibration 

uses an external pose-measurement device, an extended 

kinematic model should be established to include the hand-

eye and robot-world transformations as described earlier. A 

homogeneous transformation is very convenient to be used 

(54)X
2
= T

2
X

1
T
−1

1

to represent this kinematics. Figure 7 shows all the homoge-

neous transformation matrices in the combined mechanism. 

For convenience, a similar matrix notation is used for the 

upper mechanism. The asterisk superscripts indicate trans-

formation matrices belonging to the upper mechanism.

The transformation among the laser tracker, the reflec-

tor, and the lower mechanism has been described earlier 

in (36). Similarly, the homogeneous transformation of the 

laser tracker, the reflector, and the upper mechanism can 

be written as:

Alternatively, the following homogeneous transforma-

tion can also be used:

where X0 denotes the homogeneous transformation from the 

machine base frame to the base frame of the upper mecha-

nism. Using (56), we have:

Another way to express the kinematics involving the 

laser tracker and the reflector is by using vector notation. 

Figure 8 shows the position vectors in the combined mech-

anism. The superscript indicates the frame in which a posi-

tion vector r is expressed, whereas the subscript indicates 

a point defined by the position vector. The subscripts and 

superscripts M, B, O, P, and r respectively represent the 

measurement frame, machine base frame, base frame of 

(55)T
∗

2
X
∗

1
= X

∗

2
T
∗

1

(56)T
∗

2
X
∗

1
= X

2
X

0
T
∗

1

(57)T
∗

2
= X

2
X

0
T
∗

1

(

X
∗

1

)

−1

(58)T
∗

1
=

(

X
2
X

0

)

−1

T
∗

2
X
∗

1

Fig. 7  Homogeneous transformations in the combined mechanism 

with a laser tracker and reflectors, namely T1, T2, X1, X2 (for the lower 

mechanism), T∗

1
, T

∗

2
, X

∗

1
, X

∗

2
 (for the upper mechanism), and  X0 which 

connects both mechanisms

Fig. 8  Position vectors in the combined mechanism with a laser 

tracker and reflectors, where the subscripts indicate the points of 

interest whereas the superscripts indicate the reference frames
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the upper mechanism, platform frame, and reflector frame. 

For example, a notation rM

B
 denotes the position vector of 

the machine base frame origin B with respect to the meas-

urement frame M.

The additional subscripts L and U indicate the lower 

and upper mechanism, respectively. The transformation 

between frames may involve a rotation matrix R which 

represents the rotational transformation between two 

frames. Similarly, a notation RM

B
 , as an example, denotes 

the rotation matrix from the machine base frame B to the 

measurement frame M.

For more clarity, mainly when dealing with rotational 

transformation, Fig. 9 shows only the orientation of all the 

frames. The drawn axes indicate the positive directions of the 

axes. The orientation of the axes shown in this figure follows 

the right-hand rule in which the cross product between the X 

and Y axes gives the direction of the Z-axis. For more con-

venience, the base frame of the upper mechanism is oriented 

such that its X and Y axes create the planar workspace of the 

upper mechanism. Accordingly, the positive Z-axis is pointing 

downward. Using such an orientation, the inverse and forward 

kinematics of both the lower and upper mechanisms can be 

written on the XY plane.

Since the mechanisms are planar, by referring to Fig. 6, 

their rotation about their base frames can be represented by an 

elementary rotation matrix about the Z-axis, i.e.:

(59)R
B

P,L
= Rz

(

�L

)

where Rz is an elementary rotation matrix about Z-axis 

whereas θL and θU are the rotation angles of the lower and 

upper mechanisms, respectively.

The reflectors are attached to the platforms, as shown in 

Fig. 6, such that:

where I and Rx are an identity matrix and an elementary rota-

tion matrix about the X-axis, respectively. This means that 

the lower reflector frame is aligned with the lower platform 

frame whereas the upper reflector frame is also aligned but 

rotated about the X-axis by –π/2 rad. This arrangement can 

be made with the aid of measurement devices such as digital 

calipers, digital depth gage, and precision square.

The position of the reflector mounted on the lower platform 

can be expressed in the measurement frame as follows:

where RM

B
 denotes the rotation matrix from the machine base 

frame to the measurement frame whereas RB

r,L
 denotes the 

rotation matrix from the reflector frame to the machine base 

frame.

Since the reflector frame is aligned with the platform 

frame, i.e. the orientation transformation between them is 

represented by an identity rotation matrix R
P,L

r,L
 , the rotation 

of the reflector frame in the measurement frame is given by:

As a result, we have:

Substituting (65) into (63), we obtain:

Simplifying (66) yields:

Both the position of the reflector rM

r,L
 and the orientation of 

the reflector RM

r,L
 , expressed in the measurement frame, are 

measured by using the laser tracker. The rotation matrix RM

B
 

and the position vector rM

B
 can be estimated by using the 

robot-world calibration, whereas the position vector r
P,L

r,L
 can 

be estimated by using the hand-eye calibration.

(60)R
O

P,U
= Rz

(

�U

)

(61)R
P,L

r,L
= I

(62)R
P,U
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= R
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)

(64)R
M

r,L
= R
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= R
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B
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(65)R
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(

R
M

B
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−1
R

M

r,L

(66)r
M
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M

B
+ R

M

B

(

r
B

P,L
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(

R
M
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)−1
R

M

r,L
r

P,L
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(67)r
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M
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Fig. 9  Orientation of the frames (drawn axes indicate positive direc-

tions) namely the measurement frame M, the lower machine base 

frame B, the upper machine base frame O, the lower platform frame 

P,L, the upper platform frame P,U, the lower reflector frame r,L, and 

the upper reflector frame r,U
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The position of the platform end-effector in the base 

frame rB

P,L
 is given by the forward kinematics, i.e.:

where f1 and f2 are the forward kinematics equations and 

PL contains all the geometric parameters of the lower 

mechanism.

For convenience, the Z-axis of the machine base frame is 

assumed to be aligned with the Z-axis of the reflector frame. 

In other words, the z coordinate of the reflector frame origin 

with respect to the machine base frame is zero:

Similarly, the position of the reflector mounted on the 

upper platform can be expressed in the measurement frame 

as follows:

The rotation of the reflector frame in the measurement 

frame, which is measured by using the laser tracker, can be 

written as:

Solving for RO

P,U
 from (71) yields:

Because we have (62), then:

Substituting (73) into (70), we obtain:

In fact, both the position of the reflector rM

r,U
 and the ori-

entation of the reflector RM

r,U
 , expressed in the measurement 

frame, are measured by using the laser tracker. The rota-

tion matrix RM

O
 and the position vector rM

O
 can be estimated 

by using the robot-world calibration, whereas the position 

vector r
P,U

r,U
 can be estimated by using the hand-eye calibra-

tion. The position of the platform end-effector in the base 

(68)rB
P,L

=

⎡
⎢
⎢
⎣
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yL
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⎤
⎥
⎥
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⎡
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0
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frame of the upper mechanism rO

P,U
 is given by the forward 

kinematics, i.e.:

where f1 and f2 are the forward kinematics equations and 

PU contains all the geometric parameters of the upper 

mechanism.

The transformation from the machine base frame B to 

the base frame of the upper mechanism O can be obtained 

from the following relations:

From (76) and (77), we obtain:

Figure 10 shows the laser tracker fixed sitting beside 

the prototype machine. Figure 11 depicts the reflector 

mounted on the lower and upper platforms. Since only 

one reflector is available, the reflector was first mounted on 

the lower platform and subsequently mounted on the upper 

platform, or vice versa. In each setup, the estimation of 

the hand-eye transformation, robot-world transformation, 

and the geometric parameters of the lower mechanism 

was conducted. As mentioned earlier, the reflector should 
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xU
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Fig. 10  The laser tracker with a reflector installed on the machine
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be installed to satisfy (61) and (62). To verify this align-

ment, one should observe the estimated rotation matrix 

of the reflector frame with respect to the platform frame, 

namely R
X1,L = R

P,L

r,L
 and R

X1,U = R
P,U

r,U
 . After the estimation 

was conducted for both the mechanisms, the transforma-

tion from the machine base frame B to the base frame of 

the upper mechanism O can be estimated.

5  Estimation Using Nonlinear Least Squares

5.1  Nonlinear least squares algorithm

In this section, Gaussian least squares differential correction 

(GLSDC) algorithm [32–34] (also called the Gauss–Newton 

nonlinear least squares) is applied for the refinement of the 

hand-eye calibration as well as the calibration of the mecha-

nism geometric parameters. Using this algorithm, the nonlin-

earity of the system is taken into consideration.

Let P and Y be the parameters to be estimated and the model 

function, respectively, then the measured function values are 

given with a noise υ as follows:

The noise υ is typically Gaussian with zero mean and a 

standard deviation is given by the uncertainty of the measure-

ment device.

The model function Y for the lower mechanism is given 

by (67), i.e.:

whereas the model function Y for the upper mechanism is 

given by (74), i.e.:

The residual error is given by:

Notice that the tilde (~) mark on a parameter indicates a 

measured parameter whereas a hat mark indicates an esti-

mated parameter. Given m measurements, the measured 

function values Ỹ  , the estimated function values Ŷ  , and 

accordingly the residual errors e should be stacked in a sin-

gle vector.

For the calibration of the lower mechanism, the residual 

error is defined as:

The measured position vector r̃M

r,L
 is provided by the laser 

tracker, whereas the estimated position vector r̂M

r,L
 is evalu-

ated by using (67) or (81). Similarly, the residual error for 

the calibration of the upper platform is defined as:

While the laser tracker provides the measured position vec-

tor r̃M

r,U
 , the estimated position vector r̂M

r,U
 is evaluated by 

using (74) or (82).

Besides the position vectors r̃M

r,L
 and r̃M

r,U
 , the other param-

eters given by measurements are the orientation matrices RM

r,L
 

and RM

r,U
 , as well as the active joint positions which contrib-

ute to the forward kinematics solution of both mechanisms.

The estimation is conducted to find the estimates of the 

parameters P̂ which minimizes the following cost function:

and accordingly minimizes the residual error in (83)–(85). 

The cost function F in (86) indicates the norm or the square 

of the residual error. The matrix W denotes the weight matrix 
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Fig. 11  The reflector mounted a on the upper platform and b on the 

lower platform
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which is, in this work, chosen to be an identity matrix. Using 

GLSDC, the parameter estimates are computed iteratively 

as follows:

where

and the subscript k indicates the k-th iteration.

A modification to (88) called the Levenberg–Marquardt 

algorithm (also called the damped least squares) had been 

proposed to speed up the convergence in the case of initial 

values far from the “true” values. Since the initial val-

ues assigned in this work are considered close enough to 

the “true” values, the GLSDC is sufficient to give a fast 

convergence.

The Jacobian matrix H is obtained by differentiating the 

model function with respect to the estimated parameters:

where Yx, Yy, and Yz denote the x, y, and z components of the 

model function Y.

Given m measurements, the Jacobian matrix H should 

be stacked as follows:

The squared system Jacobian matrix in each iteration is 

the inverted part in (88), i.e.:

The matrix J should have a full rank in order to give 

a trusted solution. This full rank indicates that all the 

parameters are independent and therefore fully identified. 

In other words, a rank deficiency by n indicates that n 

parameters are dependent and therefore unidentified. The 

determination of the unidentified parameters can be done 

mathematically or through knowledge on the parameter 

dependency of the physical system. In a system with a 

rank deficiency, the dependent parameters should be elimi-

nated until a full-rank system is obtained. In such a case, 

the nominal parameter values can be used. The dependent 

parameters can be estimated in the next step employing 

the estimates of the independent parameters having been 

obtained previously. This is commonly called the subset 

(87)X̂
k+1

= X̂
k
+ Δx

(88)Δx =
(

H
T

k
WH

k

)−1

H
T

k
We

k

(89)H =

�Y

�P
=

[

Hx Hy Hz

]T
=

[

�Yx

�P

�Yy

�P

�Yz

�P

]T

(90)Hx =

⎡
⎢
⎢
⎢
⎣

�Yx1

�P

⋮
�Yxm

�P

⎤
⎥
⎥
⎥
⎦

; Hy =

⎡
⎢
⎢
⎢
⎣

�Yy1

�P

⋮
�Yym

�P

⎤
⎥
⎥
⎥
⎦

; Hz =

⎡
⎢
⎢
⎢
⎣

�Yz1

�P

⋮
�Yzm

�P

⎤
⎥
⎥
⎥
⎦

(91)H
3mx5

=

[

Hx Hy Hz

]T

(92)J = H
T

k
WH

k

selection which results in a sequential estimation, i.e. the 

estimation is conducted in several steps. This approach 

assumes that the nominal parameter values should be 

good enough. Figure 12 shows how the subset selection 

is implemented in the GLSDC algorithm. As shown in 

the flowchart, if J does not have a full rank N then only M 

parameters are firstly estimated where M < N is the rank of 

J. This, as will be discussed soon, includes the following 

sequential estimation stages:

Stage 1 Estimation of the hand-eye and robot-world trans-

formation parameters to refine the closed-form solution 

obtained previously.

Stage 2 Estimation of the geometric parameters of the 

lower mechanism. This consists of two steps.

Stage 3 Estimation of the position of the base frame of 

the upper mechanism,rB

O
.

Stage 4 Estimation of the geometric parameters of the 

upper mechanism. Similar to the case of the lower plat-

form, this consists of two steps.

The iterations in the GLSDC keeps running until the 

norm of ∆F is less than a specified threshold. This is the 

stopping criteria of the GLSDC algorithms. In this work, 

the norm (∆F) of 1.0 × 10−10 is used.

5.2  Refinement of the Hand‑Eye and Robot‑World 
Calibration

After the procedure described in Sect.  1 has been per-

formed to obtain the rough estimates of the hand-eye and 

Fig. 12  Flowchart of the subset selection in the implementation of 

GLSDC
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robot-world transformations, a refinement is conducted by 

using the obtained estimates as initial values in an itera-

tive estimation using GLSDC. For the lower mechanism, 

since the orientation of the reflector frame is aligned with 

that of the platform frame, the remaining parameters which 

should be estimated to establish the hand-eye and robot-

world transformations are the position and orientation of the 

machine base frame with respect to the measurement frame, 

namely rM

B
 and RM

B
 , as well as the position of the reflector 

with respect to the lower platform frame, namely r
P,L

r,L
 . As 

the rotation matrix RM

B
 is defined in terms of quaternions, 

namely q0, q1, q2, and q3, the position vector rM

B
 is defined 

by the components xB, yB, and zB, and the position vector 

r
P,L

r,L
 is defined by the components xr and yr while zr= 0, the 

parameters to be estimated are:

Similarly for the upper mechanism, since the orientation 

of the reflector frame is aligned with that of the platform 

frame with a rotation of –π/2 about X-axis, the remaining 

parameters which should be estimated to establish the hand-

eye and robot-world transformations are the position and 

orientation of the machine base frame with respect to the 

measurement frame, namely rM

O
 and RM

O
 , as well as the posi-

tion of the reflector with respect to the lower platform frame, 

namely r
P,U

r,U
 . As the rotation matrix RM

O
 is defined in terms 

of quaternions, namely q0, q1, q2, and q3, the position vec-

tor rM

O
 is defined by the components xO, yO, and zO, and the 

position vector r
P,U

r,U
 is defined by the components xr and zr 

while yr= 0, the parameters to be estimated are:

The evaluation of the squared system Jacobian matrix J 

for both the lower and upper mechanisms shows that its rank 

is 9 (full rank) and therefore all the parameters in (93) and 

(94) can be estimated in a single step for each mechanism. 

(93)P =

[

q
0

q
1

q
2

q
3

xB yB zB xr yr

]T

(94)P =

[

q
0

q
1

q
2

q
3

xO yO zO xr zr

]T

Tables 2 and 3 show both the estimates obtained using 

the closed-form solution as described in Sect. 1 and those 

obtained through the refinement using the GLSDC, for the 

lower and upper mechanisms, respectively.

As a partial benchmark, the available nominal value of yr 

is 185 mm. Since the reflector is mounted well on the lower 

platform, the deviation from the nominal value should not 

be too large. The estimated value of yr = 186.087565 mm 

is considered acceptable. This indicates that the refinement 

works well.

After the hand-eye and robot-world transformations for 

both the lower and upper mechanisms have been performed, 

the transformation from the machine base frame B to the 

base frame of the upper mechanism O can be easily com-

puted by using (78) and (79). The obtained rotation matrix 

is:

whereas the position vector from B to O is:

This shows that the origin of the X-axis of the base frame 

of the upper mechanism O is shifted by − 2.084870 mm 

from that of the machine base frame B. In the design, xB

O
 is 

expected to be zero. However, the estimated value shows that 

it is not zero. This occurs because there may be an error in 

the manufacturing of the machine base structure.

(95)R
B

O
=

⎡
⎢
⎢
⎣

1.001862 −0.001390 −0.001831

−0.001834 −0.002087 −1.001861

0.001386 1.001862 −0.002090

⎤
⎥
⎥
⎦

(96)rB
O
=

⎡
⎢
⎢
⎣

xB
O

yB
O

zB
O

⎤
⎥
⎥
⎦
=

⎡
⎢
⎢
⎣

−2.084870

898.462981

−637.302275

⎤
⎥
⎥
⎦

Table 2  The estimated hand-eye and robot-world transformation 

parameters for the lower mechanism

Parameter Closed-form solution GLSDC solution

q0 0.698220 0.704535

q1 0.710261 0.708877

q2 − 0.001228 0.004105

q3 0.003017 0.000943

xB (mm) − 520.639720 − 866.594463

yB (mm) 2175.139684 2169.653698

zB (mm) − 861.763839 − 1170.828004

xr (mm) 141.733177 143.192701

yr (mm) 182.660182 186.087565

Table 3  The estimated hand-eye and robot-world transformation 

parameters for the upper mechanism

Parameter Closed-form solution GLSDC solution

q0 1.041334 − 0.004111

q1 0.147820 1.000361

q2 − 0.130918 0.002880

q3 0.033675 − 0.003159

xB (mm) − 710.871725 − 869.180182

yB (mm) 1788.690134 2800.708342

zB (mm) − 526.167776 − 269.454137

xr (mm) − 99.726060 − 109.462822

yr (mm) 229.062687 175.912422
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5.3  Estimation of the Mechanism Geometric 
Parameters

For each mechanism, there are five geometric parameters 

to be estimated, namely l1, l2, l3, xp2 and xp3. In the case of 

xp2= xp3= xp, which is the case of the prototype machine, 

there are four geometric parameters to be estimated, i.e. l1, 

l2, l3,and xp. Therefore, the parameters to be estimated are:

The observation shows that the squared system Jacobian 

matrix J gives only a rank of 4 in the case of five parameters 

to be estimated, i.e. when xp2≠ xp3, and a rank of 3 in the case 

of four parameters to be estimated, i.e. when xp2= xp3= xp. 

This is because one of all the geometric parameters to be 

estimated is dependent on the other four parameters. In other 

words, all the geometric parameters but one are known then 

the one parameter remaining can be calculated by using the 

closed-form geometric relation of the mechanism.

Another approach is to estimate all the geometric param-

eters in two steps. In the first step, L2, L3, xp2, and xp3 are 

estimated. In this step, the nominal value of L1 is used in 

the estimation iterations. In the second step, the remaining 

parameter, i.e. L1, is estimated. Although the nominal value 

of L1 is used in the first step, L1 is subsequently estimated in 

the second step. Using twelve unique calibration poses for 

each of the lower and upper mechanisms, the estimates of the 

geometric parameters of the lower and upper mechanisms 

along with their nominal values are shown in Tables 4 and 

5. The errors are defined as the difference between the esti-

mates and the nominal values. It can be observed in Tables 4 

and 5 that the estimate of L1 is similar to its nominal value. 

(97)P =

[

L
1

L
2

L
3

xp

]T

This is because the nominal value of L1 is used in the first 

step and subsequently it is estimated after the other parame-

ters have been estimated. In other words, the nominal values 

of L1 are retrieved in this two-step estimation.

6  Estimation of the Geometric Parameters 
Using Iterative Linear Least Squares

In this section, a linear error model is used for the kinematic 

calibration. Accordingly, the closed-form linear least squares 

estimation can be employed. From the kinematic relations 

given in (1)–(3), a small perturbation can be introduced to all 

the parameters which include the geometric parameters P, the 

active joint positions q, and the platform pose X. This small 

perturbation which represents a small error is a first-order 

approximation. Following (1)–(3), the perturbed kinematics 

can be written by differentiating the kinematics with respect 

to all parameters:

In a matrix form, (98)–(100) can be written compactly as:

where

(98)

L
1
�l

1
= (x + xp2

cos(�) − x
1
)

(�x + �xp2
cos(�) − xp2

sin(�)�� − �x
1
)

+ (y + xp2
sin(�))(�y + �xp2

sin(�) + xp2
cos(�)��)

(99)L
2
�l

2
= (x − x

2
)(�x − �x

2
) + y�y

(100)

L
3
�l

3
= (x + xp3

cos(�) − x
3
)

(�x + �xp3
cos(�) − xp3

sin(�)�� − �x
3
)

+ (y + xp3
sin(�))(�y + �xp3

sin(�) + xp3
cos(�)��)

(101)Jx�X + Jq�q = Jp�P

(102)

Jx =

⎡
⎢
⎢
⎣

X̂
1

y + xp2
sin(𝜃) X̂

1
xp2(cos(𝜃) − sin(𝜃))

(x − x
2
) y 0

X̂
3

y + xp3
sin(𝜃) X̂

3
xp3(cos(𝜃) − sin(𝜃))

⎤
⎥
⎥
⎦

(103)Jq =

⎡
⎢
⎢
⎣

−X̂
1

0 0

0 x
2
− x 0

0 0 −X̂3

⎤
⎥
⎥
⎦

(104)

Jp =

⎡
⎢
⎢
⎣

L
1

0 0 −X̂
1(cos 𝜃 + sin 𝜃) 0

0 L
2

0 0 0

0 0 L
3

0 −X̂
3(cos 𝜃 + sin 𝜃)

⎤
⎥
⎥
⎦

Table 4  The estimates of geometric parameters of the lower mecha-

nism (xp2 = xp3 = xp)

Parameter Estimate Nominal value Error

L1 (mm) 486.000000 486.000000 0.000000

L2 (mm) 500.985068 500.000000 0.985068

L3 (mm) 506.857577 507.000000 − 0.142423

xp (mm) 285.866049 285.000000 0.866049

Table 5  The estimates of geometric parameters of the upper mecha-

nism (xp2 = xp3 = xp)

Parameter Estimate Nominal value Error

L1 (mm) 600.000000 600 0.000000

L2 (mm) 475.001025 475 0.001025

L3 (mm) 604.000966 604 0.000966

xp (mm) 280.001333 280 0.001333
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Let all the terms in the left-hand side be called A, i.e.:

and B = Jp , then we can rewrite (101) as:

Having m measurements, we can stack (110) into the 

following overdetermined system:

where

The estimation of �P is aimed at minimizing the fol-

lowing cost function:

As the problem is an overdetermined system, a closed-

form solution for δp is given by the following linear least 

squares:

Since (115) denotes the errors in the geometric param-

eters, the estimated geometric parameters are given by:

where P̂ and P denote the estimated and nominal values of 

the geometric parameters, respectively.

Assuming that the measurement is given with respect 

to the machine base frame, the following is the sequential 

procedure to implement the linear least squares estimation 

based on the abovementioned linear error model:

Step 1 Assign the poses to be visited, X.

(105)X̂
1
= x + xp2

cos(𝜃) − x
1

(106)X̂
3
= x + xp3

cos(𝜃) − x
3

(107)�X =

[

�x �y ��
]T

(108)�q =

[

�x
1
�x

2
�x

3

]T

(109)�P =

[

�L
1
�L

2
�L

3
�xp2

�xp3

]T

(110)A = Jx�X + Jq�q

(111)A = B�P

(112)Ā = B̄𝛿P

(113)Ā =

⎡
⎢
⎢
⎢
⎣

A1

A2

⋮

A
m

⎤
⎥
⎥
⎥
⎦

; B̄ =

⎡
⎢
⎢
⎢
⎣

B1

B2

⋮

B
m

⎤
⎥
⎥
⎥
⎦

(114)F =
‖
‖B̄𝛿p − Ā‖‖

2
=

1

2

(
B̄𝛿p − Ā

)2

(115)𝛿P =

(

B̄
T
B̄
)

B̄
T
Ā

(116)P̂ = P + 𝛿P

Step 2 Measure the poses, Xmeasured.

Step 3 Calculate δX = Xmeasured − X.

Step 4 Perform the inverse kinematics to obtain the 

active joint positions q = f(X,P).

Step 5 Measure the active joint positions, qmeasured.

Step 6 Calculate δq = qmeasured – q.

Step 7  Calculate  A(X, �X, q, �q, P) = Jx�X + Jq�q 

[Eq. (110)].

Step 8 Compose the vector B(X,q,P).

Step 9 Repeat Step 1 to Step 8 for m measurements. 

Compose Ā and B̄ as in (113).

Step 10 Check the rank of B̄T
B̄.

Step 11 If B̄T
B̄ has full rank, then compute the linear 

least squares solution (115). Otherwise, eliminate the 

dependent parameters either mathematically, such as 

through SVD, or based on knowledge on the physical 

system.

In real practice, the measured poses Xmeasured is often 

given by an external measurement device such as a camera 

or a laser tracker as in this work. As a result, Xmeasured is 

given with respect to a measurement frame which is not 

aligned with the machine base frame. Accordingly, the 

assigned poses X should be defined with respect to the 

measurement frame. The values of X with respect to the 

measurement frame can be derived from (67) or (81) for 

the lower mechanism and from (74) or (82) for the upper 

mechanism.

From (67) or (81), we obtain:

In a similar fashion, from (74) or (81) we have:

The sequential procedure to implement the linear least 

squares estimation based on the linear model when an exter-

nal pose measurement device is used can be summarized as 

follows:

Step 1 Estimate the hand-eye and robot-world transfor-

mations.

Step 2 Assign X with respect to the machine base frame 

 FB for the lower mechanism and with respect to the base 

frame of the upper mechanism FO for the upper mecha-

nism.

Step 3 Measure the reflector position with respect to the 

measurement frame, namely rM

r,L
 for the lower mechanism 

and rM

r,U
 for the upper mechanism.

Step 4 Calculate Xmeasured by utilizing (117) for the lower 

mechanism and (118) for the upper mechanism.

(117)X
L
= r

B

P,L
=

(

R
M

B

)

−1
(

r
M

r,L
− r

M

B
− R

M

r,L
r

P,L

r,L

)

(118)

X
U
= r

O

P,U
=

(

R
M

O

)

−1

(

r
M

r,U
− r

M

O
− R

M

r,U

(

R
x

(

−

�

2

))

−1

r
P,U

r,U

)
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Step 5 Perform Step 3 to Step 11 as described for the pose 

measurement in the machine base frame.

Using the same measurement data as used in the GLSDC, 

the resulting overdetermined linear system (112) with all 

the geometric parameters to be estimated has a full-ranked 

B̄
T
B̄ . Therefore, the estimation can be performed straight-

forwardly in a single step. However, the estimates given by 

a single run of the algorithm are not satisfying. They are 

inconsistent and not guaranteed to be the optimum solution. 

Some coordinates may have an error less than that of the 

uncalibrated one, but some other coordinates may have an 

even more significant error than that of the uncalibrated one. 

This implies that the estimation algorithm fails to minimize 

the cost function, i.e. the residual errors.

To overcome this problem, the linear least squares 

algorithm as described above needs to be iterated until a 

minimum norm of the residual errors ε is achieved. Since 

this iterative linear least squares algorithm requires higher 

computational cost compared to the iterative nonlinear 

least squares, one can also stop the algorithm after a certain 

amount of time or a certain number of iterations and evaluate 

the obtained estimates. The flowchart of the iterative linear 

least squares is depicted in Fig. 13. It can be seen in the flow-

chart that the estimated parameter values are updated and 

subsequently supplied to the new linear system which will be 

solved iteratively until the stopping criteria as discussed is 

achieved. Furthermore, the norm of the residual is evaluated 

between any two consecutive iterations. If the norm of the 

residual is increasing, the new parameter values should be 

subtracted by the parameter errors. Otherwise, they should 

be summed. Using twelve unique calibration poses for each 

of the lower and upper mechanisms, the iterative linear least 

squares (124) provides the estimated geometric parameters 

of the lower and upper mechanisms as shown in Tables 6 and 

7, respectively. In a similar manner with the two-step estima-

tion using the nonlinear least squares, the errors are defined 

as the difference between the estimated and nominal values.

To this point, it still cannot be judged whether the esti-

mates of the geometric parameters obtained by using the 

nonlinear least squares or those obtained by the iterative 

linear squares are more accurate as the true values of the 

geometric parameters are unknown. To evaluate and com-

pare the accuracy of the estimates obtained by using both 

the algorithms, the pose errors will be evaluated in the next 

section upon the compensation of the kinematic parameters.

7  Compensation

After the estimation of the geometric parameters has been 

done, compensation should be conducted to improve the 

accuracy of the machine. This is performed by replacing 

the nominal geometric parameter values in the kinematics 

by the estimated ones. Since two estimation techniques have 

been implemented, the estimates from both the techniques 

Fig. 13  Flowchart of the iterative linear least squares

Table 6  Estimated geometric parameters of the lower mechanism 

obtained by using iterative linear least squares

Parameter Estimated value Nominal value Error �P

L1 (mm) 485.994173 486 − 0.005827

L2 (mm) 500.009894 500 0.009894

L3 (mm) 507.009070 507 0.009070

xp (mm) 285.000000 285 0.000000

Table 7  Estimated geometric parameters of the upper mechanism 

obtained by using iterative linear least squares

Parameter Estimated value Nominal value Error �P

L1 (mm) 599.995369 600 − 0.004631

L2 (mm) 474.992761 475 − 0.007239

L3 (mm) 603.988235 604 − 0.011765

xp (mm) 280.000000 280 0.000000
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were used for the compensation. To evaluate the accuracy 

of the mechanism pose, pose errors are defined for all coor-

dinates of the pose, i.e. x, y, and θ at the twelve different 

poses. Figure 14 shows a comparison between the pose 

errors of the uncalibrated and calibrated lower mechanism 

at the twelve different poses. For conciseness, the pose errors 

of the uncalibrated and calibrated upper mechanism are not 

shown in this paper as their behavior is similar to those of 

the lower mechanism. The pose errors are presented for each 

coordinate of the pose, i.e. x, y, and θ. It can be seen that the 

both the iterative nonlinear least squares (NLS, i.e. GLSDC) 

and the iterative linear least squares (LLS) algorithms suc-

cessfully suppress the pose errors to values very close to 

zero. Some of the plots in this figure cannot show clearly 

the difference between the pose errors corresponding to both 

the algorithms as the error curves look coincident although 

they have a small difference. It is shown that the average 

position accuracy before the calibration is around 0.9 mm 

whereas the average orientation accuracy is less than 0.2 

degree. The calibration using GLSDC provides an average 

accuracy of less than 0.004 mm for the position and less 

than 0.0002 degrees for the orientation, whereas the iterative 

linear least squares algorithm provides an average accuracy 

of less than 0.01 mm for the position and a similar aver-

age accuracy in the orientation to the GLSDC. In general, 

both the calibration algorithms can improve the position 

accuracy by around 0.2 mm. To illustrate more clearly, the 

plots of the pose errors of the lower mechanism correspond-

ing to only the calibrated parameters at the twelve different 

poses are shown in Fig. 15. The plots show clearly that the 

GLSDC performs better in the position accuracy than the 

iterative linear least squares. However, both algorithms do 

not perform differently in the orientation accuracy. It can be 

seen in these plots that the iterative nonlinear least squares 

algorithm outperforms the iterative linear least squares in 

the pose error suppression. In addition to that, the former 

algorithm also outperforms the latter in the computational 

cost as the former converges faster than the latter.

Fig. 14  Pose errors of a x coordinates, b y coordinates, and c angles 

θ of the lower mechanism at twelve data points (poses) before calibra-

tion and after calibration using NLS and iterative LLS

Fig. 15  Pose errors of a x coordinates, b y coordinates, and c angles 

θ of the lower mechanism at twelve data points (poses) after calibra-

tion using NLS and iterative LLS
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The improved accuracy mentioned above is position and 

orientation accuracy in the case of position tracking. To 

evaluate the effect of calibration in the accuracy of contour 

tracking, a test contour was executed using both the nominal 

and estimated parameters. Since the estimated parameters 

obtained by using the nonlinear least squares are more accu-

rate than those obtained by the iterative linear least squares, 

they are used in the test contour. In this work, a full circle 

was selected as the test contour. Figure 16 shows the contour 

performed by the lower mechanism and therefore lying on 

the XY plane. The circle is centered at (400, 300) mm and 

has a radius of 50 mm. As shown in the figure, the contour 

corresponding to the nominal parameters was at a glance 

very close to that corresponding to the calibrated (estimated) 

parameters. In order to compare the accuracy, contour errors 

which are defined as the difference between the nominal 

coordinates and the calibrated coordinates were plotted as 

shown in Fig. 17. Since the planar contour has two coordi-

nates, i.e. x and y, the contour errors should be evaluated for 

each coordinate. The figures depict the contour errors along 

the whole trajectory of the contour. It is shown in the figures 

that the contour corresponding to the calibrated parameters 

is more accurate by around 0.2 mm than that corresponding 

to the nominal (uncalibrated) parameters. This is consist-

ent with the position accuracy of around 0.2 mm provided 

by both the calibration algorithms. The remaining position 

accuracy is basically due to the posture and/or dynamics 

of the mechanism which is a task for the control system to 

overcome. Along the trajectory of the circle, the mechanism 

posture keeps changing. As can be seen in Fig. 17, at some 

postures the error is zero while at other postures the error 

starts increasing. 

8  Conclusion

It is shown that the nonlinear least squares algorithm suc-

cessfully refined the hand-eye and robot-world transfor-

mation previously obtained by using a simple separable 

technique. The evaluation of the contouring error also 

shows that the nonlinear least squares algorithm estimates 

more accurately the geometric parameters of the machine’s 

mechanisms than the iterative linear least squares algo-

rithm. In return to this higher accuracy, the nonlinear 

least squares algorithm should be performed in two steps 

by employing the subset selection approach in which m 

parameters should be firstly fixed at their nominal val-

ues while the rest of the parameters are estimated (where 

N is the total number of parameters to be estimated, r is 

the rank of the system Jacobian matrix, and m = N − r). 

Subsequently, the previously fixed parameter(s) should be 

estimated in the next estimation step. This implies that 

Fig. 16  Test contour performed by the lower mechanism (blue: using 

nominal values, red: using calibrated values). (Color figure online)

Fig. 17  Contour errors of a the absicca (x) coordinates and b ordinate 

(y) coordinates of the test contour
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the fixed parameter(s) in the first step should have a con-

siderably accurate value. Among all the estimated param-

eters, the parameter(s) which is believed to have the most 

accurate value(s) can be chosen as the fixed parameter(s). 

Such dependency to the nominal values of the parameters 

does not only occur in this situation; it also occurs in the 

hand-eye and robot-world calibration which assumes some 

degree of accuracy of the nominal values of the mecha-

nism geometric parameters. On the other hand, the closed-

form solution of the linear least squares should be iterated 

until it converges to the actual values. Otherwise, it may 

give estimates of the parameters that are worse than the 

nominal values due to divergence from the actual values. 

Finally, using the compensated kinematics, it is shown that 

both the position tracking error and the contour tracking 

error were reduced.
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