
NBER WORKING PAPER SERIES

EXTERNALITIES OF POLICY-INDUCED SCRAPPAGE:
THE CASE OF AUTOMOTIVE REGULATIONS

Connor R. Forsythe
Akshaya Jha

Jeremy J. Michalek
Kate S. Whitefoot

Working Paper 30546
http://www.nber.org/papers/w30546

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
October 2022

This work was supported by the Department of Mechanical Engineering and the Department of 
Engineering and Public Policy at Carnegie Mellon University. The authors wish to thank Ken 
Gillingham, Chris Hendrickson, Mark Jacobsen, Shanjun Li, Arthur van Benthem, Jake Ward, 
Stephen Zoepf, and participants at the NBER Energy Use in Transportation meeting, the 
Transportation Research Board’s Annual Meeting, the Northeast Workshop on Energy Policy and 
Environmental Economics, the 2021 WEAI Annual Meeting, the 2022 AERE Summer 
Conference, the US EPA NCEE’s Seminar Series, Bridging Transportation Research conference, 
and members of the US EPA’s Office of Transportation and Air Quality for their valuable 
thoughts and suggestions. We are extremely grateful to Mark Jacobsen and Arthur van Benthem 
for helping us formulate the null hypotheses implied by their work. We would like to thank Kevin 
Bolon for his help in understanding the travel models used by regulatory agencies. We would also 
like to thank the Pennsylvania Department of Transportation and H. Scott Matthews for access to 
the Pennsylvania e-Safety data. The views expressed herein are those of the authors and do not 
necessarily reflect the views of the National Bureau of Economic Research.

NBER working papers are circulated for discussion and comment purposes. They have not been 
peer-reviewed or been subject to the review by the NBER Board of Directors that accompanies 
official NBER publications.

© 2022 by Connor R. Forsythe, Akshaya Jha, Jeremy J. Michalek, and Kate S. Whitefoot. All 
rights reserved. Short sections of text, not to exceed two paragraphs, may be quoted without 
explicit permission provided that full credit, including © notice, is given to the source.



Externalities of Policy-Induced Scrappage: The Case of Automotive Regulations
Connor R. Forsythe, Akshaya Jha, Jeremy J. Michalek, and Kate S. Whitefoot
NBER Working Paper No. 30546
October 2022
JEL No. H23,H70,Q58,R48

ABSTRACT

Many transportation policies indirectly affect vehicle travel and resulting externalities by 
inducing changes in vehicle scrappage rates.  We leverage the staggered removal of state-level 
safety inspection programs across the United States within an instrumental variables (IV) 
framework to produce the first estimates of the fleet-size elasticities of fleet travel distance and 
gasoline consumption.  Our first-stage estimates indicate that the removal of safety inspections 
caused a 3-4% increase in fleet size on average.  Our IV estimates of the fleet-size elasticities of 
fleet travel distance and gasoline consumption have 95% confidence sets that imply rejection of 
an assumption commonly used in prior analyses that these elasticities are equal to one.  
Calculations based on fleet-size elasticities of one result in substantial overestimates of the 
externality costs from increases in travel and fuel use from delays in scrappage due to the 
removal of safety inspections.

Connor R. Forsythe
Carnegie Mellon University
5000 Forbes Ave
Pittsburgh, PA 15213
cforsyth@andrew.cmu.edu

Akshaya Jha
H. John Heinz III College 
Carnegie Mellon University 
4800 Forbes Avenue 
Pittsburgh, PA 15213
and NBER
akshayaj@andrew.cmu.edu

Jeremy J. Michalek
Department of Engineering and Public Policy
Department of Mechanical Engineering
Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213
jmichalek@cmu.edu

Kate S. Whitefoot
Carnegie Mellon University
5000 Forbes Ave
Pittsburgh, PA 15213
kwhitefoot@cmu.edu

A data appendix is available at http://www.nber.org/data-appendix/w30546



1 Introduction

Automobile use comes with a host of negative externalities, including pollution

emissions, traffic fatalities, and congestion (Parry, Walls and Harrington, 2007).

Economists have long hypothesized that automotive policies can indirectly affect au-

tomobile use and associated externalities through changes in the rate at which used

vehicles are scrapped and potentially replaced: a phenomenon called the Gruenspecht

effect (Gruenspecht, 1982b). Policies for which the Gruenspecht effect is relevant are

ubiquitous, including fuel efficiency standards (Bento, Roth and Zuo, 2018; Jacob-

sen and van Benthem, 2015), fuel taxes (Jacobsen and van Benthem, 2015), vehicle

safety and emission inspection programs (Alberini, Harrington and McConnell, 1998;

Hahn, 1995), vintage-specific vehicle restrictions (Barahona, Gallego and Montero,

2020), license-plate lotteries (Yang et al., 2020), and “Cash for Clunkers” programs

(Alberini, Harrington and McConnell, 1998; Hahn, 1995; Hoekstra, Puller and West,

2017). Prior work has found empirical support for the Gruenspecht effect by estimat-

ing the effects of policy-induced changes in used car prices on scrappage rates (Bento,

Roth and Zuo, 2018; Jacobsen and van Benthem, 2015).

We provide the first empirical estimates of the effect of policy-induced changes in

scrappage rates on fleet-wide vehicle use and fuel consumption, which are the sources

of most automobile externalities. In the absence of empirical estimates of the vehicle-

fleet-size elasticities of fleet travel distance and gasoline consumption,1 policymakers

and researchers have been forced to make assumptions about these elasticities when

assessing the costs and benefits of different transportation policies. For example, prior

research has assumed that vehicles whose scrappage is delayed are driven the same as

the average vehicle (Alberini, Harrington and McConnell, 1998), the average vehicle

of the same model (Parks, 1977), or the average vehicle of the same type and age

(Jacobsen and van Benthem, 2015), and that when vehicles are scrapped, the travel

associated with those vehicles is lost, rather than shifted to other vehicles or modes.2

On the other end of the spectrum, some studies have assumed that fleet travel distance

does not respond to changes in scrappage rates at all (e.g., NHTSA and USEPA, 2020).

1Fleet travel distance is typically measured in vehicle-miles travelled (VMT) in the United States.
2In 2018, the U.S. National Highway Traffic Safety Administration justified a proposed rollback

to the Corporate Average Fuel Economy (CAFE) and light-duty vehicle greenhouse gas emissions
standards based on a cost-benefit analysis that made similar assumptions (NHTSA and USEPA,
2018a).
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We estimate the fleet-size elasticity of fleet travel distance and the fleet-size elastic-

ity of gasoline consumption by exploiting the staggered removal of state-level vehicle

safety inspection programs across the United States from 1970-2017. Namely, we use

variation in fleet size induced by the removal of safety inspections to estimate the

impact of fleet size on fleet travel distance and gasoline consumption using an instru-

mental variables approach. The intuition underlying this approach is that the removal

of safety inspection requirements reduces expected repair costs, delaying the scrappage

of used vehicles on the margin. A key assumption is that the removal of safety inspec-

tions affects travel and gasoline consumption only through policy-induced changes in

fleet size, an assumption we justify for our setting in Section 4.3.

Estimates from our first-stage difference-in-differences model indicate that the re-

moval of safety inspections increases vehicle registrations by 3% to 4%. Estimates from

event study specifications demonstrate that the first-stage estimates are not the re-

sult of pre-existing differences in trends across treatment and control states. Further,

evidence from the decomposition specified in Goodman-Bacon (2021) suggests that

the estimates are not driven by idiosyncratic comparisons across states that removed

safety inspections earlier versus later. Finally, we provide evidence that the removal

of safety inspections in one state did not affect vehicle registrations in neighboring

states.

Using an instrumental variables approach, we provide the first empirical estimates

of the effects of policy-induced changes in fleet size on fleet-wide travel and gasoline

consumption. To address recent concerns regarding weak instruments (Andrews, Stock

and Sun, 2019; Lee et al., 2020), we perform hypothesis testing using the Anderson-

Rubin test statistic that is robust to the bias induced by weak instruments (Anderson

and Rubin, 1949). In our preferred specification, we are able to reject values for the

fleet-size elasticity of fleet travel distance greater than 0.64 and values for the fleet-

size elasticity of gasoline consumption greater than 0.33. This indicates that there are

diminishing marginal increases in vehicle travel and gasoline consumption from policy-

induced increases in fleet size. Moreover, we are able to reject the fleet-size elasticities

implied by the assumptions made in prior analyses such as Alberini, Harrington and

McConnnel, 1998, NHTSA and USEPA, 2018a, and NHTSA and USEPA, 2020. This

highlights how our 95% confidence sets can be used to inform the formulation and

calibration of transportation models moving forward.
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We calculate the externality costs of removing safety inspections implied by our

estimates versus the fleet-size elasticities assumed in prior work. The annual external-

ity cost associated with the removal of safety inspection programs is overestimated by

at least 90 million dollars per state when assuming fleet-size elasticities of one rather

than our preferred estimates, amounting to a total estimation error of approximately

40 billion dollars over 1970-2017.

This study makes three contributions to existing literature. First, as shown in

Figure 1, the impact of fleet size on fleet travel distance is an essential link in the

causal chain from changes in automotive regulations to the resulting changes in the

externality costs associated with vehicle travel. Previous work has examined how

changes in policy impact prices in the new and used vehicle markets (Austin and

Dinan, 2005; Jacobsen, 2013; Klier and Linn, 2012; Whitefoot, Fowlie and Skerlos,

2017) as well as how changes in used vehicle prices impact the scrappage of used

vehicles (Bento, Roth and Zuo, 2018; Jacobsen and van Benthem, 2015). We provide

the first empirical estimates and 95% confidence sets on the fleet-size elasticities of

vehicle usage and gasoline consumption.

Figure 1: Prior empirical work on the effect of automotive policy on the externality
costs from fleet travel distance and fuel use

Whitefoot, Fowlie, & Skerlos (2017)
Austin & Dinan (2005)

Klier & Linn (2012)

Jacobsen &
van Benthem (2015)

Bento, Roth, & Zuo (2018)

Jacobsen (2013) No empirical estimates
in the literature

Parry, Walls, &
Harrington (2007)

New vehicle
regulation
stringency

New
vehicle
prices

Used
vehicle
prices

Used
vehicle

scrappage

Fleet
travel and
fuel use

Externality
costs

By completing the causal chain linking changes in policy to changes in aggregate ex-

ternality costs, our estimates can help improve cost-benefit analyses of transportation

regulations. These regulations include vehicle retirement programs (Alberini, Har-

rington and McConnell, 1998; Hahn, 1995; Sandler, 2012), fuel taxes (Jacobsen and

van Benthem, 2015; Li, Timmins and von Haefen, 2009), and vintage-specific vehicle

restrictions (Barahona, Gallego and Montero, 2020). Many prior analyses of such poli-

cies have been forced due to a lack of empirical evidence to make assumptions about
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the forgone mileage from scrappage (Alberini, Harrington and McConnell, 1998), the

mileage travelled by a replacement vehicle (Sandler, 2012), or both (Jacobsen and van

Benthem, 2015).3 Our findings suggest that prior studies have often assumed fleet-

size elasticities of fleet travel distance and gasoline consumption that are too large,

resulting in overestimates of the increases in travel and gasoline consumption due to

policy-induced changes in scrappage and thus overestimates of the resulting changes

in negative externalities, such as local air pollution, traffic fatalities, and congestion

(Parry, Walls and Harrington, 2007).

Finally, our work contributes to the broader literature on the Gruenspecht ef-

fect. Policies that differentially affect new and old technologies change the scrappage

rates of old technologies, which has implications for the policy’s impact on the aggre-

gate externality costs associated with the technology (Gruenspecht, 1982b). Existing

work has investigated how various policies affect the scrappage of older technologies

across a variety of sectors, including manufacturing (Levinson, 1999), the power sector

(List, Millimet and McHone, 2004; Maloney and Brady, 1988; Nelson, Tietenberg and

Donihue, 1993), and air travel (Kahn and Nickelsburg, 2016).4 Our results indicate

that the elasticity of vehicle use with respect to fleet size is less than one, suggesting the

need to empirically estimate how policy-induced scrappage impacts the externalities

generated from technology use in other sectors as well.

2 Data

We collected data from the Highway Statistics Series administered by the U.S. Fed-

eral Highway Administration (FHWA) for all 50 states and DC from 1970-2017. For

each year, these data include state-wide vehicle registrations, vehicle-miles traveled,

gasoline usage, and road mileage.5 The gasoline consumption data focuses on road-

3In related work, Barahona, Gallego and Montero (2020) formulate and estimate a structural
model of the car market to analyze how equilibrium scrappage rates and vehicle usage respond to
imposing vintage-specific driving restrictions.

4For example, previous work has estimated that provisions in the 1970 Clean Air Act that imposed
less stringent environmental regulations on older power plants led to older plants operating for longer
than they would have in the absence of the policy (List, Millimet and McHone, 2004; Maloney and
Brady, 1988; Nelson, Tietenberg and Donihue, 1993).

5Outcome data points for a given state that are repeated across years were removed (e.g. the 2010
data point is the same as the 2009 data point). With respect to vehicle registrations, we know through
a source at the U.S. Department of Transportation that there were reporting errors for Colorado from
2002-2010; we remove these data points. See Appendix Section A.2 for further information on how
the data are constructed.
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way vehicles and thus excludes non-roadway gasoline consumption such as boating

and lawn equipment. Annual state-level income, population, and GDP were collected

from the Regional Economic Accounts from the Bureau of Economic Analysis. The

average motor gasoline price for each state and DC in each year come from the State

Energy Data System provided by the Energy Information Administration. Table 1

summarizes the sources of all of the data used in the analysis.

3 Empirical Approach

3.1 Identification Strategy

Traditional models of scrappage posit that an owner will scrap (rather than re-sell)

vehicle i at time t if the operational value uit after repair costs cit are paid is less than

the scrappage value sit (Gruenspecht, 1982b; Parks, 1977).

uit − cit < sit (1)

Interventions that either increase the value of operation or decrease repair costs thus

delay scrappage at the margin. We argue that the removal of safety inspection pro-

grams reduces repair costs, resulting in delays in scrappage on the margin.

Safety inspection programs, which were implemented in different states at differ-

ent times throughout the past century, mandate that personal vehicles must pass an

inspection of certain vehicle components that often include the vehicle’s brakes, wind-

shield wipers, and suspension (U.S. Government Accountability Office, 2015, p.7).

Safety inspections are generally required annually or biannually (U.S. GAO, 2015;

NHTSA, 1989). Vehicles that do not pass the safety inspection must be repaired at

the owner’s expense.6

While some states have kept their safety inspection programs in place, many others

have since removed these programs due to budgetary concerns and questions about the

effectiveness of the programs for improving traffic safety (U.S. GAO, 2015; NHTSA,

1989). Between 1970-2017, 15 states plus the District of Columbia removed existing

6We can confirm that this is true for the 15 states contacted during a US Government Account-
ability Office (GAO) review of the policies (U.S. GAO, 2015, p.8) but note that earlier documentation
of inspection programs is unclear about the repercussions for vehicles on the road that fail a safety
inspection (NHTSA, 1989, Section III).
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Table 1: Data Sources Used in the Analysis

Data
Years

Collected
Source Table(s) Issue Year

Implicit Price
Deflators for GDP

1929-2019 BEA Table 1.1.9

All Items CPI-U 1913-2021 BLS
CUUR0000SA0,
CUUS0000SA0

Average Motor
Gasoline Price

1970-2017 EIA

Motor Gasoline
Prices and

Expenditures,
1970-2017

(Prices table)

Employment 1969-1997 BEA SAEMP25S

Employment 1998-2017 BEA SAEMP25N

Gas CPI-U 1935-2019 BLS
CUUR0000SETB01,
CUUS0000SETB01

Highway Gas Usage 1967-2018 FHWA MF-226 2018

Licensed Drivers 1967-2017 FHWA DL-201 2017

Metro Income 1969-2018 BEA MAINC1

Metro Population 1969-2018 BEA MAINC1

Non-Metro Income 1969-2018 BEA MAINC1

Non-Metro Population 1969-2018 BEA MAINC1

Road Mileage 1980-2017 FHWA HM-220 2018

Road Mileage 1967-1979 FHWA M-1 1967-1979

State GDP 1997-2018 BEA SAGDP2N

State GDP 1963-1996 BEA SAGDP2S

Vehicle Registrations 1967-1993 FHWA MV-201
Summary
to 1995

Vehicle Registrations 1994-2017 FHWA MV-1 1994-2017

Motor Vehicle
Maintenance

& Repair CPI
1935-2019 BLS

CUUR0000SETD,
CUUS0000SETD

VMT 1980-2017 FHWA VM-202 2018

VMT 1967-1979 FHWA VM-2 1967-1979

Notes: This table lists the data sources used in the analysis. When relevant, all dollar magnitudes except Average
Motor Gasoline Price have been transformed to 2018 USD using the “All Items CPI-U” from the Bureau of Labor
Statistics (BLS). Average Motor Gasoline Price has been transformed to 2018 USD using the Gas CPI-U from
BLS. If available, we use the most up-to-date version of the tables listed in the FHWA for each issue year.

safety inspection programs implemented before this period, 16 did not remove existing

programs, and 19 states never adopted such programs (see Figure 2).7

As descriptive evidence that safety inspections impose potentially sizable costs on

7Utah changed safety inspection requirements in 2018, after the end of our sample period (Utah
Division of Motor Vehicles, 2020).
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Figure 2: Safety Inspection Start and End Years

Notes: This figure plots maps of the year that each state implemented safety inspections (left
panel) and the year that each state removed safety inspections (right panel). Program years come
from the U.S. Government Accountability Office (U.S. GAO, 2015). State map files are from the
U.S. Census Bureau (U.S. Census Bureau, 2018a). States colored grey in both the left and right
panels never implemented safety inspection programs; states colored grey only in the right panel
never ended their safety inspection program during the sample period considered. These maps
exclude Alaska and Hawaii; Alaska has never had safety inspections, and Hawaii began safety
inspections in 1961 and they are still in place. The District of Columbia had safety inspections
from 1939 to 2009.

Figure 3: Histograms of inspection and vehicle repair costs in Pennsylvania

Notes: Data come from the 2007-2016 e-Safety inspection program in Pennsylvania. Values
shown include all recorded costs for safety inspection visits that were not denoted as a non-
inspection cost (repair costs and sales tax are included). Data points with encoding errors were
excluded (20 entries) as well as all data where inspection costs were larger than $50,000, which
were likely data entry errors (34 entries). We also remove entries with vehicle identification
numbers (VINs) that do not satisfy the VIN check digit condition, contain disallowed characters,
or do not have 17 digits (109,244 entries). These requirements are outlined in U.S. National
Highway Traffic Safety Administration (2008). For more information on the data, see Peck et al.
(2015).

vehicle owners, we leverage data from Pennsylvania’s Department of Transportation

to examine the magnitude of inspection-related costs. Figure 3 presents a histogram

of inspection costs and associated repairs. While average costs are relatively low, there

is a long right tail, with costs for some vehicles reaching thousands of dollars. Table 2

shows summary statistics for inspection and repair costs stratified by vehicle age. For

vehicles with repair costs on the right tail, particularly older vehicles near the end of
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Table 2: Summary statistics of inspection and repair costs for Pennsylvania from
2007-2016: By vehicle vintage

Age Category
Count

(Millions)
Mean

Std.
Dev.

Median
95th

Percentile
99th

Percentile

≤4 Years Old 1.37 $61 $269 $31 $209 $773
5-9 Years Old 1.2 $114 $369 $33 $559 $1,151
10-14 Years Old 0.84 $121 $367 $34 $585 $1,214
15-19 Years Old 0.32 $111 $323 $34 $526 $1,140
≥20 Years Old 0.13 $92 $279 $33 $408 $1,027
All Ages 3.86 $96 $331 $32 $468 $1,056

Notes: This table presents summary statistics pertaining to the inspection and repair costs from
2007-2016 from e-Safety inspections in Pennsylvania. Summary statistics are stratified by age.
All monetary values are inflated to 2018 USD using the Motor Vehicle Maintenance & Repair
CPI.

their life that have low resale value, failing a safety inspection constitutes a substantial

shock to repair costs, influencing the scrappage decision illustrated in Equation (1).

Our primary analysis uses the staggered removal of state-level safety inspection

programs as an instrumental variable when estimating the impact of changes in fleet

size on annual state-wide fleet travel and gasoline consumption. The following sub-

sections specify the first- and second-stage equations associated with this empirical

approach. We discuss the identifying assumptions necessary for this approach in Sec-

tion 4.3.6.

3.2 First-Stage Equation

In our first-stage, we estimate a difference-in-differences (DiD) model where we regress

the log of vehicle registrations rit, indexed by state i and year t, on treatment and

control variables.

Our first-stage DiD model is:

log(rit) = λR
i + τR

t + ξR
i t+ αDit + xR

itδ
R + uRit (2)

Since the treatment in our setting is the removal of safety inspections, Dit is an

indicator variable equal to 1 if state i did not have safety inspection requirements in

year t. The term xR
it denotes a 1×K vector of control variables that includes annual

state-level average gasoline price, employment, licensed drivers, metro and non-metro
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income, metro and non-metro population, road mileage, and GDP. We also control

for changes in the state’s data collection methodology over time, described in detail in

Section 3.4. Finally, we include state fixed effects, year fixed effects, and state-specific

linear time trends. Standard errors are clustered by state.

3.3 Second-Stage Equations

In the presence of weak instruments, the point estimates from instrumental variables

estimation are consistent, but (1) finite-sample bias can be large, and (2) the as-

sumption that the point estimates are approximately normally distributed may be

poor (Andrews, Stock and Sun, 2019). Consequently, we conduct inference using an

approach that is robust to the presence of weak instruments (Anderson and Rubin,

1949). Though we use terminology typically associated with two-stage least squares,

we emphasize that standard errors are estimated using the Anderson-Rubin approach

rather than the approach typically utilized when employing two-stage least squares.

The second-stage equations for our two primary dependent variables, annual

statewide total vehicle-miles travelled (vit) and annual statewide total gasoline con-

sumption (git), are:

log(vit) = λV
i + τV

t + ξV
i t+ β ̂log(rit) + xV

itδ
V + εV

it (3)

log(git) = λG
i + τG

t + ξG
i t+ γ ̂log(rit) + xG

itδ
G + εG

it (4)

The coefficients of interest, β and γ, measure the elasticities of fleet travel distance

and gasoline consumption with respect to fleet size. For ease of exposition, we refer

to these as the fleet-size elasticities of travel and gasoline consumption respectively.

As with the first-stage specifications, we include state fixed effects, year fixed effects,

and state-specific linear time trends in the second-stage specifications. As before,

the sets of control variables xV
it and xG

it contain annual state-level average gasoline

price, employment, licensed drivers, metro and non-metro income, metro and non-

metro population, road mileage, and GDP. We also include data source controls that

account for changes in data reporting, which are described in Section 3.4.

Our model estimates elasticities using policy-induced variation in fleet size. Safety

inspections affect fleet size directly by reducing the fleet size by one unit for each
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vehicle scrapped. They may also affect fleet size indirectly by inducing new vehicle

sales to replace the scrapped vehicles, potentially shifting fleet composition towards

newer, more efficient vehicles and increasing travel per vehicle to the extent that newer

vehicles are driven more than older vehicles (i.e, the “rebound effect”).

However, in Section 4.3.7, we provide evidence that the aggregate fuel efficiency of

the fleet does not change much with the removal of safety inspections. This suggests

that the miles that would have been driven by vehicles scrapped due to safety inspec-

tions are replaced by miles traveled by other vehicles with similar fuel efficiency. If this

is the case, the rebound effect is small in our setting. This evidence also buttresses the

exogenoeity assumption required for instrumental variables analysis: the removal of

safety inspections does not seem to affect fleet travel distance or gasoline consumption

through changes in fleet composition.

3.3.1 Null Hypotheses

Studies that model the impacts of transportation policy typically do not report elas-

ticities of vehicle fleet travel and of gasoline consumption with respect to fleet size.

Instead, each model makes assumptions about vehicle mileage and scrappage patterns

for specific vehicle groups that result in implied elasticities with respect to fleet size.

In this subsection, we characterize the implicit elasticity assumptions made in the

prior analyses listed in Table 3.

We consider several null hypotheses pertaining to the fleet-size elasticities of fleet

travel distance (β) and gasoline consumption (γ). We term the first set of null hy-

potheses the “Unit-Elasticity” null hypotheses: H0 : β = 1 and H0 : γ = 1. Setting

β = 1 corresponds to the assumption that the additional distance driven from each

vehicle whose scrappage is delayed is equal to some constant distance travelled among

all vehicles (Alberini, Harrington and McConnell, 1998, p.6).8

Our second set of null hypotheses is based on the results of a recent policy analysis

of the Safer Affordable Fuel-Efficient (SAFE) Vehicles Rule as originally proposed in

2018 (NHTSA and USEPA, 2018a). The assumptions in this analysis imply fleet-size

elasticities of β = 1.6 and γ = −4.8. However, these fleet-size elasticities include

8Jacobsen and van Benthem (2015) utilizes this assumption in Supplementary Materials for cal-
culations based on a less complex and less preferred version of the model considered in the main text
(Jacobsen and van Benthem, 2015, SI p.9-10).
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the “rebound effect”: vehicles scrapped due to the policy change may be replaced by

newer, more efficient vehicles that are driven more than the average vehicle. Since

our empirical evidence suggests that the rebound effect is small when considering the

removal of safety inspections, we also test null hypotheses implied by the assumptions

in NHTSA and USEPA, 2018a with the rebound effect excluded: H0 : β = 0.3 and

H0 : γ = −6.1. See Appendix Section B.10 for details on the derivation of these null

hypotheses.

Our third set of null hypotheses is based on an analysis of the final SAFE Vehicles

Rule implemented in 2020 (NHTSA and USEPA, 2020). This revised analysis assumes

that fleet travel distance is independent of fleet size, with variation in fleet travel

distance solely stemming from changes in the composition of the fleet. We derive

fleet-size elasticities of travel distance and gasoline consumption using results from

the U.S. EPA’s analysis of the final SAFE Vehicles Rule, giving us the following null

hypotheses: H0 : β = −2.5 and H0 : γ = 9.7 when including the rebound effect, and

H0 : β = 0 and H0 : γ = 11 when excluding the rebound effect. Details are provided

in Appendix Section B.10.

3.4 Control Variable Specifications

We consider four specifications based on different levels of controls. In all specifica-

tions, we include a set of common controls: annual state-level average gasoline price,

number of licensed drivers, miles of roads, employment, GDP, as well as metro and

non-metro income and population.9 Metro and non-metro population and income are

included to account for changes in urbanization within a state over time, which could

affect travel demand and access to other transportation modes such as public transit.

Vehicle registrations, travel, and fuel use, which are the outcome variables inves-

tigated, are reported by each state in each year between 1970-2017. However, the

way these data are measured and reported can vary over this time period. The four

9This choice of control variables was informed by a review of the relevant literature (Bento,
Roth and Zuo, 2018; Duranton and Turner, 2011; Gillingham, Jenn and Azevedo, 2015; Greene,
2010; Gruenspecht, 1982a,b; Haughton and Sarkar, 1996; Hymel and Small, 2015; Hymel, Small and
Dender, 2010; Jacobsen and van Benthem, 2015; Parks, 1977; Schimek, 1997; Small and Van Dender,
2007; Walker, 1968). All of the variables in our set of common controls are log transformed except
for metro and non-metro population and income. These latter two variables are transformed using
the inverse hyperbolic sine function, which allows for zero value entries (Bellemare and Wichman,
2020).
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Table 3: Fleet-modeling assumptions made in related literature used to generate null
hypotheses

Literature
Modeling Assumption

Effective Fleet
Size Elasticity

Fleet
Size

Fleet
Travel

Rebound
Effect

Travel Fuel Use

Gruenspecht
(1982b)

Constant Constant No N/Aa N/Aa

Hahn (1995) Constant Dynamic No N/Aa N/Aa

Alberini, Har-
rington and
McConnell (1998)

Dynamic Constant No 1 N/Ab

Jacobsen and van
Benthem (2015)

Dynamic Dynamic No —c —c

Jacobsen and van
Benthem (2015,
SI p.9-10)

Dynamic Constant No 1 —c

NHTSA and
USEPA, 2018a

Dynamic Dynamic Yes 1.6 -4.8

NHTSA and
USEPA, 2018a

Dynamic Dynamic No 0.3 -6.1

NHTSA and
USEPA, 2020

Dynamic Constantd Yes -2.5 9.7

NHTSA and
USEPA, 2020

Dynamic Constant No 0 11

Notes: “Constant” versus “dynamic” fleet size (fleet travel) refers to whether or not the model
assumes a constant fleet size (fleet travel) throughout their analysis. “Rebound effect” denotes
whether or not the model incorporates rebound when simulating travel (i.e., policy-induced scrap-
page may lead to the purchase of newer vehicles that are driven more than older vehicles). All
of the models considered allow the composition of the fleet to change with changes in policy. It
should be noted that the most recent CAFE ruling adheres to similar assumptions made in the
SAFE FRIA (NHTSA, 2022, p.71).

aSince fleet size is assumed to be constant, there is no implied fleet size elasticity of travel or fuel
use.

bThe model in Alberini, Harrington and McConnell (1998) does not incorporate fuel efficiency.
cThe equivalent fleet-wide elasticity assumptions used in the main model in Jacobsen and van

Benthem (2015) could not be calculated due to the complexity of the underlying model.
dThe analysis allows fleet VMT to change only via the rebound effect. The rebound effect is

generally in reference to the fuel efficiency elasticity of travel (see Dimitropoulos, Oueslati and Sintek
(2018) for further discussion and review of empirical literature).

specifications control differently for documented and potential changes in the data

sources and methods used to compute total vehicle registrations, travel, and gasoline

consumption in different states in different years. We refer to these as Data Source

Controls (DSCs).

In specification (1), no controls for data source changes are included, but we remove
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data from Colorado between 2002-2009 because of documented reporting errors. We

refer to the DSCs in this case as “None”. In specification (2), which is our preferred

specification, controls are added for time periods when states document that calcu-

lation of registrations changed from counting them directly to relying on transaction

data to approximate the number of registrations. We refer to the DSCs in this case

as “Documented”.

In sensitivity analyses, we also examine two additional specifications that add con-

trols for state-years where sizable jumps in registration data are observed but there is

no documentation of potential changes in data sources or methods that might have in-

fluenced the data. In specification (3), additional controls are added for all state-years

in which the change in vehicle registrations from the prior year—normalized by the

magnitude of the state’s annual changes across the time period analyzed—are larger

in magnitude than that observed in Colorado for the years where documented report-

ing errors occurred. We refer to the DSCs in this case as “Large Undocumented”.

In specification (4), a smaller threshold of step changes in registration data is used.

Specifically, the threshold is set low enough to control for all step changes whose nor-

malized magnitudes are greater than or equal to an observed step change in Kentucky’s

data that appears visually suspicious. We refer to the DSCs in this case as “Small

Undocumented”. Further details on the identification of step changes are provided in

Appendix Section A.4.

4 Results

4.1 Effect of the Removal of Safety Inspections on Registra-

tions

The estimates from our first-stage difference-in-differences model can be found in Ta-

ble 4. Our preferred specification is the one presented in Column 2, as it controls for

documented changes in data reporting that may systematically affect measurement of

vehicle registrations. Under the preferred specification, removal of safety inspections

led to an estimated 3.7% increase in vehicle registrations on average across states

where safety inspections were removed.

Additional specifications that add controls for observed patterns in the data that
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we speculate might stem from changes in data reporting protocols that were not doc-

umented by states, as described in Section 3.4, are presented in Appendix B.1. The

estimates of the effect of the removal of safety inspections on registrations remain

similar in magnitude when considering alternative specifications which eliminate or

add controls for documented and undocumented potential changes in data collection.

The estimated effects are statistically significant at at least the 10% level across all

specifications.

Table 4: Effect of the Removal of Safety Inspections on Log Number of Vehicle
Registrations

Dep. Var.: Log Number of Vehicle Registrations
(1) (2)

Removal of Safety Inspections 0.042** 0.037**
(0.017) (0.015)

Data Source
Controls

None Documented

State Fixed Effects Y Y
Year Fixed Effects Y Y

State-Specific Linear Time Trends Y Y
Common Controls Y Y

Robust F-Stat 5.766 5.874
Number of Obs. 2,424 2,424

R2 0.997 0.997

Notes: This table presents difference-in-differences estimates of the impact of the removal of
safety inspections on the log of vehicle registrations. The unit of observation is state-year. The
construction of data source controls (DSCs) are documented in Section 3.4. Standard errors,
reported in parentheses, are clustered by state. * p<0.1, ** p<0.05, *** p<0.01

4.2 Effect of Registrations on Fleet Travel and Gasoline Use

The instrument in our first-stage regression appears to be weak, as measured by the ro-

bust F-statistics reported in Table 4.10 Hence, when estimating our IV coefficient, we

perform hypothesis testing that is robust to weak instrument bias using the Anderson-

Rubin chi-squared statistic (Anderson and Rubin, 1949).11 This is especially important

given recent work documenting that conventional rules of thumb regarding whether

instruments are weak are anti-conservative (i.e., the rejection rate of the presence of

weak instruments is artificially high). Failing to account for the presence of weak

10Robust F-statistics are calculated as described in Andrews, Stock and Sun (2019, p.737). This
statistic is equal to the cluster-robust effective F-Statistic given our single-variable, just-identified IV
model (Olea and Pflueger, 2013).

11Andrews, Stock and Sun (2019) reviews the desirable properties of the Anderson-Rubin (AR)
test in the just-identified case.
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instruments when calculating standard errors typically leads to artificially small stan-

dard errors (Andrews, Stock and Sun, 2019; Lee et al., 2020).

Table 5: IV Estimates of the Effect of Log Number of Registrations on Log VMT

Panel A: IV Estimates and Robust 95% Confidence Sets

Dep. Var.: Log Vehicle-Miles Travelled
(1) (2)

Log Registrations -0.326 -0.36
[-3.49, 0.56] [-3.69, 0.64]

Data Source
Controls

None Documented

State Fixed Effects Y Y
Year Fixed Effects Y Y

State-Specific Linear Time Trends Y Y
Common Controls Y Y
Number of Obs. 2,424 2,424

Panel B: Anderson-Rubin Test Statistics and P-Values

H0 : β = 1.6

AR Stat 7.351*** 7.086***
p-value 0.007 0.008

H0 : β = 1

AR Stat 6.168** 5.631**
p-value 0.013 0.018

H0 : β = 0.3

AR Stat 2.098 1.867
p-value 0.148 0.172

H0 : β = 0

AR Stat 0.540 0.535
p-value 0.462 0.464

H0 : β = −2.5

AR Stat 3.166* 2.995*
p-value 0.075 0.084

Notes: The top panel of this table presents IV estimates of the effect of log vehicle registrations on log vehicle-miles
travelled (VMT). We include 95% confidence sets robust to weak instruments below these estimates (Anderson
and Rubin, 1949). The bottom panel presents Anderson-Rubin chi-squared statistics along with p-values for
different null hypotheses pertaining to the parameter β estimated in the top panel. The unit of observation is
state-year. All regressions include state fixed effects, year fixed effects, and state-specific linear time trends. The
specifications pertaining to different levels of data source controls (DSCs) are documented in Section 3.4. 95%
confidence sets are based on standard errors clustered by state. * p<0.1, ** p<0.05, *** p<0.01

Tables 5 and 6 presents IV estimates of the fleet-size elasticities of fleet travel and

gasoline consumption, as well as the test statistics and p-values associated with tests

of relevant null hypotheses. Based on our preferred specification, we are 95% confident

that the fleet-size elasticity of travel is between -3.69 and 0.64. This confidence set is

large, including even negative elasticities. A negative elasticity would imply that fleet

travel distance decreases with policy-induced increases in vehicle registrations. This

could plausibly occur through the “rebound effect” if, for example, delayed scrappage

reduces a shift to newer vehicles and newer, more fuel-efficient vehicles are driven

more than older vehicles. However, existing estimates of the rebound effect are smaller

than those implied by the lower bound of our 95% confidence set (Gillingham, 2014;

16



Table 6: IV Estimates of the Effect of Log Number of Registrations on Log Gasoline
Consumption

Panel A: IV Estimates and Robust 95% Confidence Sets

Dep. Var.: Log Gasoline Consumption
(1) (2)

Log Registrations -0.420 -0.47
[-1.75, 0.27] [-1.71, 0.33]

Data Source
Controls

None Documented

State Fixed Effects Y Y
Year Fixed Effects Y Y

State-Specific Linear Time Trends Y Y
Common Controls Y Y
Number of Obs. 2,429 2,429

Panel B: Anderson-Rubin Test Statistics and P-Values

H0 : γ = 11

AR Stat 5.877** 6.042**
p-value 0.015 0.014

H0 : γ = 9.7

AR Stat 5.892** 6.052**
p-value 0.015 0.014

H0 : γ =1

AR Stat 5.707** 5.462**
p-value 0.017 0.019

H0 : γ =-4.8

AR Stat 5.237** 5.479**
p-value 0.022 0.019

H0 : γ =-6.1

AR Stat 5.365** 5.606**
p-value 0.021 0.018

Notes: The top panel of this table presents IV estimates of the effect of log vehicle registrations on log gasoline
consumption. We include 95% confidence sets robust to weak instruments below these estimates (Anderson and
Rubin, 1949). The bottom panel presents Anderson-Rubin chi-squared statistics along with p-values for different
null hypotheses pertaining to the parameter γ estimated in the top panel. The unit of observation is state-year.
All regressions include state fixed effects, year fixed effects, and state-specific linear time trends. The specifications
pertaining to different levels of data source controls (DSCs) are documented in Section 3.4. 95% confidence sets
are based on standard errors clustered by state. * p<0.1, ** p<0.05, *** p<0.01

17



Gillingham, Jenn and Azevedo, 2015; Greene, 2010; Hymel and Small, 2015; Hymel,

Small and Dender, 2010; Small and Van Dender, 2007). Moreover, we find that the

removal of safety inspections did not significantly impact the aggregate fuel efficiency

of the fleet, suggesting that the rebound effect is small in our setting.

Instead, the wide range of values covered by the 95% confidence set likely reflects

statistical uncertainty, especially given that we are using the Anderson-Rubin method-

ology known to be quite conservative. Despite the statistical uncertainty surrounding

the magnitude of the fleet-size elasticity of travel, we can nevertheless reject with our

preferred specification the assumptions made in prior literature that this elasticity is

either 1 or 1.6 (see Column 2 of Table 5). Moreover, we can reject at a 10% level that

β = −2.5. The top panel of Figure 4 summarizes these results.

The IV estimation of the effect of fleet size on gasoline consumption tells a similar

story (see Table 6). In our preferred specification, we estimate that the fleet-size elas-

ticity of gasoline consumption has a 95% confidence set spanning from -1.7 to 0.33 (see

Column 2 of Table 5). Despite the statistical uncertainty surrounding the elasticity

estimate, we are nevertheless able to reject all of the null hypotheses considered for γ.

The bottom panel of Figure 4 summarizes our findings.

Our 95% confidence sets can inform future modeling of transportation policy. If

a set of assumptions and calibrated values regarding how policy-induced scrappage

impacts vehicle usage and gasoline consumption discords with the set of fleet-size

elasticities presented in Tables 5 and 6, this may suggest the need to alter the as-

sumptions or calibrated values used to formulate and simulate the model. Embedded

within this recommendation is the need to check not just how policy-induced scrap-

page impacts vehicle usage but also gasoline consumption, an important determinant

of the air pollution externalities associated with driving.

The estimates and 95% confidence sets remain similar if we exclude the controls

for documented changes in data reporting (compare Columns 1 and 2 of Tables 5 and

6). However, the 95% confidence sets become considerably wider once we add the

large number of controls corresponding to undocumented potential changes in data

reporting constructed using jumps in observed number of registrations or the outcome

(see Appendix B.1 for these results). Indeed, in some cases, the 95% confidence set

ranges from negative infinity to positive infinity (i.e., no value can be rejected with

95% confidence). This large increase in statistical uncertainty is likely due to including
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too many control variables: specifications (3) and (4) attempt to control for 15 and 54

identified discontinuities in the first stage equation as well as additional discontinuities

in the second stage, respectively. Consequently, we do not view specifications based

on adding these controls for suspected changes in data reporting as meaningful checks

on the sensitivity of our findings, but include them only based on the principle that

the results from all specifications explored should be reported.

4.3 Threats to Identification and Robustness Checks

This subsection examines a number of assumptions necessary to interpret the estimates

from the first-stage differences-in-differences and IV analyses as causal. Pertaining

to the difference-in-differences analyses, we discuss the parallel trends assumption,

stable unit treatment value assumption, and the possibility of bias arising from the

staggered adoption of treatment. Regarding the IV analyses, we provide evidence

that the removal of safety inspections was unlikely to substantially impact household

budgets and that the removals did not lead to statistically significant changes in the

composition of vehicles in terms of their fuel efficiency.

4.3.1 Event Study

The parallel trends assumption is key to interpreting difference-in-differences esti-

mates as causal. Appendix Section B.2 documents that the residuals after controlling

for the variables in the specifications listed in Section 3.4 do not exhibit any clear

trends prior to the removal of safety inspections in treatment states. As an additional

check, we estimate event study specifications to determine whether we can identify

pre-existing differences in trends in registrations in the years prior to the removal of

safety inspections.

The event study framework has a similar structure to Equation (2), except that

the policy indicator is replaced by variables sτit that indicate whether state i in year

t is τ years away from the removal of safety inspections. Formally, our event study

framework is:

log(rit) = ψR
i + γR

t + ξR
i · t+

∑
τ

ητs
τ
it + xR

itα + εit (5)
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Figure 4: Estimated elasticities with robust 95% confidence sets and relevant null
hypotheses

(a) Comparison of estimated fleet-size elasticity of fleet travel distance
alongside null hypotheses informed by the literature.

(b) Comparison of estimated fleet-size elasticity of gasoline consumption
alongside null hypotheses informed by the literature.

Notes: The top panel of this figure plots the estimated fleet-size elasticity of vehicle-miles
travelled and 95% confidence set presented in Column (2) of Table 5. The bottom panel of
this figure plots the estimated fleet-size elasticity of gasoline consumption and 95% confidence
set presented in Column (2) of Table 6. For both panels, we also plot relevant null hypotheses
based on the assumptions made in prior academic work and policy analyses. The points labeled
“PRIA” and “FRIA” refer to the null hypotheses that represent NHTSA and USEPA, 2018a;
NHTSA and USEPA, 2020 including the rebound effect. Points labeled “PRIA*” and “FRIA*”
refer to the null hypotheses that represent NHTSA and USEPA, 2018a; NHTSA and USEPA,
2020 excluding the rebound effect.
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We estimate effects for each of the five years before and after the removal of safety

inspections. Results from our preferred specification are presented in Figure 5.12 The

event study figures document that all of the estimated effects for years prior to the

event are not statistically distinguishable from zero. This indicates that our difference-

in-differences estimates are likely not artifacts of differential trends in vehicle registra-

tions across treatment and control states prior to the removal of safety inspections in

treatment states.

The event study also shows a statistically significant increase in registrations be-

ginning a few years after the removal of safety inspections. This delay in effect is

consistent with inspections largely being required on either an annual or biennial ba-

sis depending on the state (U.S. GAO, 2015; NHTSA, 1989). The magnitudes of the

post-treatment effects in this event study are also comparable to our difference-in-

differences estimates in Table 4.

4.3.2 Stable Unit Treatment Value Assumption

Another assumption necessary for identification in difference-in-differences models is

the stable unit treatment value assumption (Lechner, 2010, p.176). This assumption

requires that the removal of safety inspections in one state does not impact registra-

tions in other states. In order to investigate whether this assumption holds in our

setting, we estimate an event study model that measures the impact on registrations

in one state of the removal of safety inspections in neighboring states. The model

estimated is shown in Equation (6):

log(riy) = φR
i + γR

y + ξR
i · y +

∑
τ

(ητs
τ
iy + ψτa

τ
iy) + α′xR

iy + εiy (6)

We include the same set of fixed effects and control variables as in the event study

specification in Equation (5). The only addition is the indicators aνiy, which denote

the number of states neighboring state i that are τ years from treatment in year y.13

The results are shown in Figure 6. The estimated effects of removals of safety

inspections in neighboring states are small and not statistically significant. This allows

us to conclude that the removal of safety inspections in neighboring states does not

12Event study results across all specifications can be found in Appendix B.3.
13This model is based on the multiple event study model proposed by Sandler and Sandler (2014).

We define “neighboring” states using data provided by U.S. Census Bureau (2018b).
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Figure 5: Event Study Estimates of the Impact of the Removal of Safety Inspections
on Log Number of Vehicle Registrations

Notes: This figure plots event study estimates of the impact of the removal of safety inspections
on the log of vehicle registrations. We estimate separate effects by the years relative to the
removal of safety inspections. We also include 95% confidence intervals based on standard errors
clustered by state. The unit of observation for this event study regression is state-year. The
effect for the year before the event is normalized to zero.

have a statistically significant effect on registrations.

4.3.3 Goodman-Bacon Decomposition

Recent literature has raised concerns that estimates of the average treatment effect

on the treated from difference-in-differences models may be biased when the timing

of treatment is staggered (e.g., Borusyak, Jaravel and Spiess (2021); De Chaisemartin

and d’Haultfoeuille (2020); Goodman-Bacon (2021)). In order to assess whether any

particular comparisons across states treated earlier versus later are driving our first-

stage difference-in-differences estimate, we decompose the estimate as specified in

Goodman-Bacon (2021). Comfortingly, estimated effects based on comparisons across

states treated earlier versus later receive relatively small weights in the overall estimate,

and none of these timing-based estimates are substantial enough in magnitude to
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Figure 6: Effects on log number of registrations of removals of safety inspections in
neighboring states

Notes: This figure plots event study estimates of the impact of the removal of safety inspections
in neighboring states on the log of vehicle registrations. We estimate separate effects by the years
relative to the removal of safety inspections. We also include 95% confidence intervals based
on standard errors clustered by state. The unit of observation for this event study regression is
state-year. The effect for the year before the event is normalized to zero.

unduly influence the overall difference-in-differences estimate. Further description of

this analysis is presented in Appendix Section B.12.

4.3.4 Models Without State-Specific Linear Time Trends

In this section, we report results from re-estimating our first-stage difference-in-

differences model without including state-specific linear time trends. Without these

time trends, the difference-in-differences estimates generally become smaller and less

precise. However, the event study coefficients are largely similar with the exception

of the years well before the event, which are influenced heavily by the small subset of

states treated late in the sample period.

Since the pre-treatment event study estimates remain statistically indistinguishable

from zero, and the post-treatment estimates are not sensitive to the inclusion of state-
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specific linear time trends, the inclusion of these trends is unlikely to be driving the

empirical identification of our estimates. Instead, state-specific time trends seem to be

useful primarily in increasing precision, and for controlling for longer-term differences

across states treated very early versus very late in the sample period. Further details

are provided in Appendix Section B.4.

4.3.5 Leave-one-out Analysis

As recommended by Young (2020, p.39), we perform leave-one-out analysis to assess

the sensitivity of our estimates to idiosyncratic trends in specific states. We re-estimate

our robust IV models under our preferred specification after removing a single state.

We do this for all 50 states and DC. Across all subsamples, we can reject null hy-

potheses of one or greater for the fleet-size elasticity of travel distance and all relevant

null hypotheses for the fleet-size elasticity of gasoline consumption at at least the 10%

level.

We perform the same analysis for our first-stage difference-in-differences model.

The results indicate that the estimates are statistically significant at at least the 10%

level regardless of which state is left out. Full results are available in Appendix Section

B.5.

4.3.6 Effect of Safety Inspections on Household Budgets

Necessary to interpret our IV estimates as causal is the assumption that our instrument

(the removal of safety inspections) does not affect fleet travel distance except through

vehicle registrations. One threat to identification would be if the instrument affected

household fuel budgets. Household budgets may be larger due to reduced expenditures

on inspection-related repairs or may be smaller due to increases in traffic crashes.

For inspection-related repairs, data from Pennsylvania state safety inspections

records show that inspection costs are largely less than $30 (see Figure 3 and Ta-

ble 2). If households do not need to pay inspection costs, roughly 3-5 percent of

the resulting savings might be reallocated to vehicle fuel based on average expendi-

ture data by type from 2013-2018 from the BLS Consumer Expenditure Survey (U.S.

Bureau of Labor Statistics, 2019). This would result in approximately $1-$1.50 more

spent on fuel per household, which would further be spread out across an average of 1.9
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vehicles in the household (U.S. Bureau of Labor Statistics, 2019). Due to inspection-

caused repair costs tending to be low on average (see Table 2), the low cost of getting

an inspection (U.S. Government Accountability Office, 2015; U.S. National Highway

Traffic Safety Administration, 1989), and the long time horizon between inspections

(U.S. Government Accountability Office, 2015; U.S. National Highway Traffic Safety

Administration, 1989), inspection and repair costs are unlikely to significantly impact

household budgets.

In addition, previous work has largely found that safety inspections have only

limited impacts on traffic safety outcomes such as crashes and fatalities (U.S. GAO,

2015; NHTSA, 1989; Garbacz and Kelly, 1987; Hoagland and Woolley, 2018; Keeler,

1994; Merrell, Poitras and Sutter, 1999). Therefore, changes in household budgets due

to policy-induced changes in traffic safety are also unlikely to be cause for concern.

4.3.7 Impacts on the Composition of Vehicles

The removal of safety inspections may have changed both the number of vehicles on

the road and the composition of these vehicles. Our analysis focuses on the impact of

the policy change on vehicle registrations, fleet travel distance, and aggregate gasoline

usage. These outcomes could be affected by changes in the composition of the vehicle

fleet due to differential scrappage of vehicles of different fuel efficiencies.

In Appendix B.11, we perform a statistical test of the null hypothesis that the

removal of safety inspections did not affect the aggregate fuel efficiency of the fleet.

Namely, we test the hypothesis that the effects of the removal of safety inspections on

fleet travel distance and gasoline consumption are equal. We find that the estimated

effects for fleet travel distance and gasoline consumption are quite similar in magnitude

and we fail to reject the null hypothesis that these effects are the same.

Our evidence thus indicates that the removal of safety inspections does not induce

compositional changes in the fleet sufficient to cause large changes in aggregate fuel

efficiency. However, it is possible that significant compositional changes are induced

by other policies examined in prior studies, including those used to construct our

null hypotheses. Consequently, as discussed in Section 3.3.1, we also consider null

hypotheses adjusted to represent the fleet-size elasticities of travel distance and gaso-

line consumption with no compositional changes that impact fuel efficiency (i.e., no
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rebound effect).14

5 Implications for Automotive Policy Externalities

Automobile use comes with a host of negative externalities, including pollution emis-

sions, traffic fatalities, and congestion (Parry, Walls and Harrington, 2007). In this

section, we use our estimates of the fleet-size elasticities of travel distance and gasoline

consumption to calculate the aggregate externality costs of removing safety inspec-

tions.

To do this, we construct counterfactual scenarios in which states that removed

their safety inspections instead kept these programs in place. Namely, our preferred

estimates indicate that removing safety inspections led to a 3.7% increase in fleet size

on average, which we apply to all treated states. We translate this decrease in fleet size

(from counterfactually keeping inspections in place) to changes in fleet travel distance

and gasoline consumption using a range of elasticity estimates. We calculate the

aggregate external costs resulting from these policy-induced changes in fleet travel

distance and gasoline consumption using estimates of the marginal external costs

associated with vehicle travel and fuel consumption from Parry, Walls and Harrington

(2007, Table 2).15,16

Figure 7 displays the back-of-the-envelope calculation of the annual average per-

state externality cost of removing safety inspections in the United States over our

sample period. This figure shows that assuming a fleet-size elasticity of fleet travel

distance equal to 1 may result in over-estimates of the externality costs of removing

safety inspections of anywhere between 90 million dollars to several hundred million

dollars per state-year (2021 USD). This calculation highlights that different assump-

tions regarding how a policy impacts fleet travel and gasoline consumption through

14The Unit Elasticity Null Hypothesis constructed to represent Alberini, Harrington and McConnell
(1998) does not include fuel-efficiency compositional effects. Derivations of adjusted null hypotheses
for NHTSA and USEPA, 2018a and NHTSA and USEPA, 2020 can be found in Appendix B.10.

15All travel externality costs were adjusted from 2005 USD to 2021 USD using the “All Items
CPI-U” from the U.S. Bureau of Labor Statistics (n.d.) except for the externalities associated with
gasoline consumption (as designated by Parry, Walls and Harrington (2007)), which were adjusted
to 2021 USD using a GDP deflator (U.S. Bureau of Economic Analysis, n.d.). Note that

16A limitation of our back-of-the-envelope calculation is that externalities might not be constant
over space (e.g., congestion costs in urban versus rural areas) (U.S. Federal Highway Administration,
2000) or over time (e.g., as pollutant emission standards have grown more stringent) (National
Research Council, 2001, Table 1-2).
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the channel of scrappage can result in dramatically different estimates of the aggregate

externality costs of the policy. Our results suggest that regulatory impact analyses

should consider a range of scrappage elasticities of fleet travel and gasoline consump-

tion, including values far lower than 1.

Our findings emphasize the importance of incorporating diminishing marginal in-

creases in vehicle travel and gasoline consumption from policy-induced increases in

fleet size, as in Jacobsen and van Benthem (2015), for example. Our findings also

highlight that those crafting transportation models should be cognizant of how scrap-

page affects both travel and gasoline consumption. For example, the assumptions

in the analysis of the SAFE FRIA imply a “no-rebound” fleet-size elasticity of travel

closest to our point estimate. However, this same model implies fleet-size elasticities of

gasoline consumption far outside of our 95% confidence sets. Overall, the assumptions

in the analysis of the SAFE FRIA, excluding rebound, yield estimated externality

costs similar to those from assuming fleet-size elasticities of 1 and larger than our

empirical estimates suggest.

6 Conclusions

This paper leverages policy-induced variation in vehicle scrappage due to the removal

of state-level safety inspection programs to estimate the fleet-size elasticities of fleet

travel distance and of gasoline consumption. We estimate that the removal of safety

inspection programs leads to a 3-4% increase in vehicle registrations on average. Fur-

ther, we provide the first empirical estimates of the fleet-size elasticity of fleet travel

distance and gasoline consumption and compare these estimates to a variety of as-

sumptions made in previous analyses. We find that we can reject assumptions used in

some prior analyses, including the assumption of unit elasticity.

Given our findings, we recommend that cost-benefit analyses of transportation poli-

cies consider a range of potential assumptions regarding how policy-induced changes in

fleet size affect fleet travel distance, fleet gasoline consumption, and associated exter-

nalities. On the low end, our analysis cannot reject the possibility that policy-induced

delays in vehicle scrappage have no effect or even a negative effect on fleet travel and

gasoline consumption on average. On the high end, we are able to reject elasticities

of travel larger than β = 0.64 and elasticities of gasoline consumption larger than
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Figure 7: Annual average state-level externality costs from removing safety
inspections

Notes: This figure presents the annual average per-state externality cost of removing safety in-
spections among treated states. For this analysis, we utilize our preferred estimate that removing
safety inspections led to a 3.7% increase in fleet size, which we port into changes in fleet travel
distance and gasoline consumption using a range of elasticities relating fleet size to these two out-
comes. Estimates of the external costs of vehicle usage and the associated emissions from burning
gasoline are from Parry, Walls and Harrington (2007, Table 2). All magnitudes are presented in
2021 USD/state-year. The points labeled “PRIA” and “FRIA” refer to the null hypotheses that
represent NHTSA and USEPA, 2018a; NHTSA and USEPA, 2020 including the rebound effect.
Points labeled “PRIA*” and “FRIA*” refer to the null hypotheses that represent NHTSA and
USEPA, 2018a; NHTSA and USEPA, 2020 excluding the rebound effect. Similar assumptions to
those made in the SAFE FRIA were utilized when analyzing the recent CAFE FRIA (NHTSA,
2022, p.71).
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γ = 0.33. This is consistent with diminishing marginal fleet travel with respect to

fleet size, which can be caused by vehicle scrappage inducing shifts of travel to other

vehicles in the fleet or other modes of transportation.

Our findings also speak to the indirect implications of vintage-differentiated regu-

lations more broadly (Stavins, 2006). For example, U.S. coal-fired plants built before

1972 are exempt from stricter environmental regulation (List, Millimet and McHone,

2004; Maloney and Brady, 1988; Nelson, Tietenberg and Donihue, 1993), older homes

are exempt from increases in the stringency of building codes (Levinson, 2016), and

older vehicles are sometimes exempt from emissions inspections requirements (Gruen-

specht, 1982b). Some of the benefits from stricter air pollution regulation, building

codes, and emissions inspections may be lost by exempting existing infrastructure from

these regulations. These exemptions could increase the externality costs of the policy

both by enlarging the size of the “fleet” (e.g., more coal-fired power plants, homes, and

vehicles in the aforementioned examples) and by changing the composition of the fleet.

Our findings highlight that the externality implications of vintage-differentiated regu-

lation hinge not only on how the policy affects fleet size but also on how policy-induced

changes in fleet size affect technology use. Empirical evidence on both elasticities is

essential in order to assess the costs and benefits of vintage-differentiated regulations.
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Online Appendix

Externalities of Policy-Induced Scrappage

The Case of Automotive Regulations

by Connor R. Forsythe, Akshaya Jha, Jeremy J. Michalek, and Kate S. Whitefoot

A Data Appendix

A.1 Data Availability

In Figure A.1, we see the data availability for treated states surrounding the removal

of safety inspection programs. Figure A.2 presents the number of states with data

available relative to the year in which the removal occurs. These figures show that most

data for the treated states exist roughly ±10 years surrounding the removal of safety

inspections. For this reason, our event study specifications focus on windows either 6

years before and after the event or 10 years before and after the event depending on

specification.

Figure A.1: Data availability for treated states relative to event year.

Notes: This figure plots the event years of data available for treated states that removed safety
inspections at any point during our 1970-2017 sample period.
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Figure A.2: Number of treated states with data relative to event year.

Notes: This figure plots the number of treated states that removed safety inspections at any
point during our 1970-2017 sample period by event year.

A.2 Repeated Outcome Variable Data

For several data points of state-wide vehicle registrations, there were footnotes in the

associated year noting that all or part of the fleet size was based on past years (U.S.

Federal Highway Administration, n.d.). These data points have been removed from

the analysis to prevent the use of any artificial variation.

Table A.1: States and years with repeated registration data

State Years Removed Data Repeated
CO 2006 Registration
IN 2006, 2007, 2009 Registration
MT 2005 Registration
NH 2008 Registration
TX 2009 Registration
IL 2011 Registration
NH 2012 Registration
NY 2012 Registration
MO 2003 VMT
IN 2004, 2009 VMT
NH 2004 VMT
NV 2004 VMT
NY 2005 VMT
AZ 2009 VMT
WY 2010 VMT
RI 2003, 2005 Gas Use

Notes: This table presents the states and years of data with repeated data for each of our
three key outcome variables: number of vehicle registrations, vehicle-miles travelled, and gasoline
usage.
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A.3 Transaction Data Used

Data from certain states have noted a shift to the use of transaction data to provide an

estimate of vehicle registrations (U.S. Federal Highway Administration, n.d.). States

and years (depicted by red vertical lines) are shown in Figure A.3. For certain states,

such as Nevada, this change seems to be persistent; for other states, such as Michigan,

it appears by inspection that this was a temporary change. To control for most of these

shifts, we include a dummy variable in our regression for all years after the change.

For Michigan and Maine, we have separate dummy variables during the period of note

and after.

Figure A.3: State-years reporting vehicles registrations using transaction data

Notes: This figure presents the years, denoted by the vertical red lines, that different states
started and stopped reporting vehicle registrations using data on vehicle transactions rather
than counting registrations directly.

A.4 Data Source Controls

Several states document changes in vehicle registration data sources and methods,

such as changing from reporting annual registration data directly in early years to re-

porting annual registration estimates based on transaction data in later years. These

documented changes sometimes coincide with step changes in the magnitude of re-

ported data. Additionally, we observe some step changes in the reported data that
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do not coincide with documented changes in data sources or methods. Inquiries with

individual state agencies were not able to resolve the source of these step changes.

It is also the case that travel reporting has changed over time (Small and Van

Dender, 2007, p.43).q The same is true for fuel reporting.r As a robustness check, we

consider additional specifications that control for step changes in the reported data,

which may potentially be due to changes in data sources or calculation methods.

Specifically, we include controls for all step changes in the outcome variable larger

than a given threshold using the absolute value of the normalized first difference

in the relevant outcome (e.g., log registrations, fleet distance traveled, or gasoline

consumption).

Several states exhibit large points of discontinuity in their registration and VMT

data. However, several of these points of discontinuity have no documentation describ-

ing the reason for their existence. In order to identify and control for these large shifts

in outcome variables, we first calculate state-level normalized differences in log fleet

size, log fleet distance travelled, and log fleet gasoline use. The normalized difference

in log fleet size for Colorado from 2002 and 2010 (a period where a prominent shift in

data is present) are -4.029 and 4.819 respectively. As these points are exemplary of

large shifts in vehicle registrations, we use 4.02 as a cutoff for identifying trend dis-

continuities across all outcome variables. States exhibiting such trend discontinuities

are plotted in Figure A.4. In order to see how sensitive our results are to this value,

we additionally use a lower value of 2.93, which is based on a discontinuity identified

by inspection in Kentucky. Each trend discontinuity is controlled through a control

dummy variable on each domain bounded by a noted discontinuity.

qThis is evidenced by, for example, FHWA footnotes in the VM-2 table where Illinois changed how
they estimated travel in 1996 and Texas changed their “data system” in 2014 (U.S. Federal Highway
Administration, 2014).

rFHWA notes that changes in data preparation for gasoline use may limit comparability across
certain states over time (U.S. Federal Highway Administration, n.d.).
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Figure A.4: Identified discontinuities under the “Large Undocumented DSC”
specification

Notes: This figure presents the discontinuities in log registrations (top left panel), log VMT
(top right panel) and log gasoline usage (bottom panel) identified based on a “large” cutoff for
the absolute value of the normalized first difference of the outcome of 4.02.
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Figure A.5: Identified discontinuities under the “Small Undocumented DSCs”
specification

Notes: This figure presents the discontinuities in log registrations (top left panel), log VMT
(top right panel) and log gasoline usage (bottom panel) identified based on a “small” cutoff for
the absolute value of the normalized first difference of the outcome of 2.93.
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B Additional Robustness Analyses

B.1 Full Results

B.1.1 Difference in Differences

Results across specifications for our first-stage difference-in-differences framework can

be found in Table B.1. When additional levels of Data Source Controls are considered,

the first stage point estimates move closer to zero while maintaining a similar level of

statistical uncertainty. Nevertheless, we can reject the null hypothesis that there is no

effect of removing safety inspections on log vehicle registrations across specifications

at at least the 10% level.

Table B.1: Effect of the Removal of Safety Inspections on Log Number of Vehicle
Registrations

Dep. Var.: Log Number of Vehicle Registrations
(1) (2) (3) (4)

Removal of Safety Inspections 0.042** 0.037** 0.028* 0.027*
(0.017) (0.015) (0.016) (0.016)

Data Source
Controls

None Documented
Large

Undocumented
Small

Undocumented

State Fixed Effects Y Y Y Y
Year Fixed Effects Y Y Y Y

State-Specific Linear Time Trends Y Y Y Y
Common Controls Y Y Y Y

Robust F-Stat 5.766 5.874 3.216 3.045
Number of Obs. 2,424 2,424 2,424 2,424

R2 0.997 0.997 0.998 0.998

Notes: This table presents difference-in-differences estimates of the impact of the removal of
safety inspections on the log of vehicle registrations. The unit of observation is state-year. The
four specifications pertaining to different levels of data source controls (DSCs) are documented
in Section 3.4. Standard errors, reported in parentheses, are clustered by state. * p<0.1, **
p<0.05, *** p<0.01

B.1.2 Instrumental Variables

Results across specifications for our instrumental variable framework can be found

in Tables B.2 and B.3 for fleet travel and fleet gasoline consumption respectively. In

Columns (3) and (4) of Tables B.2 and B.3, we include additional controls for suspected

step changes in the vehicle registrations data. In Column (1), we remove all controls

related to the vehicle registrations data. The point estimates remain similar across
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all specifications. However, in Columns (3) and (4), we lose the statistical power to

reject some of the relevant null hypotheses.s This is unsurprising: in Specifications

3 and 4, we add a large number of additional covariates to the model to control for

potential changes in data requirements. Given the similarity in point estimates across

specifications, the evidence in Tables B.2 and B.3 suggests that the assumptions made

in previous academic work and policy analyses imply scrappage-induced changes in

fleet travel and gasoline consumption that are too large.

B.2 Parallel Trends in Log Registrations

Figure B.1 plots observed log-registration values minus predicted values for each of

the four difference-in-differences specifications discussed in detail in Section 3.4. We

put the residuals for never treated, not yet treated, and treated observations in gray,

red, and green respectively. Although the residuals are noisy, there appears to be no

particularly strong trends present that would indicate that the parallel trends or the

stable unit treatment value assumptions are violated.

B.3 Event study results based on small and large estimation

windows

Here, we show the results from event studies of the impact of the removal of safety in-

spections on log vehicle registrations for our four specifications for two event windows:

τ ∈ {≤ −6,−5, . . . , 5,≥ 6} (“small” window) and τ ∈ {≤ −11,−10, . . . , 10,≥ 11}
(“large” window). The coefficient associated with τ = −1 is not included to establish

the baseline as the year prior to the event.

sSpecifically, we fail to reject the null hypothesis that β = −2.5 in Columns 3-4 and all of the
null hypotheses pertaining to β in Column 4. We fail to reject the null hypothesis that γ = −4.8 in
Columns 3-4. We can reject the relevant null hypotheses at at least the 10% level across all of the
remaining specifications.
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Table B.2: IV Estimates of the Effect of Log Number of Registrations on Log VMT

Panel A: IV Estimates and Robust 95% Confidence Intervals

Dep. Var.: Log Vehicle-Miles Travelled
(1) (2) (3) (4)

Log Registrations -0.326 -0.36 -0.40 -0.01

[-3.49, 0.56] [-3.69, 0.64]
(-∞, 2.20];
[3.38, ∞)

(-∞, ∞)

Data Source Controls None Documented
Large

Undocumented
Small

Undocumented

State Fixed Effects Y Y Y Y
Year Fixed Effects Y Y Y Y
State-Specific Time Trends Y Y Y Y
Common Controls Y Y Y Y
Number of Obs. 2,424 2,424 2,424 2,424

Panel B: Anderson-Rubin Test Statistics and P-Values

H0 : β = 1.6

AR Stat 7.351*** 7.086*** 3.652* 2.059
p-value 0.007 0.008 0.056 0.151

H0 : β = 1

AR Stat 6.168** 5.631** 2.992* 1.324
p-value 0.013 0.018 0.084 0.250

H0 : β = 0.3

AR Stat 2.098 1.867 1.151 0.194
p-value 0.148 0.172 0.283 0.660

H0 : β = 0

AR Stat 0.540 0.535 0.378 0.000
p-value 0.462 0.464 0.538 0.986

H0 : β = −2.5

AR Stat 3.166* 2.995* 1.734 2.347
p-value 0.075 0.084 0.188 0.125

Notes: The top panel of this table presents IV estimates and 95% confidence sets robust to
weak instruments of the relationship between log vehicle-miles travelled (VMT) and log vehicle
registrations. The bottom panel presents Anderson-Rubin chi-squared statistics along with p-
values for different null hypotheses pertaining to the parameter estimated in the top panel. The
unit of observation is state-year. All regressions include state fixed effects, year fixed effects
and state-specific linear time trends. The four specifications pertaining to different levels of data
source controls (DSCs) are documented in Section 3.4. 95% confidence sets are based on standard
errors clustered by state. * p<0.1, ** p<0.05, *** p<0.01
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Table B.3: IV Estimates of the Effect of Log Number of Registrations on Log
Highway Gas Consumption

Panel A: IV Estimates and Robust 95% Confidence Intervals

Dep. Var.: Log Gasoline Consumption
(1) (2) (3) (4)

Log Registrations -0.420 -0.47 -0.67 -0.64

[-1.75, 0.27] [-1.71, 0.33]
(-∞, 0.23];
[8.59, ∞)

(-∞, 0.32];
[2.85, ∞)

Data Source Controls None Documented
Large

Undocumented
Small

Undocumented

State Fixed Effects Y Y Y Y
Year Fixed Effects Y Y Y Y
State-Specific Time Trends Y Y Y Y
Common Controls Y Y Y Y
Number of Obs. 2,429 2,429 2,429 2,429

Panel B: Anderson-Rubin Test Statistics and P-Values

H0 : γ = 11

AR Stat 5.877** 6.042** 3.718* 2.806*
p-value 0.015 0.014 0.054 0.094

H0 : γ = 9.7

AR Stat 5.892** 6.052** 3.777* 2.856*
p-value 0.015 0.014 0.052 0.091

H0 : γ =1

AR Stat 5.707** 5.462** 6.062** 5.266**
p-value 0.017 0.019 0.014 0.022

H0 : γ =-4.8

AR Stat 5.237** 5.479** 2.284 1.673
p-value 0.022 0.019 0.131 0.196

H0 : γ =-6.1

AR Stat 5.365** 5.606** 2.486 1.825
p-value 0.021 0.018 0.115 0.177

Notes: The top panel of this table presents IV estimates and 95% confidence sets robust to weak
instruments of the relationship between log gasoline consumption and log vehicle registrations.
The bottom panel presents Anderson-Rubin chi-squared statistics along with p-values for different
null hypotheses pertaining to the parameter estimated in the top panel. The unit of observation
is state-year. All regressions include state fixed effects, year fixed effects and state-specific linear
time trends. The four specifications pertaining to different levels of data source controls (DSCs)
are documented in Section 3.4. 95% confidence sets are based on standard errors clustered by
state. * p<0.1, ** p<0.05, *** p<0.01 44



Figure B.1: Residualized log number of registrations

Notes: This figure presents residualized log number of vehicle registrations for each of our four
difference-in-differences specifications. The four different specifications correspond to the four
levels of “data source controls” for documented and undocumented changes in data reporting
discussed in Section 3.4. We put the residuals for never treated, not yet treated, and treated
observations in gray, red, and green respectively.
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Figure B.2: Event study estimates of the impact of removing safety inspections on
log vehicle registrations: “Small” window

(a) Specification 1 (b) Specification 2

(c) Specification 3 (d) Specification 4

Notes: This figure presents event study estimates of the impact of the removal of safety inspec-
tions on log vehicle registrations. The four different specifications correspond to the four levels
of “data source controls” for documented and undocumented changes in data reporting discussed
in Section 3.4. We also present 95% confidence intervals based on standard errors clustered by
state.
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Figure B.3: Event study estimates of the impact of removing safety inspections on
log vehicle registrations: “Large” window

(a) Specification 1 (b) Specification 2

(c) Specification 3 (d) Specification 4

Notes: This figure presents event study estimates of the impact of the removal of safety inspec-
tions on log vehicle registrations. The four different specifications correspond to the four levels
of “data source controls” for documented and undocumented changes in data reporting discussed
in Section 3.4. We also present 95% confidence intervals based on standard errors clustered by
state.
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B.4 Difference-in-Differences and Event Study Results With-

out Time Trends

This subsection presents results from our first-stage difference-in-differences and event

study models without state-specific linear time trends. We see in Table B.4 that the

first-stage coefficients become slightly smaller and are not statistically significant after

removing time trends. However, the event study coefficients remain similar when

removing time trends (see Figures B.4 and B.5). The state-specific linear time trends

therefore seem to be useful primarily for precision, through controlling for long-run

trends in the outcome (i.e., more than 10 years away from the removal of safety

inspections in the state).

Table B.4: Diff-in-Diff Results without Time Trends

Dep. Var.: Log Number of Vehicle Registrations
(1) (2) (3) (4)

Removal of Safety Inspections 0.013 0.013 0.009 0.019
(0.016) (0.017) (0.019) (0.018)

Data Source
Controls

None Documented
Large

Undocumented
Small

Undocumented

State Fixed Effects Y Y Y Y
Year Fixed Effects Y Y Y Y

State-Specific Linear Time Trends N N N N
Common Controls Y Y Y Y

Robust F-Stat 0.630 0.602 0.210 1.054
Number of Obs. 2,424 2,424 2,424 2,424

R2 0.995 0.996 0.996 0.997

Notes: This table presents difference-in-differences estimates of the impact of the removal of
safety inspections on the log of vehicle registrations. The unit of observation is state-year. In all
of the specifications, we do not include state-specific linear time trends. The four specifications
pertaining to different levels of data source controls (DSCs) are documented in Section 3.4.
Standard errors, reported in parentheses, are clustered by state. * p<0.1, ** p<0.05, *** p<0.01
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Figure B.4: Event study estimates of the impact of removing safety inspections on
log vehicle registrations: “Small” window and no linear time trends

(a) Specification 1 (b) Specification 2

(c) Specification 3 (d) Specification 4

Notes: This figure presents event study estimates of the impact of the removal of safety inspec-
tions on log vehicle registrations. The four different specifications correspond to the four levels
of “data source controls” for documented and undocumented changes in data reporting discussed
in Section 3.4. We also present 95% confidence intervals based on standard errors clustered by
state.
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Figure B.5: Event study estimates of the impact of removing safety inspections on
log vehicle registrations: “Large” window and no linear time trends

(a) Specification 1 (b) Specification 2

(c) Specification 3 (d) Specification 4

Notes: This figure presents event study estimates of the impact of the removal of safety inspec-
tions on log vehicle registrations. The four different specifications correspond to the four levels
of “data source controls” for documented and undocumented changes in data reporting discussed
in Section 3.4. We also present 95% confidence intervals based on standard errors clustered by
state.
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B.5 Leave-One-Out Analysis

The minimum and maximum p-values from “leave-one-out” analysis for our fleet-size

elasticities of fleet travel distance (β) and of gasoline consumption (γ) for five null

hypotheses can be seen in Tables B.5 and B.6. We performed this same analysis for

our difference-in-differences model, with results presented in Table B.7. In all cases, we

drop one state and perform the relevant analysis for the remaining states; this is done

for all 50 states and the distribution of results across these 50 analyses is reported.

Table B.5: Leave-one-out analysis minimum and maximum p-values: Fleet Travel IV
Model

Null
Value = 1.6

Null
Value = 1

Null
Value = 0

Null
Value = 0.3

Null
Value = -2.5

Max p-value 0.04 0.06 0.34 0.78 0.24
Min p-value 0.00 0.00 0.01 0.10 0.02

Notes: This table presents minimum and maximum p-values across 50 IV regressions of the
effect of log fleet size on log vehicle miles-travelled (instrumenting with the removal of safety
inspections). Namely, we remove one state from the analysis and estimate the model specified
in Equation (3) in Section 3.3 for the remaining states; we repeat this removing each of the 50
states from the analysis.

Table B.6: Leave-one-out analysis minimum and maximum p-values: Fleet Gasoline
Consumption IV Model

Null
Value = 11

Null
Value = 9.7

Null
Value = 1

Null
Value = -4.8

Null
Value = -6.1

Max p-value 0.06 0.06 0.07 0.07 0.07
Min p-value 0.00 0.00 0.01 0.00 0.00

Notes: This table presents minimum and maximum p-values across 50 IV regressions of the
effect of log fleet size on log gasoline usage (instrumenting with the removal of safety inspections).
Namely, we remove one state from the analysis and estimate the model specified in Equation (4)
in Section 3.3 for the remaining states; we repeat this removing each of the 50 states from the
analysis.

Table B.7: Leave-one-out analysis minimum and maximum p-values: First-Stage
Model

Null Hypothesis Value = 0

Max p-value 0.07
Min p-value 0.00

Notes: This table presents minimum and maximum p-values across 50 difference-in-differences
regressions of the effect of removing safety inspections on log fleet size. Namely, we remove one
state from the analysis and estimate the model specified in Equation (2) in Section 3.2 for the
remaining states; we repeat this removing each of the 50 states from the analysis.
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Figure B.6: Histogram of instrumental-variable coefficients from the leave-one-out
analysis under the preferred specification

Notes: This figure presents histograms of estimates across 50 IV regressions of the effects of log
fleet size on log vehicle miles-traveled (left panel) and log gasoline consumption (right panel).
Log fleet size is instrumented with the removal of safety inspections. To do this, we remove one
state from the analysis and estimate the model specified in Section 3.3 for the remaining states;
we repeat this removing each of the 50 states from the analysis.
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Figure B.7: Histogram of first-stage coefficients from the leave-one-out analysis
across specifications

Notes: This histogram presents the distribution of estimates across 50 difference-in-differences
regressions of the effect of removing safety inspections on log fleet size. Namely, we remove one
state from the analysis and estimate the model specified in Equation (2) in Section 3.2 for the
remaining states; we repeat this removing each of the 50 states from the analysis.

B.6 Spillover Analysis

The event study estimates corresponding to the impact of the removal of safety in-

spections in neighboring states on log vehicle registration are shown in Figure B.8.

These estimates are not large and are not statistically significant either before or af-

ter the event. Moreover, the main event study estimates do not meaningfully change

when controlling for the number of neighboring states that removed safety inspections.

Overall, this provides evidence that treatment in one state does not substantially affect

vehicle registrations in neighboring states.

B.6.1 Registrations
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Figure B.8: Registration spillover results under the preferred specification

Notes: The left panel of this figure presents event study estimates of the impact of the removal
of safety inspections on log vehicle registrations, controlling versus not controlling for the removal
of safety inspections in neighboring states. In the right panel, we report event study estimates of
the impact of the removal of safety inspections in neighboring states on log registrations; in this
specification, we do not include the “main” event study dummies. In both cases, we also present
95% confidence intervals based on standard errors clustered by state.

B.7 Per-Capita Analysis

In order to test whether the results shown are a product of considering aggregate

outcomes, which implicitly upweight large states, we re-estimated the models with

the outcome variables being formulated in per-capita terms. The first stage becomes

Equation (B.1) and the second stage equations corresponding to log fleet travel and

log gasoline consumption become Equations (B.2) and (B.3), respectively. We draw

the same conclusions from the estimates from the per-capita models as our primary

specifications based on the aggregate outcomes.

log

(
rit
pit

)
= ψR

i + τR
t + ξR

i · t+ αdit + xR
itα + εRit (B.1)
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B.7.1 Difference-in-Differences Model

Under our preferred specification, the magnitude of the treatment effect remains sim-

ilar, but is statistically significant only at the 10% confidence level.

Table B.8: Per-Capita Diff-in-Diff Results

Dep. Var.: Log Number of Vehicle Registrations per Capita
(1) (2) (3) (4)

Removal of Safety Inspections 0.034* 0.031* 0.034** 0.021
(0.018) (0.016) (0.016) (0.017)

Data Source Controls None Documented
Large

Undocumented
Small

Undocumented

State Fixed Effects Y Y Y Y
Year Fixed Effects Y Y Y Y

State-Specific Linear Time Trends Y Y Y Y
Common Controls Y Y Y Y

Robust F-Stat 3.618 3.562 4.759 1.600
Number of Obs. 2,424 2,424 2,424 2,424

R2 0.923 0.935 0.944 0.960

Notes: This table presents difference-in-differences estimates of the impact of the removal of
safety inspections on the log of the number of vehicle registrations per capita. The unit of
observation is state-year. The four specifications pertaining to different levels of data source
controls (DSCs) are documented in Section 3.4. Standard errors, reported in parentheses, are
clustered by state. * p<0.1, ** p<0.05, *** p<0.01

B.7.2 IV Models

In both IV models, there are significant changes to the form of the confidence sets.

However, for both fleet-distance traveled and gasoline consumption, we continue to

reject the unit elasticity assumption.

B.7.3 Event Study Models

There is no meaningful qualitative difference between the estimates from our primary

formulation and those based on log registrations per capita (see Figure B.9).
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Table B.9: IV Estimates of the Effect of Log Number of Registrations on Log VMT
per Capita

Panel A: IV Estimates and Robust 95% Confidence Intervals

Dep. Var.: Log Vehicle-Miles Travelled per Capita
(1) (2) (3) (4)

Log Registrations -0.626 -0.70 -0.55 -0.61

(-∞, 0.49];
[32.63, ∞)

(-∞, 0.56];
[28.03, ∞)

[-8.30, 0.64] (-∞, ∞)

Data Source Controls None Documented
Large

Undocumented
Small

Undocumented

State Fixed Effects Y Y Y Y
Year Fixed Effects Y Y Y Y
State-Specific Time Trends Y Y Y Y
Common Controls Y Y Y Y
Number of Obs. 2,424 2,424 2,424 2,424

Panel B: Anderson-Rubin Test Statistics and P-Values

H0 : β = 1.6

AR Stat 6.736*** 6.495** 6.374** 2.260
p-value 0.009 0.011 0.012 0.133

H0 : β = 1

AR Stat 6.168** 5.675** 5.257** 1.953
p-value 0.013 0.017 0.022 0.162

H0 : β = 0.3

AR Stat 2.662 2.439 2.149 0.899
p-value 0.103 0.118 0.143 0.343

H0 : β = 0

AR Stat 1.090 1.081 0.868 0.399
p-value 0.296 0.298 0.352 0.528

H0 : β = −2.5

AR Stat 1.349 1.180 1.999 0.657
p-value 0.245 0.277 0.157 0.417

Notes: The top panel of this table presents IV estimates and 95% confidence sets robust to
weak instruments of the relationship between log vehicle-miles travelled per capita and log vehicle
registrations per capita. The bottom panel presents Anderson-Rubin chi-squared statistics along
with p-values for different null hypotheses pertaining to the parameter estimated in the top panel.
The unit of observation is state-year. The four specifications pertaining to different levels of data
source controls (DSCs) are documented in Section 3.4. 95% confidence sets are based on standard
errors clustered by state. * p<0.1, ** p<0.05, *** p<0.01
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Table B.10: IV Estimates of the Effect of Log Number of Registrations per Capita
on Log Highway Gas Consumption per Capita

Panel A: IV Estimates and Robust 95% Confidence Intervals

Dep. Var.: Log Gasoline Consumption per Capita
(1) (2) (3) (4)

Log Registrations -0.737 -0.82 -0.79 -1.31
(-∞, 0.11];
[19.76, ∞)

(-∞, 0.14];
[19.77, ∞)

[-5.72, 0.07]
(-∞, 0.12];
[2.28, ∞)

Data Source Controls None Documented
Large

Undocumented
Small

Undocumented

State Fixed Effects Y Y Y Y
Year Fixed Effects Y Y Y Y
State-Specific Time Trends Y Y Y Y
Common Controls Y Y Y Y
Number of Obs. 2,429 2,429 2,429 2,429

Panel B: Anderson-Rubin Test Statistics and P-Values

H0 : γ = 11

AR Stat 4.005** 4.009** 5.271** 1.815
p-value 0.045 0.045 0.022 0.178

H0 : γ = 9.7

AR Stat 4.053** 4.058** 5.323** 1.877
p-value 0.044 0.044 0.021 0.171

H0 : γ =1

AR Stat 5.707** 5.489** 6.430** 6.170**
p-value 0.017 0.019 0.011 0.013

H0 : γ =-4.8

AR Stat 2.685 2.612 3.633* 0.631
p-value 0.101 0.106 0.057 0.427

H0 : γ =-6.1

AR Stat 2.890* 2.833* 3.908** 0.761
p-value 0.089 0.092 0.048 0.383

Notes: The top panel of this table presents IV estimates and 95% confidence sets robust to weak
instruments of the relationship between log highway gas consumption per capita and log vehicle
registrations per capita. The bottom panel presents Anderson-Rubin chi-squared statistics along
with p-values for different null hypotheses pertaining to the parameter estimated in the top panel.
The unit of observation is state-year. The four specifications pertaining to different levels of data
source controls (DSCs) are documented in Section 3.4. 95% confidence sets are based on standard
errors clustered by state. * p<0.1, ** p<0.05, *** p<0.01
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Figure B.9: Event study estimates of the impact of removing safety inspections on
log vehicle registrations per capita

Notes: This figure presents event study estimates of the impact of the removal of safety in-
spections on log vehicle registrations per-capita. The specification is listed in Equation (B.1)
in Section B.7. We also present 95% confidence intervals based on standard errors clustered by
state.

B.8 Random Treatment Analysis

In order to assess whether our first-stage estimates are driven by some unique aspect

of the treated states, we run a random treatment analysis. This first involves removing

any data from after the removal of safety inspections (i.e., treated data). Then, we

randomize treatment in two different ways:

• Across treated states: A year is randomly chosen as the “treatment” year be-

tween one plus the first year of data available and the last year of data available

for a given state. This is repeated for every treatment state in every simulation.

• Across all states: States have a 16
51

chance of being an “always treated” state, a

19
51

chance of being “never treated”, and a 16
51

chance of being a “treated” state

(the proportions of these classifications present in the data). Each classification

is randomly assigned with these probabilities for each simulation. If a state
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is classified as “treated”, a year is randomly chosen as the “treatment” year

between the first year of data available plus one and the last year of data available

for the given state. This is repeated for every state in every simulation.

The distribution of estimated coefficients associated with the difference-in-

differences estimates from 1,000 such simulations can be seen in Figures B.10 and B.11.

These distributions are all centered around zero. In Table B.11, we present the re-

jection rates of the treatment coefficient across all specifications and randomization

strategies at a significance level of 5%. Overall, rejections rates are only slightly larger

than would be expected at 5% significance. This serves as evidence that our estimated

effect of removing safety inspections on log number of vehicle registrations is likely

not driven by idiosyncratic trends over time or across states in registrations.

Figure B.10: Distribution of placebo ATT estimates with treatment randomization
across treated states

Notes: This figure presents placebo estimates of the effect of removing safety inspections on log
vehicle registrations from a random treatment analysis. This first involves removing any data
from after the removal of safety inspections (i.e., treated data). Then, we randomize treatment
across treated states: a year is randomly chosen as the “treatment” year between one plus the
first year of data available and the last year of data available for a given state. This is repeated
for every treatment state in every simulation.
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Figure B.11: Distribution of placebo ATT estimates with treatment randomization
across all states

Notes: This figure presents placebo estimates of the effect of removing safety inspections on log
vehicle registrations from a random treatment analysis. This first involves removing any data
from after the removal of safety inspections (i.e., treated data). Then, we randomize treatment
across all states: states have a 16

51 chance of being an “always treated” state, a 19
51 chance of being

“never treated”, and a 16
51 chance of being a “treated” state (the proportions of these classifications

present in the data). Each classification is randomly assigned with these probabilities for each
simulation. If a state is classified as “treated”, a year is randomly chosen as the “treatment”
year between the first year of data available plus one and the last year of data available for the
given state. This is repeated for every state in every simulation.

Table B.11: Random Treatment Simulation Rejection Rates at 5% Significance

(1) (2) (3) (4)
Spec. 1 Spec. 2 Spec. 3 Spec. 4

Rejection Rate:
Treated State Randomization

0.081 0.080 0.093 0.076

Rejection Rate:
All State Randomization

0.082 0.078 0.075 0.085

Notes: This figure presents placebo estimates of the effect of removing safety inspections on log
vehicle registrations from two random treatment analyses. The first randomizes treatment across
all states that ever removed safety inspections while the second randomizes treatment across all
states. See Section B.8 for more details.

60



B.9 Null Hypothesis Derivation

Here we derive the fleet-size elasticities of fleet travel distance and gasoline consump-

tion implied by the assumptions made in Alberini, Harrington and McConnell (1998).

B.9.1 Variable Definitions

We define the following five indices:

• t - Year-of-sample, which is contained in set T.

• c - Vehicle class (e.g. passenger car, light truck, etc.), which is contained in set

C.

• m - Vehicle model (e.g. Ford Taurus, Jeep Wrangler, etc.), which is contained

in set Mc (i.e. all models in a given class of vehicle).

• i - Vehicle vintage (e.g. 2001, 2009, etc.), which is contained in set Mc (i.e. all

models in a given class of vehicle), which is contained in the set I.

• s - Scenario, which is contained in set

S = {With Policy Change, Without Policy Change} = {1, 0}.

and the following variables:

• rstcmi - registered (i.e. operational) fleet size in scenario s at time t, for class c,

and model m.

• astcmi - Distance traveled by a single vehicle in scenario s at time t, for class c,

and model m.

• vstcmi - Total miles traveled by all registered vehicles of class c, model m, during

time t in scenario s.

• dtcmi - Percentage difference between scenarios being considered in time t, for

class c, and model m; We present this as a constant, but it could be a function

of some other variable (e.g. vehicle price).
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Fleet-wide travel and single vehicle travel are related as follows::

vstcmi = astcmirstcmi (B.4)

Further, counterfactual levels of registration are:

r1,tcmi = (1− dtcmi)r0,tcmi (B.5)

Depending on the rates of scrappage, if r0,tcmi → 0 faster than r1,tcmi → 0 (i.e. scrap-

page is being delayed by the policy), then d→ −∞. Otherwise, d→ 1.

B.9.2 Derivation

We focus on the model-level fleet-size elasticity of fleet travel distance (βtcmi):

βtcmi =
∆vtcmi
∆rtcmi

r0,tcmi

v0,tcmi
(B.6)

Where:

∆rtcmi = r1,tcmi − r0,tcmi

= (1− dtcmi)r0,tcmi − r0,tcmi

= −dtcmir0,tcmi

(B.7)

If we assume that the VMT schedule is constant between scenarios (i.e. a1,tcmi =

a0,tcmi), then, using Equations (B.4) and (B.7):
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∆vtcmi = v1,tcmi − v0,tcmi

= (a1,tcmir1,tcmi)− (a0,tcmir0,tcmi)

= a0,tcmi (r1,tcmi − r0,tcmi)

= a0,tcmi (∆rtcmi)

= a0,tcmi (−dtcmir0,tcmi)

= −dtcmia0,tcmir0,tcmi

= −dtcmiv0,tcmi

(B.8)

Then, using Equations (B.7) and (B.8):

βtcmi =
∆vtcmi
∆rtcmi

r0,tcmi

v0,tcmi

=
−dtcmiv0,tcmi

−dtcmir0,tcmi

r0,tcmi

v0,tcmi

=
−dtcmi
−dtcmi

= 1

(B.9)

Therefore, any model that uses a constant mileage schedule is implicitly assuming

a fleet-size elasticity of travel distance equal to 1.

B.10 SAFE PRIA and FRIA Null Hypothesis Calculation

In order to establish a null hypothesis for overall fleet-size elasticities of fleet travel

distance and gasoline consumption comparable to the fleet-wide implications of the as-

sumptions made in the analyses presented in NHTSA and USEPA, 2018a and NHTSA

and USEPA, 2020, we examine the results presented in the CO2 analysis conducted

by U.S. National Highway Traffic Safety Administration (2018, 2020). From these

results, we can calculate effective, yearly fleet-size elasticities of travel and fuel use

with Equations (B.10) and (B.11) across a variety of scenarios simulated to analyze

different potential policy outcomes. We utilize Scenario 0 (Augural CAFE standards)

as the baseline in all calculations, with the other scenarios serving as alternatives.
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The following elasticities measure the percent changes in fleet travel distance v and

gasoline consumption g per percent change in fleet size r across two scenarios (BASE

and ALT):

βy =

vALT
y −vBASE

y

vBASE
y

rALT
y −rBASE

y

rBASE
y

=
vALT
y − vBASE

y

vBASE
y

(
rALT
y − rBASE

y

rBASE
y

)−1

(B.10)

γy =

gALT
y −gBASE

y

gBASE
y

rALT
y −rBASE

y

rBASE
y

=
gALT
y − gBASE

y

gBASE
y

(
rALT
y − rBASE

y

rBASE
y

)−1

(B.11)

We use the mean of these elasticities over the calendar years 2016 to 2050t as

a measure of the effective assumption being made in the model.u For the PRIA

and FRIA, the elasticities are relatively stable across all scenarios we consider to be

relevant.v Based on this, we then take the average of the elasticities across all of the

relevant scenarios that account for the rebound effect to serve as our primary null

hypotheses. Elasticities estimated without the rebound effect are also presented in

Table B.12, as they serve as a point of comparison in our setting where compositional

effects seem to be small.

Table B.12: Estimated SAFE PRIA and FRIA Elasticites

Analysis Allowing for Rebound β γ
PRIA Yes 1.6 -4.8
PRIA No 0.3 -6.1
FRIA Yes -2.5 9.7
FRIA No 0 11

Notes: This table lists the fleet size elasticities of travel distance (β) and gasoline consumption
(γ) implied by the assumptions made in the analyses presented in NHTSA and USEPA, 2018a
and NHTSA and USEPA, 2020. We calculate elasticities with and without incorporating the
rebound effect: that scrappage leads to the purchase of newer vehicles that may be driven more
than old vehicles. Details on the calculation of these elasticities is in Section B.10.

tThis range of calendar years was presented for discussion in U.S. National Highway Traffic Safety
Administration and U.S. Environmental Protection Agency (2018, Figure 8-39; 8-40).

uWe ignore values that are undefined. Elasticity estimates are undefined if there is no difference
in fleet size between the base and alternative scenario.

vCAFE has been in place since 1975, a large majority of the time period we study (NHTSA and
USEPA, 2020, p.6). We do not consider the one MPG standard as being relevant as this modeling
scenario essentially removes any CAFE regulation from being in place.
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B.11 Lack of Compositonal Effects from removing safety in-

spections

First, we’ll begin by establishing the following notation:

• v - fleet-wide travel distance.

• f - fleet-wide fuel consumption.

• c - fleet-wide fuel consumption per travel distance (i.e. inverse of fuel economy

- measured in unit fuel/unit distance) weighted by travel

• r - fleet size

We define the fleet-size elasticities of travel (β), fuel consumption (γ), and fuel

consumption per travel distance:

β =
∂v

∂r

r

v

γ =
∂f

∂r

r

f

ψ =
∂c

∂r

r

c

(B.12)

The following identity must hold, as described in Dimitropoulos, Oueslati and

Sintek (2018, p.164) and Small and Van Dender (2007, p.27) when discussing different

versions of the rebound effect:

f = vc (B.13)

Equation (B.13) simply states that the fleet’s fuel consumption is equal to the

distance driven by the fleet multiplied by the average amount of fuel need to drive the

given unit distance. With Equation (B.13), we can plug vc for f in the definition of γ

in Equation (B.12) and calculate the relationship between β, γ, and ψ.
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(B.14)

This derivation tells us that γ = β+ψ. That is to say, the fleet-size elasticity of fuel

consumption is equal to the fleet-size elasticity of travel plus the fleet-size elasticity of

fuel consumption per travel distance.

In the case where there are no composition effects (i.e., ψ = 0), the fleet-size

elasticities of fuel consumption and travel must be equal (i.e. β−γ = 0). To test this,

we test whether there is a difference in the reduced form coefficients for fleet travel

distance (δ) versus gasoline consumption (θ). If δ = θ, that implies that β = γ since

δ and θ serve as the numerators in the expressions for β and γ respectively.

We are able to empirically test H0 : δ − θ = 0 by simultaneously estimating

the reduced form equations for fleet travel distance and gasoline consumption. We

calculate the difference in the two estimates, and perform a Wald test to test the

null hypothesis. The resulting mean and standard error for the expression δ̂ − θ̂ is

0.0041 and 0.023 respectively. This results in a Wald test p-value of H0 : δ − θ = 0 of

0.859. This provides evidence that the removal of safety inspections did not lead to a

statistically significant shift in efficiency composition within the fleet.

B.12 Goodman-Bacon Decomposition

In this section, we report results from the decomposition specified in Goodman-Bacon

(2021) for three equations of interest: the first-stage equation as well as the reduced-

form equations for both fleet travel and fleet gasoline consumption. The Goodman-

Bacon decomposition requires a balanced panel, a requirement that our dataset does

not adhere to for reasons discussed in Appendix Section A.2 and Section 3.4. There-
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fore, for this decomposition analysis, we include all data that is removed for the travel

and gasoline consumption models. For the registrations model, we remove all data for

Colorado due to reported discrepancies in data collection.

The results from this additional analysis are shown in Figure B.12. By inspec-

tion, there doesn’t seem to be any particular comparison across groups of entities that

is unduly influencing the overall difference-in-differences coefficient. The one excep-

tion might be the “within-state” comparison, which is quite negative and receives a

reasonable weight in the overall estimate.

As discussed in Baker, Larcker and Wang (2021), difference-in-differences models

can produce biased estimates of the average treatment effect on the treated when

the timing of treatment is staggered and treatment effects are heterogeneous across

units or space. Results from Appendix Section B.3 indicate that dynamics are not a

large issue in our setting; the event study coefficients “mature” to an approximately

constant magnitude after two years of treatment.

However, this does not rule out the potential for heterogeneous treatment effects

over time. In order to assess this, coefficients from Figure B.12 are again plotted with

their magnitude on the y-axis and the associated treatment year group on the x-axis

in Figure B.13. In Figure B.13, size of the points represents the associated weight

and the different colors represent the various control groupings. There seems to be no

prominent trends in the average treatment effect over time, assuaging concerns that

treatment effects are heterogeneous over time.
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Figure B.12: Goodman-Bacon Decomposition coefficients and their weights

Notes: This decomposition calculates treatment effect estimates based on comparisons across
different treatment and control groups, along with weights that specify how much each treatment
effect contributes to the overall difference-in-differences estimate Goodman-Bacon (2021). The
red circles denote effects estimated based on comparisons across states treated earlier versus later,
the green and blue circles denote effects based on comparisons with never-treated and always-
treated states respectively, and the orange and purple circles denote effects based on comparisons
across always- versus never- treated states and within-state comparisons respectively. These plots
were heavily influenced by the default plots built by Goodman-Bacon, Goldring and Nichols
(2019), which was used to estimate coefficients.
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Figure B.13: Goodman-Bacon decomposition coefficients plotted against timing of
treatment

Notes: This decomposition calculates treatment effect estimates based on comparisons across
different treatment and control groups, along with weights that specify how much each treatment
effect contributes to the overall difference-in-differences estimate Goodman-Bacon (2021). The
coefficients are plotted with their magnitude on the y-axis and the associated treatment year
group on the x-axis. The size of the points represents the associated weight and the different
colors represent the various control groupings; see Figure B.12 for further description.
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