
External vs. Internal: An Essay on Machine Learning Agents for

Autonomous Database Management Systems

Andrew Pavlo1, Matthew Butrovich1, Ananya Joshi1, Lin Ma1,

Prashanth Menon1, Dana Van Aken1, Lisa Lee1,Ruslan Salakhutdinov1,
1Carnegie Mellon University

Abstract

The limitless number of possible ways to configure database management systems (DBMSs) has rightfully

earned them the reputation of being difficult to manage and tune. Optimizing a DBMS to meet the needs

of an application has surpassed the abilities of humans. This is because the correct configuration of a

DBMS is highly dependent on a number of factors that are beyond what humans can reason about. The

problem is further exacerbated in large-scale deployments with thousands or even millions of individual

DBMS installations that each have their own tuning requirements.

To overcome this problem, recent research has explored using machine learning-based (ML) agents

for automated tuning of DBMSs. These agents extract performance metrics and behavioral information

from the DBMS and then train models with this data to select tuning actions that they predict will have

the most benefit. They then observe how these actions affect the DBMS and update their models to further

improve their efficacy.

In this paper, we discuss two engineering approaches for integrating ML agents in a DBMS. The first

is to build an external tuning controller that treats the DBMS as a black-box. The second is to integrate

the ML agents natively in the DBMS’s architecture. We consider the trade-offs of these approaches in the

context of two projects from Carnegie Mellon University (CMU).

1 Introduction

Tuning a DBMS is an essential part of any database application installation. The goal of this tuning is to improve

a DBMS’s operations based on some objective function (e.g., faster execution, lower costs, better availability).

Modern DBMSs provide APIs that allow database administrators (DBAs) to control their runtime execution and

storage operations: (1) physical design, (2) knob configuration, (3) hardware resource allocation, and (4) query

plan hints. The first are changes to the database’s physical representation and data structures (e.g., indexes, views,

partitioning). The second are optimizations that affect the DBMS’s behavior through its configuration knobs

(e.g., caching policies). Resource allocations determine how the DBMS uses its available hardware to store data

and execute queries; the DBA can either provision new resources (e.g., adding disks, memory, or machines) or

redistribute existing resources (e.g., partitioning tables across disks). Lastly, query plan tuning hints are directives

that force the DBMS’s optimizer to make certain decisions for individual queries (e.g., join orderings).

Copyright 2019 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for

advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any

copyrighted component of this work in other works must be obtained from the IEEE.

Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

32



Given the notorious complexity of DBMS tuning, a reoccurring theme in database research over the last five

decades has been on how to automate this process and reduce the burden on humans. The first efforts in the

1970s were on building self-adaptive systems [30]. These were primarily recommendation tools that focused on

physical database design (e.g, indexes [31, 34], partitioning [32, 43], clustering [78]). They were also external

to the DBMS and meant to assist the DBA with the tuning process. In the 1990s, the database community

switched to using the moniker self-tuning systems [16, 73]. Like their predecessors, most of the self-tuning

systems targeted automated physical design [29, 17, 71]. But they also expanded their scope to include automatic

DBMS knob configuration [68, 20, 70]. This was necessary because by then the more mature DBMSs had

hundreds of tunable knobs and the problem of how to set them correctly because too arduous [72]. Another

notable difference was that while most of the self-adaptive methods were primarily in the context of standalone

recommendation tools that were external to the DBMS, some vendors added self-tuning components directly

inside of the DBMS [41, 67, 19].

The current research trend is on how to use of machine learning (ML) to devise “learned” methods for

automated DBMS tuning. Instead of relying on static heuristics or cost models (see Section 2), these newer

approaches train models using data collected about the DBMS’s runtime behavior under various execution

scenarios and configurations. The tuning agent then predicts the expected benefit of actions (e.g., add an index)

using these models and selects the one with the greatest expected reward. The agent then observes the affects of

the deployed action and integrates this new data back into the models to improve their efficacy for future decision

making. This last step removes the need for a human to make judgment calls about whether or not to make a

recommended change.

There are two ways developers can integrate such ML-based tuning methods for DBMSs. The first is to use

external agents that observe and manipulate a DBMS through standard APIs (e.g., JDBC, ODBC). This approach

is ideal for existing DBMSs where the software engineering effort required to retrofit the architecture to support

automated tuning is too onerous. The second is to integrate internal components that directly operate inside of

the DBMS. Building the ML components inside of the system obviates several problems related to training data

collection and modeling, as well as enables the agent to have fine-grained control of the system’s behavior. But

this integration requires such a tight coupling that it is often only viable for those organizations that are designing

a new system from scratch (i.e., a “greenfield” project) [59].

In this paper, we discuss the trade-offs between implementing ML-based tuning agents outside of the DBMS

versus designing a new DBMS around automation. Our analysis is based on our experiences developing ML-based

tuning tools for existing systems [72, 79, 58] and new autonomous architectures [9, 46, 57, 60, 81]. We begin

in Section 2 with an overview of how DBMS tuning algorithms work. Next, in Section 3 we describe how to

use ML-based agents to automatically tune systems. We then compare the benefits of the approaches, as well as

discuss some of their challenges and unsolved problems. We conclude with an overview of two DBMS projects

at CMU [1] on using ML for automated tuning. The first is OtterTune [5], an external knob tuning service for

existing DBMSs. The other is a new self-driving [57] DBMS called NoisePage [3] (formerly Peloton1) that we

are designing to be completely autonomous.

2 Background

Previous researchers in the last 50 years have studied and devised several methods for automatically optimizing

DBMSs [12, 18, 16, 74]. As such, there is an extensive corpus of previous work, including both theoretical [14]

and applied research [24, 82, 75]. Before the 2010s, the core methodologies for automated DBMS tuning were

either (1) heuristic- or (2) cost-based optimization algorithms. We now briefly discuss this prior work to motivate

the transition to ML-based methods in Section 3.

1We are unable to continue with the Peloton [6] project due to the unholy combination of engineering, legal, and marital problems.

33



The most widely used approach in automated DBMS tuning is to use heuristic algorithms that are comprised

of hard-coded rules that recommend actions [32]. For example, IBM’s first release of their DB2 Performance

Wizard tool in the early 2000s asked the DBA questions about their application (e.g., whether it is OLTP or

OLAP) and then provides knob settings based on their answers [42]. It uses rules manually created by DB2

engineers and thus may not accurately reflect the actual workload or operating environment. IBM later released a

version of DB2 with a self-tuning memory manager that again uses rules to determine how to allocate the DBMS’s

memory to its internal components [67, 70]. Oracle has a similar “self-managing” memory manager in their

DBMS [19], but also provides a tool to identify bottlenecks due to misconfiguration using rules [21, 40]. Others

have used the same approach in tuning tools for Microsoft’s SQL Server [53], MySQL [2], and Postgres [7].

The other common approach for DBMS tuning is to use cost-based algorithms that programmatically search

for improvements to the DBMS’s configuration. These algorithms are guided by a cost model that estimates

the benefits of design choices based on a representative sample workload trace from the application. A cost

model allows a tool to identify good actions without having to deploy them for real on the DBMS, which

would is prohibitively expensive and slow. Previous work in this area has evaluated several search techniques,

including greedy search [17], branch-and-bound search [58, 82, 54], local search [77], genetic algorithms [54],

and relaxation/approximation [13].

To avoid the problem of a cost-based algorithm making choices that do not reflect what happens in the real

DBMS, the tuning tool can use the DBMS’s internal components to provide it with more accurate cost model

estimations. The first and most notable application of this optimization was Microsoft’s AutoAdmin use of

SQL Server’s built-in cost models from its query planner to estimate the utility of indexes [15]. Relying on the

DBMS for the cost model, however, does not work for knob configuration tuning algorithms. In the case of

Microsoft’s example of using the query planner to guide its search algorithms, these models approximate on

the amount of work to execute a query and are intended to compare alternative query execution strategies in

a fixed environment [65]. But knobs affect a DBMS’s behavior in ways that are not easily reflected (if even

possible) in the query planner’s cost model. For example, it is non-trivial for the planner to reason for a single

query about a knob that changes caching policies since the behavior can vary depending on the workload. Hence,

the major vendors’ proprietary knob configuration tools mostly rely on static heuristics and vary in the amount of

automation that they support [21, 40, 53, 2, 7].

The critical limitation in both of the above heuristic- and cost-based tuning methods is that they tune each

DBMS in isolation. That is, they only reason about how to tune one particular DBMS instance and do not

leverage information collected about previous tuning sessions. Heuristic-based methods rely on assumptions

about the DBMS’s workload and environment that may not accurately reflect the real-world. The lack of data

reuse increases the amount of time that it takes for cost-based algorithms to find improvements for the DBMS. To

avoid an exhaustive search every time, developers apply domain knowledge about databases to prune the solutions

that are unlikely to provide any benefit. For example, an index selection algorithm can ignore candidate indexes

for columns that are never accessed in queries. But database tuning problems are NP-Complete [52, 35], and thus

solving them efficiently even with such optimizations is non-trivial. This is where ML-based approaches can

potentially help by providing faster approximations for optimization problems.

3 Automated Tuning with Machine Learning

ML is a broad field of study that encompasses many disciplines and is applicable to many facets of DBMSs.

There are engineering and operational challenges in incorporating ML-based components into already complex

DBMS software stacks [61], such as explainability, maintainability/extendability, and stability. There are also

important problems on automatically provisioning resources for a fleet of DBMSs in a cloud environment. We

limit the scope of our discussion to the implications of integrating ML in DBMSs for tuning in either existing or

new system architectures.

34



ML-based agents for automated DBMS tuning use algorithms that rely on statistical models to select actions

that improve the system’s target objective. That is, instead of being provided explicit instructions on how to tune

the DBMS, the agent extracts patterns and inferences from the DBMS’s past behavior to predict the expected

behavior in the future to lean how to apply it to new actions. The agent selects an action that it believes will

provide the most benefit to its target objective function. It then deploys this action without having to request

permission from a DBA. This deployment can either be explicit (e.g., invoking a command to build an index) or

implicit (i.e., updating its models so that the next invocation reflects the change).

Agents build their models from training data that they collect from the DBMS and its environment. This

data can also come from other previous tuning sessions for other DBMSs if they provide the proper context (e.g.,

hardware profile). The type of data that an agent collects from the DBMS depends on its action domain. Some

agents target a specific sub-system in the DBMS, and thus they need training data related to these parts of the

system. For example, an agent that tunes the DBMS’s query optimizer [48, 56] collects information about the

workload (e.g., SQL queries) and the distribution of values in the database. Another agent that targets tuning the

DBMS’s knob configuration only needs low-level performance metrics as this data is emblematic of the overall

behavior of the system for a workload [72, 80, 24]. A holistic tuning agent that seeks to control the entire DBMS

collects data from every parts of the system because they must consider latent interactions between them [57].

How an agent acquires this data depends on whether it trains its models offline or online. Offline training

is where the agent replays a sample workload trace while varying the DBMS’s configuration in a controlled

environment. This arrangement allows the agent to guide its training process to explore unknown regions in

its solution space. Offline training also ensures that if the agent selects a bad configuration that it does not

cause observable problems in the production environment. With online training, the agent observes the DBMS’s

behavior directly as it executes the application’s workload. This approach does not require the system to provide

the agent a workload sample; this allows the agent to always have an up-to-date view of the workload. The

agent, however, may cause the system to make unexpected changes that hurt performance and require a human to

intervene. Note also that the offline versus online approaches are not mutually exclusive and a DBMS can use

both of them together.

ML methods are divided into three broad categories: (1) supervised, (2) unsupervised, and (3) reinforcement

learning. There are existing DBMS tuning agents that use either one category of algorithms or some combination

of them. We now describe these approaches in the context of DBMS tuning:

Supervised Learning: The agent builds models from training data that contains both the input and expected

output (i.e., labels). The goal is for the models learn how to produce the correct answer for new inputs. This

approach is useful for problems where the outcome of an action is immediately observable. An example

of a supervised learning DBMS tuning method is an algorithm that predicts the cardinality of query plan

operators [36, 45, 76, 37]. The training data input contains encoded vectors of each operator’s salient features

(e.g., type, predicates, input data sizes) and the output is the cardinality that the DBMS observed when executing

the query. The objective for this agent is to minimize the difference between the predicted and actual cardinalities.

Supervised learning has also been applied to tune other parts of a DBMS, including approximate indexes [39],

performance modeling [26, 49], transaction scheduling [60, 63], query plan tuning [23], and knob tuning [72].

Unsupervised Learning: With this approach, the agent’s training data only contains input values and not the

expected output. It is up to the agent to infer whether the output from the models are correct. An example of this

is an agent that clusters workloads into categories based on their access patterns patterns [51, 28]. The assigned

categories have no human decipherable meaning other than the workloads in each category are similar in some

way. Although not directly related to tuning, another use of unsupervised ML in DBMSs is for automatically

detecting data anomalies in a database: the agent does not need to be told what are “correct” values to figure out

what values do not look like the others [10].

Reinforcement Learning: Lastly, reinforcement learning (RL) is similar to unsupervised ML in that there

35



is no labeled training data. The agent trains a policy model that selects actions that will improve the target

objective function for the current environment. RL approaches in general do not make assumptions about priors

and the models are derived only from the agent’s observations. This is useful for problems where the benefit or

effect of an action are not immediately known. For example, the agent may choose to add an index to improve

query performance, but the DBMS will take several minutes or even hours to build it. Even after the DBMS

builds the index, the agent may still only observe its reward after a period of time if the queries that use do

not come until later (e.g., due to workload pattern changes). Given the general purpose nature of RL, it is one

of the most active areas of DBMS tuning research in the late 2010s. Researchers have applied RL for query

optimization [48, 56, 50], index selection [11, 62, 23], partitioning [25, 33], and knob tuning [80].

We next discuss how to integrate agents that use the above ML approaches into DBMSs to enable them to

support autonomous tuning and optimization features. We begin with an examination of strategies for running

agents outside of the DBMS in Section 3.1. Then in Section 3.2 we consider the implications of integrating the

agents directly inside of the DBMS. For each of these strategies, we first present the high-level approach and then

list some of the key challenges that one must overcome with them.

3.1 External Agents

An external agent tunes a DBMS without requiring specialized ML components running inside of the system.

The goal is to reuse the DBMS’s existing APIs and environment data collection infrastructure (e.g., query traces,

performance metrics) without having to modify the DBMS itself or for the DBMS to be even aware that software

and not a human is managing it. Ideally a developer can create the agent in a general purpose such that one can

reuse its backend ML component across multiple DBMSs.

An agent receives its objective function data either directly from the DBMS or through additional third-party

monitoring tools (e.g., Prometheus, Druid, InfluxDB). The latter scenario is common in organizations with a

large number of DBMS instances. Although the agent’s ML algorithms are not tailored to any particular DBMS,

there is DBMS-specific code to prepare the training data for consumption by the algorithm. This is colloquially

known as glue code in ML parlance [61]. For example, the agent has to encode configuration knobs with fixed

“enum” values, known as a categorical variables, as separate one-hot encoded features since ML algorithms cannot

operate on strings [72]. To do this encoding correctly, the agent must obviously be aware of all possible values a

knob can take; it is too difficult and a waste of time to try to infer this on its own.

Agents may also need an additional controller running on the same machine as the DBMS or within the

same administrative domain [72]. This controller is allowed to install changes that are not accessible through the

DBMS’s APIs. For example, DBMSs that read configuration files at start-up on local disk will overwrite any

previously set knob values. Thus, unless the agent is able to write these files, then it will not be able to persist

changes. The controller may need to also restart the DBMS because many systems are not able to apply changes

until after a restart.

Challenges: There are several challenges in tuning an existing DBMS that was not originally designed for

autonomous operation. Foremost is that almost every major DBMS that we have examined does not support

making changes to the system’s configuration without periods of unavailability, either due to restarts or blocking

execution [59]. Requiring the DBMS to halt execution in order to apply a change makes it difficult for agents

to explore configurations in production systems and increases the time it takes to collect training data. There

are methods for reducing start-up times [8, 27], but the agent still must also account for this time in their reward

functions, which are often non-deterministic.

The second issue is that an agent is only able to collect performance metrics that the system already exposes.

This means that if there is additional information that the agent needs, then it is not immediately available. The

other issue is that is that there is often an overabundance of data that makes it difficult to separate signals from the

noise [72]. Furthermore, DBMSs also do not expose information about their underlying hardware so the system

36



can reuse training data across operating environments. In many cases these metrics were originally meant to assist

humans with diagnosing performance problems. That is, the developers added metrics assuming that they were

meant for human consumption and not for enabling autonomous control. Many DBMSs do not report metrics at

consistent intervals using the same unit of measurement.

Lastly, every DBMS has knobs that requires human knowledge in order to know how to set it correctly. There

are obvious cases, like knobs that define file paths or port numbers, where the system will not function if they are

set incorrectly. But there are other knobs where if an agent sets it incorrectly then the system will not become

inoperable; instead, they will subtly affect the database’s correctness or safety. The most common example of this

that we found is whether to require the DBMS to flush a transaction’s log records to disk before it is committed.

Turning off this flushing improves performance but may lead to data loss on failures. If an agent discovers that

changing this knob improves the objective function, then it will make that change. But the agent is unable to

know what the right choice is because it requires a human to decide what is allowed in their organization. The

agent’s developers must mark such knobs as untunable in the glue code so that an agent do not modify them.

3.2 Internal Agents

An alternative to treating the DBMS like a black-box and tuning it with an external agent is to design the system’s

architecture to natively support autonomous operation. With this approach, the DBMS supports one or more

agents running inside of the system. These agents collect their own training data, apply changes to the DBMS

(ideally without restarting), and then observe how those changes affect the objective. The system does not require

guidance or approval from a human for any of these steps. The benefit of running agents inside of the DBMS is

that it exposes more information about the system’s runtime behavior and can potentially enable more low-level

control of the DBMS than what is possible with an external agent.

Most of the proposed ML tuning agents that are available today are designed to extend or replace components

in existing DBMSs. One of the first of these was IBM’s Learning Optimizer from the early 2000s that used a

feedback mechanisms to update the query planner’s cost models with data that the system observed during from

query execution [66]. There are now more sophisticated proposals for changing the cost model with learned

models to estimate cardinalities [36, 45, 76, 37] or even generate the query plan itself [56, 47]. These agents can

also leverage the DBMS’s existing components to help them “bootstrap” their models and provide them with a

reasonable starting point. One notable example of augmenting an existing DBMS with ML agents is Oracle’s

cloud-based autonomous DBMS offering [4]. Although there is little public information about its implementation,

our understanding from discussions with their developers is that it uses Oracle’s previous independent tuning

tools in a managed environment with limited centralized coordination.

Instead of augmenting an existing DBMS, others have looked into creating new DBMS architectures that are

designed from the ground up for autonomous control [57, 62, 38]. With a new system, the developers can tailor

its implementation to make its components easier to model and control. They can also customize the architecture

to be more friendly to automated agents (e.g., avoiding the need to restart the system when changing knobs,

having a unified action deployment framework) [59].

Challenges: The biggest problem with replacing a DBMS’s existing components with new ML-based

implementations is that it is hard to capture the dependencies between them. That is, if each tuning agent

operates under the assumption that the other parts of the system are fixed, then their models will encapsulate this

assumption. But then if each agent modifies their part of the DBMS that they control, then it will be hard to

make accurate predictions. Consider a tuning agent that controls the DBMS’s memory allocations. Suppose the

agent initially assigns a small amount of memory for query result caching and a large amount to the buffer pool.

Another index tuning agent running inside of the same DBMS then chooses to build an index because memory

pressure in the buffer pool is low. But then the memory agent decides on its own to increase the result cache size

and decrease the buffer pool size. With this change, there is now less memory available to store the index and

37



data pages, thereby increasing the amount of disk I/O that the DBMS incurs during query execution. Thus, the

index that the second agent just added is now a bad choice because of change in another part of the system that it

does not control.

There are three possible ways to overcome this problem but each of them have their own set of issues. The

first is to use a single centralized agent rather than separate agents. This is potentially the most practical but

greatly increases the dimensionality (i.e., complexity) of the models, which requires significantly more training

data. The second is to have each individual agent provide a performance guarantee about what its changes in the

DBMS. The agents provide this information to a central coordinator that is in charge of resource allocations. The

last approach is to have a decentralized architecture where agents communicate and coordinate with each other.

We suspect that this will prove to be too difficult to achieve reasonable stability or explainability.

One of the most expensive parts of these agents is when they build their models from the training data. The

DBMS must prevent the agents from degrading the execution performance of the regular workload during this

process. Thus, even though the agent runs inside of the DBMS, it could offload this step to auxiliary computational

resources (i.e., GPUs, other machines).

4 OtterTune – Automated Knob Tuning Service for Existing DBMSs

OtterTune is an external knob configuration tuning service that works with any DBMS [72, 79, 5]. It maintains a

repository of data collected from previous tuning sessions, and uses this data to build models of how the DBMS

responds to different knob configurations. For a new application, it uses these models to guide experimentation

and recommend optimal settings. Each recommendation provides OtterTune with more information in a feedback

loop that allows it to refine its models and improve their accuracy.

As shown in Section 1, OtterTune’s architecture is made up of a client-side controller and a server-side

tuning manager. The controller acts as a conduit between the target DBMS and the tuning manager. It contains

DBMS-specific code for collecting runtime information from the target DBMS (e.g., executing SQL commands

via JDBC) and installs configurations recommended by the tuning manager. Again, the high-level operations

are the same for all DBMSs but the exact commands differ for each DBMS: the controller updates the DBMS’s

configuration file on disk and then restarts the system using the appropriate administrative tool. The tuning

manager updates its repository and internal ML models with the information provided by the controller and then

recommends a new configuration for the user to try.

To initialize a new tuning session, the user first selects which metric should be the target objective for

OtterTune to optimize when selecting configurations. OtterTune retrieves this information either from (1) the

DBMS itself via its query API, (2) a third-party monitoring service, or (3) a benchmarking framework [22].

OtterTune also requests other necessary information from the user about the target DBMS at this time, such as

the DBMS’s version and connection information.

OtterTune then begins the first observation period where the controller connects to the the DBMS and runs

the sample workload. Once the observation period is over, OtterTune collects the DBMS’s runtime metrics and

configuration knobs, and then delivers this information to the tuning manager. The result from the first observation

period serves as a baseline since it reflects the DBMS’s performance using its original configuration.

OtterTune’s tuning manager receives the result from the last observation period from the controller and stores

it in its repository. Next, the tuning manager selects the next configuration to try on the target DBMS. This

process continues until the user is satisfied with the improvements over the original configuration.

4.1 Machine Learning Pipeline

OtterTune’s ML pipeline uses a combination of supervised and unsupervised methods. It processes, analyzes,

and builds models from the data in its repository. Both the Workload Characterization and Knob Identification

38



Target 
DBMS

Tuning Manager

Client Side Server Side

Knobs

Metrics

Job Scheduler

Recommender

Workload 

Characterization

Knob

Identification

Periodic Tasks

Data 
Repository

Data Processor

Stored in Repo

Scheduled to 

RecommenderToken

Ready?

Config

1

2

3

4

new
config

metrics knobs

Web Interface

Controller

New

Config

Data Collector

Installer

Figure 1: OtterTune Architecture Overview – The controller connects to the target DBMS, collects its knob/-

metric data, transforms the collected information into a JSON document, and sends it to the server-side tuning

manager. The tuning manager stores the information in the data repository and schedules a new task with the job

scheduler to compute the next configuration for the target DBMS to try. The controller (1) sends the information

to the tuning manager, (2) gets a token from the tuning manager, (3) uses this token to check status of the tuning

job, and (4) gets the recommended configuration when the job finishes and then the agent installs it in the DBMS.

modules execute as a background task that periodically updates their models as new data becomes available in the

repository. The tuning manager uses these models to generate new knob configurations for the target DBMS.

OtterTune’s ML pipeline has three modules:

Workload Characterization: This first component compresses all of the past metric data in the repository

into a smaller set of metrics that capture the distinguishing characteristics for different workloads. It uses factor

analysis (FA) to model each internal runtime metric as linear combinations of a few factors. It then clusters the

metrics via k-means, using their factor coefficients as coordinates. Similar metrics are in the same cluster, and it

selects one representative metric from each cluster, namely, the one closest to the cluster’s center.

Knob Identification: The next component analyzes all past observations in the repository to determine

which knobs have the most impact on the DBMS’s performance for different workloads. OtterTune uses a popular

feature-selection technique, called Lasso [69], to determine which knobs have the most impact the system’s

overall performance. Lasso is similar to the least-squares model, except that it uses L1 regularization. It forces

certain coefficients to be set to zero. The larger weight of L1 penalty is, the more coefficients become zero.

Automated Tuner: In the last step, the tuner analyzes the results it has collected so far in the tuning session

to decide which configuration to recommend next. It performs a two-step analysis after each observation period.

First, the system uses the performance data for the metrics identified in the Workload Characterization component

to identify the workload from a previous tuning session that best represents the target DBMS’s workload. It

compares the metrics collected so far in the tuning session with those from previous workloads by calculating the

Euclidean distance, and finds the previous workload that is most similar to the target workload, namely, the one

with smallest Euclidean distance.

5 NoisePage – A Self-Driving DBMS Architecture

NoisePage is a new DBMS that we are developing at CMU to be self-driving [57, 3]. This means that the

system is able to tune and optimize itself automatically without any human intervention other than selecting the

target objective function on start-up. The DBMS’s core architecture is a Postgres-compatible HTAP system. It

uses HyPer-style MVCC [55] over Apache Arrow in-memory columnar storage [44]. We chose an in-memory

39



Figure 2: NoisePage Architecture Overview – The DBMS contains workload and performance monitors that

collect runtime data about the system. It then stores this information in a separate training data repository. The

Modeling module retrieves this information and builds forecasting models. These models are then used to guide

the Planning module’s search process for selecting actions that it believes will improve the DBMS’s objective

function.

architecture to enable the system to apply actions in minutes (instead of hours) with minimal impact on the

application’s performance. Faster action deployment enables the system to quickly explore solutions and collect

new training data. This enables the system to react better to changes in the application’s workload and its

operating environment.

The DBMS’s control agent runs in a continuous loop where it selects actions to deploy that it estimates

will improve the target objective. NoisePage supports actions that affect (1) database physical design (e.g.,

add/drop indexes), (2) knob configuration (e.g., memory allocation), and (3) hardware resources (e.g., scaling

up/down). We are not currently investigating how to automatically support query plan tuning as these requires

more fine-grained models that can reason about individual sessions.

Because the DBMS is built from scratch for autonomous control, we designed the architecture in a modular

manner to allow agents to collect training data offline more efficiently. That is, one can start just a single

component in the DBMS (e.g., the transaction manager) and then perform a parameter sweep across many

configurations without having to go through the DBMS’s entire execution path. This reduces the number of

redundant configurations that the system observes to (1) improve data collection efficiency and (2) reduce model

over-fitting. The DBMS then combines this offline data with data collected online during query execution to

improve it accuracy.

5.1 Machine Learning Pipeline

We next provide an overview of NoisePage’s self-driving pipeline. Section 2 illustrates the overall architecture of

the DBMS with its modeling and planning modules. The DBMS is instrumented with a workload and performance

monitors that collect information about the entire system during both query execution and action deployment.

Modeling: This first module is responsible for training prediction models using data that the monitors collect

from observing its runtime operations. There are two categories of models. The first are forecast models that

predict the application’s future workload and database state. Forecasting is necessary so that DBMS can prepare

itself accordingly, much like a self-driving car has to predict the road condition up ahead. But instead of using

cameras and LIDAR like a car, a self-driving DBMS uses workload traces and database statistics to generate

forecast models [46]. These models are independent of the DBMS’s configuration since they are determined by

the application. The second category of models predict how the DBMS’s internal sub-systems will respond to

40



configuration changes made by actions. The DBMS trains these models from its internal metrics collected by its

performance monitors. It then computes how changes in these models affect the target objective function. This is

known as the “value function” in ML algorithms.

Planning: In the second module, the DBMS use the models generated in the previous step to select actions

that provide the best reward (i.e., objective function improvement) given the current state of the system. This

reward includes an estimation the cost of deploying each action. The system estimates the application’s behavior

for some finite prediction horizon using its workload forecast models. It then searches for an action that achieves

the best reward without violating human-defined constraints (e.g., hardware budgets, SLOs). This search can use

either (1) tree-based optimization methods, such as a Monte Carlo search tree [64] or (2) RL methods using deep

neural networks for policy and value functions. The search can be weighted so that it is more likely to consider

the actions that provide the most benefit for the current state and avoid recently reversed actions.

To avoid having to consider all possible actions at each iteration (e.g., indexes for every possible combination

of columns), there is a large corpus of previous work on pruning less effective or useless actions [16]. Since the

set of relevant candidate actions is dependent on the DBMS environment, it can change multiple times during

the day. Thus, one key unsolved problem, however, is how to represent this dynamic action set in the DBMS’s

models’ fixed-length feature vectors.

Deployment: For a given action selected in the planning module, the next step is for the DBMS to deploy it.

This part includes the mechanisms to efficiently execute the action’s sub-tasks, as well as the ability to observe

the action’s effect on its performance both during and after the deployment. The DBMS’s planning modules use

the data that it collects during this phase to update their models and improve their decision making.

6 Conclusion

Autonomous DBMSs will enable organizations to deploy database applications that are more complex than what

is possible today, and at a lower cost in terms of both hardware and personnel. In this paper, we surveyed the

approaches for adding automatic tuning agents based on ML to DBMSs. We discussed the high-level differences

of external versus and internal agents, as well as the separate challenges in these approaches. We then discussed

two examples of these architectures from CMU: (1) OtterTune [5] and (2) NoisePage [3]. Although there is

still a substantial amount of research needed in both systems and ML before we achieve fully autonomous (i.e.,

self-driving) DBMSs, we contend that the field has made several important steps towards this goal in recent years.

One final point that we would like to make is that we believe that autonomous DBMSs will not supplant

DBAs. We instead envision these systems will emancipate them from the burdens of arduous low-level tuning

and allow them to pursue higher minded tasks, such as database design and development.

7 Acknowledgments

This work was supported (in part) by the National Science Foundation Intel Science and Technology Center

for Visual Cloud Systems, Google Research Grants, AWS Cloud Credits for Research, and the Alfred P. Sloan

Research Fellowship program.

References

[1] Carnegie Mellon Database Group. https://db.cs.cmu.edu.

[2] MySQL Tuning Primer Script. https://launchpad.net/mysql-tuning-primer.

41



[3] NoisePage. https://noise.page.

[4] Oracle Self-Driving Database. https://www.oracle.com/database/

autonomous-database/index.html.

[5] OtterTune. https://ottertune.cs.cmu.edu.

[6] Peloton. https://pelotondb.io.

[7] PostgreSQL Configuration Wizard. https://pgtune.leopard.in.ua.

[8] L. Abraham, J. Allen, O. Barykin, V. Borkar, B. Chopra, C. Gerea, D. Merl, J. Metzler, D. Reiss, S. Subrama-

nian, J. L. Wiener, and O. Zed. Scuba: Diving into data at facebook. Proc. VLDB Endow., 6(11):1057–1067,

Aug. 2013.

[9] J. Arulraj, A. Pavlo, and P. Menon. Bridging the archipelago between row-stores and column-stores for

hybrid workloads. In Proceedings of the 2016 International Conference on Management of Data, SIGMOD

’16, pages 583–598, 2016.

[10] P. Bailis, E. Gan, S. Madden, D. Narayanan, K. Rong, and S. Suri. Macrobase: Prioritizing attention in fast

data. In Proceedings of the 2017 ACM International Conference on Management of Data, SIGMOD ’17,

pages 541–556, 2017.

[11] D. Basu, Q. Lin, W. Chen, H. T. Vo, Z. Yuan, P. Senellart, and S. Bressan. Cost-Model Oblivious Database

Tuning with Reinforcement Learning, pages 253–268. 2015.

[12] P. Bernstein, M. Brodie, S. Ceri, D. DeWitt, M. Franklin, H. Garcia-Molina, J. Gray, J. Held, J. Hellerstein,

H. Jagadish, et al. The asilomar report on database research. SIGMOD record, 27(4):74–80, 1998.

[13] N. Bruno and S. Chaudhuri. Automatic physical database tuning: a relaxation-based approach. In SIGMOD,

pages 227–238, 2005.

[14] S. Ceri, S. Navathe, and G. Wiederhold. Distribution design of logical database schemas. IEEE Trans. Softw.

Eng., 9(4):487–504, 1983.

[15] S. Chaudhuri and V. Narasayya. Autoadmin “what-if” index analysis utility. SIGMOD Rec., 27(2):367–378,

1998.

[16] S. Chaudhuri and V. Narasayya. Self-tuning database systems: a decade of progress. In VLDB, pages 3–14,

2007.

[17] S. Chaudhuri and V. R. Narasayya. An efficient cost-driven index selection tool for microsoft SQL server.

In VLDB, pages 146–155, 1997.

[18] S. Chaudhuri and G. Weikum. Rethinking database system architecture: Towards a self-tuning RISC-style

database system. In VLDB, pages 1–10, 2000.

[19] B. Dageville and M. Zait. Sql memory management in oracle9i. In Proceedings of the 28th International

Conference on Very Large Data Bases, VLDB ’02, pages 962–973, 2002.

[20] B. Debnath, D. Lilja, and M. Mokbel. SARD: A statistical approach for ranking database tuning parameters.

In ICDEW, pages 11–18, 2008.

[21] K. Dias, M. Ramacher, U. Shaft, V. Venkataramani, and G. Wood. Automatic performance diagnosis and

tuning in oracle. In CIdR, 2005.

42



[22] D. E. Difallah, A. Pavlo, C. Curino, and P. Cudré-Mauroux. OLTP-Bench: An extensible testbed for

benchmarking relational databases. PVLDB, 7(4):277–288, 2013.

[23] B. Ding, S. Das, R. Marcus, W. Wu, S. Chaudhuri, and V. Narasayya. Ai meets ai: Leveraging query

executions to improve index recommendations. In Proceedings of the 2019 ACM International Conference

on Management of Data, SIGMOD ’19, 2019.

[24] S. Duan, V. Thummala, and S. Babu. Tuning database configuration parameters with iTuned. VLDB,

2:1246–1257, August 2009.

[25] G. C. Durand, M. Pinnecke, R. Piriyev, M. Mohsen, D. Broneske, G. Saake, M. S. Sekeran, F. Rodriguez,

and L. Balami. Gridformation: Towards self-driven online data partitioning using reinforcement learning.

aiDM’18, pages 1:1–1:7, 2018.

[26] A. Ganapathi, H. Kuno, U. Dayal, J. L. Wiener, A. Fox, M. Jordan, and D. Patterson. Predicting multiple

metrics for queries: Better decisions enabled by machine learning. In International Conference on Data

Engineering, pages 592–603. IEEE, 2009.

[27] G. Graefe, W. Guy, and C. Sauer. Instant Recovery with Write-Ahead Logging: Page Repair, System Restart,

and Media Restore. Synthesis Lectures on Data Management. Morgan & Claypool Publishers, 2014.

[28] C. Gupta, A. Mehta, and U. Dayal. PQR: Predicting Query Execution Times for Autonomous Workload

Management. In ICAC, pages 13–22, 2008.

[29] H. Gupta, V. Harinarayan, A. Rajaraman, and J. D. Ullman. Index selection for olap. In ICDE, pages

208–219, 1997.

[30] M. Hammer. Self-adaptive automatic data base design. In National Computer Conference, AFIPS ’77,

pages 123–129, 1977.

[31] M. Hammer and A. Chan. Index selection in a self-adaptive data base management system. In SIGMOD,

pages 1–8, 1976.

[32] M. Hammer and B. Niamir. A heuristic approach to attribute partitioning. In SIGMOD, pages 93–101, 1979.

[33] B. Hilprecht, C. Binnig, and U. Röhm. Towards learning a partitioning advisor with deep reinforcement

learning. In aiDM@SIGMOD, pages 6:1–6:4, 2019.

[34] S. E. Hudson and R. King. Cactis: A self-adaptive, concurrent implementation of an object-oriented

database management system. ACM Trans. Database Syst., 14(3):291–321, Sept. 1989.

[35] M. Y. L. Ip, L. V. Saxton, and V. V. Raghavan. On the selection of an optimal set of indexes. IEEE Trans.

Softw. Eng., 9(2):135–143, 1983.

[36] O. Ivanov and S. Bartunov. Adaptive cardinality estimation. CoRR, abs/1711.08330, 2017.

[37] A. Kipf, T. Kipf, B. Radke, V. Leis, P. A. Boncz, and A. Kemper. Learned cardinalities: Estimating

correlated joins with deep learning. In CIDR, 2019.

[38] T. Kraska, M. Alizadeh, A. Beutel, E. H. Chi, A. Kristo, G. Leclerc, S. Madden, H. Mao, and V. Nathan.

Sagedb: A learned database system. In CIDR, 2019.

[39] T. Kraska, A. Beutel, E. H. Chi, J. Dean, and N. Polyzotis. The case for learned index structures. In

Proceedings of the 2018 International Conference on Management of Data, pages 489–504, 2018.

43



[40] S. Kumar. Oracle Database 10g: The self-managing database, Nov. 2003. White Paper.

[41] E. Kwan, S. Lightstone, A. Storm, and L. Wu. Automatic configuration for IBM DB2 universal database.

Technical report, IBM, jan 2002.

[42] E. Kwan, S. Lightstone, A. Storm, and L. Wu. Automatic configuration for IBM DB2 universal database.

Technical report, IBM, jan 2002.

[43] K. D. Levin. Adaptive structuring of distributed databases. In National Computer Conference, AFIPS ’82,

pages 691–696, 1982.

[44] T. Li, M. Butrovich, A. Ngom, W. McKinney, and A. Pavlo. Mainlining databases: Supporting fast

transactional workloads on universal columnar data file formats. 2019. Under Submission.

[45] H. Liu, M. Xu, Z. Yu, V. Corvinelli, and C. Zuzarte. Cardinality estimation using neural networks. CASCON

’15, pages 53–59, 2015.

[46] L. Ma, D. V. Aken, A. Hefny, G. Mezerhane, A. Pavlo, and G. J. Gordon. Query-based workload forecasting

for self-driving database management systems. In Proceedings of the 2018 ACM International Conference

on Management of Data, SIGMOD ’18, 2018.

[47] R. Marcus, P. Negi, H. Mao, C. Zhang, M. Alizadeh, T. Kraska, O. Papaemmanouil, and N. Tatbul. Neo: A

learned query optimizer. CoRR, abs/1904.03711, 2019.

[48] R. Marcus and O. Papaemmanouil. Deep reinforcement learning for join order enumeration. In

aiDM@SIGMOD, pages 3:1–3:4, 2018.

[49] R. Marcus and O. Papaemmanouil. Plan-structured deep neural network models for query performance

prediction. CoRR, abs/1902.00132, 2019.

[50] R. Marcus and O. Papaemmanouil. Towards a hands-free query optimizer through deep learning. In CIDR

2019, 9th Biennial Conference on Innovative Data Systems Research, 2019.

[51] B. Mozafari, C. Curino, A. Jindal, and S. Madden. Performance and resource modeling in highly-concurrent

oltp workloads. In Proceedings of the 2013 ACM SIGMOD International Conference on Management of

Data, SIGMOD ’13, pages 301–312, 2013.

[52] R. Mukkamala, S. C. Bruell, and R. K. Shultz. Design of partially replicated distributed database systems:

an integrated methodology. SIGMETRICS Perform. Eval. Rev., 16(1):187–196, 1988.

[53] D. Narayanan, E. Thereska, and A. Ailamaki. Continuous resource monitoring for self-predicting DBMS.

In MASCOTS, pages 239–248, 2005.

[54] R. Nehme and N. Bruno. Automated partitioning design in parallel database systems. In SIGMOD,

SIGMOD, pages 1137–1148, 2011.

[55] T. Neumann, T. Mühlbauer, and A. Kemper. Fast serializable multi-version concurrency control for

main-memory database systems. SIGMOD, 2015.

[56] J. Ortiz, M. Balazinska, J. Gehrke, and S. S. Keerthi. Learning state representations for query optimization

with deep reinforcement learning. DEEM’18, pages 4:1–4:4, 2018.

[57] A. Pavlo, G. Angulo, J. Arulraj, H. Lin, J. Lin, L. Ma, P. Menon, T. Mowry, M. Perron, I. Quah, S. Santurkar,

A. Tomasic, S. Toor, D. V. Aken, Z. Wang, Y. Wu, R. Xian, and T. Zhang. Self-driving database management

systems. In CIDR 2017, Conference on Innovative Data Systems Research, 2017.

44



[58] A. Pavlo, C. Curino, and S. Zdonik. Skew-Aware Automatic Database Partitioning in Shared-Nothing,

Parallel OLTP Systems. In SIGMOD, pages 61–72, 2012.

[59] A. Pavlo et al. Make Your Database Dream of Electric Sheep: Engineering for Self-Driving Operation.

2019. Under Submission.

[60] A. Pavlo, E. P. Jones, and S. Zdonik. On predictive modeling for optimizing transaction execution in parallel

oltp systems. Proc. VLDB Endow., 5:85–96, October 2011.

[61] D. Sculley, G. Holt, D. Golovin, E. Davydov, T. Phillips, D. Ebner, V. Chaudhary, and M. Young. Machine

learning: The high interest credit card of technical debt. In SE4ML: Software Engineering for Machine

Learning (NIPS 2014 Workshop), 2014.

[62] A. Sharma, F. M. Schuhknecht, and J. Dittrich. The case for automatic database administration using deep

reinforcement learning. CoRR, abs/1801.05643, 2018.

[63] Y. Sheng, A. Tomasic, T. Zhang, and A. Pavlo. Scheduling OLTP transactions via learned abort prediction.

In aiDM@SIGMOD, pages 1:1–1:8, 2019.

[64] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser, I. Antonoglou,

V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap,

M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis. Mastering the game of go with deep neural

networks and tree search. Nature, 529:484–503, 2016.

[65] A. A. Soror, U. F. Minhas, A. Aboulnaga, K. Salem, P. Kokosielis, and S. Kamath. Automatic virtual

machine configuration for database workloads. In SIGMOD, pages 953–966, 2008.

[66] M. Stillger, G. M. Lohman, V. Markl, and M. Kandil. LEO - DB2’s LEarning Optimizer. In Proceedings of

the 27th International Conference on Very Large Data Bases, VLDB ’01, pages 19–28, 2001.

[67] A. J. Storm, C. Garcia-Arellano, S. S. Lightstone, Y. Diao, and M. Surendra. Adaptive self-tuning memory

in DB2. In VLDB, pages 1081–1092, 2006.

[68] D. G. Sullivan, M. I. Seltzer, and A. Pfeffer. Using probabilistic reasoning to automate software tuning.

SIGMETRICS, pages 404–405, 2004.

[69] T.Hastie, R.Tibshirani, and J.Friedman. The Elements of Statistical Learning. Springer, 2001.

[70] W. Tian, P. Martin, and W. Powley. Techniques for automatically sizing multiple buffer pools in DB2. In

CASCON, pages 294–302, 2003.

[71] G. Valentin, M. Zuliani, D. Zilio, G. Lohman, and A. Skelley. DB2 advisor: an optimizer smart enough to

recommend its own indexes. In ICDE, pages 101–110, 2000.

[72] D. Van Aken, A. Pavlo, G. J. Gordon, and B. Zhang. Automatic database management system tuning through

large-scale machine learning. In Proceedings of the 2017 ACM International Conference on Management of

Data, SIGMOD ’17, pages 1009–1024, 2017.

[73] G. Weikum, C. Hasse, A. Mönkeberg, and P. Zabback. The COMFORT automatic tuning project. Information

Systems, 19(5):381–432, July 1994.

[74] G. Weikum, A. Moenkeberg, C. Hasse, and P. Zabback. Self-tuning database technology and information

services: From wishful thinking to viable engineering. In Proceedings of the 28th International Conference

on Very Large Data Bases, VLDB ’02, pages 20–31, 2002.

45



[75] D. Wiese, G. Rabinovitch, M. Reichert, and S. Arenswald. Autonomic tuning expert: A framework for

best-practice oriented autonomic database tuning. In Proceedings of the 2008 Conference of the Center for

Advanced Studies on Collaborative Research: Meeting of Minds, CASCON ’08, pages 3:27–3:41, 2008.

[76] L. Woltmann, C. Hartmann, M. Thiele, D. Habich, and W. Lehner. Cardinality estimation with local deep

learning models. In aiDM@SIGMOD, pages 5:1–5:8, 2019.

[77] B. Xi, Z. Liu, M. Raghavachari, C. H. Xia, and L. Zhang. A smart hill-climbing algorithm for application

server configuration. In WWW, pages 287–296, 2004.

[78] C. T. Yu, C.-m. Suen, K. Lam, and M. K. Siu. Adaptive record clustering. ACM Trans. Database Syst.,

10(2):180–204, June 1985.

[79] B. Zhang, D. V. Aken, J. Wang, T. Dai, S. Jiang, J. Lao, S. Sheng, A. Pavlo, and G. J. Gordon. A

demonstration of the ottertune automatic database management system tuning service. PVLDB, 11(12):1910–

1913, 2018.

[80] J. Zhang, Y. Liu, K. Zhou, G. Li, Z. Xiao, B. Cheng, J. Xing, Y. Wang, T. Cheng, L. Liu, M. Ran, and Z. Li.

An end-to-end automatic cloud database tuning system using deep reinforcement learning. In Proceedings

of the 2019 ACM International Conference on Management of Data, SIGMOD ’19, 2019.

[81] T. Zhang, A. Tomasic, Y. Sheng, and A. Pavlo. Performance of OLTP via intelligent scheduling. In ICDE,

pages 1288–1291, 2018.

[82] D. C. Zilio, J. Rao, S. Lightstone, G. Lohman, A. Storm, C. Garcia-Arellano, and S. Fadden. DB2 design

advisor: integrated automatic physical database design. In VLDB, pages 1087–1097, 2004.

46


