
Egidi et al. Algorithms Mol Biol (2019) 14:6

https://doi.org/10.1186/s13015-019-0140-0

RESEARCH

External memory BWT and LCP computation
for sequence collections with applications
Lavinia Egidi1, Felipe A. Louza2* , Giovanni Manzini1,3 and Guilherme P. Telles4

Abstract

Background: Sequencing technologies produce larger and larger collections of biosequences that have to be

stored in compressed indices supporting fast search operations. Many compressed indices are based on the Bur-

rows–Wheeler Transform (BWT) and the longest common prefix (LCP) array. Because of the sheer size of the input it

is important to build these data structures in external memory and time using in the best possible way the available

RAM.

Results: We propose a space-efficient algorithm to compute the BWT and LCP array for a collection of sequences in

the external or semi-external memory setting. Our algorithm splits the input collection into subcollections sufficiently

small that it can compute their BWT in RAM using an optimal linear time algorithm. Next, it merges the partial BWTs in

external or semi-external memory and in the process it also computes the LCP values. Our algorithm can be modi-

fied to output two additional arrays that, combined with the BWT and LCP array, provide simple, scan-based, external

memory algorithms for three well known problems in bioinformatics: the computation of maximal repeats, the all

pairs suffix–prefix overlaps, and the construction of succinct de Bruijn graphs.

Conclusions: We prove that our algorithm performs O(nmaxlcp) sequential I/Os, where n is the total length of the

collection and maxlcp is the maximum LCP value. The experimental results show that our algorithm is only slightly

slower than the state of the art for short sequences but it is up to 40 times faster for longer sequences or when the

available RAM is at least equal to the size of the input.

Keywords: Burrows–Wheeler Transform, Longest common prefix array, Maximal repeats, All pairs suffix–prefix

overlaps, Succinct de Bruijn graph, External memory algorithms

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creat iveco mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat iveco mmons .org/
publi cdoma in/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Introduction

A fundamental problem in bioinformatics is the ability

to efficiently search into the billions of DNA sequences

produced by NGS studies. The Burrows Wheeler trans-

form (BWT) [1] is a well known structure which is the

starting point for the construction of compressed indices

for collections of sequences [2]. The BWT is often com-

plemented with the longest common prefix (LCP) array

[3] since the latter makes it possible to efficiently emu-

late Suffix Tree algorithms [4, 5]. The construction of

such data structures is a challenging problem. Although

the final outcome is a compressed index, construction

algorithms can be memory hungry and the necessity of

developing lightweight algorithms was recognized since

the very beginning of the field [6–8]. In lightweight algo-

rithms it is assumed that the input and the output fit

in main memory but the amount of additional working

memory is sublinear with the size of the input.

When even lightweight algorithms do not fit in RAM,

one has to resort to external or semi-external memory

construction algorithms (see [9–14] and references

therein). In the external memory model [15] it is assumed

that the main memory grows at most polylogarithmically

with the size of the input. In the semi-external model the

main memory can grow linearly with the size of the input

but part of the working data has to reside on disk. In both

models the complexity of the algorithms is usually meas-

ured in terms of disk I/Os, since data transfer is much

slower than CPU operations.

Open Access

Algorithms for
Molecular Biology

*Correspondence: louza@usp.br
2 Department of Computing and Mathematics, University of São Paulo,

Av. Bandeirantes, 3900, 14040-901 Ribeirão Preto, Brazil

Full list of author information is available at the end of the article

http://orcid.org/0000-0003-2931-1470
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-019-0140-0&domain=pdf

Page 2 of 15Egidi et al. Algorithms Mol Biol (2019) 14:6

The space efficient computation of the BWT in main

memory for a single sequence is well studied, and

remarkable advances have been recently obtained [16,

17]. Unfortunately, for external memory computation the

situation is less satisfactory. For collections of sequences,

the first external memory algorithm is the BCR algo-

rithm described in [18] that computes the multi-string

BWT for a collection of total size n, performing a num-

ber of sequential I/Os proportional to nK, where K is

the length of the longest sequence in the collection. This

approach is clearly not competitive when the sequences

have non-homogeneous lengths, and it is far from the

theoretical optimal even for sequences of equal length.

Nevertheless, the simplicity of the algorithm makes it

very effective for collections of relatively short sequences,

and it has become the reference tool for this problem.

This approach was later extended [19] to compute also

the LCP values with the same asymptotic number of I/

Os. When computing also the LCP values, or when the

input strings have different lengths, the algorithm uses

O(m) words of RAM, where m is the number of input

sequences.

In this paper, we present a new space-efficient algo-

rithm for the computation of the BWT and LCP array

for a collection of sequences in external or semi-external

memory. Our algorithm takes the amount of available

RAM as an input parameter, and tries to make the best

use of it by splitting the input into subcollections suffi-

ciently small so that it can compute their BWT in inter-

nal memory using an optimal linear time algorithm.

Next, it merges the partial BWTs in external or semi-

external memory and in the process it also computes

the LCP values. Since the LCP values are computed in

a non-standard order, the algorithm is completed by an

external memory mergesort procedure that computes

the final LCP array. We show that our algorithm per-

forms a number of sequential I/Os between O(n avelcp)

and O(nmaxlcp) , where avelcp and maxlcp are respec-

tively the average and the maximum longest common

prefix of the input sequences. To our knowledge, the only

other known external memory algorithm for computing

the BWT and LCP arrays of a collection of sequences is

bwt-lcp-em, recently proposed in [20] that performs

O(nmaxlcp) sequential I/Os and uses O(m + K) words

of RAM, where K is the fixed string length.

In “Related approaches” section we compare our

approach with the ideas behind these previous works, and

in “Experiments” section we compare their performance

in practice. The experimental results show that BCR is

the fastest algorithm for relatively short sequences while

our algorithm is the fastest when the average LCP of the

collection is relatively small compared to the lengths of

the sequences. Both our algorithm and BCR appear to be

faster than the available implementation of bwt-lcp-

em, which is however only a prototype implementation

with some limitations on the admissible inputs.

Another contribution of the paper, which follows from

our first result, is the design of simple external memory

algorithms for three well known problems related to

genomic sequences, namely: (i) the computation of maxi-

mal repeats [21, 22], (ii) the computation of the all pairs

suffix–prefix overlaps [23–25], and (iii) the construc-

tion of succinct de Bruijn graphs [26–28]. Our external

memory algorithms for these problems are derived from

known internal memory algorithms, but they process the

input data in a single sequential scan. In addition, for the

problem of computing the all pairs suffix–prefix, we go

beyond the recent solutions that compute all the overlaps

[24, 25, 29, 30], and we compute only the overlaps above

a certain length, still spending constant time per reported

overlap. Our algorithms take as input the BWT and LCP

array, together with two additional arrays that our BWT

construction algorithm can compute without any asymp-

totic slowdown.

Since problems on genomic sequences often involve

huge datasets, it is certainly important to provide effi-

cient external memory algorithms for the three problems

described above. To our knowledge, only for the all pairs

suffix–prefix problem there exists an external memory

algorithm, namely the algorithm [30, Algorithm 2] that

computes all the overlaps given the BWT, LCP, and Gen-

eralized Suffix Array of the input collection.

Background

Let s[1, n] denote a string of length n over an alphabet

� of constant size σ . As usual, we assume s[n] is a spe-

cial symbol (end-marker) not appearing elsewhere in s

and lexicographically smaller than any other symbol. We

write s[i, j] to denote the substring s[i]s[i + 1] · · · s[j] .

If j ≥ n we assume s[i, j] = s[i, n] . If i > j or i > n then

s[i, j] is the empty string. Given two strings s1 and s2 we

write s1 � s2 (s1 ≺ s2) to denote that s1 is lexicographi-

cally (strictly) smaller than s2 . We denote by LCP(s1, s2)

the length of the longest common prefix between s1 and

s2.

The suffix array sa[1, n] associated to s is the permuta-

tion of [1, n] giving the lexicographic order of s ’s suffixes,

that is, for i = 1, . . . , n − 1 , s[sa[i], n] ≺ s[sa[i + 1], n].

The longest common prefix array lcp[1, n + 1] is defined

for i = 2, . . . , n by

the lcp array stores the length of the longest common pre-

fix (LCP) between lexicographically consecutive suffixes.

For convenience we define lcp[1] = lcp[n + 1] = −1.

(1)lcp[i] = LCP(s[sa[i − 1], n], s[sa[i], n]);

Page 3 of 15Egidi et al. Algorithms Mol Biol (2019) 14:6

Let s1[1, n1], . . . , sk [1, nk] denote a collection of strings

such that s1[n1] = $1, . . . , sk [nk] = $k , where $ 1 < . . . <

$ k are k symbols not appearing elsewhere in s1, . . . , sk

and smaller than any other symbol. Let sa1···k [1, n]

denote the suffix array of the concatenation s1 · · · sk of

total length n = �
k

h=1
nh . The multi-string BWT [19, 31]

of s1, . . . , sk , denoted by bwt1···k [1, n] , is defined as

Essentially bwt1···k is a permutation of the symbols in

s1, . . . , sk such that the position in bwt1···k of si[j] is given

by the lexicographic rank of its context si[j + 1, ni] (or

si[1, ni] if j = ni). Figure 1 shows an example with k = 2 .

(2)bwt1···k [i] =

{

sj[nj] if sa1···k [i] = �
j−1

h=1
nh + 1

sj[sa1···k [i] − �
j−1

h=1
nh − 1] if �

j−1

h=1
nh + 1 < sa1···k [i] ≤ �

j
h=1

nh.

Notice that for k = 1 , this is the usual Burrows–Wheeler

Transform [1].

Given the suffix array sa1···k [1, n] of the concatena-

tion s1 · · · sk , we consider the corresponding LCP array

lcp1···k [1, n] defined as in (1) (see again Fig. 1). Note that,

for i = 2, . . . , n , lcp1···k [i] gives the length of the longest

common prefix between the contexts of bwt1···k [i] and

bwt1···k [i − 1] . We stress that all practical implementa-

tions use a single $ symbol as end-marker for all strings

to avoid alphabet explosion, but end-markers from

Fig. 1 LCP array and BWT for s1 = abcab$1 and s2 = aabcabc$2 , and multi-string BWT and corresponding LCP array for the same strings. Column

id shows, for each entry of bwt12 = bc$2cc$1aaaabbb whether it comes from s1 or s2

Page 4 of 15Egidi et al. Algorithms Mol Biol (2019) 14:6

different strings are then sorted as described, i.e., on

the basis of the index of the strings they belong to.

Computing multi‑string BWTs

The gSACA-K algorithm [32], based on algorithm SACA-

K [33], computes the suffix array for a string collection.

Given a collection of strings of total length n, gSACA-

K computes the suffix array for their concatenation in

O(n) time using (σ + 1) log n additional bits (in prac-

tice, only 2KB are used for ASCII alphabets). gSACA-K

is time and space optimal for alphabets of constant size

σ = O(1) . The multi-string bwt1···k of s1, . . . , sk can be

easily obtained from the suffix array as in (2). gSACA-K

can also compute the lcp array lcp1···k still in linear time

using only the additional space for the lcp values.

Merging multi‑string BWTs

The Gap algorithm [34], based on an earlier algorithm by

Holt and McMillan [35], is a simple procedure for merg-

ing multi-string BWTs. In its original formulation the

Gap algorithm can also merge LCP arrays, but in this

paper we compute LCP values using a different approach

more suitable for external memory execution. We

describe here only the main idea behind Gap and refer

the reader to [34] for further details.

For simplicity in the following we assume we are merging k

single-string BWTs bwt1 = bwt(s1), . . . , bwtk = bwt(sk) ;

the algorithm does not change in the general case where the

inputs are multi-string BWTs. Computing bwt1···k amounts

to sorting the symbols of bwt1, . . . , bwtk according to the

lexicographic order of their contexts, where the context of

symbol bwtj[i] is sj[saj[i], nj] . By construction, the symbols

in each bwtj are already sorted by context, hence to com-

pute bwt1···k we only need to merge bwt1, . . . , bwtk without

changing the relative order of the symbols within the input

sequences.

The Gap algorithm works in successive iterations. Dur-

ing the h-th iteration it computes a vector Z(h) specify-

ing how the entries of bwt1, . . . , bwtk should be merged

to have them sorted according to the first h symbols of

their context. Formally, for j = 1, . . . , k the vector Z(h)

contains |bwtj| copies of the value j arranged so that the

following property holds.

Property 1 For j1, j2 ∈ {1, . . . , k} , the i1-th occurrence

of j1 precedes the i2-th occurrence of j2 in Z(h) if and only

if the length-h context of bwtj1 [i1] is lexicographically

smaller than the length-h context of bwtj2 [i2] , or the two

contexts are equal and j1 < j2 . �

Property 1 is equivalent to state that we can logically

partition Z(h) into b(h) + 1 blocks

such that each block corresponds to the set of symbols

in bwt1···k , whose contexts are prefixed by the same

length-h string. The context of any symbol in block

Z(h)[ℓj + 1, ℓj+1] is lexicographically smaller than the

context of the symbols in block Z(h)[ℓk + 1, ℓk+1] with

k > j ; within each block, if j1 < j2 the symbols of bwtj1

precede those of bwtj2 . We keep explicit track of such

blocks using a bit array B[1, n + 1] such that at the end

of iteration h it is B[i] �= 0 if and only if a block of Z(h)

starts at position i. By Property 1, when all entries in B

are nonzero, Z(h) describes how the bwtj (j = 1, . . . , k)

should be merged to get bwt1···k.

Related approaches

The strategy used by Gap to build multi-string BWTs

follows the idea, introduced by [35, 36], of merging par-

tial BWTs, i.e. BWTs of subsets of the input collection.

Interestingly, both previous algorithms for computing

the BWT and LCP in external memory [19, 20] are also

based on a merging strategy but instead of merging par-

tial BWTs, they merge the arrays L1 , L2 , L3 , …, where Li

consists of the symbols which are at distance i from the

end of their respective strings. The symbols inside each

Li are sorted as usual by context. In the example of Fig. 1,

we would have L1 = bc (since s1 ends with b$1 and s2

ends with c$2), L2 = ab , (since s1 ends with ab$1 and s2

ends with bc$2), L3 = ca and so on. Note that in L3 c pre-

cedes a since c ’s context ab$1 is lexicographically smaller

than a ’s context bc$2 . Clearly, merging the arrays Li yields

the desired multi-string BWT and the authors of [19, 20]

show how to compute also the LCP array. The algorithms

in [19, 20] differ in how the merging is done: [19] uses

a refinement of a technique introduced in [9, 10], while

[20] uses a refinement of Holt and McMillan merging

strategy [35, 36].

The eGap algorithm

The eGap algorithm for computing the multi-string

BWT and LCP array in external memory works in three

phases. First it builds multi-string BWTs for sub-collec-

tions in internal memory, then it merges these BWTs in

external memory and generates the LCP values. Finally, it

sorts the LCP values in external memory.

Phase 1: BWT computation

Given a collection of sequences s1, s2, . . . , sk , we split it

into sub-collections sufficiently small that we can com-

pute the multi-string SA for each one of them in internal

memory using the gSACA-K algorithm. After computing

(3)

Z
(h)

[1, ℓ1], Z
(h)

[ℓ1 + 1, ℓ2], . . . , Z(h)
[ℓb(h) + 1, n]

Page 5 of 15Egidi et al. Algorithms Mol Biol (2019) 14:6

each SA, we compute the corresponding multi-string

BWT and write it to disk in uncompressed form using

one byte per character.

Phase 2: BWT merging and LCP computation

This part is based on the Gap algorithm previously

described but suitably modified to work efficiently in

external memory (or in semi-external memory if there

are at least n bytes of RAM). In the following we assume

that the input consists of k BWTs bwt1, . . . , bwtk of total

length n over an alphabet of size σ . The input BWTs are

read from disk and never moved to internal memory.

The algorithm initially sets Z(0)
= 1

n12
n2 . . . knk and

B = 10
n−1

1 . Since the context of every symbol is prefixed

by the same length-0 string (the empty string), initially

there is a single block containing all symbols. At itera-

tion h the algorithm computes Z(h) from Z(h−1) as follows

(see also Fig. 2). We define an array F [1, σ] such that F[c]

contains the number of occurrences of characters smaller

than c in bwt1···k . F partitions Z(h) into σ buckets, one for

each symbol. Using Z(h−1) we scan the partially merged

BWT, and whenever we encounter the BWT character c

coming from bwtℓ , with ℓ ∈ {1, . . . , k} , we store it in the

next free position of bucket c in Z(h) ; note that c is not

actually moved, instead we write ℓ in its corresponding

position in Z(h) . In our implementation, instead of using

distinct arrays Z(0),Z(1), . . . we only use two arrays Zold

and Znew , that are kept on disk. At the beginning of itera-

tion h it is Zold
= Z

(h−1) and Znew
= Z

(h−2) ; at the end

Z
new

= Z
(h) and the roles of the two files are swapped.

While Zold is accessed sequentially, Znew is updated

sequentially within each bucket, that is within each set

of positions corresponding to a given character. Since the

boundary of each bucket is known in advance we logi-

cally split the Znew file in buckets and write to each one

sequentially.

eGap computes LCP values exploiting the bitvector B

used by Gap to mark the beginning of blocks (see Eq. 3)

within each Z(h) (for simplicity the computation of B is

not shown in Fig. 2). We observe that if B[i] is set to 1

during iteration h then lcp1···k [i] = h − 1 , since the algo-

rithm has determined that the contexts of bwt1···k [i] and

bwt1···k [i − 1] have a common prefix of length exactly

h − 1 . We introduce an additional bit array Bx[1, n + 1]

such that, at the beginning of iteration h, Bx[i] = 1 iff

B[i] has been set to 1 at iteration h − 2 or earlier. During

iteration h, if B[i] = 1 we look at Bx[i] . If Bx[i] = 0 then

we know that B[i] has been set at iteration h − 1 : thus

we output to a temporary file Fh−2 the pair �i, h − 2� to

record that lcp1···k [i] = h − 2 , and we set Bx[i] = 1 so no

pair for position i will be produced in the following itera-

tions. At the end of iteration h, file Fh−2 contains all pairs

�i, lcp1···k [i]� with lcp[i] = h − 2 ; the pairs are written in

increasing order of their first component, since B and Bx

are scanned sequentially. These temporary files will be

merged in Phase 3 to produce the LCP array.

As proven in [34, Lemma 7], if at iteration h of the

Gap algorithm we set B[i] = 1 , then at any iteration

g ≥ h + 2 processing the entry Z(g)[i] will not change

the arrays Z(g+1) and B. Since the roles of the Zold and

Z
new files are swapped at each iteration, and at iteration

h we scan Zold
= Z

(h−1) to update Znew from Z(h−2) to

Z
(h) , we can compute only the entries Z(h)[j] that are dif-

ferent from Z(h−2)[j] . In particular, any range [ℓ,m] such

that Bx[ℓ] = Bx[ℓ + 1] = · · · = Bx[m] = 1 can be added

to a set of irrelevant ranges that the algorithm may skip

Fig. 2 Outline of Gap’s main loop computing Z(h) from Z(h−1) . Array F is initialized so that F[c] contains the number of occurrences of symbols

smaller than c in bwt1···k

Page 6 of 15Egidi et al. Algorithms Mol Biol (2019) 14:6

in successive iterations (irrelevant ranges are defined in

terms of the array Bx as opposed to the array B, since

before skipping an irrelevant range we need to update

both Zold and Znew). We read from one file the ranges to

be skipped at the current iteration and simultaneously

write to another file the ranges to be skipped at the next

iteration (note that irrelevant ranges are created and con-

sumed sequentially). Since skipping a single irrelevant

range takes O(k + σ) time, an irrelevant range is stored

only if its size is larger than a given threshold t and we

merge consecutive irrelevant ranges whenever possible.

In our experiments we used t = max(256, k + σ) . In the

worst case the space for storing irrelevant ranges could

be O(n) but in actual experiments it was always less than

0.1n bytes.

As in the Gap algorithm, when all entries in B are

nonzero, Zold describes how the BWTs bwtj (j = 1, . . . , k)

should be merged to get bwt1···k , and a final sequential

scan of the input BWTs along with Zold allows to write

bwt1···k to disk, in sequential order. Our implementation

can merge at most 27 = 128 BWTs at a time because we

use 7 bits to store each entry of Zold and Znew . These

arrays are maintained on disk in two separate files; the

additional bit of each byte are used to keep the current

and the next copy of B. The bit array Bx is stored sepa-

rately in a file of size n/8 bytes. To merge a set of k > 128

we split the input in subsets of cardinality 128 and merge

them in successive rounds. In practice, the algorithm

merges the multi-string BWTs produced by Phase 1. In

our experiments the maximum number of sub-collec-

tions was 21.

Semi-external version We have also implemented a

semi-external version of the merge algorithm that uses n

bytes of RAM. The i-th byte is used to store Zold[i] and

Z
new[i] (3 bits each), B[i] and Bx[i] . This version can sort

at most 23 = 8 BWTs simultaneously; to sort k BWTs it

performs log8 k merging rounds. Although performing

more rounds is clearly more expensive, this version stores

in RAM all the arrays that are modified and reads from

disk only the input BWTs and is therefore significantly

faster.

Phase 3: LCP merging

At the end of Phase 2 all LCP-values have been written to

the temporary files Fh on disk as pairs �i, lcp[i]� . Each file

Fh contains all pairs with second component equal to h

in order of increasing first component. The computation

of the LCP array is completed using a standard external

memory multiway merge [37, Chap. 5.4.1] of maxlcp

sorted files, where maxlcp = maxi(lcp1···k [i]) is the larg-

est LCP value.

Analysis

During Phase 1, gSACA-K computes the suffix array for a

sub-collection of total length m using 9m bytes (8m bytes

for sa and 1m bytes for the text). If the available RAM

is M, the input is split into subcollections of size ≈ M/9 .

Since gSACA-K runs in linear time, if the input collec-

tion has total size n, Phase 1 takes O(n) time overall.

A single iteration of Phase 2 consists of a complete scan

of Z(h−1) except for the irrelevant ranges. Since the algo-

rithm requires maxlcp iterations, without skipping the

irrelevant ranges the algorithm would require maxlcp

sequential scans of O(n) items. Reasoning as in [34,

Theorem 8] we get that by skipping irrelevant ranges the

overall amount of data directly read/written by the algo-

rithm is O(n avelcp) items where avelcp is the arithmetic

average of the entries in the final LCP array. However, if

we reason in terms of disk blocks, every time we skip an

irrelevant range we discard the current block and load a

new one (unless the beginning of the new relevant range

is inside the same block; in that case or if the beginning

of the new relevant range is in the block immediately fol-

lowing the current one, skipping the irrelevant range does

not save any I/O). We can upper bound this extra cost,

with an overhead of O(1) blocks for each irrelevant range

skipped. Summing up, if the total number of skipped

ranges is Ir and each disk block consists of B words, the

I/O complexity of Phase 2 according to the theoretical

model in [15] is O(Ir + n avelcp/(B log n)) block I/Os

(under the reasonable assumptions that the alphabet is

constant, each entry in Z takes constant space, and we

need a constant number of merge rounds). Although

the experiments in “Experiments” section suggest that

in practice Ir is small, for simplicity and uniformity with

the previous literature we upper bound the cost of Phase

2 with O(nmaxlcp) sequential I/Os (corresponding to

O(nmaxlcp/(B log n)) block I/Os).

Phase 3 takes O(⌈log
�

maxlcp⌉) rounds; each round

merges � LCP files by sequentially reading and writing

O(n) bytes of data. The overall cost of Phase 3 is therefore

O(n log
�

maxlcp) sequential I/Os. In our experiments we

used � = 256 ; since in our tests maxlcp < 2
16 two merg-

ing rounds were always sufficient.

Experiments

In this section we report on an experimental study

comparing between the eGap algorithm and the other

known external memory tools computing the BWT

and LCP arrays of sequence collections. We imple-

mented eGap in ANSI C based on the code of Gap

[34] and gSACA-K [32]. eGap source code is freely

available at https ://githu b.com/felip elouz a/egap/. All

tested algorithms were compiled with GNU GCC ver.

https://github.com/felipelouza/egap/

Page 7 of 15Egidi et al. Algorithms Mol Biol (2019) 14:6

4.6.3, with optimizing option -O3. The experi-

ments were conducted on a machine with GNU/Linux

Debian 7.0/64 bits operating system using an Intel

i7-3770 3.4 GHz processor with 8 MB cache,

32 GB of RAM and a 2.0 TB SATA hard disk with 7200

RPM and 64 MB cache. The complete set of experi-

ments took about 70 days of computing time.

Datasets We used four real DNA datasets reported in

Table 1 containing sequences of different lengths and

structure. The sequences of the first three datasets were

trimmed to make them of the same length, while the

fourth dataset contains sequences of widely different

lengths. short are Illumina reads from human genome

(ftp://ftp.sra.ebi.ac.uk/vol1/ERA01 5/ERA01 5743/srf/).

long are Illumina HiSeq 4000 paired-end RNA-seq

reads from plant Setaria viridis (https ://trace .ncbi.nlm.

nih.gov/Trace s/sra/?run=ERR19 42989). pacbio.1000

and pacbio are PacBio RS II reads from Triticum aes-

tivum (wheat) genome (https ://trace .ncbi.nlm.nih.gov/

Trace s/sra/?run=SRR58 16161). All datasets contain

sequences over the A, C, G, T alphabet plus a string

terminator symbol.

Memory setting To make a realistic external memory

experimental setting one has to use an amount of RAM

smaller than the size of the data. Indeed, if more RAM

is available, even if the algorithm is supposedly not

using it, the operating system will use it to temporar-

ily store disk data and the algorithm will be no longer

really working in external memory. This phenomenon

will be apparent also from our experiments. For these

reasons we reduced the available RAM to simulate

three different scenarios: (i) input data 4 times larger

than the available RAM, (ii) input data of approximately

the same size as the RAM, and (iii) input data 4 times

smaller than the RAM. We evaluated these scenarios

with the complete 8 GB datasets from Table 1 (with

2 GB, 8 GB, and 32 GB RAM), and with the datasets

trimmed to 1 GB (hence with 256 MB, 1 GB, and 4 GB

RAM). The RAM was limited at boot time to a value

equal to the amount assigned to the algorithm plus a

small extra amount for the operating system (14 MB for

the 256 MB instance and 64 MB for the others).

Comparison with the existing algorithms

We compared eGap with the algorithm BCR [19]

which is the current state of the art for BWT/LCP

computation for collections of sequences. We used

the bcr-lcp implementation from [38] since the

previous implementation mentioned in [19] did not

compute the LCP values correctly. We tested also the

recently proposed algorithm bwt-lcp-em [20] using

the code from [39]. As a reference we also tested the

algorithm eGSA [14] using the code from [40]. eGSA

computes the Suffix and LCP Arrays for collections

of sequences in external memory: the disadvantage of

this algorithm is that working with the Suffix Array

could involve transferring to/from disk a much larger

amount of data.

Limitations We tested bwt-lcp-em only on the

short 1 GB dataset since the implementation in [39]

only supports collections of at most 2 GB and with

strings of at most 253 symbols. We tested eGSA only with

memory scenario (iii) (input data 4 times smaller than

the RAM) since it was already observed in [14] that eGSA

’s running time degrades when the RAM is restricted to

the input size. Finally, we could not test bcr-lcp on the

pacbio 1 GB dataset since it stopped with an internal

error after four days of computation. This is probably due

to the presence of very long strings in the dataset since

bcr-lcp was originally conceived for collections of

short/medium length strings. The corresponding entries

are marked as “failed” in Fig. 3. For the larger 8 GB data-

sets we stopped the experiments that did not complete

after six days of CPU time, corresponding to 60 micro-

seconds per input symbol. The corresponding entries are

marked with “ > 60 ” in Fig. 3. Note that both bwt-lcp-

em and bcr-lcp are active projects, so some of the lim-

itations reported here could have been solved after our

experiments were completed.

Results: The results of our experiments are summarized

in Fig. 3. The bar plots on the left are for the 1 GB data-

sets showing the running time as function of the available

RAM; the diagrams on the right are for the 8 GB data-

sets. The results show that for memory scenarios (i) and

(ii) eGap and bcr-lcp have the better performance,

whereas for scenario (iii) eGap and eGSA are the best

Table 1 Datasets used in our experiments

Columns 4 and 5 show the maximum and average lengths of the single strings. Columns 6 and 7 show the maximum and average LCPs of the collections

Name Size GB N. of strings Max Len Ave Len Max LCP Ave LCP

SHORT 8.0 85,899,345 100 100 99 27.90

LONG 8.0 28,633,115 300 300 299 90.28

PACBIO.1000 8.0 8,589,934 1000 1000 876 18.05

PACBIO 8.0 942,248 71,561 9116 3084 18.32

ftp://ftp.sra.ebi.ac.uk/vol1/ERA015/ERA015743/srf/
https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=ERR1942989
https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=ERR1942989
https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=SRR5816161
https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=SRR5816161

Page 8 of 15Egidi et al. Algorithms Mol Biol (2019) 14:6

options. The performance of bwt-lcp-em improves

with the RAM size, but it is still 12 times slower than

eGap for the short datasets with 4 GB of RAM.

The above results are in good accordance with the the-

oretical analysis. bcr-lcp complexity is O(nmaxlen)

sequential I/Os while eGap and bwt-lcp-em both take

a b

48
.1

8
13

.6
921

.1
8 28

.2
9

13
.8

9
14

.9

1.
75

19
.0

6
5.

64
1.

5

31
.1

1

61
.1

7

38
.0

9
38

.0
6

1.
99

15
.1

1
3.

16

10
1.

09
23

.6
8

12
0.

15
13

.2
6

1.
72

51
.6

8
1.

29

fa
il
ed

19
.0

1

fa
il
ed

1
1.

18

1.
75

fa
il
ed

1.
3
9

pacbio

pacbio.1000

long

short

256MB 1GB 4GB

0

10

20

30

40

50

0

20

40

60

0

25

50

75

100

125

0

5

10

15

TotalRAM

T
im

e
(m

ic
ro

se
co

n
d
s/

in
p
u
t

b
y
te

)

10
.3

319
.0

3

6.
82

3.
46

2.
08

5.
61

1.
49

21
.9

9

57
.7

1

19
.3

6
8.

18

1.
89

15
.6

9
2.

74

>
60

21
.5

2

>
60

3.
97

1.
89

>
60

1.
19

>
6
0

20
.6

3

>
60

12
.9

2

1.
74

>
60

1.
23

pacbio

pacbio.1000

long

short

2GB 8GB 32GB

0

5

10

15

0

20

40

60

0

20

40

60

0

20

40

60

TotalRAM

T
im

e
(m

ic
ro

se
co

n
d
s/

in
p
u
t

b
y
te

)

eGap bcr-lcp bwt-lcp-em eGSA

Fig. 3 Running time in microseconds per input byte as a function of the available memory for the 1 GB datasets (left) and the 8 GB datasets (right)

Page 9 of 15Egidi et al. Algorithms Mol Biol (2019) 14:6

O(nmaxlcp) sequential I/Os. For the short and long

datasets the maximum length and the maximum LCP

coincide and we see that when the available memory is

only one fourth of the input size bcr-lcp is clearly the

fastest option: indeed it is up to a factor 2.6 faster than

eGap. This is no longer true when the available memory

is equal or larger than the input size: in this case eGap is

the fastest, probably because of its ability to exploit all the

available memory using a semi-external strategy when-

ever possible. When the available memory is larger than

the input size or for the pacbio.1000 dataset which has a

very large maxlen then eGap is up to 40 times faster than

bcr-lcp. Note that, in accordance with our heuristic

analysis, eGap ’s running time per input byte appears to

be roughly proportional to the average LCP of the collec-

tion. If we look at the datasets pacbio and pacbio.1000

we see that they have widely different maximum LCPs,

yet their running times are very close similarly to their

average LCPs.

Note that in the scenario (iii) eGSA is often the fast-

est algorithm and its running time appears to be less

influenced by the size of the average or maximum LCP.

Another advantage is that it also computes the Suffix

Array, but it has the drawback of using a large amount

of disk working space: 340 GB for a 8 GB input vs 56 GB

used by eGap.

We conclude that, although eGap is not always the

fastest algorithm, its running time is never too far from

that of the best algorithm. In addition, eGap is the only

algorithm that was able to complete all computations in

all memory models. Although it was devised as an exter-

nal memory algorithm, its ability to switch to a semi-

external strategy if the memory is available makes it a

very flexible tool. The comparison with the other algo-

rithms in this setting is indeed not completely fair, since

none of them is designed to take the available memory as

a parameter in order to make the best use of it. Note that,

as the available memory increases, all algorithms become

faster because the operating system uses the RAM as a

buffer but the speed improvement is different for differ-

ent algorithms.

Relative performance of eGap’s building blocks

We evaluated the percentage of time spent by each phase

of eGap and their efficiency (percentage the CPU was

busy) on the 8 GB datasets in the memory scenarios con-

sidered above, thus with RAM limited to (i) 1 GB, (ii)

8 GB, and (iii) 32 GB.

The results in Fig. 4 show that Phase 2 of eGap domi-

nates the algorithm in general. The second phase took

about 95% , 85% and 50% of the total time in scenarios (i),

(ii), and (iii) respectively. If we look at the efficiency of the

single phases, we see that they all improve with the RAM

size. However, we notice that for any given memory sce-

nario the efficiency of Phases 1 and 3 was almost the

same for the different datasets, while Phase 2 has a dif-

ferent behavior. For the short and long datasets with

8 GB and 32 GB RAM, we see that Phase 2 efficiency is

very close to Phase 1’s, while there is a sharp drop when

using 2 GB RAM. For the pacbio datasets, the drop in

Phase 2 efficiency is significant already when we use 8 GB

RAM.

Applications

In this section we show that the eGap algorithm, in addi-

tion to the BWT and LCP arrays, can output additional

information useful to design efficient external memory

algorithms for three well known problems on sequence

collections: (i) the computation of maximal repeats, (ii)

the all pairs suffix–prefix overlaps, and (iii) the construc-

tion of succinct de Bruijn graphs. For these problems

we describe algorithms which are derived from known

(internal memory) algorithms suitably modified so that

they process the input data in a single sequential scan.

Our first observation is that eGap can also output the

array which provides, for each bwt entry, the id of the

sequence to which that entry belongs. In information

retrieval this is usually called the Document Array, so

in the following we will denote it by da . In Phase 1 the

gSACA-K algorithm can compute the da together with

the lcp and bwt using only additional 4n bytes of space

to store the da entries. These partial da ’s can be merged

in Phase 2 using the Znew array in the same way as the

BWT entries. In the following we use bwt , lcp , and da to

denote the multistring BWT, LCP and Document Array

of a collection of m sequences of total length n. We write

s to denote the concatenation s1 · · · sm and sa to denote

the suffix array of s . We will use s and sa to describe and

prove the correctness of our algorithms, but neither s nor

sa are used in the computations.

Computation of maximal repeats

Different notions of maximal repeats have been used in

the bioinformatics literature to model different notions of

repetitive structure (see for example [21, 22]). We use a

notion of maximal repeat from [41, Chap. 7]: we say that

a string α is a Type 1 maximal repeat if α occurs in the

collection at least twice and every extension, i.e. cα or αc

with c ∈ � , occurs fewer times. We consider also a more

restrictive notion: we say that a string α is a Type 2 maxi-

mal repeat if α occurs in the collection at least twice and

every extension of α occurs at most once.

To compute Type 1 maximal repeats the crucial obser-

vation is that there is a substring of length ℓ that prefixes

sa entries j, j + 1, . . . , i (and no others) iff lcp[k] ≥ ℓ for

k = j + 1, . . . , i , and both lcp[j] and lcp[i + 1] are smaller

Page 10 of 15Egidi et al. Algorithms Mol Biol (2019) 14:6

than ℓ . To ensure that the repeat is Type 1 maximal,

we also require that there exists h ∈ [j + 1, i] such that

lcp[h] = ℓ and that the substring bwt[j, i] contains at least

two distinct characters.

Our algorithm consists of a single sequential

scan of bwt and lcp . During the scan, we maintain

a stack containing pairs �j, lcp[h]� with j ≤ h such

that if �j′, lcp[h′]� is below �j, lcp[h]� then j′ < j and

a b

pacbio

pacbio.1000

long

short

2GB 8GB 32GB

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

TotalRAM

P
er

ce
n
ta

ge
of

th
er

u
n
n
in

gt
im

e

pacbio

pacbio.1000

long

short

2GB 8GB 32GB

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

TotalRAM

E
ffi

ci
en

cy
(C

P
U

/t
ot

al
ti

m
e)

Phase 1 Phase 2 Phase 3

Fig. 4 Running time in microseconds per input byte (left) and efficiency (right) for eGap ’s three phases

Page 11 of 15Egidi et al. Algorithms Mol Biol (2019) 14:6

lcp[h′] < lcp[h] . In addition, when the scanning reaches

position i, for every entry �j, lcp[h]� in the stack it is

lcp[h] = minj≤k<i lcp[k] , that is, lcp[h] is the smallest

value in the range lcp[j, i − 1].

We maintain the stack as follows. When we reach

position i, if the entry �j, lcp[h]� at the top of the stack

has lcp[h] < lcp[i] we push �i, lcp[i]� on the stack. If

lcp[h] = lcp[i] we do nothing. If lcp[h] > lcp[i] we pop

from the stack all entries �j, lcp[h]� with lcp[h] > lcp[i] ;

if the removal leaves at the top of the stack an entry

�j′, lcp[h′]� with lcp[h′] < lcp[i] we push on the stack a

new entry �̂ , lcp[i]� where ̂ is the first component of

the last entry just removed from the stack. Note that

in any case when we have completed the processing

of position i the entry at the top of the stack has sec-

ond component equal to lcp[i] , and for each stack entry

�j, lcp[h]� it is lcp[h] = minj≤k≤i lcp[k] as claimed.

We now prove that if �j′, lcp[h′]� is immediately below

�j, lcp[h]� then lcp[j − 1] = lcp[h′] . As we observed

above, if at step i we push �i, lcp[i]� on the stack, the

previous top entry has second component equal to

lcp[i − 1] so the property holds for the first insertion of

an entry �i, lcp[·]� . During the following steps it is pos-

sible that �i, lcp[x]� is removed and immediately rein-

serted as �i, lcp[y]� (with lcp[y] < lcp[x]), but since the

preceding stack element does not change, is still holds

true that lcp[i − 1] is equal to the second component of

the preceding element. Note that, since lcp values on

the stack are strictly increasing, we conclude that for

each stack entry �j, lcp[h]� it is lcp[j − 1] < lcp[h].

Our algorithm outputs Type 1 maximal repeats

when elements are popped from the stack. At step

i + 1 we pop from the stack all entries �j, lcp[h]� such

that lcp[h] > lcp[i + 1] . Recall that by construction

lcp[h] = minj≤k≤i lcp[k] . In addition lcp[j − 1] < lcp[h]

and lcp[i + 1] < lcp[h] . Thus, to ensure that we have

found a Type 1 maximal repeat we only need to check

that bwt[j − 1, i] contains at least two distinct charac-

ters. To efficiently check this latter condition, for each

stack entry �j, lcp[h]� we maintain a bit vector bj of size

σ keeping track of the distinct characters in the array

bwt from position j − 1 to the next stack entry, or to the

last seen position for the entry at the top of the stack.

When �j, lcp[h]� is popped from the stack its bit vector

is or-ed to the previous stack entry in constant time;

if �j, lcp[h]� is popped from the stack and immediately

replaced with �j, lcp[i]� its bit vector survives as it is

(essentially because it is associated with an index, not

with a stack entry). Clearly, maintaining the bit vector

does not increase the asymptotic cost of the algorithm.

Since at each step we insert at most one entry on the

stack, the overall cost of our algorithm is O(n) time. The

algorithm uses a stack of size bounded by O(maxlcp)

words. For most applications maxlcp ≪ n so it should be

feasible to keep the stack in RAM. However, since a stack

can also be implemented in external memory in O(1)

amortized time per operation [42], we can state the fol-

lowing result.

Theorem 1 We can compute all Type 1 maximal

repeats in O(n) time executing a single scan of the arrays

bwt and lcp using O(1) words of RAM. �

To find Type 2 maximal repeats, we are interested

in consecutive LCP entries lcp[j], lcp[j + 1], . . . , lcp[i],

lcp[i + 1] , such that lcp[j] < lcp[j + 1] = lcp[j + 2] =

· · · = lcp[i] > lcp[i + 1]. Indeed, this implies that for

h = j, . . . , i all suffixes s[sa[h], n] are prefixed by the same

string α of length lcp[j + 1] and every extension αc occurs

at most once. If this is the case, then α is a Type 2 maxi-

mal repeat if all characters in bwt[j, i] are distinct since

this ensures that also every extension cα occurs at most

once. In order to detect this situation, as we scan the

lcp array we maintain a candidate pair �j + 1, lcp[j + 1]�

such that j + 1 is the largest index seen so far for which

lcp[j] < lcp[j + 1] . When we establish a candidate at

j + 1 as above, we initialize to zero a bit vector b of size

σ setting to 1 only entries bwt[j] and bwt[j + 1] . As long

as the following values lcp[j + 2], lcp[j + 3], . . . are equal

to lcp[j + 1] we go on updating b and if the same posi-

tion is marked twice we discard �j + 1, lcp[j + 1]� . If we

reach an index i + 1 such that lcp[i + 1] > lcp[j + 1] , we

update the candidate to �i + 1, lcp[i + 1]� and reinitialize

b. If we reach i + 1 such that lcp[i + 1] < lcp[j + 1] and

�j + 1, lcp[j + 1]� has not been discarded, then a repeat of

Type 2 (with i − j + 1 repetitions) has been located.

Theorem 2 We can compute all Type 2 maximal

repeats in O(n) time executing a single scan of the arrays

bwt and lcp using O(1) words of RAM. �

Note that when our algorithms discover Type 1 or Type

2 maximal repeats we know the repeat length and the

number of occurrences so one can easily filter out non-

interesting repeats (too short or too frequent). In some

applications, for example the MUMmer tool [43], one is

interested in repeats that occur in at least r distinct input

sequences, maybe exactly once for each sequence. Since

for these applications the number of input sequences is

relatively small, we can handle these requirements by

simply scanning the da array simultaneously with the lcp

and bwt arrays and keeping track of the sequences associ-

ated to a maximal repeat using a bit vector (or a union-

find structure) as we do with characters in the bwt.

Page 12 of 15Egidi et al. Algorithms Mol Biol (2019) 14:6

All pairs suffix–prefix overlaps

In this problem we want to compute, for each pair of

sequences si sj , the longest overlap between a suffix of si

and a prefix of sj . Our solution is inspired by the algo-

rithm in [24] which in turn was derived by an earlier Suf-

fix-tree based algorithm [23]. The algorithm in [24] solves

the problem using a Generalized Enhanced Suffix array

(consisting of the arrays sa , lcp , and da) in O(n + m
2)

time, which is optimal since n is the size of the input and

there are m2 longest overlaps. However, for large col-

lections it is natural to consider the problem of report-

ing only the overlaps larger than a given threshold τ still

spending O(n) time plus constant time per reported over-

lap. Our algorithm solves this more challenging problem.

In the following we say that a suffix starting at sa[i] is

special iff it is a prefix of the suffix starting at sa[i + 1] ,

not considering the end-marker. This is equivalent to

state that s[sa[i] + lcp[i + 1]] = $. For example, in Fig. 1

(right) the special suffixes are ab$1 , abc$2 , abcab$1

b$1 , bc$2 , bcab$1 , c$2 , cab$1 . Notice that a special suf-

fix starting at sa[i] has the form v$ with |v| = lcp[i + 1] ;

clearly only if sa[i] is special then v can be a suffix–pre-

fix overlap. Note also that any suffix $ is always trivially

special.

To efficiently solve the suffix–prefix overlaps problem,

we modify Phase 2 of our algorithm so that it outputs

also the bit array xlcp such that xlcp[i] = 1 iff the suf-

fix starting at sa[i] is special. To this end, we maintain

an additional length-n bit array S such that, at the end

of iteration h, S[i] = 1 if and only if the suffix starting

at sa[i] is special and it has length less than h, again not

considering the end-marker symbol. The array S is initial-

ized at the end of iteration h = 1 as S = 1
k
0
n−k , consist-

ently with the fact that in the final suffix array the first k

contexts are strings consisting of just an end-marker, that

are special suffixes and the only suffixes of length 0.

During iteration h, we update S as follows. With ref-

erence to the code in Fig. 2, whenever we use entry

Z
(h−1)[i] to compute Z(h)[j] for some j, if S[i] = 1 and

B[j + 1] = 0 then we set S[j] = 1.

Lemma 1 The above procedure correctly updates the

array S.

Proof We prove by induction that at the end of itera-

tion h: (1) S[i] = 1 iff the suffix starting at sa[i] is special

and has length less than h, and (2) if S[i] = 1 the length-

h context currently in position i is in the correct lexico-

graphic position with respect to the final suffix array

ordering (in other words, it is a prefix for s[sa[i], n]).

For h = 1 the result is true by construction. During itera-

tion h > 1 , if we reach a position i such that S[i] = 1 ,

then by inductive hypothesis the context in position i has

the form v$ with |v| ≤ h − 2 . If c is the symbol we read at

Step 5 of Fig. 2, then the context corresponding to posi-

tion j is cv$. Since the context contains the end-marker, j

is the correct lexicographic position of cv$ which is there-

fore the suffix corresponding to sa[j] . If B[j + 1] = 0 ,

then lcp[j + 1] ≥ h − 1 . Since lcp[j + 1] ≤ |cv| ≤ h − 1 , it

follows that |cv| = lcp[j + 1] = h − 1 and S[j] is special as

claimed.

On the other hand, if at the end of iteration h it is

S[j] = 0 , then either it was S[i] = 0 or B[j + 1] = 1 which

implies lcp[j + 1] < h − 1 . In both cases the suffix start-

ing at sa[j] cannot be special and of length less than h. �

Having established the properties of S, we can now

show how to compute xlcp . Recall that LCP values are

computed as follows. In Phase 2, during iteration h + 1

if B[i + 1] = 1 and Bx[i + 1] = 0 we output the pair

�i + 1, h − 1� recording the fact that lcp[i + 1] = h − 1 .

Such pairs are later sorted by their first component dur-

ing Phase 3 to retrieve the LCP array. If sa[i] is special,

its corresponding suffix has length lcp[i + 1] = h − 1

so, by the properties of S, at the beginning of itera-

tion h + 1 it is S[i] = 1 . Thus, to compute xlcp ,

instead of the pair �i + 1, h − 1� we output the triplet

�i + 1, h − 1, S[i]� = �i + 1, lcp[i + 1], xlcp[i]� . After the

merging is completed we sort the triplets by their first

component and we derive both arrays lcp and xlcp.

Our algorithm for computing the suffix–prefix over-

laps longer than a threshold τ , consists of a sequential

scan of the arrays bwt , lcp , da , and xlcp . We maintain

m distinct stacks, stack[1], . . . , stack[m] , one for each

input sequence; stack[k] stores pairs �j, lcp[j + 1]� only

if sa[j] is a special suffix belonging to sequence k such

that lcp[j + 1] > τ . During the scan we maintain the

invariant that for all stack entries �j, lcp[j + 1]� , lcp[j + 1]

is the length of the longest common prefix (longer than

τ) between s[sa[j], n] and s[sa[i], n] , where i is the posi-

tion just scanned.

To maintain the invariant in amortized constant time

per scanned position, we use the following additional

structures:

• A stack lcpStack containing, in increasing order,

the values ℓ such that some stack[k] contains an

entry with LCP component equal to ℓ;

• An array of lists top such that top[ℓ] contains the

indexes k for which the entry at the top of stack[k]

has LCP component equal to ℓ;

• An array daPtr[1,m] such that daPtr[k] points to the

entry k in the list top[ℓk] containing it (daPtr[k] is

used to remove such entry k from top[ℓk] in constant

time).

Page 13 of 15Egidi et al. Algorithms Mol Biol (2019) 14:6

We maintain the above data structures as follows.

When we reach position i + 1 we remove all entries

�j, lcp[j + 1]� such that lcp[j + 1] > lcp[i + 1] . We use

lcpStack to determine which are the values ℓ such that

some stack contains an entry 〈j, ℓ〉 with ℓ > lcp[i + 1] . For

the value ℓ at the top of lcpStack we locate through top[ℓ]

all stacks that contain an ℓ-entry at the top. For each

one of these stacks we remove the top entry 〈j, ℓ〉 so that

a new entry �j′, ℓ′� , with ℓ′
< ℓ , becomes the new top of

the stack. Then, if k is the stack that is being updated, we

add k to top[ℓ′] , and a pointer to the new entry is saved

in daPtr[k] (overwriting the previous pointer). When all

entries of top[ℓ] have been processed, top[ℓ] is emptied

and ℓ is popped from lcpStack . The whole procedure is

repeated until a value ℓ ≤ lcp[i + 1] is left at the top of

lcpStack.

Finally, if xlcp[i] = 1 and lcp[i + 1] > τ , �i, lcp[i + 1]� is

added to stack[da[i]] ; this requires removing da[i] from

the list top[ℓ] where ℓ is the previous top LCP value in

stack[da[i]] ; the position of da[i] in top[ℓ] is retrieved

through daPtr[da[i]] . Also we add da[i] to top[lcp[i + 1]] ,

and the pointer to this new element of top[lcp[i + 1]] is

written to daPtr[da[i]] . Since the algorithm performs

an amortized constant number of operations per entry

�i, lcp[i + 1]� , maintaining the above data structures takes

O(n) time overall.

The computation of the overlaps is done as in [24].

When the scan reaches position i, we check whether

bwt[i] = $. If this is the case, then s[sa[i], n] is prefixed

by the whole sequence sda[i] , hence the longest overlap

between a prefix of sda[i] and a suffix of sk is given by the

element currently at the top of stack[k] , since by con-

struction these stacks only contain special suffixes whose

overlap with s[sa[i], n] is larger than τ . Note that using

lcpStack and top we can directly access the stacks whose

top element corresponds to an overlap with sda[i] larger

than τ , hence the time spent in this phase is proportional

to the number of reported overlaps. As in [24] some care

is required to handle the case in which the whole string

sda[i] is a suffix of another sequence, but this can be done

without increasing the overall complexity as in [24]. Since

we spend constant time for reported overlap and amor-

tized constant time for scanned position the overall cost

of the algorithm, in addition to the scanning of the bwt

/lcp/xlcp/da arrays, is O(n + Eτ) , where Eτ is the number

of suffix–prefix overlaps greater than τ . Since all stacks

can be implemented in external memory spending amor-

tized constant time per operation, we only need to store

in RAM top and daPtr that overall take O(m + maxlcp)

words.

Theorem 3 Our algorithm computes all suffix–prefix

overlaps longer than τ in time O(n + Eτ) , where Eτ is the

number of reported overlaps, using O(m + maxlcp) words

of RAM and executing a single scan of the arrays bwt , lcp ,

da and xlcp . �

Construction of succinct de Bruijn graphs

A recent remarkable application of compressed data

structures is the design of efficiently navigable succinct

representations of de Bruijn graphs [26–28]. Formally, a

de Bruijn graph for a collection of strings consists of a set

of vertices representing the distinct k-mers appearing in

the collection, with a directed edge (u, v) iff there exists

a (k + 1)-mer α in the collection such that α[1, k] is the

k-mer associated to u and α[2, k + 1] is the k-mer associ-

ated to v.

The starting point of all de Bruijn graphs succinct rep-

resentation is the BOSS representation [28], so called

from the authors’ initials. For simplicity we now describe

the BOSS representation of a k-order de Bruijn graph

using the lexicographic order of k-mers, instead of the

co-lexicographic order as in [28], which means we are

building the graph with the direction of the arcs reversed.

This is not a limitation since arcs can be traversed in both

directions (or we can apply our construction to the input

sequences reversed).

Consider the N k-mers appearing in the collection

sorted in lexicographic order. For each k-mer αi con-

sider the array Ci of distinct characters c ∈ � ∪ {$} such

that cαi appears in the collection. The concatenation

W = C1C2 · · ·CN is the first component of the BOSS

representation. The second component is a binary array

last , with |last| = |W | , such that last[j] = 1 iff W [j] is the

last entry of some array Ci . Clearly, there is a bijection

between entries in W and graph edges; in the array last

each sequence 0i1 (i ≥ 0) corresponds to the outgoing

edges of a single vertex with outdegree i + 1 . Finally, the

third component is a binary array W− , with |W−| = |W | ,

such that W−[j] = 1 iff W [j] comes from the array Ci ,

where αi is the lexicographically smallest k-mer prefixed

by αi[1, k − 1] and preceded by W[j] in the collection.

This means that αi is the lexicographically smallest k-mer

with an outgoing edge reaching the node associated to k-

mer W [j]αi[1, k − 1] . Note that the number of 1 ’s in last

and W− is exactly N, i.e. the number of nodes in the de

Bruijn graph.

We now show how to compute W , last and W− by

a sequential scan of the bwt and lcp array. The crucial

observation is that the suffix array range prefixed by the

same k-mer αi is identified by a range [bi, ei] of LCP val-

ues satisfying lcp[bi] < k , lcp[ℓ] ≥ k for ℓ = bi + 1, . . . , ei

and lcp[ei + 1] < k . Since k-mers are scanned in lexi-

cographic order, by keeping track of the corresponding

characters in the array bwt[bi, ei] we can build the array Ci

Page 14 of 15Egidi et al. Algorithms Mol Biol (2019) 14:6

and consequently W and last . To compute W− we simply

need to keep track also of suffix array ranges correspond-

ing to (k − 1)-mers. Every time we set an entry W [j] = c

we set W−[j] = 1 iff this is the first occurrence of c in the

range corresponding to the current (k − 1)-mers.

Theorem 4 Our algorithm computes the BOSS repre-

sentation of a de Bruijn graph in O(n) time using O(1)

words of RAM, and executing a single scan of the arrays

bwt and lcp . �

If, in addition to the bwt and lcp arrays, we also scan

the da array, then we can keep track of which sequences

contain any given graph edge and therefore obtain a suc-

cinct representation of the colored de Bruijn graph [44].

Finally, we observe that if our only objective is to build

the k-order de Bruijn graph, then we can stop the phase

2 of our algorithm after the k-th iteration. Indeed, we

do not need to compute the exact values of LCP entries

greater than k, and also we do not need the exact BWT

but only the BWT characters sorted by their length k

context.

Conclusions

In this paper we have described eGap, a new algorithm

for the computation of the BWT and LCP arrays of large

collection of sequences. Depending on the amount of

available memory, eGap uses an external or semi-exter-

nal strategy for computing the BWT and LCP values. An

experimental comparison of the available tools for BWT

and LCP arrays computation shows that eGap is the fast-

est tool in many scenarios and was the only tool capable

of completing the computation within a reasonable time

frame for all kind of input data.

Another important feature of eGap is that, in addition

to the BWT and LCP array, it can compute, without any

asymptotic slowdown, two additional arrays that pro-

vide important information about the substrings of the

input collection. We show how to use such information

to design efficient external memory algorithms for three

important problems for biosequences, namely the com-

putation of maximal repeats, the computation of the all

pairs suffix–prefix overlaps, and the construction of suc-

cinct de Bruijn graphs. Overall our results confirm the

importance of the BWT and LCP arrays beyond their

use for the construction of compressed full text indexes.

This is in accordance with other recent results that have

shown of they can be used directly to discover structural

information on the underlying collection (see [45–47]

and references therein).

Authors’ contributions

LE and GM devised the main algorithmic ideas. All authors contributed to

improve the algorithms and participated to their implementations. FAL and

GPT designed and performed the experiments. All authors read and approved

the final manuscript.

Author details
1 DiSIT, University of Eastern Piedmont, Viale Michel, 11, 15121 Alessandria,

Italy. 2 Department of Computing and Mathematics, University of São Paulo,

Av. Bandeirantes, 3900, 14040-901 Ribeirão Preto, Brazil. 3 IIT CNR, Via Moruzzi,

1, 56124 Pisa, Italy. 4 Institute of Computing, University of Campinas, Av. Albert

Einstein, 1251, 13083-852 Campinas, Brazil.

Competing interests

The authors declare that they have no competing interests.

Availability

The source code of the proposed algorithm is available at https ://githu b.com/

felip elouz a/egap.

Funding

L.E. was partially supported by the University of Eastern Piedmont project

Behavioural Types for Dependability Analysis with Bayesian Networks. F.A.L. was

supported by the Grants #2017/09105-0 and #2018/21509-2 from the São

Paulo Research Foundation (FAPESP). G.M. was partially supported by PRIN

grant 201534HNXC and INdAM-GNCS Project 2019 Innovative methods for the

solution of medical and biological big data. G.P.T. acknowledges the support

of Brazilian agencies Conselho Nacional de Desenvolvimento Científico e

Tecnológico (CNPq) and Coordenação de Aperfeiçoamento de Pessoal de

Nível Superior (CAPES).

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-

lished maps and institutional affiliations.

Received: 6 November 2018 Accepted: 23 February 2019

References

 1. Burrows M, Wheeler DJ. A block-sorting lossless data compression algo-

rithm. Technical report, Digital SRC Research Report; 1994.

 2. Mäkinen V, Belazzougui D, Cunial F, Tomescu AI. Genome-Scale Algorithm

Design: biological sequence analysis in the era of high-throughput

sequencing. Cambridge: Cambridge University Press; 2015.

 3. Manber U, Myers G. Suffix arrays: a new method for on-line string

searches. SIAM J Comput. 1993;22(5):935–48.

 4. Gog S, Ohlebusch E. Compressed suffix trees: efficient computation and

storage of LCP-values. ACM J Exp Algorith. 2013;18:2.

 5. Navarro G, Mäkinen V. Compressed full-text indexes. ACM Comput Surv.

2007;39:1.

 6. Burkhardt S, Kärkkäinen J. Fast lightweight suffix array construction and

checking. In: Proc. 14th symposium on combinatorial pattern matching

(CPM ’03). Springer, Morelia, Michocän, Mexico; 2003. p. 55–69.

 7. Manzini G. Two space saving tricks for linear time LCP computation. In:

Proc. of 9th Scandinavian workshop on algorithm theory (SWAT ’04).

Humlebæk: Springer; 2004. p. 372–83.

 8. Manzini G, Ferragina P. Engineering a lightweight suffix array construc-

tion algorithm. In: Proc. 10th European symposium on algorithms (ESA).

Rome: Springer; 2002. p. 698–710.

 9. Ferragina P, Gagie T, Manzini G. Lightweight data indexing and com-

pression in external memory. In: Proc. 9th Latin American theoretical

informatics symposium (LATIN ’10). Lecture Notes in Computer Science

vol. 6034; 2010. p. 698–711.

 10. Ferragina P, Gagie T, Manzini G. Lightweight data indexing and compres-

sion in external memory. Algorithmica. 2011.

 11. Kärkkäinen J, Kempa D. LCP array construction in external memory. ACM

J Exp Algorith. 2016;21(1):1–711722.

 12. Beller T, Zwerger M, Gog S, Ohlebusch E. Space-efficient construction of

the Burrows–Wheeler transform. In: SPIRE. Lecture Notes in Computer

Science, vol. 8214. Jerusalem: Springer; 2013. p. 5–16.

https://github.com/felipelouza/egap
https://github.com/felipelouza/egap

Page 15 of 15Egidi et al. Algorithms Mol Biol (2019) 14:6

•

fast, convenient online submission

•

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your research ? Choose BMC and benefit from:

 13. Kärkkäinen J, Kempa D. Engineering a lightweight external memory suffix

array construction algorithm. Math Comput Sci. 2017;11(2):137–49.

 14. Louza FA, Telles GP, Hoffmann S, Ciferri CDA. Generalized Enhanced

Suffix array construction in external memory. Algorith Mol Biol.

2017;12(1):26–12616.

 15. Vitter J. External memory algorithms and data structures: dealing with

massive data. ACM Comput Surv. 2001;33(2):209–71.

 16. Belazzougui D. Linear time construction of compressed text indices in

compact space. In: STOC. New York: ACM; 2014. p. 148–93.

 17. Munro JI, Navarro G, Nekrich Y. Space-efficient construction of com-

pressed indexes in deterministic linear time. In: SODA. Barcelona: SIAM;

2017. p. 408–24.

 18. Bauer MJ, Cox AJ, Rosone G. Lightweight algorithms for construct-

ing and inverting the BWT of string collections. Theor Comput Sci.

2013;483:134–48.

 19. Cox AX, Garofalo F, Rosone G, Sciortino M. Lightweight LCP construction

for very large collections of strings. J Discrete Algorith. 2016;37:17–33.

 20. Bonizzoni P, Della Vedova G, Pirola Y, Previtali M, Rizzi R. Computing the

BWT and LCP array of a set of strings in external memory. CoRR: arXiv

:1705.07756 . 2017.

 21. Külekci MO, Vitter JS, Xu B. Efficient maximal repeat finding using the Bur-

rows–Wheeler transform and wavelet tree. IEEE/ACM Trans Comput Biol

Bioinform. 2012;9(2):421–9.

 22. Ohlebusch E, Gog S, Kügel A. Computing matching statistics and maxi-

mal exact matches on compressed full-text indexes. In: SPIRE. Lecture

Notes in Computer Science, vol. 6393. Los Cabos: Springer; 2010. p.

347–58.

 23. Gusfield D, Landau GM, Schieber B. An efficient algorithm for the all pairs

suffix–prefix problem. Inform Process Lett. 1992;41(4):181–5.

 24. Ohlebusch E, Gog S. Efficient algorithms for the all-pairs suffix–prefix

problem and the all-pairs substring-prefix problem. Inform Process Lett.

2010;110(3):123–8.

 25. Tustumi WHA, Gog S, Telles GP, Louza FA. An improved algorithm for the

all-pairs suffix–prefix problem. J Discrete Algorith. 2016;37:34–43.

 26. Belazzougui D, Gagie T, Mäkinen V, Previtali M, Puglisi SJ. Bidirectional

variable-order de Bruijn graphs. In: LATIN. Lecture Notes in Computer

Science, vol. 9644. Ensenada: Springer; 2016. p. 164–78.

 27. Boucher C, Bowe A, Gagie T, Puglisi SJ, Sadakane K. Variable-order de

Bruijn graphs. In: DCC. IEEE, Snowbird, Utah, USA; 2015. p. 383–392

 28. Bowe A, Onodera T, Sadakane K, Shibuya T. Succinct de Bruijn graphs. In:

WABI. Lecture Notes in Computer Science, vol. 7534. Ljubljana: Springer;

2012. p. 225–35.

 29. Bonizzoni P, Della Vedova G, Pirola Y, Previtali M, Rizzi R. Constructing

string graphs in external memory. In: WABI. Lecture Notes in Computer

Science, vol. 8701. Berlin: Springer; 2014. p. 311–25.

 30. Bonizzoni P, Della Vedova G, Pirola Y, Previtali M, Rizzi R. An external-

memory algorithm for string graph construction. Algorithmica.

2017;78(2):394–424. https ://doi.org/10.1007/s0045 3-016-0165-4.

 31. Mantaci S, Restivo A, Rosone G, Sciortino M. An extension of the Bur-

rows–Wheeler transform. Theor Comput Sci. 2007;387(3):298–312.

 32. Louza FA, Gog S, Telles GP. Inducing enhanced suffix arrays for string col-

lections. Theor Comput Sci. 2017;678:22–39.

 33. Nong G. Practical linear-time O(1)-workspace suffix sorting for constant

alphabets. ACM Trans Inform Syst. 2013;31(3):15.

 34. Egidi L, Manzini G. Lightweight BWT and LCP merging via the Gap algo-

rithm. In: SPIRE. Lecture Notes in Computer Science, vol. 10508. Palermo:

Springer; 2017. p. 176–90.

 35. Holt J, McMillan L. Merging of multi-string BWTs with applications. Bioin-

formatics. 2014;30(24):3524–31.

 36. Holt J, McMillan L. Constructing Burrows–Wheeler transforms of large

string collections via merging. In: BCB. New York: ACM; 2014. p. 464–71.

 37. Knuth DE. Sorting and searching, 2nd edn. In: The art of computer pro-

gramming, vol. 3. Reading: Addison-Wesley; 1998. p. 780.

 38. Cox AJ, Garofalo F, Rosone G, Sciortino M. Multi-string eBWT/LCP/

GSA computation (commit no. 6c6a1b38bc084d35330295800f-

9d4a6882052c51). GitHub; 2018. https ://githu b.com/giova nnaro sone/

BCR_LCP_GSA.

 39. Bonizzoni P, Della Vedova G, Nicosia S, Previtali M, Rizzi R. bwt-lcp-em

(commit no. a6f0144b203e5bda7af8480e9ea3a1d781ad7ba0). GitHub;

2018. https ://githu b.com/AlgoL ab/bwt-lcp-em.

 40. Louza FA, Telles GP, Hoffmann S, Ciferri CDA. egsa (commit no.

1790094e010040bef3be11e393a4f1d5408debb0). GitHub; 2018. https ://

githu b.com/felip elouz a/egsa.

 41. Gusfield D. Algorithms on strings, trees, and sequences: computer

science and computational biology. Cambridge: Cambridge University

Press; 1997.

 42. Dementiev R, Kettner L, Sanders P. STXXL: standard template library

for XXL data sets. Softw Pract Exper. 2008;38(6):589–637. https ://doi.

org/10.1002/spe.844.

 43. Marçais G, Delcher AL, Phillippy AM, Coston R, Salzberg SL, Zimin AV.

Mummer4: a fast and versatile genome alignment system. PLoS Comput

Biol. 2018;14(1):e1005944.

 44. Muggli MD, Bowe A, Noyes NR, Morley PS, Belk KE, Raymond R, Gagie T,

Puglisi SJ, Boucher C. Succinct colored de Bruijn graphs. Bioinformatics.

2017;33(20):3181–7.

 45. Louza FA, Telles GP, Gog S, Zhao L. Computing Burrows–Wheeler similarity

distributions for string collections. SPIRE. Lecture Notes in Computer Sci-

ence, vol. 11147. Lima: Springer; 2018. p. 285–96.

 46. Prezza N, Pisanti N, Sciortino M, Rosone G. Detecting mutations by ebwt.

In: WABI. LIPIcs, vol. 113. Schloss Dagstuhl - Leibniz-Zentrum fuer Informa-

tik, Helsinki, Finland; 2018. p. 3–1315.

 47. Garofalo F, Rosone G, Sciortino M, Verzotto D. The colored longest com-

mon prefix array computed via sequential scans. SPIRE. Lecture Notes in

Computer Science, vol. 11147. Lima: Springer; 2018. p. 153–67.

http://arxiv.org/abs/1705.07756
http://arxiv.org/abs/1705.07756
https://doi.org/10.1007/s00453-016-0165-4
https://github.com/giovannarosone/BCR_LCP_GSA
https://github.com/giovannarosone/BCR_LCP_GSA
https://github.com/AlgoLab/bwt-lcp-em
https://github.com/felipelouza/egsa
https://github.com/felipelouza/egsa
https://doi.org/10.1002/spe.844
https://doi.org/10.1002/spe.844

	External memory BWT and LCP computation for sequence collections with applications
	Abstract
	Background:
	Results:
	Conclusions:

	Introduction
	Background
	Computing multi-string BWTs
	Merging multi-string BWTs
	Related approaches

	The eGap algorithm
	Phase 1: BWT computation
	Phase 2: BWT merging and LCP computation
	Phase 3: LCP merging
	Analysis

	Experiments
	Comparison with the existing algorithms
	Relative performance of eGap’s building blocks

	Applications
	Computation of maximal repeats
	All pairs suffix–prefix overlaps
	Construction of succinct de Bruijn graphs

	Conclusions
	Authors’ contributions
	References

