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Abstract 

Purpose: Mortality prediction in ARDS is important for prognostication and risk stratification. However, no prediction 
models have been independently validated. A combination of two biomarkers with age and APACHE III was superior 
in predicting mortality in the NHLBI ARDSNet ALVEOLI trial. We validated this prediction tool in two clinical trials and 
an observational cohort.

Methods: The validation cohorts included 849 patients from the NHLBI ARDSNet Fluid and Catheter Treatment 
Trial (FACTT), 144 patients from a clinical trial of sivelestat for ARDS (STRIVE), and 545 ARDS patients from the VALID 
observational cohort study. To evaluate the performance of the prediction model, the area under the receiver operat-
ing characteristic curve (AUC), model discrimination, and calibration were assessed, and recalibration methods were 
applied.

Results: The biomarker/clinical prediction model performed well in all cohorts. Performance was better in the clinical 
trials with an AUC of 0.74 (95% CI 0.70–0.79) in FACTT, compared to 0.72 (95% CI 0.67–0.77) in VALID, a more heteroge-
neous observational cohort. The AUC was 0.73 (95% CI 0.70–0.76) when FACTT and VALID were combined.

Conclusion: We validated a mortality prediction model for ARDS that includes age, APACHE III, surfactant protein D, 
and interleukin-8 in a variety of clinical settings. Although the model performance as measured by AUC was lower 
than in the original model derivation cohort, the biomarker/clinical model still performed well and may be useful for 
risk assessment for clinical trial enrollment, an issue of increasing importance as ARDS mortality declines, and better 
methods are needed for selection of the most severely ill patients for inclusion.
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Introduction
The acute respiratory distress syndrome (ARDS) is 
responsible for more than 2 million critical care days and 
75,000 deaths in the USA yearly [1]. There is a pressing 
need for development and clinical testing of new thera-
pies that might improve clinical outcomes in ARDS. 
However, the design of investigational trials for this com-
plex and heterogeneous syndrome is not straightforward 
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Take-home message: The externally validated biomarker/clinical 
prediction model may provide prognostic and predictive enrichment in 
clinical trials enrollment, and improve bedside prognostication.
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[2]. The success of clinical trials in ARDS is highly 
dependent on the power, which is primarily determined 
by the mortality rate for enrolled patients [3–5]. Methods 
to better predict hospital mortality may provide a basis 
for prognostic enrichment [6], optimizing the power of 
clinical trials to detect a treatment effect, and improving 
bedside prognostication [7].

To date, much effort has been spent on identifying 
predictors of mortality in patients with ARDS [8–18], 
and developing scoring systems to improve prognostica-
tion [19–23]. However, the two most widely used scoring 
systems, APACHE III [21] and SAPS 3 [22], were devel-
oped and validated in general ICU patients; these scores 
were not focused on patients with ARDS. Other simpler 
scoring systems have been developed in the target popu-
lation of ARDS patients [19, 20, 23, 24]. However, these 
scores were either outperformed by APACHE III [19, 20] 
or could not be validated in independently collected data 
[20, 23, 24]. Recently, Ware et  al. demonstrated that a 
combination of plasma biomarkers of inflammation and 
lung epithelial injury [interleukin-8 (IL-8), surfactant 
protein D (SP-D)] and clinical predictors (age, APACHE 
III) was superior to either biomarkers or clinical factors 
alone in predicting ARDS mortality in patients enrolled 
in the NHLBI ARDSNet ALVEOLI trial [25]. However, 
this biomarker/clinical prediction model (biomarker/
clinical model) has not yet been externally validated 
across multiple independent patient groups.

In the current study, the primary goal was to validate 
the previously published biomarker/clinical model in 
three independent ARDS patient cohorts, including 
both clinical trial cohorts and a heterogeneous group 
of patients enrolled in an observational cohort study. 
A second goal was to confirm that inclusion of the two 
biomarkers added value for predicting ARDS mortal-
ity in these independent cohorts. A portion of this work 
was presented in abstract form at the American Thoracic 
Society International Conference in 2015 [26].

Materials and methods
Original prediction model
The previously reported hospital mortality model was 
developed with 528 patients from the NHLBI ARDS 
Clinical Trials Network multicenter randomized con-
trolled trial of two PEEP titration strategies (the ALVE-
OLI study) [27]. Study details and prediction model 
development have been published [25]. Briefly, the model 
includes patient age, APACHE III score, and plasma IL-8 
and SP-D as predictors. The formula for the model is 
shown in Supplemental Fig. 1 (e-Fig. 1), and a Web-based 
module is available (https://cqs.mc.vanderbilt.edu/shiny/
ChestModel/).

Study population and measurements
Detailed methods are provided in the Supplemental 
methods (e-methods). Briefly, the current study included 
a total of 1538 mechanically ventilated patients with 
ARDS who participated either in the NIH ARDS Net-
work Fluid and Catheter Treatment Trial (FACTT) [28], 
the Sivelestat Trial in ALI Patients Requiring Mechanical 
Ventilation (STRIVE) [29], or the Validating Acute Lung 
Injury biomarkers for Diagnosis (VALID) study [30]. All 
eligible patients in FACTT and STRIVE were mechani-
cally ventilated and had acute lung injury (ALI) or ARDS 
by American European Consensus Conference (AECC) 
definitions [31], thus meeting the current Berlin defini-
tion of ARDS [32]. All VALID patients were eligible for 
inclusion if they were mechanically ventilated on at least 
1 day and met Berlin ARDS criteria on two consecutive 
days of the first four ICU days. IRB approval was obtained 
in all studies; informed consent was obtained from all 
subjects except in VALID, where a subset of subjects was 
enrolled under a waiver of informed consent. The cur-
rent study includes 849, 144, and 545 participants from 
FACTT, STRIVE, and VALID, respectively, depending on 
the availability of the clinical data and plasma samples for 
biomarker measurements. For some analyses the FACTT 
and VALID patients were combined into one cohort.

Plasma samples were obtained at enrollment (prior to 
randomization) for patients in the FACTT and STRIVE 
trials, and on the morning of ICU day 2 in VALID. SP-D 
and IL-8 were measured in stored plasma samples from 
each study for this validation. Age and APACHE score 
were extracted from each study database. APACHE II 
scores were converted to estimated APACHE III for 
patients in VALID and STRIVE using a translation equa-
tion (APACHE III = 5.57 + 3.08 × APACHE II) that was 
developed in a cohort of 634,428 patients [33].

Statistical analysis
Detailed analytical approaches are reported in e-meth-
ods. Briefly, demographics, clinical variables, and bio-
marker values were summarized and compared by 
individual study cohort and combined. For the primary 
goal, to evaluate the performance of the prediction model 
in the independent validation sets, model discrimina-
tion and calibration were assessed. Discrimination was 
quantified using the area under the receiver operator 
characteristic (ROC) curve (AUC), also known as the 
C-statistic. The 95% confidence intervals (CI) calculated 
from 300-iteration bootstrap were reported. The bench-
mark AUC, which is the best possible AUC by refitting 
the model on each validation dataset, was also reported 
to provide readers an estimate of optimal discrimina-
tion on each validation cohort as a reference. Calibration 
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was assessed graphically with a calibration plot. A simple 
recalibration method (logistic calibration) to recalibrate 
the model as suggested by Harrell et al. [34] and Janssen 
et  al. [35] was also used. For the second goal, to evalu-
ate the added value of the two biomarkers in predicting 
hospital mortality in the validation datasets, the likeli-
hood ratio test, the net reclassification improvement 
(NRI), and integrated discrimination improvement (IDI) 
were used. Finally, to demonstrate a potential application 
of the prediction model, we stratified the participants 
in FACTT into low and high mortality risk groups and 
then evaluated the effects of the treatments separately in 
each subgroup. The differences in the treatment effects 
between these two subgroups were evaluated by test-
ing the interaction term of the treatment by risk group 
in models. For ventilator-free days (VFD), zero inflated 
negative binomial models were used because of the high 
frequency of patients who had zero VFDs. This demon-
stration was not attempted in STRIVE because of the 
limited sample size. Statistical significance was consid-
ered at a two-sided 5% level. All statistical analyses were 
performed using R software version 3.3.1.

Results
Patient characteristics
The participants in the model development cohort 
(ALVEOLI, n = 528) and validation cohorts were similar 
in age, but different in hospital mortality rate, APACHE 
scores, cause of ARDS, and distribution of biomarker 
values (Table  1). The overall hospital mortality rates 
in FACTT (n =  849) or FACTT and VALID combined 
(n =  1394) were lower than in ALVEOLI (19% or 21 vs 
27%, P < 0.01, Table 1), while the hospital mortality rates 
were similar in VALID (n =  545, 24 vs. 27%, P =  0.25, 
Table  1) and STRIVE (n  =  144, 32 vs. 27%, P  =  0.27, 
e-Table 1) to ALVEOLI.

Discrimination and calibration
Despite the differences in patient characteristics, when 
we applied (with fixed model coefficients) the original 
biomarker/clinical model to the validation sets, the dis-
crimination for hospital mortality was good. The model 
achieved AUCs of 0.74 (95% CI 0.70–0.79), 0.72 (95% 
CI 0.67–0.77), and 0.73 (95% CI 0.70–0.76) in FACTT, 
VALID, and the combined dataset, respectively (Table 2), 
which are similar to the benchmark AUCs in the inde-
pendent study cohorts (0.75, 0.74, and 0.73, respectively, 
Table  2). In STRIVE, the model achieved AUC of 0.78 
(95% CI 0.70–0.87, e-Table 2), comparing with the bench-
mark AUC of 0.87.

In the FACTT and VALID cohorts, the original bio-
marker/clinical model tended to predict somewhat 
higher hospital mortality risk than the actual observed 
mortality among those at highest risk, indicated by the 
right tail of the calibration curve falling below the 45° 
line. Overall, the slopes for the calibration curves were 
0.53, 0.56, and 0.52 in FACTT, VALID or combined, 
respectively (Fig.  1a, c, e). By contrast, the calibration 
curve in STRIVE was shifted up, but almost parallel to 
the ideal line with an estimated slope of 0.92 (e-Fig. 2A). 
After recalibration, however, the model calibrated well in 
all validation cohorts (Fig. 1b, d, f; e-Fig. 2B). The tails of 
the calibration curves in the FACTT and VALID remain 
slightly off the 45° line, which may primarily be due to the 
limited number of patients with an extremely high pre-
dicted hospital mortality.

Two biomarkers added predictive value
In the original published model, inclusion of the two bio-
markers along with patient age and APACHE score signif-
icantly improved the model fit and the predictive ability 
[25]. To confirm that the two biomarkers (SP-D and IL-8) 
were also of value in the validation cohorts, we analyzed 
the added value of these two biomarkers compared to 
clinical factors alone. The model AUCs increased from 
0.72 to 0.75, 0.67 to 0.74, and 0.70 to 0.73 in FACTT, 
VALID, and combined, respectively (Table 3), with addi-
tion of the two biomarkers to the clinical variables. The 
NRI ranged from 0.41 to 0.45 and the IDI ranged from 
0.04 to 0.09. All of these improvements reached statistical 
significance (P < 0.001, Table 3).

Prognostic enrichment: an illustration
To illustrate how the mortality prediction model might 
have value for prognostic enrichment in a clinical trial, 
we applied the original biomarker/clinical model to 
patients in the FACTT cohort, classifying patients into 
two prognostic groups: a low-risk group (predicted 
mortality  at most 20%) or a high-risk group (predicted 
mortality greater than 20%). We then assessed the treat-
ment effect of randomization to conservative versus lib-
eral fluid therapy separately in each prognostic group. 
In the low-risk group, no significant treatment effect for 
conservative versus liberal fluid therapy was observed 
with regard to mortality or ventilator-free days (VFDs) 
(Table  4). In the high-risk group, however, there was a 
significant treatment effect for conservative fluid ther-
apy; those randomized to conservative fluid therapy had 
20% more VFDs compared to those randomized to lib-
eral fluid therapy (RR =  1.2, 95% CI 1.09–1.33). These 
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findings illustrate how prognostic enrichment using the 
mortality prediction model could be used to target clini-
cal trial enrollment to a subset of patients with ARDS 

at a higher risk of a clinical outcome of interest, thereby 
improving the power of the study to detect a treatment 
effect.

Table 1 Patients characteristics in  the derivation cohort (ALVEOLI), and  the external validation cohorts (FACTT 
and VALID)

a APACHE III scores were recorded in ALVEOLI and FACTT. APACHE II scores were recorded in VALID and translated to APACHE III using the formula APACHE 
III = 5.57 + 3.08 × APACHE II
b In FACTT, the number of nonpulmonary organ failures was not available to the current study
c Compared with ALVEOLI cohort; Pearson χ2 test for categorical characteristics and Wilcoxon rank sum test for continuous characteristics
d Median (IQR) for continuous characteristics

Characteristics Derivation cohort External validation cohorts

ALVEOLI
(N = 528)

FACTT
(N = 849)

VALID
(N = 545)

FACTT + VALID
(N = 1394)

Summaryb Summaryb Pc Summaryb Pc Summaryb Pc

Age (years) 50 (39, 65) 49 (39, 61) 0.22 53 (39, 64) 0.41 50 (39, 62) 0.68

Male gender 290 (55%) 449 (53%) 0.46 313 (57%) 0.41 762 (55%) 0.92

Caucasian race 398 (75%) 555 (65%) <0.01 466 (86%) <0.01 1021 (73%) 0.34

APACHE III  scorea 92 (71, 144) 91 (70, 116) 1.00 95 (79, 107) 0.63 92 (73, 112) 0.82

Plasma SP-D (ng/ml) 99 (50, 212) 136 (63, 283) <0.01 60 (34, 112) <0.01 96 (46, 216) 0.27

Plasma IL-8 (pg/ml) 40 (16, 98) 32 (16, 78) 0.01 22 (6, 78) <0.01 28 (13, 78) <0.01

Cause of ARDS <0.01 <0.01 <0.01

 Sepsis 117 (22.2%) 207 (24.4%) 147 (27.0%) 354 (25.4%)

 Pneumonia 209 (39.6%) 397 (46.8%) 104 (19.1%) 501 (36.0%)

 Trauma 43 (8.1%) 62 (7.3%) 180 (33.1%) 242 (17.4%)

 Multiple transfusion 26 (4.9%) 8 (0.9%) 18 (3.3%) 26 (1.9%)

 Aspiration 81 (15.3%) 121 (14.3%) 71 (13.1%) 192 (13.8%)

 Other 52 (9.8%) 54 (6.4%) 24 (4.4%) 78 (5.6%)

Number of nonpulmonary organ  failuresd <0.01

 0 209 (39.6%) – 111 (20.4%) –

 1 208 (39.4%) – 245 (45.0%) –

 2 82 (15.5%) – 140 (25.7%) –

 3 24 (4.5%) – 39 (7.2%) –

 4 5 (0.9%) – 10 (1.8%) –

Hospital mortality <0.01 0.25 <0.01

 Alive 384 (73%) 684 (81%) 413 (76%) 1097 (79%)

 Dead 144 (27%) 165 (19%) 132 (24%) 297 (21%)

Table 2 Discrimination of  the original biomarker/clinical model in  the derivation (ALVEOLI) and  external validation 
cohorts as measured by the area under the receiver operator characteristic curve (AUC)

AUC area under the ROC curve
a From applying the original biomarker/clinical model on new datasets without refitting (re-estimating the coefficients)
b Benchmark AUC by refitting the original biomarker/clinical model that includes age, APACHE, SP-D, and IL-8 on the dataset

Measurements Derivation cohort External validation cohorts

ALVEOLI
(N = 528)

FACTT
(N = 849)

VALID
(N = 545)

FACTT + VALID (N = 1394)

AUC AUC (95% CI) AUC (95% CI) AUC (95% CI)

AUCa
Original biomarker/clinical model 0.83 0.74 (0.70, 0.79) 0.72 (0.67, 0.77) 0.73 (0.70, 0.76)

AUCb
Benchmark – 0.75 (0.72, 0.80) 0.74 (0.70, 0.80) 0.73 (0.70, 0.77)
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Discussion
Despite decades of experimental and clinical investi-
gation, and improvements over time in ICU survival 
rates [36], effective pharmacotherapy for ARDS remains 
extremely limited [37, 38]. Inadequately powered tri-
als [3–5] and failure to identify appropriate subsets of 
patients for enrollment may have contributed to the per-
sistent lack of effective pharmacologic interventions. A 
recent application of latent class analysis methods to sev-
eral NHLBI ARDS Network trials has consistently identi-
fied two subphenotypes within enrolled ARDS patients, 
a finding that may be useful to reduce heterogeneity in 
ARDS clinical trials and potentially provide a basis for 
predictive enrichment in clinical trials [2, 39]. Prognostic 

enrichment is an approach that could be used to iden-
tify patients with a higher risk of death for enrollment 
in clinical trials. This approach has recently been recom-
mended by the US Food and Drug Administration (FDA) 
to improve efficiency of drug development. However, 
development of methods that can predict patient clinical 
outcomes, such as hospital mortality in ARDS, remains 
challenging.

In the current study, utilizing patients from three inde-
pendent, heterogeneous cohorts of patients with ARDS, 
we externally validated a previously published biomarker/
clinical model for hospital mortality in ARDS [25]. In the 
validation cohorts, the AUCs of the original biomarker/
clinical model were close to benchmark AUCs, indicating 

Table 3 Evaluation of  the added value of  the two biomarkers for  mortality prediction compared to  age and  APACHE 
alone in the derivation and validation cohorts

AUC area under the receive operator characteristic curve, NRI net reclassification improvement, IDI integrated discrimination improvement
a P values are from the likelihood ratio tests comparing the refitted biomarker/clinical model to the clinical-only model on the dataset
b From refitting the clinical-only model that includes age and APACHE on the dataset
c From refitting the biomarker/clinical model that includes age, APACHE, SP-D, and IL-8 on the dataset
d Improvement from the clinical model to the biomarker/clinical model

Measurements Derivation cohort External validation cohorts

ALVEOLI
(N = 528)

FACTT
(N = 849)

VALID
(N = 545)

FACTT + VALID
(N = 1394)

Estimate Pa Estimate Pa Estimate Pa Estimate Pa

AUCb
Clinical-only model 0.80 0.72 0.67 0.70

AUCc
Biomarker/clinical model 0.83 <0.001 0.75 <0.001 0.74 <0.001 0.73 <0.001

NRId 0.59 <0.001 0.44 <0.001 0.45 <0.001 0.41 <0.001

IDId 0.07 <0.001 0.04 <0.001 0.09 <0.001 0.04 <0.001

Table 4 Treatment effects in FACTT stratified by the predicted mortality categories

VFD ventilator-free days
a Risk ratio was estimated from zero inflated negative binominal models. RR of 1.2 can be interpreted as compared with the patients who were randomized to liberal 
fluid therapy, those randomized to conservative fluid therapy had 20% more VFDs
b Low, predicted mortality ≤20%; high, predicted mortality >20%; median predicted mortality was 19%
c P value for the product term of the treatment and predicted risk groups (low vs high)
d Median (IQR) were reported

Predicted mortality Treatment effects on VFDs (conservative vs liberal fluid therapy) Summary of VFDs by  treatmentd

RRa (95% CI) Conservative Liberal fluid

Lowb (N = 437) 1.05 (0.98, 1.12) 22 (12, 25) 19 (9, 24)

Highb (N = 412) 1.20 (1.09, 1.33) 9 (0, 22) 1 (0, 19)

P for  interactionc 0.026

(See figure on previous page.) 
Fig. 1 a, c, e Calibration plots of the original biomarker/clinical model and b, d, f recalibrated model in the validation cohorts. The recalibration was 
done by (1) estimating the calibration intercept and calibration slope; (2) multiplying all the regression coefficients of the original biomarker/clinical 
model by the calibration slope; (3) updating the intercept of the original biomarker/clinical model with the calibration intercept. This method does 
not involve re-estimating the coefficient of any individual predictor



1129

that the original biomarker/clinical model achieved dis-
crimination that was close to optimal in these cohorts. 
Based on calibration plots, the prediction accuracy of the 
original biomarker/clinical model was moderate in the val-
idation cohorts. However, after recalibration, the updated 
model performed well on all three validation cohorts and 
combined. We also confirmed the original finding that two 
plasma biomarkers, SP-D and IL-8, added value to clinical 
predictors in predicting ARDS mortality in the validation 
cohorts. Finally, despite the overall significant treatment 
effect of conservative fluid therapy on VFDs originally 
reported in one of the validation clinical trials (FACTT), 
we observed a significant treatment effect on VFDs only 
in the high-risk subgroup as classified by the predicted 
hospital mortality using the biomarker/clinical model, but 
not in the low-risk subgroup, indicating that the originally 
observed treatment effect was confined to a subgroup of 
the participants. These results illustrate how the prediction 
model might be used for both prognostic and predictive 
enrichment for clinical trial enrollment.

Attempts have been made to develop simpler scoring 
systems for ARDS that are easier to use in clinical prac-
tice [19, 20, 23]. However, none have succeeded to date. 
For example, Brown et al. developed a classification tree 
for hospital mortality including age, BUN, shock, respira-
tory rate, and minute ventilation [19]. The tree model is 
simpler than the widely used APACHE III score, but does 
not outperform it, and has not been externally validated. 
Cooke et  al. developed a clinical predictive index for 
mortality including hematocrit, bilirubin, fluid balance, 
and age [20]. This predictive index, however, failed in 
the external validation, and the performance was worse 
than the APACHE III score (AUC 0.68 vs 0.75 respec-
tively, P = 0.03). In a Spanish study, Villar et al. developed 
another scoring system, including age,  PaO2/FiO2 ratio, 
and plateau pressure, termed the APPS [23]. The APPS 
showed good discrimination ability in both the deriva-
tion and internal validation cohort, with an AUC of 0.76 
and 0.80, respectively. However, Bos et al. reported that 
it is likely that the APPS was overfitted to the derivation 
cohort, since it could not be validated using data col-
lected from two hospitals in the Netherlands [24]. These 
findings demonstrate that a prediction tool that performs 
well in derivation and internal validation datasets is not 
guaranteed to perform well in another population. Thus, 
an external validation is required before a prediction tool 
can be generalized to, and applied in, other populations.

In the current study, despite the strong performance of 
the original published mortality prediction model in its 
derivation cohort (AUC of 0.83), performance was not as 
strong in the current study with AUCs of 0.74, 0.72, and 
0.73 in FACTT, VALID, or the combined dataset, respec-
tively. The observed drop in discriminative ability from 

the model derivation cohort to the validation cohort is a 
common phenomenon. Several explanations may apply. 
First, the model may have been overfitted in the deri-
vation cohort. However, on the basis of the calibration 
plots, this is not likely the case in our study. In STRIVE, 
the calibration curve is almost parallel to the 45° line, 
but shifted upwards. This was mainly caused by a higher 
mortality rate in STRIVE compared to ALVEOLI (32% vs 
27%, respectively) and was confirmed by the recalibration 
curve (e-Fig. 2B). In FACTT and VALID, the majority of 
the patients had a predicted mortality of less than 40% 
(x-axis in Fig. 1), among whom, the predicted mortality 
is close to the observed mortality. The recalibration fur-
ther improved the predication accuracy (Fig. 1b, d, f ). A 
second explanation for the drop in AUCs from derivation 
to validation is the differences in the case mix. As shown 
in Table 1, the patients included in the validation cohorts 
are different from those in the derivation cohort with 
regard to race, APACHE scores, and biomarker values. 
Despite the heterogeneity of the patients, the AUCs for 
validation of the original published model in FACTT and 
VALID (0.74 and 0.72, respectively) are very close to the 
benchmark AUC, which is the best possible AUC derived 
by refitting the model on each validation dataset (0.75 
and 0.74, respectively). It is also worth noting that, in all 
three validation cohorts, the benchmark AUC lies within 
the bootstrap 95% CIs of the AUC from strict validations, 
further indicating that the biomarker/clinical model may 
have discrimination power when applied to future data-
sets. These findings reveal the potential value of the bio-
marker/clinical model as a prognostic enrichment tool 
for future clinical trial enrollment.

To our knowledge, the current study is the first to suc-
cessfully externally validate a prediction model for hos-
pital mortality in ARDS patients across multiple, diverse 
patient groups. However, our study has some limitations. 
First, in two of the validation sets, the APACHE II score 
was recorded, and we used a published formula to esti-
mate the APACHE III score. Although the translation 
equation was developed in a large study [33], it is possi-
ble that it may not accurately reflect the true APACHE 
III score. Second, some of the biomarker values in the 
validation sets were not within the range of those in the 
model derivation cohort. This may cause inaccurate pre-
dicted mortality for those with extreme values. However, 
excluding those participants will decrease the precision 
of study performance estimation and the usefulness of 
the developed models. Thus, we decided to include all of 
the eligible patients. Third, FACTT and STRIVE repre-
sent a highly selected subgroup of all patients with ARDS 
enrolled over 10  years ago that may not be reflective of 
the general population of current patients with ARDS. 
This concern is mitigated to some extent by the inclusion 
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of the VALID cohort, a more recently enrolled and much 
more heterogeneous and inclusive group of critically ill 
patients with ARDS compared to clinical trial cohorts. 
Fourth, the STRIVE study is relatively small, and we 
were only able to study a subset of the STRIVE patients 
because of limited plasma availability. However, inclu-
sion of this study does provide additional evidence that 
the model validates and with more generalizability [40], 
though the results for this particular study may not be as 
precise as those from the other two larger cohorts.

Conclusion
Using three independent patient groups, we found that a 
published mortality prediction model that combines two 
clinical variables and plasma biomarkers of two aspects 
of ARDS pathogenesis (inflammation and lung epithe-
lial injury) could serve as a simple tool for the prediction 
and stratification of mortality among patient with ARDS. 
Although the model performance as measured by AUC 
was lower than in the original model derivation cohort, 
the biomarker/clinical model still performed well and 
may be useful for prognostic enrichment for enrollment 
in clinical trials, an increasingly important issue as mor-
tality in ARDS declines, and better methods are needed 
for selection of the most severely ill patients for inclusion 
in clinical trials.
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