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Abstract 

Background: Sequencing technologies produce larger and larger collections of biosequences that have to be 

stored in compressed indices supporting fast search operations. Many compressed indices are based on the Bur-

rows–Wheeler Transform (BWT) and the longest common prefix (LCP) array. Because of the sheer size of the input it 

is important to build these data structures in external memory and time using in the best possible way the available 

RAM.

Results: We propose a space-efficient algorithm to compute the BWT and LCP array for a collection of sequences in 

the external or semi-external memory setting. Our algorithm splits the input collection into subcollections sufficiently 

small that it can compute their BWT in RAM using an optimal linear time algorithm. Next, it merges the partial BWTs in 

external or semi-external memory and in the process it also computes the LCP values. Our algorithm can be modi-

fied to output two additional arrays that, combined with the BWT and LCP array, provide simple, scan-based, external 

memory algorithms for three well known problems in bioinformatics: the computation of maximal repeats, the all 

pairs suffix–prefix overlaps, and the construction of succinct de Bruijn graphs.

Conclusions: We prove that our algorithm performs O(nmaxlcp) sequential I/Os, where n is the total length of the 

collection and maxlcp is the maximum LCP value. The experimental results show that our algorithm is only slightly 

slower than the state of the art for short sequences but it is up to 40 times faster for longer sequences or when the 

available RAM is at least equal to the size of the input.

Keywords: Burrows–Wheeler Transform, Longest common prefix array, Maximal repeats, All pairs suffix–prefix 

overlaps, Succinct de Bruijn graph, External memory algorithms
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Introduction

A fundamental problem in bioinformatics is the ability 

to efficiently search into the billions of DNA sequences 

produced by NGS studies. The Burrows Wheeler trans-

form (BWT) [1] is a well known structure which is the 

starting point for the construction of compressed indices 

for collections of sequences [2]. The BWT is often com-

plemented with the longest common prefix (LCP) array 

[3] since the latter makes it possible to efficiently emu-

late Suffix Tree algorithms [4, 5]. The construction of 

such data structures is a challenging problem. Although 

the final outcome is a compressed index, construction 

algorithms can be memory hungry and the necessity of 

developing lightweight algorithms was recognized since 

the very beginning of the field [6–8]. In lightweight algo-

rithms it is assumed that the input and the output fit 

in main memory but the amount of additional working 

memory is sublinear with the size of the input.

When even lightweight algorithms do not fit in RAM, 

one has to resort to external or semi-external memory 

construction algorithms (see [9–14] and references 

therein). In the external memory model [15] it is assumed 

that the main memory grows at most polylogarithmically 

with the size of the input. In the semi-external model the 

main memory can grow linearly with the size of the input 

but part of the working data has to reside on disk. In both 

models the complexity of the algorithms is usually meas-

ured in terms of disk I/Os, since data transfer is much 

slower than CPU operations.
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The space efficient computation of the BWT in main 

memory for a single sequence is well studied, and 

remarkable advances have been recently obtained [16, 

17]. Unfortunately, for external memory computation the 

situation is less satisfactory. For collections of sequences, 

the first external memory algorithm is the BCR algo-

rithm described in [18] that computes the multi-string 

BWT for a collection of total size n, performing a num-

ber of sequential I/Os proportional to nK, where K is 

the length of the longest sequence in the collection. This 

approach is clearly not competitive when the sequences 

have non-homogeneous lengths, and it is far from the 

theoretical optimal even for sequences of equal length. 

Nevertheless, the simplicity of the algorithm makes it 

very effective for collections of relatively short sequences, 

and it has become the reference tool for this problem. 

This approach was later extended [19] to compute also 

the LCP values with the same asymptotic number of I/

Os. When computing also the LCP values, or when the 

input strings have different lengths, the algorithm uses 

O(m) words of RAM, where m is the number of input 

sequences.

In this paper, we present a new space-efficient algo-

rithm for the computation of the BWT and LCP array 

for a collection of sequences in external or semi-external 

memory. Our algorithm takes the amount of available 

RAM as an input parameter, and tries to make the best 

use of it by splitting the input into subcollections suffi-

ciently small so that it can compute their BWT in inter-

nal memory using an optimal linear time algorithm. 

Next, it merges the partial BWTs in external or semi-

external memory and in the process it also computes 

the LCP values. Since the LCP values are computed in 

a non-standard order, the algorithm is completed by an 

external memory mergesort procedure that computes 

the final LCP array. We show that our algorithm per-

forms a number of sequential I/Os between O(n avelcp) 

and O(nmaxlcp) , where avelcp and maxlcp are respec-

tively the average and the maximum longest common 

prefix of the input sequences. To our knowledge, the only 

other known external memory algorithm for computing 

the BWT and LCP arrays of a collection of sequences is 

bwt-lcp-em, recently proposed in [20] that performs 

O(nmaxlcp) sequential I/Os and uses O(m + K ) words 

of RAM, where K is the fixed string length.

In “Related approaches” section we compare our 

approach with the ideas behind these previous works, and 

in “Experiments” section we compare their performance 

in practice. The experimental results show that BCR is 

the fastest algorithm for relatively short sequences while 

our algorithm is the fastest when the average LCP of the 

collection is relatively small compared to the lengths of 

the sequences. Both our algorithm and BCR appear to be 

faster than the available implementation of bwt-lcp-

em, which is however only a prototype implementation 

with some limitations on the admissible inputs.

Another contribution of the paper, which follows from 

our first result, is the design of simple external memory 

algorithms for three well known problems related to 

genomic sequences, namely: (i) the computation of maxi-

mal repeats [21, 22], (ii) the computation of the all pairs 

suffix–prefix overlaps [23–25], and (iii) the construc-

tion of succinct de Bruijn graphs [26–28]. Our external 

memory algorithms for these problems are derived from 

known internal memory algorithms, but they process the 

input data in a single sequential scan. In addition, for the 

problem of computing the all pairs suffix–prefix, we go 

beyond the recent solutions that compute all the overlaps 

[24, 25, 29, 30], and we compute only the overlaps above 

a certain length, still spending constant time per reported 

overlap. Our algorithms take as input the BWT and LCP 

array, together with two additional arrays that our BWT 

construction algorithm can compute without any asymp-

totic slowdown.

Since problems on genomic sequences often involve 

huge datasets, it is certainly important to provide effi-

cient external memory algorithms for the three problems 

described above. To our knowledge, only for the all pairs 

suffix–prefix problem there exists an external memory 

algorithm, namely the algorithm [30, Algorithm  2] that 

computes all the overlaps given the BWT, LCP, and Gen-

eralized Suffix Array of the input collection.

Background

Let s[1, n] denote a string of length n over an alphabet 

� of constant size σ . As usual, we assume s[n] is a spe-

cial symbol (end-marker) not appearing elsewhere in s 

and lexicographically smaller than any other symbol. We 

write s[i, j] to denote the substring s[i]s[i + 1] · · · s[j] . 

If j ≥ n we assume s[i, j] = s[i, n] . If i > j or i > n then 

s[i, j] is the empty string. Given two strings s1 and s2 we 

write s1 � s2 ( s1 ≺ s2 ) to denote that s1 is lexicographi-

cally (strictly) smaller than s2 . We denote by LCP(s1, s2) 

the length of the longest common prefix between s1 and 

s2.

The suffix array sa[1, n] associated to s is the permuta-

tion of [1, n] giving the lexicographic order of s ’s suffixes, 

that is, for i = 1, . . . , n − 1 , s[sa[i], n] ≺ s[sa[i + 1], n].

The longest common prefix array lcp[1, n + 1] is defined 

for i = 2, . . . , n by

the lcp array stores the length of the longest common pre-

fix (LCP) between lexicographically consecutive suffixes. 

For convenience we define lcp[1] = lcp[n + 1] = −1.

(1)lcp[i] = LCP(s[sa[i − 1], n], s[sa[i], n]);
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Let s1[1, n1], . . . , sk [1, nk ] denote a collection of strings 

such that s1[n1] = $1, . . . , sk [nk ] = $k , where $ 1 < . . . < 

$ k are k symbols not appearing elsewhere in s1, . . . , sk 

and smaller than any other symbol. Let sa1···k [1, n] 

denote the suffix array of the concatenation s1 · · · sk of 

total length n = �
k

h=1
nh . The multi-string BWT [19, 31] 

of s1, . . . , sk , denoted by bwt1···k [1, n] , is defined as

Essentially bwt1···k is a permutation of the symbols in 

s1, . . . , sk such that the position in bwt1···k of si[j] is given 

by the lexicographic rank of its context si[j + 1, ni] (or 

si[1, ni] if j = ni ). Figure 1 shows an example with k = 2 . 

(2)bwt1···k [i] =

{

sj[nj] if sa1···k [i] = �
j−1

h=1
nh + 1

sj[sa1···k [i] − �
j−1

h=1
nh − 1] if �

j−1

h=1
nh + 1 < sa1···k [i] ≤ �

j
h=1

nh.

Notice that for k = 1 , this is the usual Burrows–Wheeler 

Transform [1].

Given the suffix array sa1···k [1, n] of the concatena-

tion s1 · · · sk , we consider the corresponding LCP array 

lcp1···k [1, n] defined as in (1) (see again Fig. 1). Note that, 

for i = 2, . . . , n , lcp1···k [i] gives the length of the longest 

common prefix between the contexts of bwt1···k [i] and 

bwt1···k [i − 1] . We stress that all practical implementa-

tions use a single $ symbol as end-marker for all strings 

to avoid alphabet explosion, but end-markers from 

Fig. 1 LCP array and BWT for s1 = abcab$1 and s2 = aabcabc$2 , and multi-string BWT and corresponding LCP array for the same strings. Column 

id shows, for each entry of bwt12 = bc$2cc$1aaaabbb whether it comes from s1 or s2
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different strings are then sorted as described, i.e., on 

the basis of the index of the strings they belong to.

Computing multi‑string BWTs

The gSACA-K algorithm [32], based on algorithm SACA-

K [33], computes the suffix array for a string collection. 

Given a collection of strings of total length n, gSACA-

K computes the suffix array for their concatenation in 

O(n)  time using (σ + 1) log n additional bits (in prac-

tice, only 2KB are used for ASCII alphabets). gSACA-K 

is time and space optimal for alphabets of constant size 

σ = O(1) . The multi-string bwt1···k of s1, . . . , sk can be 

easily obtained from the suffix array as in (2). gSACA-K 

can also compute the lcp array lcp1···k still in linear time 

using only the additional space for the lcp values.

Merging multi‑string BWTs

The Gap algorithm [34], based on an earlier algorithm by 

Holt and McMillan [35], is a simple procedure for merg-

ing multi-string BWTs. In its original formulation the 

Gap algorithm can also merge LCP arrays, but in this 

paper we compute LCP values using a different approach 

more suitable for external memory execution. We 

describe here only the main idea behind Gap and refer 

the reader to [34] for further details.

For simplicity in the following we assume we are merging k 

single-string BWTs bwt1 = bwt(s1), . . . , bwtk = bwt(sk) ; 

the algorithm does not change in the general case where the 

inputs are multi-string BWTs. Computing bwt1···k amounts 

to sorting the symbols of bwt1, . . . , bwtk according to the 

lexicographic order of their contexts, where the context of 

symbol bwtj[i] is sj[saj[i], nj] . By construction, the symbols 

in each bwtj are already sorted by context, hence to com-

pute bwt1···k we only need to merge bwt1, . . . , bwtk without 

changing the relative order of the symbols within the input 

sequences.

The Gap algorithm works in successive iterations. Dur-

ing the h-th iteration it computes a vector Z(h) specify-

ing how the entries of bwt1, . . . , bwtk should be merged 

to have them sorted according to the first h symbols of 

their context. Formally, for j = 1, . . . , k the vector Z(h) 

contains |bwtj| copies of the value j arranged so that the 

following property holds.

Property 1 For j1, j2 ∈ {1, . . . , k} , the i1-th occurrence 

of j1 precedes the i2-th occurrence of j2 in Z(h) if and only 

if the length-h context of bwtj1 [i1] is lexicographically 

smaller than the length-h context of bwtj2 [i2] , or the two 

contexts are equal and j1 < j2 .  �

Property  1 is equivalent to state that we can logically 

partition Z(h) into b(h) + 1 blocks

such that each block corresponds to the set of symbols 

in bwt1···k , whose contexts are prefixed by the same 

length-h string. The context of any symbol in block 

Z(h)[ℓj + 1, ℓj+1] is lexicographically smaller than the 

context of the symbols in block Z(h)[ℓk + 1, ℓk+1] with 

k > j ; within each block, if j1 < j2 the symbols of bwtj1 

precede those of bwtj2 . We keep explicit track of such 

blocks using a bit array B[1, n + 1] such that at the end 

of iteration h it is B[i] �= 0 if and only if a block of Z(h) 

starts at position  i. By Property 1, when all entries in B 

are nonzero, Z(h) describes how the bwtj ( j = 1, . . . , k ) 

should be merged to get bwt1···k.

Related approaches

The strategy used by Gap to build multi-string BWTs 

follows the idea, introduced by [35, 36], of merging par-

tial BWTs, i.e. BWTs of subsets of the input collection. 

Interestingly, both previous algorithms for computing 

the BWT and LCP in external memory [19, 20] are also 

based on a merging strategy but instead of merging par-

tial BWTs, they merge the arrays L1 , L2 , L3 , …, where Li 

consists of the symbols which are at distance i from the 

end of their respective strings. The symbols inside each 

Li are sorted as usual by context. In the example of Fig. 1, 

we would have L1 = bc (since s1 ends with b$1 and s2 

ends with c$2 ), L2 = ab , (since s1 ends with ab$1 and s2 

ends with bc$2 ), L3 = ca and so on. Note that in L3 c pre-

cedes a since c ’s context ab$1 is lexicographically smaller 

than a ’s context bc$2 . Clearly, merging the arrays Li yields 

the desired multi-string BWT and the authors of [19, 20] 

show how to compute also the LCP array. The algorithms 

in [19, 20] differ in how the merging is done: [19] uses 

a refinement of a technique introduced in [9, 10], while 

[20] uses a refinement of Holt and McMillan merging 

strategy [35, 36].

The eGap algorithm

The eGap algorithm for computing the multi-string 

BWT and LCP array in external memory works in three 

phases. First it builds multi-string BWTs for sub-collec-

tions in internal memory, then it merges these BWTs in 

external memory and generates the LCP values. Finally, it 

sorts the LCP values in external memory.

Phase 1: BWT computation

Given a collection of sequences s1, s2, . . . , sk , we split it 

into sub-collections sufficiently small that we can com-

pute the multi-string SA for each one of them in internal 

memory using the gSACA-K algorithm. After computing 

(3)

Z
(h)

[1, ℓ1], Z
(h)

[ℓ1 + 1, ℓ2], . . . , Z(h)
[ℓb(h) + 1, n]
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each SA, we compute the corresponding multi-string 

BWT and write it to disk in uncompressed form using 

one byte per character.

Phase 2: BWT merging and LCP computation

This part is based on the Gap algorithm previously 

described but suitably modified to work efficiently in 

external memory (or in semi-external memory if there 

are at least n bytes of RAM). In the following we assume 

that the input consists of k BWTs bwt1, . . . , bwtk of total 

length n over an alphabet of size σ . The input BWTs are 

read from disk and never moved to internal memory.

The algorithm initially sets Z(0)
= 1

n12
n2 . . . knk and 

B = 10
n−1

1 . Since the context of every symbol is prefixed 

by the same length-0 string (the empty string), initially 

there is a single block containing all symbols. At itera-

tion h the algorithm computes Z(h) from Z(h−1) as follows 

(see also Fig. 2). We define an array F [1, σ ] such that F[c] 

contains the number of occurrences of characters smaller 

than c in bwt1···k . F partitions Z(h) into σ buckets, one for 

each symbol. Using Z(h−1) we scan the partially merged 

BWT, and whenever we encounter the BWT character c 

coming from bwtℓ , with ℓ ∈ {1, . . . , k} , we store it in the 

next free position of bucket  c in Z(h) ; note that c is not 

actually moved, instead we write ℓ in its corresponding 

position in Z(h) . In our implementation, instead of using 

distinct arrays Z(0),Z(1), . . . we only use two arrays Zold 

and Znew , that are kept on disk. At the beginning of itera-

tion h it is Zold
= Z

(h−1) and Znew
= Z

(h−2) ; at the end 

Z
new

= Z
(h) and the roles of the two files are swapped. 

While Zold is accessed sequentially, Znew is updated 

sequentially within each bucket, that is within each set 

of positions corresponding to a given character. Since the 

boundary of each bucket is known in advance we logi-

cally split the Znew file in buckets and write to each one 

sequentially.

eGap computes LCP values exploiting the bitvector B 

used by Gap to mark the beginning of blocks (see Eq. 3) 

within each Z(h) (for simplicity the computation of B is 

not shown in Fig.  2). We observe that if B[i] is set to 1 

during iteration h then lcp1···k [i] = h − 1 , since the algo-

rithm has determined that the contexts of bwt1···k [i] and 

bwt1···k [i − 1] have a common prefix of length exactly 

h − 1 . We introduce an additional bit array Bx[1, n + 1] 

such that, at the beginning of iteration h, Bx[i] = 1 iff 

B[i] has been set to 1 at iteration h − 2 or earlier. During 

iteration h, if B[i] = 1 we look at Bx[i] . If Bx[i] = 0 then 

we know that B[i] has been set at iteration h − 1 : thus 

we output to a temporary file Fh−2 the pair �i, h − 2� to 

record that lcp1···k [i] = h − 2 , and we set Bx[i] = 1 so no 

pair for position i will be produced in the following itera-

tions. At the end of iteration h, file Fh−2 contains all pairs 

�i, lcp1···k [i]� with lcp[i] = h − 2 ; the pairs are written in 

increasing order of their first component, since B and Bx 

are scanned sequentially. These temporary files will be 

merged in Phase 3 to produce the LCP array.

As proven in [34, Lemma  7], if at iteration h of the 

Gap algorithm we set B[i] = 1 , then at any iteration 

g ≥ h + 2 processing the entry Z(g)[i] will not change 

the arrays Z(g+1) and B. Since the roles of the Zold and 

Z
new files are swapped at each iteration, and at iteration 

h we scan Zold
= Z

(h−1) to update Znew from Z(h−2) to 

Z
(h) , we can compute only the entries Z(h)[j] that are dif-

ferent from Z(h−2)[j] . In particular, any range [ℓ,m] such 

that Bx[ℓ] = Bx[ℓ + 1] = · · · = Bx[m] = 1 can be added 

to a set of irrelevant ranges that the algorithm may skip 

Fig. 2 Outline of Gap’s main loop computing Z(h) from Z(h−1) . Array F is initialized so that F[c] contains the number of occurrences of symbols 

smaller than c in bwt1···k
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in successive iterations (irrelevant ranges are defined in 

terms of the array Bx as opposed to the array B, since 

before skipping an irrelevant range we need to update 

both Zold and Znew ). We read from one file the ranges to 

be skipped at the current iteration and simultaneously 

write to another file the ranges to be skipped at the next 

iteration (note that irrelevant ranges are created and con-

sumed sequentially). Since skipping a single irrelevant 

range takes O(k + σ) time, an irrelevant range is stored 

only if its size is larger than a given threshold t and we 

merge consecutive irrelevant ranges whenever possible. 

In our experiments we used t = max(256, k + σ) . In the 

worst case the space for storing irrelevant ranges could 

be O(n) but in actual experiments it was always less than 

0.1n bytes.

As in the Gap algorithm, when all entries in B are 

nonzero, Zold describes how the BWTs bwtj ( j = 1, . . . , k ) 

should be merged to get bwt1···k , and a final sequential 

scan of the input BWTs along with Zold allows to write 

bwt1···k to disk, in sequential order. Our implementation 

can merge at most 27 = 128 BWTs at a time because we 

use 7 bits to store each entry of Zold and Znew . These 

arrays are maintained on disk in two separate files; the 

additional bit of each byte are used to keep the current 

and the next copy of B. The bit array Bx is stored sepa-

rately in a file of size n/8 bytes. To merge a set of k > 128 

we split the input in subsets of cardinality 128 and merge 

them in successive rounds. In practice, the algorithm 

merges the multi-string BWTs produced by Phase 1. In 

our experiments the maximum number of sub-collec-

tions was 21.

Semi-external version We have also implemented a 

semi-external version of the merge algorithm that uses n 

bytes of RAM. The i-th byte is used to store Zold[i] and 

Z
new[i] (3 bits each), B[i] and Bx[i] . This version can sort 

at most 23 = 8 BWTs simultaneously; to sort k BWTs it 

performs log8 k merging rounds. Although performing 

more rounds is clearly more expensive, this version stores 

in RAM all the arrays that are modified and reads from 

disk only the input BWTs and is therefore significantly 

faster.

Phase 3: LCP merging

At the end of Phase 2 all LCP-values have been written to 

the temporary files Fh on disk as pairs �i, lcp[i]� . Each file 

Fh contains all pairs with second component equal to h 

in order of increasing first component. The computation 

of the LCP array is completed using a standard external 

memory multiway merge [37, Chap.  5.4.1] of maxlcp 

sorted files, where maxlcp = maxi(lcp1···k [i]) is the larg-

est LCP value.

Analysis

During Phase 1, gSACA-K computes the suffix array for a 

sub-collection of total length m using 9m bytes (8m bytes 

for sa and 1m bytes for the text). If the available RAM 

is M, the input is split into subcollections of size ≈ M/9 . 

Since gSACA-K runs in linear time, if the input collec-

tion has total size n, Phase 1 takes O(n) time overall.

A single iteration of Phase 2 consists of a complete scan 

of Z(h−1) except for the irrelevant ranges. Since the algo-

rithm requires maxlcp iterations, without skipping the 

irrelevant ranges the algorithm would require maxlcp 

sequential scans of O(n) items. Reasoning as in [34, 

Theorem 8] we get that by skipping irrelevant ranges the 

overall amount of data directly read/written by the algo-

rithm is O(n avelcp) items where avelcp is the arithmetic 

average of the entries in the final LCP array. However, if 

we reason in terms of disk blocks, every time we skip an 

irrelevant range we discard the current block and load a 

new one (unless the beginning of the new relevant range 

is inside the same block; in that case or if the beginning 

of the new relevant range is in the block immediately fol-

lowing the current one, skipping the irrelevant range does 

not save any I/O). We can upper bound this extra cost, 

with an overhead of O(1) blocks for each irrelevant range 

skipped. Summing up, if the total number of skipped 

ranges is Ir and each disk block consists of B words, the 

I/O complexity of Phase 2 according to the theoretical 

model in [15] is O(Ir + n avelcp/(B log n)) block I/Os 

(under the reasonable assumptions that the alphabet is 

constant, each entry in Z takes constant space, and we 

need a constant number of merge rounds). Although 

the experiments in “Experiments” section suggest that 

in practice Ir is small, for simplicity and uniformity with 

the previous literature we upper bound the cost of Phase 

2 with O(nmaxlcp) sequential I/Os (corresponding to 

O(nmaxlcp/(B log n)) block I/Os).

Phase 3 takes O(⌈log
�

maxlcp⌉) rounds; each round 

merges � LCP files by sequentially reading and writing 

O(n) bytes of data. The overall cost of Phase 3 is therefore 

O(n log
�

maxlcp) sequential I/Os. In our experiments we 

used � = 256 ; since in our tests maxlcp < 2
16 two merg-

ing rounds were always sufficient.

Experiments

In this section we report on an experimental study 

comparing between the eGap algorithm and the other 

known external memory tools computing the BWT 

and LCP arrays of sequence collections. We imple-

mented eGap in ANSI C based on the code of Gap 

[34] and gSACA-K [32]. eGap source code is freely 

available at https ://githu b.com/felip elouz a/egap/. All 

tested algorithms were compiled with GNU GCC ver. 

https://github.com/felipelouza/egap/
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4.6.3, with optimizing option -O3. The experi-

ments were conducted on a machine with GNU/Linux 

Debian 7.0/64 bits operating system using an Intel 

i7-3770 3.4 GHz processor with 8 MB cache, 

32 GB of RAM and a 2.0 TB SATA hard disk with 7200 

RPM and 64 MB cache. The complete set of experi-

ments took about 70 days of computing time.

Datasets We used four real DNA datasets reported in 

Table  1 containing sequences of different lengths and 

structure. The sequences of the first three datasets were 

trimmed to make them of the same length, while the 

fourth dataset contains sequences of widely different 

lengths. short are Illumina reads from human genome 

(ftp://ftp.sra.ebi.ac.uk/vol1/ERA01 5/ERA01 5743/srf/). 

long are Illumina HiSeq 4000 paired-end RNA-seq 

reads from plant Setaria viridis (https ://trace .ncbi.nlm.

nih.gov/Trace s/sra/?run=ERR19 42989 ). pacbio.1000 

and pacbio are PacBio RS II reads from Triticum aes-

tivum (wheat) genome (https ://trace .ncbi.nlm.nih.gov/

Trace s/sra/?run=SRR58 16161 ). All datasets contain 

sequences over the A, C, G, T alphabet plus a string 

terminator symbol.

Memory setting To make a realistic external memory 

experimental setting one has to use an amount of RAM 

smaller than the size of the data. Indeed, if more RAM 

is available, even if the algorithm is supposedly not 

using it, the operating system will use it to temporar-

ily store disk data and the algorithm will be no longer 

really working in external memory. This phenomenon 

will be apparent also from our experiments. For these 

reasons we reduced the available RAM to simulate 

three different scenarios: (i) input data 4 times larger 

than the available RAM, (ii) input data of approximately 

the same size as the RAM, and (iii) input data 4 times 

smaller than the RAM. We evaluated these scenarios 

with the complete 8  GB datasets from Table  1 (with 

2  GB, 8  GB, and 32  GB RAM), and with the datasets 

trimmed to 1 GB (hence with 256 MB, 1 GB, and 4 GB 

RAM). The RAM was limited at boot time to a value 

equal to the amount assigned to the algorithm plus a 

small extra amount for the operating system (14 MB for 

the 256 MB instance and 64 MB for the others).

Comparison with the existing algorithms

We compared eGap with the algorithm BCR [19] 

which is the current state of the art for BWT/LCP 

computation for collections of sequences. We used 

the bcr-lcp implementation from [38] since the 

previous implementation mentioned in [19] did not 

compute the LCP values correctly. We tested also the 

recently proposed algorithm bwt-lcp-em [20] using 

the code from [39]. As a reference we also tested the 

algorithm eGSA [14] using the code from [40]. eGSA 

computes the Suffix and LCP Arrays for collections 

of sequences in external memory: the disadvantage of 

this algorithm is that working with the Suffix Array 

could involve transferring to/from disk a much larger 

amount of data.

Limitations We tested bwt-lcp-em only on the 

short 1 GB dataset since the implementation in [39] 

only supports collections of at most 2 GB and with 

strings of at most 253 symbols. We tested eGSA only with 

memory scenario (iii) (input data 4 times smaller than 

the RAM) since it was already observed in [14] that eGSA 

’s running time degrades when the RAM is restricted to 

the input size. Finally, we could not test bcr-lcp on the 

pacbio 1 GB dataset since it stopped with an internal 

error after four days of computation. This is probably due 

to the presence of very long strings in the dataset since 

bcr-lcp was originally conceived for collections of 

short/medium length strings. The corresponding entries 

are marked as “failed” in Fig. 3. For the larger 8 GB data-

sets we stopped the experiments that did not complete 

after six days of CPU time, corresponding to 60 micro-

seconds per input symbol. The corresponding entries are 

marked with “ > 60 ” in Fig. 3. Note that both bwt-lcp-

em and bcr-lcp are active projects, so some of the lim-

itations reported here could have been solved after our 

experiments were completed.

Results: The results of our experiments are summarized 

in Fig. 3. The bar plots on the left are for the 1 GB data-

sets showing the running time as function of the available 

RAM; the diagrams on the right are for the 8 GB data-

sets. The results show that for memory scenarios (i) and 

(ii) eGap and bcr-lcp have the better performance, 

whereas for scenario (iii) eGap and eGSA are the best 

Table 1 Datasets used in our experiments

Columns 4 and 5 show the maximum and average lengths of the single strings. Columns 6 and 7 show the maximum and average LCPs of the collections

Name Size GB N. of strings Max Len Ave Len Max LCP Ave LCP

SHORT 8.0 85,899,345 100 100 99 27.90

LONG 8.0 28,633,115 300 300 299 90.28

PACBIO.1000 8.0 8,589,934 1000 1000 876 18.05

PACBIO 8.0 942,248 71,561 9116 3084 18.32

ftp://ftp.sra.ebi.ac.uk/vol1/ERA015/ERA015743/srf/
https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=ERR1942989
https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=ERR1942989
https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=SRR5816161
https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=SRR5816161
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options. The performance of bwt-lcp-em improves 

with the RAM size, but it is still 12 times slower than 

eGap for the short datasets with 4 GB of RAM.

The above results are in good accordance with the the-

oretical analysis. bcr-lcp complexity is O(nmaxlen) 

sequential I/Os while eGap and bwt-lcp-em both take 
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O(nmaxlcp) sequential I/Os. For the short and long 

datasets the maximum length and the maximum LCP 

coincide and we see that when the available memory is 

only one fourth of the input size bcr-lcp is clearly the 

fastest option: indeed it is up to a factor 2.6 faster than 

eGap. This is no longer true when the available memory 

is equal or larger than the input size: in this case eGap is 

the fastest, probably because of its ability to exploit all the 

available memory using a semi-external strategy when-

ever possible. When the available memory is larger than 

the input size or for the pacbio.1000 dataset which has a 

very large maxlen then eGap is up to 40 times faster than 

bcr-lcp. Note that, in accordance with our heuristic 

analysis, eGap ’s running time per input byte appears to 

be roughly proportional to the average LCP of the collec-

tion. If we look at the datasets pacbio and pacbio.1000 

we see that they have widely different maximum LCPs, 

yet their running times are very close similarly to their 

average LCPs.

Note that in the scenario (iii) eGSA is often the fast-

est algorithm and its running time appears to be less 

influenced by the size of the average or maximum LCP. 

Another advantage is that it also computes the Suffix 

Array, but it has the drawback of using a large amount 

of disk working space: 340 GB for a 8 GB input vs 56 GB 

used by eGap.

We conclude that, although eGap is not always the 

fastest algorithm, its running time is never too far from 

that of the best algorithm. In addition, eGap is the only 

algorithm that was able to complete all computations in 

all memory models. Although it was devised as an exter-

nal memory algorithm, its ability to switch to a semi-

external strategy if the memory is available makes it a 

very flexible tool. The comparison with the other algo-

rithms in this setting is indeed not completely fair, since 

none of them is designed to take the available memory as 

a parameter in order to make the best use of it. Note that, 

as the available memory increases, all algorithms become 

faster because the operating system uses the RAM as a 

buffer but the speed improvement is different for differ-

ent algorithms.

Relative performance of eGap’s building blocks

We evaluated the percentage of time spent by each phase 

of eGap and their efficiency (percentage the CPU was 

busy) on the 8 GB datasets in the memory scenarios con-

sidered above, thus with RAM limited to (i) 1  GB, (ii) 

8 GB, and (iii) 32 GB.

The results in Fig. 4 show that Phase 2 of eGap domi-

nates the algorithm in general. The second phase took 

about 95% , 85% and 50% of the total time in scenarios (i), 

(ii), and (iii) respectively. If we look at the efficiency of the 

single phases, we see that they all improve with the RAM 

size. However, we notice that for any given memory sce-

nario the efficiency of Phases 1 and 3 was almost the 

same for the different datasets, while Phase 2 has a dif-

ferent behavior. For the short and long datasets with 

8 GB and 32 GB RAM, we see that Phase 2 efficiency is 

very close to Phase 1’s, while there is a sharp drop when 

using 2 GB RAM. For the pacbio datasets, the drop in 

Phase 2 efficiency is significant already when we use 8 GB 

RAM.

Applications

In this section we show that the eGap algorithm, in addi-

tion to the BWT and LCP arrays, can output additional 

information useful to design efficient external memory 

algorithms for three well known problems on sequence 

collections: (i) the computation of maximal repeats, (ii) 

the all pairs suffix–prefix overlaps, and (iii) the construc-

tion of succinct de Bruijn graphs. For these problems 

we describe algorithms which are derived from known 

(internal memory) algorithms suitably modified so that 

they process the input data in a single sequential scan.

Our first observation is that eGap can also output the 

array which provides, for each bwt entry, the id of the 

sequence to which that entry belongs. In information 

retrieval this is usually called the Document Array, so 

in the following we will denote it by da . In Phase 1 the 

gSACA-K algorithm can compute the da together with 

the lcp and bwt using only additional 4n bytes of space 

to store the da entries. These partial da ’s can be merged 

in Phase 2 using the Znew array in the same way as the 

BWT entries. In the following we use bwt , lcp , and da to 

denote the multistring BWT, LCP and Document Array 

of a collection of m sequences of total length n. We write 

s to denote the concatenation s1 · · · sm and sa to denote 

the suffix array of s . We will use s and sa to describe and 

prove the correctness of our algorithms, but neither s nor 

sa are used in the computations.

Computation of maximal repeats

Different notions of maximal repeats have been used in 

the bioinformatics literature to model different notions of 

repetitive structure (see for example [21, 22]). We use a 

notion of maximal repeat from [41, Chap. 7]: we say that 

a string α is a Type 1 maximal repeat if α occurs in the 

collection at least twice and every extension, i.e. cα or αc 

with c ∈ � , occurs fewer times. We consider also a more 

restrictive notion: we say that a string α is a Type 2 maxi-

mal repeat if α occurs in the collection at least twice and 

every extension of α occurs at most once.

To compute Type 1 maximal repeats the crucial obser-

vation is that there is a substring of length ℓ that prefixes 

sa entries j, j + 1, . . . , i (and no others) iff lcp[k] ≥ ℓ for 

k = j + 1, . . . , i , and both lcp[j] and lcp[i + 1] are smaller 
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than ℓ . To ensure that the repeat is Type 1 maximal, 

we also require that there exists h ∈ [j + 1, i] such that 

lcp[h] = ℓ and that the substring bwt[j, i] contains at least 

two distinct characters.

Our algorithm consists of a single sequential 

scan of bwt and lcp . During the scan, we maintain 

a stack containing pairs �j, lcp[h]� with j ≤ h such 

that if �j′, lcp[h′]� is below �j, lcp[h]� then j′ < j and 
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lcp[h′] < lcp[h] . In addition, when the scanning reaches 

position i, for every entry �j, lcp[h]� in the stack it is 

lcp[h] = minj≤k<i lcp[k] , that is, lcp[h] is the smallest 

value in the range lcp[j, i − 1].

We maintain the stack as follows. When we reach 

position i, if the entry �j, lcp[h]� at the top of the stack 

has lcp[h] < lcp[i] we push �i, lcp[i]� on the stack. If 

lcp[h] = lcp[i] we do nothing. If lcp[h] > lcp[i] we pop 

from the stack all entries �j, lcp[h]� with lcp[h] > lcp[i] ; 

if the removal leaves at the top of the stack an entry 

�j′, lcp[h′]� with lcp[h′] < lcp[i] we push on the stack a 

new entry �̂ , lcp[i]� where ̂  is the first component of 

the last entry just removed from the stack. Note that 

in any case when we have completed the processing 

of position i the entry at the top of the stack has sec-

ond component equal to lcp[i] , and for each stack entry 

�j, lcp[h]� it is lcp[h] = minj≤k≤i lcp[k] as claimed.

We now prove that if �j′, lcp[h′]� is immediately below 

�j, lcp[h]� then lcp[j − 1] = lcp[h′] . As we observed 

above, if at step i we push �i, lcp[i]� on the stack, the 

previous top entry has second component equal to 

lcp[i − 1] so the property holds for the first insertion of 

an entry �i, lcp[·]� . During the following steps it is pos-

sible that �i, lcp[x]� is removed and immediately rein-

serted as �i, lcp[y]� (with lcp[y] < lcp[x] ), but since the 

preceding stack element does not change, is still holds 

true that lcp[i − 1] is equal to the second component of 

the preceding element. Note that, since lcp values on 

the stack are strictly increasing, we conclude that for 

each stack entry �j, lcp[h]� it is lcp[j − 1] < lcp[h].

Our algorithm outputs Type 1 maximal repeats 

when elements are popped from the stack. At step 

i + 1 we pop from the stack all entries �j, lcp[h]� such 

that lcp[h] > lcp[i + 1] . Recall that by construction 

lcp[h] = minj≤k≤i lcp[k] . In addition lcp[j − 1] < lcp[h] 

and lcp[i + 1] < lcp[h] . Thus, to ensure that we have 

found a Type 1 maximal repeat we only need to check 

that bwt[j − 1, i] contains at least two distinct charac-

ters. To efficiently check this latter condition, for each 

stack entry �j, lcp[h]� we maintain a bit vector bj of size 

σ keeping track of the distinct characters in the array 

bwt from position j − 1 to the next stack entry, or to the 

last seen position for the entry at the top of the stack. 

When �j, lcp[h]� is popped from the stack its bit vector 

is or-ed to the previous stack entry in constant time; 

if �j, lcp[h]� is popped from the stack and immediately 

replaced with �j, lcp[i]� its bit vector survives as it is 

(essentially because it is associated with an index, not 

with a stack entry). Clearly, maintaining the bit vector 

does not increase the asymptotic cost of the algorithm.

Since at each step we insert at most one entry on the 

stack, the overall cost of our algorithm is O(n) time. The 

algorithm uses a stack of size bounded by O(maxlcp) 

words. For most applications maxlcp ≪ n so it should be 

feasible to keep the stack in RAM. However, since a stack 

can also be implemented in external memory in O(1) 

amortized time per operation [42], we can state the fol-

lowing result.

Theorem  1 We can compute all Type 1 maximal 

repeats in O(n) time executing a single scan of the arrays 

bwt and lcp using O(1) words of RAM.  �

To find Type 2 maximal repeats, we are interested 

in consecutive LCP entries lcp[j], lcp[j + 1], . . . , lcp[i],

lcp[i + 1] , such that lcp[j] < lcp[j + 1] = lcp[j + 2] =

· · · = lcp[i] > lcp[i + 1]. Indeed, this implies that for 

h = j, . . . , i all suffixes s[sa[h], n] are prefixed by the same 

string α of length lcp[j + 1] and every extension αc occurs 

at most once. If this is the case, then α is a Type 2 maxi-

mal repeat if all characters in bwt[j, i] are distinct since 

this ensures that also every extension cα occurs at most 

once. In order to detect this situation, as we scan the 

lcp array we maintain a candidate pair �j + 1, lcp[j + 1]� 

such that j + 1 is the largest index seen so far for which 

lcp[j] < lcp[j + 1] . When we establish a candidate at 

j + 1 as above, we initialize to zero a bit vector b of size 

σ setting to 1 only entries bwt[j] and bwt[j + 1] . As long 

as the following values lcp[j + 2], lcp[j + 3], . . . are equal 

to lcp[j + 1] we go on updating b and if the same posi-

tion is marked twice we discard �j + 1, lcp[j + 1]� . If we 

reach an index i + 1 such that lcp[i + 1] > lcp[j + 1] , we 

update the candidate to �i + 1, lcp[i + 1]� and reinitialize 

b. If we reach i + 1 such that lcp[i + 1] < lcp[j + 1] and 

�j + 1, lcp[j + 1]� has not been discarded, then a repeat of 

Type 2 (with i − j + 1 repetitions) has been located.

Theorem  2 We can compute all Type 2 maximal 

repeats in O(n) time executing a single scan of the arrays  

bwt and lcp using O(1) words of RAM.  �

Note that when our algorithms discover Type 1 or Type 

2 maximal repeats we know the repeat length and the 

number of occurrences so one can easily filter out non-

interesting repeats (too short or too frequent). In some 

applications, for example the MUMmer tool [43], one is 

interested in repeats that occur in at least r distinct input 

sequences, maybe exactly once for each sequence. Since 

for these applications the number of input sequences is 

relatively small, we can handle these requirements by 

simply scanning the da array simultaneously with the lcp 

and bwt arrays and keeping track of the sequences associ-

ated to a maximal repeat using a bit vector (or a union-

find structure) as we do with characters in the bwt.
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All pairs suffix–prefix overlaps

In this problem we want to compute, for each pair of 

sequences si sj , the longest overlap between a suffix of si 

and a prefix of sj . Our solution is inspired by the algo-

rithm in [24] which in turn was derived by an earlier Suf-

fix-tree based algorithm [23]. The algorithm in [24] solves 

the problem using a Generalized Enhanced Suffix array 

(consisting of the arrays sa , lcp , and da ) in O(n + m
2) 

time, which is optimal since n is the size of the input and 

there are m2 longest overlaps. However, for large col-

lections it is natural to consider the problem of report-

ing only the overlaps larger than a given threshold τ still 

spending O(n) time plus constant time per reported over-

lap. Our algorithm solves this more challenging problem.

In the following we say that a suffix starting at sa[i] is 

special iff it is a prefix of the suffix starting at sa[i + 1] , 

not considering the end-marker. This is equivalent to 

state that s[sa[i] + lcp[i + 1]] = $ . For example, in Fig. 1 

(right) the special suffixes are ab$1 , abc$2 , abcab$1 

b$1 , bc$2 , bcab$1 , c$2 , cab$1 . Notice that a special suf-

fix starting at sa[i] has the form v$ with |v| = lcp[i + 1] ; 

clearly only if sa[i] is special then v can be a suffix–pre-

fix overlap. Note also that any suffix $ is always trivially 

special.

To efficiently solve the suffix–prefix overlaps problem, 

we modify Phase  2 of our algorithm so that it outputs 

also the bit array xlcp such that xlcp[i] = 1 iff the suf-

fix starting at sa[i] is special. To this end, we maintain 

an additional length-n bit array S such that, at the end 

of iteration h, S[i] = 1 if and only if the suffix starting 

at sa[i] is special and it has length less than h, again not 

considering the end-marker symbol. The array S is initial-

ized at the end of iteration h = 1 as S = 1
k
0
n−k , consist-

ently with the fact that in the final suffix array the first k 

contexts are strings consisting of just an end-marker, that 

are special suffixes and the only suffixes of length 0.

During iteration h, we update S as follows. With ref-

erence to the code in Fig.  2, whenever we use entry 

Z
(h−1)[i] to compute Z(h)[j] for some j, if S[i] = 1 and 

B[j + 1] = 0 then we set S[j] = 1.

Lemma 1 The above procedure correctly updates the 

array S.

Proof We prove by induction that at the end of itera-

tion h: (1) S[i] = 1 iff the suffix starting at sa[i] is special 

and has length less than h, and (2) if S[i] = 1 the length-

h context currently in position i is in the correct lexico-

graphic position with respect to the final suffix array 

ordering (in other words, it is a prefix for s[sa[i], n]).

For h = 1 the result is true by construction. During itera-

tion h > 1 , if we reach a position i such that S[i] = 1 , 

then by inductive hypothesis the context in position i has 

the form v$ with |v| ≤ h − 2 . If c is the symbol we read at 

Step 5 of Fig. 2, then the context corresponding to posi-

tion j is cv$ . Since the context contains the end-marker, j 

is the correct lexicographic position of cv$ which is there-

fore the suffix corresponding to sa[j] . If B[j + 1] = 0 , 

then lcp[j + 1] ≥ h − 1 . Since lcp[j + 1] ≤ |cv| ≤ h − 1 , it 

follows that |cv| = lcp[j + 1] = h − 1 and S[j] is special as 

claimed.

On the other hand, if at the end of iteration h it is 

S[j] = 0 , then either it was S[i] = 0 or B[j + 1] = 1 which 

implies lcp[j + 1] < h − 1 . In both cases the suffix start-

ing at sa[j] cannot be special and of length less than h. �

Having established the properties of S, we can now 

show how to compute xlcp . Recall that LCP values are 

computed as follows. In Phase 2, during iteration h + 1 

if B[i + 1] = 1 and Bx[i + 1] = 0 we output the pair 

�i + 1, h − 1� recording the fact that lcp[i + 1] = h − 1 . 

Such pairs are later sorted by their first component dur-

ing Phase 3 to retrieve the LCP array. If sa[i] is special, 

its corresponding suffix has length lcp[i + 1] = h − 1 

so, by the properties of S, at the beginning of itera-

tion h + 1 it is S[i] = 1 . Thus, to compute xlcp , 

instead of the pair �i + 1, h − 1� we output the triplet 

�i + 1, h − 1, S[i]� = �i + 1, lcp[i + 1], xlcp[i]� . After the 

merging is completed we sort the triplets by their first 

component and we derive both arrays lcp and xlcp.

Our algorithm for computing the suffix–prefix over-

laps longer than a threshold τ , consists of a sequential 

scan of the arrays bwt , lcp , da , and xlcp . We maintain 

m distinct stacks, stack[1], . . . , stack[m] , one for each 

input sequence; stack[k] stores pairs �j, lcp[j + 1]� only 

if sa[j] is a special suffix belonging to sequence k such 

that lcp[j + 1] > τ . During the scan we maintain the 

invariant that for all stack entries �j, lcp[j + 1]� , lcp[j + 1] 

is the length of the longest common prefix (longer than 

τ ) between s[sa[j], n] and s[sa[i], n] , where i is the posi-

tion just scanned.

To maintain the invariant in amortized constant time 

per scanned position, we use the following additional 

structures:

• A stack lcpStack containing, in increasing order, 

the values ℓ such that some stack[k] contains an 

entry with LCP component equal to ℓ;

• An array of lists top such that top[ℓ] contains the 

indexes k for which the entry at the top of stack[k] 

has LCP component equal to ℓ;

• An array daPtr[1,m] such that daPtr[k] points to the 

entry k in the list top[ℓk ] containing it ( daPtr[k] is 

used to remove such entry k from top[ℓk ] in constant 

time).
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We maintain the above data structures as follows. 

When we reach position i + 1 we remove all entries 

�j, lcp[j + 1]� such that lcp[j + 1] > lcp[i + 1] . We use 

lcpStack to determine which are the values ℓ such that 

some stack contains an entry 〈j, ℓ〉 with ℓ > lcp[i + 1] . For 

the value ℓ at the top of lcpStack we locate through top[ℓ] 

all stacks that contain an ℓ-entry at the top. For each 

one of these stacks we remove the top entry 〈j, ℓ〉 so that 

a new entry �j′, ℓ′� , with ℓ′
< ℓ , becomes the new top of 

the stack. Then, if k is the stack that is being updated, we 

add k to top[ℓ′] , and a pointer to the new entry is saved 

in daPtr[k] (overwriting the previous pointer). When all 

entries of top[ℓ] have been processed, top[ℓ] is emptied 

and ℓ is popped from lcpStack . The whole procedure is 

repeated until a value ℓ ≤ lcp[i + 1] is left at the top of 

lcpStack.

Finally, if xlcp[i] = 1 and lcp[i + 1] > τ , �i, lcp[i + 1]� is 

added to stack[da[i]] ; this requires removing da[i] from 

the list top[ℓ] where ℓ is the previous top LCP value in 

stack[da[i]] ; the position of da[i] in top[ℓ] is retrieved 

through daPtr[da[i]] . Also we add da[i] to top[lcp[i + 1]] , 

and the pointer to this new element of top[lcp[i + 1]] is 

written to daPtr[da[i]] . Since the algorithm performs 

an amortized constant number of operations per entry 

�i, lcp[i + 1]� , maintaining the above data structures takes 

O(n) time overall.

The computation of the overlaps is done as in [24]. 

When the scan reaches position  i, we check whether 

bwt[i] = $ . If this is the case, then s[sa[i], n] is prefixed 

by the whole sequence sda[i] , hence the longest overlap 

between a prefix of sda[i] and a suffix of sk is given by the 

element currently at the top of stack[k] , since by con-

struction these stacks only contain special suffixes whose 

overlap with s[sa[i], n] is larger than τ . Note that using 

lcpStack and top we can directly access the stacks whose 

top element corresponds to an overlap with sda[i] larger 

than τ , hence the time spent in this phase is proportional 

to the number of reported overlaps. As in [24] some care 

is required to handle the case in which the whole string 

sda[i] is a suffix of another sequence, but this can be done 

without increasing the overall complexity as in [24]. Since 

we spend constant time for reported overlap and amor-

tized constant time for scanned position the overall cost 

of the algorithm, in addition to the scanning of the bwt

/lcp/xlcp/da arrays, is O(n + Eτ ) , where Eτ is the number 

of suffix–prefix overlaps greater than τ . Since all stacks 

can be implemented in external memory spending amor-

tized constant time per operation, we only need to store 

in RAM top and daPtr that overall take O(m + maxlcp) 

words.

Theorem  3 Our algorithm computes all suffix–prefix 

overlaps longer than τ in time O(n + Eτ ) , where Eτ is the 

number of reported overlaps, using O(m + maxlcp) words 

of RAM and executing a single scan of the arrays bwt , lcp , 

da and xlcp .  �

Construction of succinct de Bruijn graphs

A recent remarkable application of compressed data 

structures is the design of efficiently navigable succinct 

representations of de Bruijn graphs [26–28]. Formally, a 

de Bruijn graph for a collection of strings consists of a set 

of vertices representing the distinct k-mers appearing in 

the collection, with a directed edge (u, v) iff there exists 

a (k + 1)-mer α in the collection such that α[1, k] is the 

k-mer associated to u and α[2, k + 1] is the k-mer associ-

ated to v.

The starting point of all de Bruijn graphs succinct rep-

resentation is the BOSS representation [28], so called 

from the authors’ initials. For simplicity we now describe 

the BOSS representation of a k-order de Bruijn graph 

using the lexicographic order of k-mers, instead of the 

co-lexicographic order as in [28], which means we are 

building the graph with the direction of the arcs reversed. 

This is not a limitation since arcs can be traversed in both 

directions (or we can apply our construction to the input 

sequences reversed).

Consider the N k-mers appearing in the collection 

sorted in lexicographic order. For each k-mer αi con-

sider the array Ci of distinct characters c ∈ � ∪ {$} such 

that cαi appears in the collection. The concatenation 

W = C1C2 · · ·CN is the first component of the BOSS 

representation. The second component is a binary array 

last , with |last| = |W | , such that last[j] = 1 iff W [j] is the 

last entry of some array Ci . Clearly, there is a bijection 

between entries in W  and graph edges; in the array last 

each sequence 0i1 ( i ≥ 0 ) corresponds to the outgoing 

edges of a single vertex with outdegree i + 1 . Finally, the 

third component is a binary array W− , with |W−| = |W | , 

such that W−[j] = 1 iff W [j] comes from the array Ci , 

where αi is the lexicographically smallest k-mer prefixed 

by αi[1, k − 1] and preceded by W[j] in the collection. 

This means that αi is the lexicographically smallest k-mer 

with an outgoing edge reaching the node associated to k-

mer W [j]αi[1, k − 1] . Note that the number of 1 ’s in last 

and W− is exactly N, i.e. the number of nodes in the de 

Bruijn graph.

We now show how to compute W  , last and W− by 

a sequential scan of the bwt and lcp array. The crucial 

observation is that the suffix array range prefixed by the 

same k-mer αi is identified by a range [bi, ei] of LCP val-

ues satisfying lcp[bi] < k , lcp[ℓ] ≥ k for ℓ = bi + 1, . . . , ei 

and lcp[ei + 1] < k . Since k-mers are scanned in lexi-

cographic order, by keeping track of the corresponding 

characters in the array bwt[bi, ei] we can build the array Ci 
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and consequently W  and last . To compute W− we simply 

need to keep track also of suffix array ranges correspond-

ing to (k − 1)-mers. Every time we set an entry W [j] = c 

we set W−[j] = 1 iff this is the first occurrence of c in the 

range corresponding to the current (k − 1)-mers.

Theorem  4 Our algorithm computes the BOSS repre-

sentation of a de Bruijn graph in O(n) time using O(1) 

words of RAM, and executing a single scan of the arrays 

bwt and lcp .  �

If, in addition to the bwt and lcp arrays, we also scan 

the da array, then we can keep track of which sequences 

contain any given graph edge and therefore obtain a suc-

cinct representation of the colored de Bruijn graph [44]. 

Finally, we observe that if our only objective is to build 

the k-order de Bruijn graph, then we can stop the phase 

2 of our algorithm after the k-th iteration. Indeed, we 

do not need to compute the exact values of LCP entries 

greater than k, and also we do not need the exact BWT 

but only the BWT characters sorted by their length  k 

context.

Conclusions

In this paper we have described eGap, a new algorithm 

for the computation of the BWT and LCP arrays of large 

collection of sequences. Depending on the amount of 

available memory, eGap uses an external or semi-exter-

nal strategy for computing the BWT and LCP values. An 

experimental comparison of the available tools for BWT 

and LCP arrays computation shows that eGap is the fast-

est tool in many scenarios and was the only tool capable 

of completing the computation within a reasonable time 

frame for all kind of input data.

Another important feature of eGap is that, in addition 

to the BWT and LCP array, it can compute, without any 

asymptotic slowdown, two additional arrays that pro-

vide important information about the substrings of the 

input collection. We show how to use such information 

to design efficient external memory algorithms for three 

important problems for biosequences, namely the com-

putation of maximal repeats, the computation of the all 

pairs suffix–prefix overlaps, and the construction of suc-

cinct de Bruijn graphs. Overall our results confirm the 

importance of the BWT and LCP arrays beyond their 

use for the construction of compressed full text indexes. 

This is in accordance with other recent results that have 

shown of they can be used directly to discover structural 

information on the underlying collection (see [45–47] 

and references therein).
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