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External Memory Management and Simplification
of Huge Meshes

P. Cignoni, C. Montani, C. Rocchini, R. Scopigno

Abstract— Very large triangle meshes, i.e. meshes com-
posed of millions of faces, are becoming common in many
applications. Obviously, processing, rendering, transmission
and archival of these meshes are not simple tasks. Mesh sim-
plification and LOD management are a rather mature tech-
nology that in many cases can efficiently manage complex
data. But only few available systems can manage meshes
characterized by a huge size: RAM size is often a severe
bottleneck.
In this paper we present a data structure called Octree-
based External Memory Mesh (OEMM ). It supports exter-
nal memory management of complex meshes, loading dy-
namically in main memory only the selected sections and
preserving data consistency during local updates. The func-
tionalities implemented on this data structure (simplifica-
tion, detail preservation, mesh editing, visualization and in-
spection) can be applied to huge triangles meshes on low-
cost PC platforms. The time overhead due to the external
memory management is affordable. Results of the test of
our system on complex meshes are presented.

CR Descriptors: I.3.5 [Computer Graphics]: Computational
Geometry and Object Modeling - Curve, surface, solid and ob-
ject representation; I.3.6 [Computer Graphics]: Methodology
and Techniques.
Additional Keywords: Out-Of-Core Algorithms, Hierarchi-
cal Data Structures, Mesh Simplification, Level of Detail,
3D Scanning, Texture Synthesis.

I. Introduction and state of the art

Very large triangle meshes, i.e. meshes composed of
many millions of faces, are common in many applications:
range scanning, volume data visualization, terrain visual-
ization, etc. For example, huge meshes (up to Giga trian-
gles sizes) can be produced by scanning Cultural Heritage
artifacts [3], [16] or by processing large volumetric dataset
(e.g. the data produced by the Visible Human project or
the DOE ASCII project). Obviously, such complex meshes
introduce severe problems in the archival, manipulation,
visualization and geometric processing. Huge mesh man-
agement encompasses different processing goals:

• Efficient visualization, for selective inspection and pre-
sentation (direct raw mesh visualization is inefficient when
we want to focus on a small dataset region).
• Mesh editing functionalities, to improve the quality of
the data (e.g., 3D scanned meshes need smoothing filters
or operators for the triangulation of holes).
• High quality simplification capabilities, to allow the con-
struction of LOD representations (even if alternative repre-
sentations exist, e.g. based on point-based primitives [24],
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topology is crucial in a number of applications and triangles
are still the standard graphics primitive).
• Finally, applications’ specific functionalities can be re-
quired (e.g. computing digital measures on the model or
supporting data conversion tools for rapid prototyping).

The adoption of an External Memory (EM) technique is
mandatory whenever we want to process a huge mesh on a
limited core memory footprint. The design of EM solutions
is a very active research area, and many groups are working
on this issue in the graphics community as well. Recent
results are: EM isosurfaces fitting [4], EM reconstruction
of surfaces from point clouds [2], EM visualization [29], or
EM solutions for the simplification of huge meshes [13],
[17], [7], [18], [28]. Let us focus on the mesh simplification
task.

A. Mesh Simplification

In the context of geometric processing, mesh simplifi-
cation can be considered a crucial task, and core mem-
ory is often the bottleneck [10]. Almost all simplification
tools require the whole mesh to be loaded in main memory.
If we consider Quadric Error edge-collapse simplification
[11], the space complexity can be estimated as a factor of
the mesh size (176 byte for each face). Therefore, we can
process around 1.1M-1.3M faces on a system with 256MB
RAM.

Various techniques have been presented to face the prob-
lem of huge mesh simplification: Hoppe’s hierarchical
method for digital terrain management [13], that can be
extended to 3D meshes as shown in [22], [8]; the cluster-
ing solution proposed by Lindstrom [17]; and the spanned
mesh simplification algorithm by El-Sana et al. [7].
Hoppe hierarchically divides the mesh in blocks, simplifies
each block by collapsing edges (the collapse of elements in-
cident on the boundary of the block is forbidden) and then
traverses bottom-up the hierarchical structure by merging
sibling cells and again simplifying. This approach has ei-
ther a bottleneck on the output size (because a complete
bottom-up traversal of the tree is required to remove ele-
ments incident on the inter-cell boundaries) or on the sim-
plification accuracy (intermediate results present unpleas-
ant runs of original high resolution elements located on cells
boundaries). Moreover, this approach cannot be extended
easily to support other geometric processing tasks, because
the elements shared by adjacent blocks cannot be modi-
fied unless the blocks are merged. These disadvantages are
shared with the 3D mesh extensions of the Hoppe’s ap-
proach [8], [22].
The clustering algorithm [23] can be easily implemented
in external memory [17] and guarantees excellent time effi-
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ciency. Unfortunately, the accuracy of the mesh produced
is much lower if compared with the accuracy of methods
based on edge collapse. The simple criterion adopted (unify
all mesh elements that are contained in the same cluster)
implies that every shape feature whose size is smaller than a
cluster cell is removed. Clustering performs an accurate (it
is based on quadric error metrics) but regular sub-sampling
in the model space. Therefore, it is not able to simplify
large sections of the mesh which have a low curvature varia-
tion and span multiple cells. A disadvantage of the original
clustering approach is that intermediate simplification re-
sults are maintained in main memory. This prevents simpli-
fication when an intermediate reduction rate is requested.
This latter problem has been recently solved by Lindstrom
and Silva [18] by storing the output mesh and intermediate
data on disk (out-of-core sorting is used to detect and com-
pose the quadrics associated to each grid cell); output size
independence is obtained at the expenses of two to five
times slower simplification times. Another improvement
over the general Clustering approach has been proposed
recently by Shaffer and Garland [28]. A higher quality ap-
proximation is obtained at the expenses of a small time
overhead (around two times slower than standard cluster-
ing) by replacing the regular grid with an adaptive subdi-
vision based on BSP trees. The external memory imple-
mentation needs multiple scan of the data: initially, a uni-
form grid is used to quantize the input data and compute
quadrics; then, this info allows to build an adaptive subdi-
vision of the space (by a BSP tree), that is used in the last
step to simplify the mesh. Even if this method gives an im-
proved accuracy with respect to standard clustering (given
a budget of K output vertices, these are positioned on the
surface in an adaptive manner), the accuracy is lower than
that produced with edge-collapse methods and the output
is often non-topologically clean, as well as all clustering so-
lutions (see some discussion in Section VIII).
The spanned mesh simplification algorithm by El-Sana et
al. [7] starts from an indexed mesh with explicit topology.
It keeps all the edges of the mesh (with the adjacent faces)
into an external memory heap, ordered according an error
criterion based on edge length (using edge length does not
ensure high accuracy in simplification. Implementing an
ordering criteria based on quadric error metrics [11] is not
easy, due to the more complex data loading required for
the initial evaluation of the QEM for each edge and for the
update of QEM after each edge collapse. Given the k edges
on top of the heap (k depends on the core memory size),
it loads in memory the associated adjacent faces pairs and
reconstructs the mesh portions spanned by these edges.
Then, the edges having all their incident faces loaded in
memory can be collapsed. This approach reaches a good
computational efficiency if we are able to load in memory
a large percentage of the data (i.e. large contiguous re-
gions). In the case of huge meshes the shortest edges could
be uniformly scattered and it could happen that most of
the spanned sub-meshes loaded in memory consist of only
a few triangles, therefore requiring a very frequent load-
ing/unloading of very small regions. A positive advantage

of this method is that the simplification order performed
by the external memory implementation is exactly identical
to the one used by an analogous in-core solution (thus, the
mesh produced by the external memory implementation is
identical to the one of the in-core solution).

Beside the specific limitation of each one of the above
techniques, most of them have been designed to support
just simplification, and extending these approaches to sup-
port also other geometric processing algorithms can be not
straightforward.

B. Objectives

Our goal is therefore to support general huge mesh man-
agement on low-cost platforms, by providing mesh manip-
ulation, editing, filtering, simplification and inspection fea-
tures under the constraint of a limited memory size. None
of the existing systems support these features, especially
if we consider PC-based systems. Our system is based on
a hierarchical data structure, called Octree-based External
Memory Mesh (OEMM). Hierarchical schemes [25] have
been often used in geometric processing and interactive vi-
sualization [1], [8], [9], [13], [15], [22], [24], [29], but in all
these cases the hierarchical structure sets strong limitation
on how and where processing can be performed. For exam-
ple, the hierarchical simplification approach [13], [8], [22]
simplifies some boundary elements only in the very last step
of the bottom-up simplification process (i.e. boundary el-
ements can be managed only when the corresponding leaf
nodes are merged). Our external memory structure is not
just another space subdivision or data paging scheme. Pe-
culiar characteristics of our approach are: (a) it supports
a global indexed representation (built on any huge mesh
given in input as a triangle soup); (b) it allows any partial
data load/update/write-back operation, by performing an
automatic on the fly re-indexing of the loaded data portion:
in this way, any loaded portion is represented in core mem-
ory with indexed lists containing only the loaded vertices
and faces. Data subdivision is performed using a standard
octree-based regular split; elements spanning adjacent cells
are identified in the construction phase, consistent id’s are
assigned to the corresponding vertices in adjacent nodes
(vertex indexing also satisfies the lexical order of the cor-
responding octree nodes) and, finally, each border element
is assigned to a single node of the octree. This allows data
loading of any subset of the mesh, which is converted on
the fly in a single, consistent mesh indexed on the local
subset of vertices. The potential boundary elements con-
tained in the interior of the loaded region can therefore
be treated as any other element, while a tagging strategy
(the peculiar characteristic of our approach) allows easy
detection and management of the elements located on the
boundary of the current region. This makes simple the
design of the external memory version of many geometric
algorithms. Therefore, the underlying space decomposition
is completely hidden (and managed by the data structure),
and coding geometrical algorithms working on data parti-
tions becomes easier.

Thanks to the freedom of accessing any small subset of
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the mesh consistently, we can easily implement different
mesh processing algorithms on the OEMM data structure,
such as: mesh editing and selective inspection; high qual-
ity mesh simplification (based on the quadric error metric
approach [11]); detail preservation (based on bump- or rgb-
texture resampling, to encode the high frequency detail lost
during simplification [5]). The bottleneck on either input
and output data size is thus removed.

The paper is organized as follows. Some definitions are
introduced in Section II. Then, the OEMM hierarchical
structure is introduced in Section III. Details on the con-
struction of an OEMM representation from a triangle soup
(list of faces, not indexed) are given in Section IV. Sec-
tion V presents the data management procedures (traver-
sal, loading, updating). Section VI describes how to imple-
ment external memory mesh simplification. Other mesh
processing tasks have been implemented on the OEMM

data structure, and are briefly described in Section VII.
Finally, Sections VIII and IX report results and conclu-
sions.

II. Definitions

Mesh Terminology. A mesh is called indexed if all the tri-
angles are encoded by storing a triple of references to their
vertices (either with explicit pointers or with integer in-
dices). Conversely, it is called raw (or triangle soup) if the
triangles are described with a triple of 3D points and shar-
ing of vertices among adjacent triangles is not considered.

Octree Terminology. Given an axis aligned box B contain-
ing the dataset, we recursively partition it in eight sub-
regions [20]. Sub-regions are numbered according to their
relative coordinates in lexicographic order (see Figure 1 for
a 2D example), which defines a total ordering between oc-
tree leaves according to a DFS visit [25]. Given an octree
node n, we denote with Bn the bounding box correspond-
ing to that node. Each bounding box B is identified by two
3D points B.min,B.max.
To avoid ambiguities hereafter when we say that a point p

is contained into a bounding box B we mean that its coor-
dinates are greater than or equal to B.min and less than
B.max. In this way any point is contained in one and only
one leaf node of the octree.

III. Octree-based External Memory Mesh

The Octree-based External Memory Mesh data structure
(OEMM ) provides support for the management of generic
processing on huge meshes, under the constraint of limited
core memory. OEMM is based on a hierarchical geomet-
ric partition of the dataset with no vertex replication and
consistent vertex indexing between leaf nodes which shares
a reference to the same vertex. This hierarchy is coupled
with an element tagging strategy that permits to manage
in a straightforward manner the partial knowledge of geom-
etry and topology (a common situation when only a small
portion of the whole mesh is loaded in each instant of time).

A small mesh portion is assigned to each OEMM leaf,
based on regular hierarchical decomposition. Only the hi-

Fig. 1. Flags setting on a section of the mesh currently loaded in
main memory (leaf nodes 1, 30, 31 are the ones loaded). Node
numbering reflects the lexical order of the nodes.

erarchical structure of the octree is maintained in main
memory: each octree leaf holds the external memory ad-
dress of the corresponding portion of the mesh. An impor-
tant feature of the OEMM is that it maintains a globally
indexed representation of the mesh. Therefore, each ver-
tex is uniquely identified by an integer and triangles are
described and stored using just three indices (there is no
vertex duplication). The vertex indices respect the octree
structure and the order defined on the leaves in the follow-
ing sense: each octree leaf node has associated a unique
integer range, and all of its vertex indices lie in this range.

Definition III.1: OEMM leaf node. Each leaf ℓ of the
octree stores a pointer to a secondary memory chunk which
contains:
• vertices - all the vertices contained in the bounding
box of ℓ ; for each vertex v we also store the indices of the
OEMM leaf nodes which contain shared faces incident in
v;
• faces - for each triangle t partially contained in the
bounding box of ℓ, t is stored in ℓ only if ℓ is the minimal
leaf (according to the lexicographic order) which contains
a vertex of t. Therefore, all the triangles completely con-
tained in the bounding box of ℓ are stored in ℓ. In other
words, a face is stored in the lowest index leaf that contains
a vertex of the triangle.

Maintaining the whole octree structure in main memory
is not a memory bottleneck because its memory size is not
very large, even for very large meshes. To give an example,
if we have an average of 16K triangles in each octree leaf,
then the octree structure associated with a 10G faces mesh
requires ≈40 MB.
The data structure encoding each OEMM node on disk is
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as follows:

OctreeNode{
OctreeNode *parent;
OctreeNode *child[8];
EM\_Pointer Mesh; // Pointer to external memory
int vn; // Vertex number
int tn; // Triangle number
int BaseInd; // index range of leaf goes from
int LastInd; // BaseInd to LastInd
vector<int> L; // Set of adjacent leaves with shared data

}
DiskTriangle{
int v[3];
data attributes; // User-defined attributes

}
DiskVertex{
Coord3d p;
unsigned char ol[8]; // Indices of adjacent cells containing

// triangles incident in vertex p
bool deleted;
bool modified;
data attributes; // User-defined attributes (color,

// quadrics, etc.)
}

This gives a minimal representation of a mesh; if needed,
more complex representations (e.g. with explicit topology
links between adjacent faces) can be built on the fly at data
loading time.

The main purpose of this structure is to allow the user
to load in main memory and to modify any small contigu-
ous portion of the mesh, independently of the underlining
hierarchical decomposition. By traversing the OEMM oc-
tree structure and iteratively loading, updating and saving
leaves we are able to apply on very large meshes almost any
kind of geometric algorithm based on local updates. More-
over, some geometric algorithms that need to work on the
whole mesh can be redesigned such that just a portion of
the data should be needed at each instant of time.

Loading just a portion of the mesh force us to cope with
partial knowledge of the mesh elements. As an example,
a vertex on the frontier of the mesh section assigned to
the current leaf may have incident faces which are not con-
tained in the current leaf, or some of the faces on the fron-
tier can be defined by vertices whose geometry has not been
loaded because it is stored in an adjacent, non-loaded cell.
The ol field contained in the vertex data structure encodes
the set of adjacent leaves which contain faces incident in
that vertex. To ensure space efficiency, the ol has been
implemented as a fixed length unsigned char field; the
values contained in ol are indices to a list of adjacent cells
stored in the corresponding leaf node, that is the vector L
of leaf indices (see data structure above). If more than 8 in-
dices are required, they are allocated in a dynamic list (but
this situation never arose in all the tests presented). Note
that it can be proved that if triangles edges are smaller
than half of the smallest octree box, then each vertex can
be referenced by, at most, seven other leaves.

Because we load only a portion of the mesh, we must
maintain explicit information on which operations can be
performed on the currently loaded or referred mesh ele-
ments. For this reason a set of flags are added to the
Vertex and Triangle data structure when data are loaded
in RAM:

Triangle{
vertex* v[3];
int flags;
}
Vertex{
Coord3d p;
int OEMMVertIndex;
int flags;
data attributes; // User-defined attributes

// (color, quadrics, etc.)
}

The vertex flags hold the following values:
• readable and writable: a vertex is readable if it is con-
tained in one of the currently loaded leaves. A vertex is
writable if all of the faces incident in it are contained in
leaves currently loaded. In this way, a vertex that is refer-
enced by some non-loaded triangle is set readable but non
writable, preventing modifications. On the contrary, if a
vertex is not loaded and is referenced by triangles that are
loaded then it is tagged as non readable and non writable.
We implicitly assume that writable implies readable;
• modified: a vertex is modified when either its coordi-
nates or the set of elements incident in it have been mod-
ified or, in some sense, processed (for example, to prevent
multiple redundant processing on the same mesh element).

Conversely, the face flags hold the following values:
• readable and writable: a triangle is readable if it is
contained in one of the currently loaded leaves. A triangle
is writable if all of the vertex-adjacent triangles are readable,
or in other words if all its vertices are writable;
• modified: a triangle is modified when its vertex indices
have been modified.
An example of flags settings is shown in Figure 1. Flags
are initialized by the loading function of the OEMM leaves,
according to: (a) the values of the ol and L fields in the
OEMM representation (see OctreeNode and DiskVertex

data structures), and (b) the current set of leaf nodes
loaded.

IV. Building the OEMM

We assume that the input mesh comes as a large set of
raw, not indexed triangles, stored therefore with just 3D
coordinates. We therefore describe OEMM construction
considering the worst-case input (if we have in input an in-
dexed mesh, some construction steps described below can
be avoided or simplified). In any case, many huge meshes
comes as a set of independent indexed meshes (e.g. pro-
duced by separate runs of a surface fitting code), and there-
fore re-indexing them in a common vertex space is needed.
The OEMM is constructed in two steps:
1. a raw OEMM structure is built in secondary memory
by processing all input triangles; the raw OEMM is a non-
indexed OEMM . Each raw OEMM leaf node ℓ contains
all triangles {ti} such that at least one of the vertices of
ti is contained in the node bounding box Bℓ. Note that
triangles shared by multiple leaf nodes are replicated in all
those nodes of the raw OEMM ;
2. the raw OEMM is traversed and an indexed OEMM

is built, i.e. an octree where triangles are indexed us-
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ing a global vertex naming strategy. At the end of this
phase, vertices and faces of the mesh are partitioned on
the OEMM leaves according to Definition 3.1, with no re-
dundancy.

In the following paragraph we see some details on how this
building process is performed.

A. Building a raw OEMM

This first construction phase is performed in two steps.
The goal of the first step is to determine the structure of
the OEMM octree: we fix a maximal depth of the OEMM

, we scan all the triangles and count, for each leaf node ℓ

of the OEMM , how many triangles should be assigned to
it. When all faces have been virtually assigned to leaves,
sibling leaf nodes are collapsed into the parent node if and
only if: the sum of the triangles contained is lower than
a user-selected threshold, called max triangles, and the
resulting merged node has adjacent nodes whose depth in
the tree differs from the depth of the current one by no more
than three levels (i.e. we build a restricted octree [25]). The
second condition guarantees that loading a leaf and all of
its adjacent leaf nodes has a bounded space complexity.

In the second step we read again the set of raw triangles
from secondary storage, and distribute them in the sec-
ondary memory buckets corresponding to the octree leaf
nodes.

B. Building an indexed OEMM

To build the indexed OEMM we perform two complete
traversal of the intermediate data structure: firstly, we tra-
verse the raw OEMM to build an intermediate indexed
OEMM where only internal vertices are correctly indexed
(we call internal the vertices contained in the leaf bound-
ing box, and external the others); then, the final indexed
OEMM is built by indexing also the external vertices which
belong to the faces shared by the adjacent leaf nodes.

Indexing internal vertices. The indices of the vertices
should respect the lexicographic order of the leaves of the
OEMM . Therefore, the leaves of the raw OEMM are read
from secondary storage in lexicographic order, and for each
leaf ℓ we assign an unique index to each vertex contained in
the given leaf, and copy them in the indexed OEMM. All
the vertices that are not contained in ℓ are indexed with a
temporary fake value.
In this step we also setup the per-node and per-vertex list
of OEMM leaves that contain faces shared with the current
leaf node. This can be done easily due to the redundant
representation of shared faces in the raw OEMM.

Indexing external vertices. The last step computes a cor-
rect global index for all the external vertices of the shared
faces represented in each leaf. Therefore, each OEMM leaf
node, with the adjacent ones, is read from secondary mem-
ory for the last time, and the global indices assigned to the

internal vertices of a cell are propagated to the adjacent
ones containing shared triangles as follows:

• all the leaf nodes ℓi which share triangles with ℓ are
loaded;
• for each vertex v �∈ ℓ of a shared triangle t ∈ ℓ, we replace
the fake index initially assigned to v in ℓ with the correct
index assigned to v in the leaf node ℓj containing v.

V. Working with the OEMM

Working with the OEMM involves the iterative applica-
tion of load/[modify/save] actions onto the OEMM leaves.
Here we describe the details of these steps.

A. Traversal

In order to apply a geometric algorithm over an OEMM

we have to define a visiting strategy such that all the ver-
tices and triangles are seen at least once as readable and
writable. Loading only a leaf at a time does not allow to
get full information on the associated mesh portion and to
modify the triangles which are not completely contained in
the current leaf. The OEMM library implements different
atomic data access rules:

• subtree: load all the leaves contained in the subtree plus
all the leaf nodes adjacent to the nodes of this subtree;
• bounding-box: load the minimal set of leaves such that
all the vertices contained in the given bounding-box and
all the triangles referencing them are loaded.

A geometric algorithm can traverse the OEMM choosing
any of the previous atomic rules depending on the char-
acteristics of the processing to be performed and on the
relative space requirements.

B. Loading Leaves

Loading in main memory a generic set of leaves S =
{ℓ0, .., ℓk} means to reconstruct a standard indexed mesh
representation from the OEMM loaded leaf nodes. This
task involves the re-indexing of the mesh faces to a new
vertex vector composed only by the loaded vertices (i.e. a
vertex vector much smaller than the global OEMM vertex
list); and to assign the correct flags settings to all faces and
vertices.

Vertices re-indexing can be done in linear time because
the maximum number of adjacent nodes is bounded by a
constant. The original index of each vertex is maintained
(see the int OEMMVertIndex of the Vertex data structure
in Section III), in order to guarantee that non writable ver-
tices could be placed back in the original position of the
corresponding leaf block on secondary memory (see Sec-
tion V-C).

The flag values (readable/writable and modified) are as-
signed as follows (see also Figure 1):

• vertices referenced by triangles outside all ℓi ∈ S are
tagged not writable.
• vertices stored in non-loaded leaves but referenced by
triangles in ℓi ∈ S are replaced with dummy vertices and
tagged not readable, non writable.
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C. Saving Leaves

A modified mesh corresponding to a set of leaf nodes
S = {ℓ0, .., ℓk} has to be written back on secondary mem-
ory to make these modifications permanent. This step in-
volves a back conversion of the current indexed mesh into
a OEMM mesh chunk indexed with the global OEMM in-
dices. We distribute the vertices to the appropriate OEMM

leaves, and implicitly assign to each vertex the global in-
dex. During the saving step it is important that each vertex
referenced by non loaded triangles (i.e. the ones that we
classify non-writable) keeps its original position in the ver-
tex list of the OEMM leaf node (the global index of each
vertex is implicitly coded with the range of the leaf plus
the vertex position inside the leaf).

Then, we distribute triangles to the appropriate OEMM

leaf; for triangles shared by multiple leaves, the selection
is performed by looking at the global index of the vertices,
according to definition in III.1. Finally, for each face the
indices of its vertices are replaced with the corresponding
new global indices.

To ensure correctness of loaded nodes saving back, the
following situations must be detected:
• vertex indices out of range: if the number of vertices to
be saved back in a OEMM leaf is bigger than the original
leaf range (for example because we updated the leaf to tri-
angulate some mesh holes), then the leaf range should be
expanded. Because assigning a wider range to a leaf is a
costly operation (involving loading and re-indexing multi-
ple leaves), at OEMM creation time we have distributed the
leaf ranges uniformly over the 32 bit integer space. In this
manner, there is plenty of space between any pair of con-
secutive leaf range to slightly widen the range. Obviously,
if leaf nodes size changes in a drastic manner, an update to
the OEMM structure could be needed (see Section V-D);
• vertex coordinates not contained in the current loaded
space: a dangerous situation is when the coordinates of
a modified vertex are not contained in the space corre-
sponding to the loaded OEMM section (i.e. the union of
the bounding box of the loaded leaf nodes). To prevent
this situation, we detect every update which modifies the
mesh by moving vertices in regions that are still not loaded,
abort this update and backtrack.

D. Modifying the OEMM structure

The OEMM structure can be dynamically updated due
to multiple delete/creation actions operated on the loaded
nodes.
Node Merging. Every time a leaf is saved back, we firstly
check if it can be collapsed with its siblings nodes in the
corresponding parent node. When the number of vertices
and triangles of the eight siblings is lower than a given
threshold and all the conditions specified in Section IV-A
hold, we can merge them in a single leaf. Node merging
is as follows: the eight leaves and all other OEMM nodes
referencing their vertices are loaded; the new range of the
vertex indices assigned to the new leaf is computed; vertices
are re-indexed; all the triangles of the loaded leaves are re-
mapped with the new vertex indexing (this can involve the

updating of some ol lists of the adjacent nodes); finally, all
the loaded nodes are saved back.
The merging process is executed frequently during external
memory mesh simplification (see Section VI).
Node Splitting. Node splitting is the inverse of the previous
operation, and it has to be performed when the number of
element in a leaf is higher that the maximum leaf size.
Again, we have to reindex the vertices of the split sections
and to reflect the new vertex indexing on the sibling nodes.

E. OEMM Complexity

While from a theoretic point of view octree’s have not
a good worst case complexity, they perform really well in
practice. Let us assume that the input mesh has some
reasonable characteristics: the number of triangles incident
in a single vertex is bounded by a constant; the size of the
faces is not smaller than a minimal value, and therefore
the maximal depth of the octree is bounded. Then, we can
assert that: loading and saving a leaf node (and some of
the adjacent ones) has a cost linear in the size of the mesh
elements contained in the loaded/saved nodes.

VI. External Memory Mesh Simplification

Given a triangular mesh we want to reduce its size by
adopting a high-quality incremental approach, e.g. based
on the iterative collapse of its edges [11]. Locality of the
simplification method is a must, to allow us to load and pro-
cess the mesh one piece at a time. In particular, a Quadric
Error Metrics (QEM) method has been implemented in our
system, and is described in the next subsection. Each edge
collapse has an error-cost that has to be evaluated for each
candidate edge, both at initial time and during the sim-
plification process (every time the given edge is adjacent
to some modified mesh component). We assume here that
the error-cost can be computed in constant time and that
requires a per-vertex constant space occupation (i.e. it re-
quires only to access a local neighborhood of the collapsed
edge). This last assumption is true for the error estima-
tion techniques used in [27], [11], [19]. At each step of the
simplification process the edge with the minimal error cost
is collapsed (a heap is used to support ordered selection)
and the error evaluation of the adjacent edges is updated.
The overall worst case complexity of such an algorithm is
O(v log v), with v the number of vertices.

A. Quadric Error Simplification in the OEMM framework

Quadrics are included in the OEMM vertex attribute
and used to evaluate edge collapse error. As far concerns
quadrics management, there are mainly two approaches:
storing and updating quadric errors during edge collapse
(see Garland and Heckbert [11]) or re-computing quadrics
on the fly as proposed in the memoryless approach [19].
To describe how do we manage quadrics, we have to dis-
tinguish between what we store on disk, and what we store
in RAM. Both our RAM-QEM and OEMM-QEM use the
approach of Garland-Heckbert (quadrics are saved and up-
dated during the simplification of the currently loaded sec-
tion of the mesh). In the external-memory implementation
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(OEMM-QEM), when the simplification of the current sec-
tion is terminated we write back on disk just the mesh (and
discard the quadrics). Therefore, when the same leaf is
loaded again and simplified further, we will start from a
set of newly initialized quadrics. Our experience showed
that retaining quadrics on RAM (during simplification of a
mesh portion) can be worthwhile, while it is not worthwhile
to retain them also among different simplification passes
over the same section (due to limited impact on accuracy
and the substantial overhead on data loading/writing) and
it helps to avoid the quadric lock problem [14].

Simplification algorithms usually adopt a priority queue
to choose the next edge to be collapsed; for this reason they
access the mesh with an order that is inherently non-local.
This scattering behavior causes virtual memory trashing,
making any approach based on standard virtual memory
features totally inefficient. Instead of forcing the algorithm
to follow the exact edge collapse order, as done for example
by El-Sana et al. [7], we choose to slightly change the col-
lapse order in order to catch geometric locality. Therefore
we do not keep a global heap with all the possible collapses,
but we traverse the OEMM (following the lexical order of
the leaves) and for each subtree that we load we build a
local priority queue and simplify it separately. We have
verified empirically that this local sorting has a very little
influence over the quality of the resulting simplification.

For each loaded subtree, we also load all the adjacent
leaves of the OEMM . This ensures that all the possible
edges of the current subtree (including the ones on the
boundary of the subtree) are evaluated for a possible col-
lapse. Therefore, at the end of the traversal the mesh is
uniformly simplified (while other hierarchical approaches
are constrained to leave untouched the inter-cell bound-
aries [13], [22], [8]). Let ε be the maximum quadric error
the mesh should satisfy, we produce a small sequence of er-
rors (ε1, .., εn=ε) built using a logarithmic increasing rule
and iterate QEM simplification n times on the mesh. At
each iteration i, we visit all the OEMM leaf nodes follow-
ing the subtree traversal rule (see Section V-A); QEM is
run on each mesh portion as long as accuracy εi is satis-
fied. During QEM run, all the edges that are incident in
writable triangles are evaluated for collapse, and the corre-
sponding forecasted error is stored in the heap. The use of
the readable and writable flags is defined easily. We can col-
lapse an edge only if all the vertices connected by an edge
to any of the edge’s vertices are writable and all the ver-
tices connected with an edge with these ones are readable.
This because for the collapse of an edge we need to modify
(alias writable permission) the vertices at topological dis-
tance 1, and to know the value (alias readable permission)
of the vertices at topological distance 2 (because we need
to know their data to evaluate the new approximation er-
ror of all vertices at topological distance 1).
When we have reached error εi on a given OEMM mesh
portion, we check during the leaf saving procedure (de-
scribed in Subsection V-C) if it is possible to merge any
modified leaf with the siblings leaves, and then we proceed
with the next mesh portion. When the user requests a dras-

tic simplification, the final OEMM can be composed of one
or a few nodes. The traversing scheme ensures that all the
edges whose edge stars span on adjacent OEMM nodes are
considered for collapse at least once in each iteration.

A special case has to be considered, that is the case of
edges whose extremes are not contained in two adjacent
OEMM nodes. This situation is not common in the case of
3D scanned dataset (where data resolution is sufficiently
regular), but can occur on CAD data or on irregularly
shaped meshes where very long or wide faces might have
vertices contained in non-adjacent nodes. In our approach
these faces (spanning non-adjacent OEMM cells) are sim-
plified only when, after some simplification steps, they be-
come part of adjacent leaf nodes. Because siblings leaf
nodes will be automatically merged during simplification,
after a number of steps any “long/wide” face will become
either contained in a single leaf node or shared by adjacent
leaf nodes. One can object that in this manner the order of
simplification of these faces is altered with respect to the
standard error-driven order of an in-core simplifier. This
is true, but we should say that normal meshes contain in
general just a few of these “critical” faces (not hundreds or
thousands), at least if the data producer has used a solid
modeler in a conscious way. Under this assumption and be-
cause of their relative size and small number, postponing
simplification will not have a drastic effect on the output
mesh size/accuracy.

The simplification of mesh topology is needed by many
applications, especially when the input data are very com-
plex assemblies. Extending our external memory simplifier
to support topology simplification could be easy. Follow-
ing the approach proposed in [11], given the set of loaded
OEMM leaf nodes we should only build a uniform grid on
the corresponding mesh vertices. This grid supports an
efficient detection of the pairs of non-adjacent but close
vertices which have to be evaluated for collapse.

B. Detail preservation via resampled textures

Preservation of detail is a must on big meshes, especially
if we want to process data with a very complex surface
texture (see for example Figure 4) or a complex pictorial
detail. In this case, the solutions that evaluate in an in-
tegrated manner the approximation of both the shape and
some other scalar/vetorial field are in general not adequate,
at least if we want to obtain a drastic mesh simplification.
Preservation of mesh attributes can be managed as a post-
processing phase: a texture can be resampled from the
original mesh, containing a discretized representation of the
detail removed during simplification (color, high-frequency
surface perturbations, other scalar/vectorial fields, etc.)
[5]. The resampled texture map is then used at rendering
time to paint the detail of original high resolution mesh
onto the simplified one [5], [26]. This solution is indepen-
dent of the simplification process and thus we can simplify
the mesh by considering only the shape attribute, leading
to very high compression ratios.

The external memory implementation of the detail pre-
serving approach is very easy on the OEMM framework.
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Given a simplified mesh S, we distribute S in an OEMM

octree having the same structure of the original input mesh
OEMM . Then the two OEMM are traversed in parallel,
each face of S is sampled by considering the correspond-
ing mesh section of the original mesh (which is currently
loaded in RAM) and the corresponding texture chunk is
built. Write back of OEMM leaf nodes of the original mesh
is not needed, because the data encoded in the OEMM is
not modified during this phase.

An example of a resampled bump-texture mapped on a
very simple mesh obtained by simplification is shown in
Figure 7.

VII. Other EM mesh processing tasks

The other tools implemented on top of the OEMM rep-
resentation are described briefly here, for the sake of con-
ciseness.
A mesh editing tool has been defined, that allows the user to
perform many editing actions which are crucial in a number
of applications, e.g. 3D scanning and rapid prototyping.
The editing operators provided include: topological check
of the mesh, detection of non-manifold components, detec-
tion of holes, automatic or user assisted hole-triangulation,
elimination on request of complex vertices/faces and small
components. Implementing these mesh editing operations
on the OEMM representation scheme is straightforward.

Obviously, visualization is an important task for the eval-
uation and the inspection of a mesh. A snapshot of the
main window of an external memory visualization session
is shown in Figure 2. Implementing an external memory
visualizer is straightforward, because we only have to de-
fine an interface which allows the user to select the OEMM

leaf nodes to be visualized. The visualization features pro-
vided in our prototypal system allow to: visualize a huge
mesh by showing the bounding box of all mesh portions
contained in the OEMM leaf nodes; selective visualization
of the mesh sections corresponding to some OEMM leaf
nodes; color-enhanced visualization of mesh components,
to differentiate different topological classes of elements (e.g.
for easy visualization of the holes or of the complex vertices
detected by the mesh editing module); interactive picking
of mesh components; etc. The main goal of this tool is not
the pure presentation of the data (which could be imple-
mented also by adopting a point-based approach [24], [21]),
but the inspection of the geo-topological characteristics of
a given high-resolution mesh (e.g. to evaluate its quality
and, in case, to apply editing actions).

VIII. Results

Among the external memory algorithms presented, the
most complex is the mesh simplification one. We re-
port here the results relative to the simplification of four
meshes, all of them obtained by 3D scanning and avail-
able at the Stanford 3D Scanning Repository (http://www-
graphics.stanford.edu/data/3Dscanrep/):

• the Happy Buddha mesh (543,652 vertices, 1,087,716 tri-
angles);

Input Data Simplification
quadric error size (tr.) time t/sec

S.Matthew 0 → 1e-5 94,116,116 10:57:37 6.8K
1e-5 → 1e-3 25,280,206 2:30:54 7.4K
1e-3 → 1e-1 6,138,792 0:37:05 8.4K

1e-1 → 1 3,119,222 0:07:29 6.5K
1 → 10 1,638,646 0:03:21 7.1K

10 → 100 788,202 0:01:29 9.3K

David 1mm 0 → 1e-2 13,525,698 1:02:24 10.8K
1e-2 → 1e-1 7,565,958 0:12:31 7.7K

1e-1 → 1 3,682,158 0:06:32 9.6K
1 → 10 1,723,895 0:03:07 10.2K

David 2mm 0 → 1 2,517,234 0:07:30 12.5K
1 → 10 1,413,304 0:01:31 11.9K

10 → 100 739,485 0:00:52 12.6K

TABLE II

Results obtained in the simplification of the sample meshes.

Times are in hh:mm:ss (I/O times included). The simplification

rate is shown in the last colume (t/sec: simplified triangles

per second). The RAM used is around 80 MB.

• the S. Matthew complete model (186,984,410 vertices
and 372,767,445 triangles), representing one of Michelan-
gelo’s unfinished statues scanned by the Digital Michelan-
gelo Project [16];
• two David models reconstructed at 1mm and 2mm ac-
curacy (respectively: 28,184,526 v. 56,230,343 tr., and
4,128,614 v. 8,254,150 tr.), also scanned by the Digital
Michelangelo Project.

We did not considered typical CAD datasets. Even if
very complex datasets are common in CAD applications,
they are usually modeled as a composition (either hierar-
chical or linear) of medium-sized components, which can
often be simplified and managed independently using stan-
dard in-core techniques.

Some numerical data on OEMM construction and mesh
simplification are presented in Tables I and II. The com-
puter used for the tests is a PentiumIII 800 MHz, 256 MB
RAM, 30 GB disk running MS WinNT.
The size of the OEMM representation (in MB) and the time
for the data conversion (from triangle soup to OEMM ) are
shown in Table I. As far concerns the size of the octree,
we report here some figures relative to the most complex
dataset used, the S. Matthew mesh: the OEMM is com-
posed of ≈130K nodes, including internal nodes and empty
octree leaves, the triangle per leaf threshold is 16K and the
maximum depth of the octree is 8. OEMM construction
takes a time which is approximately equal to mesh simpli-
fication time, and thus rather long. But OEMM construc-
tion is a data preprocessing phase executed only once, in
the framework of the standard pipeline for processing a
complex scanned mesh: OEMM construction, mesh edit-
ing (fixing topology, closing holes, smoothing, etc), mesh
simplification. The cost of the conversion process is coun-
terbalanced by the locality of the typical geometric compu-
tations (e.g. editing or simplification), which become more
efficient on the OEMM structure and, obviously, require a
small memory footprint. As an example, the simplification
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Fig. 2. A snapshot of the main window of the external memory visualizer; the loaded mesh section is rendered wireframe, the other OEMM

leaf nodes are represented by wire-frame bounding boxes.

Input Data OEMM Repr.
mesh size raw OEMM index.OEMM raw OEMM index.OEMM

name triangles size size size build time build time

S.Matthew 372,767,445 7.29 GB 12.5 GB 11.94 GB 2:52:35 8:28:07

David 1mm 56,230,343 1.10 GB 1.85 GB 1.77 GB 0:24:23 1:02:24
David 2mm 8,254,150 166 MB 283 MB 268 MB 0:03:13 0:07:20

TABLE I

The table reports the size of the tree sample meshes and of the corresponding OEMM representation. Times are in hh:mm:ss

(I/O times included).

Fig. 3. A comparison of the different quality of some simplified David models (1mm David mesh, 53.6 M faces) using the OEMM quadric
simplification.

of the David and S. Matthew meshes can be performed by
using only 80 MB of core memory.
The use of an out-of-core approach introduces some over-
head when compared to a standard simplification code

working in main memory. We measured empirically the
figures of our OEMM -based external memory simplifier
(OEMM-QEM) with the ones of other codes working in
core memory: QSlim v.2, the original QEM implementa-
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tion due to M. Garland [12]; RAM-QEM, that is our imple-
mentation of the QEM method, running in main memory;
and finally our implementation of the OutOfCore Cluster-
ing (OOCC) simplifier [17]. Results relative to the Happy
Buddha mesh are presented in Table III.

Moreover, one could be interested to know how a stan-
dard edge-collapse would perform using just the OS paging
mechanism. We run the two in-core solutions, QSlim and
RAM-QEM, and the external-memory OEMM-QEM on a
PIII 800 MHz PC with just 128MB of RAM (where no
more than 80-90MB are available for user processes); Ta-
ble IV presents the corresponding running times and global
amount of virtual memory1 (MEM) asked by the process
to the OS. The exploding increase of running times when
the system starts trashing is evident.

OEMM-QEM and RAM-QEM are based on the same
simplification kernel, that is the classical quadric simpli-
fication error metric with the addition of weighted fac-
tors which take into account the variation of surface nor-
mals and the triangle aspect ratio. The difference be-
tween OEMM-QEM and RAM-QEM is in the different
data traversal and heap management: OEMM-QEM tra-
verses the mesh following the OEMM lexical order, and
adopts local heaps to simplify the loaded mesh sections; on
the other hand, RAM-QEM uses (analogously to QSlim)
a classical global heap and needs to load in memory all of
the mesh to initialize the heap and to run simplification.
In most cases OEMM-QEM and RAM-QEM produce re-
sults (quality and speed) analogous to the ones of QSlim
v.2; in some cases, weighting the normal variation improves
results accuracy (this is mainly evident in the proximity of
discontinue features). Our implementation of the OOCC
was as conforming as possible to its original description,
including the robust quadric inversion technique described
in [17].
The OEMM-QEM consumes around 50% more secondary
memory than standard QEM solutions (but secondary
memory is nowadays quite an inexpensive resource), but
requires a smaller core memory footprint. In any case, con-
sider that the size of the on-disk OEMM representation is
smaller than the core memory required by an in-core QEM.
Therefore, if the core memory is sufficiently large to allow
an in-core simplification, it is also sufficiently large to per-
mit the operating system to cache the OEMM file in RAM.
This explains partially the unexpected results of Table III,
where OEMM-QEM simplification time is shorter than the
RAM-QEM implementation. Moreover, times are shorter
because: the OEMM-QEM local heaps are smaller than
the global one used by RAM-QEM (heap construction has
complexity O(n log n)); processor cache misses are proba-
bly less frequent in the case of OEMM-QEM, because data
structure access is more local than that of RAM-QEM.
On larger meshes, the need to perform multiple passes on
the dataset (to improve the quality of the simplified mesh,
as in the runs reported in Table II) would require mul-

1Please note that in Table IV we reported the working set used
by the simplification process, while the effective maximum size of
required RAM has been presented in Table III.

Happy Buddha (1,087,716 faces)
simpl. RAM time t/sec RMS
faces (sec.) rate err

QSlim v.2.0 18,338 195 MB 60 17.4K 0.0131%

RAM-QEM 18,338 160 MB 58 18K 0.0125%

OEMM-QEM
build (pre-proc) – 4 MB 58 – –
simplify 18,338 60 MB 48 21.7K 0.0129%

OOCC 19,071 36 MB 15 69.5K 0.0245%

TABLE III

Results obtained in the simplification of the Happy Buddha

mesh, using four different simplification codes.

tiple loading of the intermediate OEMM representations
from secondary memory, introducing some overhead with
respect to an ideal in-core solution. In fact, the simpli-
fication rates reported in the Tables II and III degrade
gracefully with the increase of the size of the input mesh.
The accuracy of the simplified meshes has been evaluated
by using the Metro tool [6]. The RMS error (measured as
a percentage of the mesh bounding box) is shown in the
rightmost colummn of Table III. It is worth to note that
OEMM-QEM accuracy is slightly lower than our in-core
RAM-QEM, but at the same time it is still slightly better
than the one of Q-Slim and obviously much better than
OOCC.

The simplified meshes produced are shown in Figures 3,
4, 5, and 6.

We performed an empirical comparison with the Out-Of-
Core Clustering approach (OOCC) [17]. The times of the
OOCC solution are obviously impressive (see the simplifi-
cation rate in Table III). On the other hand, the quality
of the mesh produced is directly dependent of the regu-
lar sub-sampling operated on the mesh (to reach a drastic
simplification of a 3D scanned mesh the cluster cell size is
generally set much larger than the mean face size). The
higher accuracy of the results produced by OEMM-QEM

is shown in the images presented in Figure 6. Moreover,
the meshes produced by the Clustering approach are of-
ten non-manifold, and this may introduce problems when
we have to apply geometric processing on the output mesh.
For example, an OOCC run on the 2mm David mesh (from
8M triangles down to 235K) generates more than 21K non-
manifold vertices.
One can ask if the improved accuracy of OEMM-QEM is
worth the processing overhead (OEMM-QEM is approxi-
mately 3 times slower than OOCC). There are a number
of applications where data accuracy is a must (visual in-
spection, rapid prototyping, shape recognition, 3D recon-
struction from multiple fragments, etc). In all these cases,
a slightly slower simplification time is not a problem: this
process is executed only once, and in any case simplifica-
tion time is a very small fraction of the time needed to
produce the raw data (e.g. by 3D scanning) or to analyze
it.

A comparison of the different visual accuracy provided
by a plain simplified mesh or by the same mesh enhanced
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Fig. 4. A simplified model of the S. Matthew statue is shown on the left; a small section of the mesh (S. Matthew’s eye and part of the
nose) is shown on the right at different accuracies.

HappyBudda (various mesh sizes)

Input faces: 339,344 408,090 511,138 593,544 746,834
Output faces: 32,760

time MEM time MEM time MEM time MEM time MEM
(h:m:s) (MB) (h:m:s) (MB) (h:m:s) (MB) (h:m:s) (MB) (h:m:s) (MB)

QSlim v.2.0 0:00:15 76 0:00:18 90 0:01:46 115 3:17:28 200 n.a. n.a.

RAM-QEM 0:00:14 94 0:00:16 94 0:00:49 130 0:00:55 180 0:37:19 200

OEMM-QEM 0:00:19 50 0:00:23 50 0:00:29 50 0:00:36 50 0:00:49 50

TABLE IV

The results presented show the poor performances of the in-core solutions (QSlim, RAM-QEM) when the external memory

management is demanded to the standard OS paging system; the meshes used in input are simplified versions of the original

Happy Buddha.

Fig. 5. Results of the simplification of the Happy Buddha mesh.
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Fig. 6. A comparison of the different quality of the models obtained from the simplification of the 2mm David mesh (8M faces) using the
OOC Clustering solution (top) and the OEMM simplifier (bottom).

with a resampled bump-map is shown in Figure 7. No-
tice how much the visual quality of the drastically simpli-
fied mesh (10K faces) is improved by the resampled bump-
texture; it appears very similar to a more complex model
(1,683K faces) presented in the same image on the left.

Considering data size: the 1024*1024 RGB normal map
size is 1.5MB, when compressed using PNG format and
preserving image quality, and it is texture-mapped to the
10K faces model (size on disk 905KB in un-compressed bi-
nary format). This should be compared with the 1.6M
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Fig. 7. A comparison of the different visual quality provided by: two simplified David meshes, 1,683K and 10K faces, and the latter enhanced
by mapping a re-sampled bump texture (please note that the image with bump-mapping has been created with a different viewer).

faces mesh, which needs 36MB to be stored on disk.

IX. Concluding Remarks

We have demonstrated that even huge meshes can be suc-
cessfully managed on a low cost architecture. The OEMM,
an external memory data structure, is at the base of our
mesh management and simplification system. It permits to
implement in a memory-efficient manner all geometric algo-
rithms that process the mesh via a local update approach,
by decoupling mesh size from main memory size and dy-
namically loading portions of the dataset from secondary
memory. The OEMM data structure implements an out-
of-core global indexed representation on huge meshes, and
loading/processing of portions of the data is easy thanks to:
the space subdivision embedded in the octree representa-
tion, the automatic re-indexing of the loaded data sections,
and the tagging strategy (readable/writable tags) that al-
lows the easy detection and management of the elements
located on the boundary of the current region. The system
presented provides a valid solution for visual inspection,
editing, and simplification of huge meshes. As an exam-
ple, it permits to manage all the post-acquisition phases
of the 3D scanning pipeline on a low cost machine. With
an acceptable time overhead we can process meshes which
cannot be managed on most other architectures. Manag-

ing the S. Matthew mesh with an in-core simplifier, for
example, would require approximately more than 55GB of
core memory. Moreover, an out-of-core solution usually
requires a much smaller RAM size than the correspond-
ing RAM-based solutions (in our system, the size of the
surface sections loaded can be decided by the user). This
appears clear in the results presented in Table III: the sim-
plification of a medium complexity mesh (around 1M faces)
works in only 60MB of RAM (or even on a smaller foot-
print, depending on the size of the loaded subtree selected
by the user). Conversely, the RAM-based QSlim solution
allocates 195MB to process the same mesh.

It should be noted that the choice of an octree as a parti-
tioning scheme is not mandatory. Depending on the mesh
processing tasks that have to be carried out, other mesh
partitioning schemes can be chosen. For example, if we
consider uniformly sampled meshes and tasks that do not
drastically alter the size of the mesh (like smoothing fil-
ters or hole filling), the octree can be replaced by a simpler
uniform grid partition. In this case the interface between
the mesh processing algorithm and the OEMM remains
the same, because it is based on a generic traversal process
and the element tagging policy (read/write/modified tags)
supported can be easily extended to other decomposition
rules.
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Possible extensions to the OEMM-based mesh manage-
ment environment are as follows. We are adding more
sophisticated visualization features, which should allow a
naive user to navigate and inspect very complex dataset,
e.g. meshes produced by 3D scanning Cultural Heritage
artefacts, on low cost computers using an LOD approach.
We are designing an external memory multiresolution rep-
resentation, and finally we are planning to include on-the-
fly mesh compression techniques to reduce the storage of
the OEMM leaf nodes.
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