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Abstract

A nonautonomous discrete competitive system with nonlinear inter-inhibition terms

and one toxin producing species is studied in this paper. Sufficient conditions which

guarantee the extinction of one of the components are obtained and the global

attractivity of the other one is proved. Our results supplement some existing ones.

Numerical simulations show the feasibility of our results.
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1 Introduction

For any bounded sequence {f (n)}, f L = infn∈N {f (n)}, fM = supn∈N {f (n)}.
Recently, many authors considered the following discrete two species competitive sys-

tem with nonlinear inter-inhibition terms (see [–]):

x(n + ) = x(n) exp

{

r(n) – a(n)x(n) –
c(n)x(n)

 + x(n)

}

,

x(n + ) = x(n) exp

{

r(n) – a(n)x(n) –
c(n)x(n)

 + x(n)

}

,

(.)

where ri(n), ai(n), ci(n) (i = , ) are assumed to be bounded positive sequences and x(n),

x(n) are population density of species x and x at the nth generation, respectively. For the

ecological meaning of model (.), see []. Sufficient conditions which guarantee the per-

manence, existence, and global stability of positive periodic solutions of system (.) were

established by Qin et al. []. By using the Lyapunov function, some analysis techniques,

and preliminary lemmas, Wang and Liu [] further established a criterion for the exis-

tence, uniqueness, and uniformly asymptotic stability of positive almost periodic solution

of system (.) with almost periodic parameters. Noting that ecosystems in the real world

are often distributed by unpredictable forces which can result in changes in biological pa-

rameters, Wang et al. [] investigated the existence and uniformly asymptotic stability of

the unique positive almost periodic solution of system (.) with almost periodic parame-

ters and feedback controls. Yu [] further showed that feedback control variables have no

influence on the persistent property of the system. On the other hand, as we all know, the

extinction property is also an important topic in the study of mathematical biology; how-

ever, until now there are still no scholar investigations of this property of system (.). One
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aim of this work is to obtain a set of sufficient conditions which guarantee the extinction

of system (.).

In recent years, the competition systemwith toxic substance has been widely studied. Li

and Chen [] studied the extinction property and global attractivity of the following two

species discrete competitive system:

x(n + ) = x(n) exp
{

r(n) – a(n)x(n) – a(n)x(n) – b(n)x(n)x(n)
}

,

x(n + ) = x(n) exp
{

r(n) – a(n)x(n) – a(n)x(n) – b(n)x(n)x(n)
}

.
(.)

Solé et al. [] and Bandyopadhyay [] considered the Lotka-Volterra system of two inter-

acting phytoplankton species with one species that could be toxic, while the other one is

non-toxic. The stability property of the equilibrium of the system is obtained. Motivated

by the above ideas, Chen et al. [] introduced the following system:

x(n + ) = x(n) exp
{

r(n) – a(n)x(n) – a(n)x(n) – b(n)x(n)x(n)
}

,

x(n + ) = x(n) exp
{

r(n) – a(n)x(n) – ax(n)
}

,
(.)

where x(n) represents the density of non-toxic phytoplankton and x(n) is the toxic liber-

ating phytoplankton. The coefficients in system (.) have the same restriction as that in

system (.) and system (.) is a special case of (.) with b(n) ≡ , i.e., the first species

could not be toxic. They obtain several sets of sufficient conditions which guarantee the

extinction of the one species and the global stability of the other species. To the best of the

author’s knowledge, to this day, no work has been done previously on the discrete com-

petitive system with nonlinear inter-inhibition terms and one toxin producing species.

Hence, we consider the following system:

x(n + ) = x(n) exp

{

r(n) – a(n)x(n) –
a(n)x(n)

 + x(n)
– b(n)x(n)x(n)

}

,

x(n + ) = x(n) exp

{

r(n) – a(n)x(n) –
a(n)x(n)

 + x(n)

}

,

(.)

where all the coefficients have the same meaning as that of systems (.)-(.), and for

i, j = , , ri(n), aij(n), and b(n) are bounded nonnegative sequences defined for n ∈ N =

{, , , . . .} such that

 < rLi ≤ ri(n) ≤ rMi ,  < aLij ≤ aij(n) ≤ aMij ,  < bL ≤ b(n)≤ bM . (.)

As regards the biological meaning, we assume (.) together with the initial conditions:

x() >  and x() > . It is not difficult to see that the solutions of (.) are defined and

remain positive for all n ∈ N . For more relevant work, one could refer to [–] and the

references cited therein.

The remaining part of this paper is organized as follows. In Section , we study the

extinction of some one species. The global stability of the other species when the previ-

ous species is eventually in extinction both for systems (.) and (.) is then studied in

Section . Some examples together with their numerical simulations are presented in Sec-

tion  to show the feasibility of our results. We give a brief discussion in the last section.
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2 Extinction

In this section, we will establish sufficient conditions on the extinction of species x or x.

By a similar proof to Lemma . in Li and Chen [], we can obtain the following result.

Lemma . Any positive solution (x(n),x(n))
T of system (.) satisfies

lim sup
n→+∞

xi(n) ≤ Bi, (.)

where Bi =
exp(rMi –)

aLii
, i = , .

Lemma . shows that the positive solutions of system (.) are bounded eventually. We

now come to the study of the extinction of species x of system (.).

Theorem . Assume

(H)
rM
rL

< min

{

aL
aM ( + B)

,
aL
aM

}

and

(H) bM <


BB

min

{

rL – rM
aM ( + B)

aL
, rL – rM

aM
aL

}

hold, where Bi (i = , ) is defined in Lemma ., then the species x will be driven to extinc-

tion, that is, for any positive solution (x(n),x(n))
T of system (.), limn→+∞ x(n) = .

Proof Conditions (H) and (H) can be rewritten as

rM
rL – bM BB

< min

{

aL
aM ( + B)

,
aL
aM

}

. (.)

According to (.), one can choose a small enough positive constant ε such that

rM
rL – bM (B + ε)(B + ε)

< min

{

aL
aM ( + B + ε)

,
aL
aM

}

. (.)

By (.), there exist positive constants α and β such that

rM
rL – bM (B + ε)(B + ε)

<
β

α
< min

{

aL
aM ( + B + ε)

,
aL
aM

}

. (.)

Thus,

βaM –
αaL
 + B

< , βaM – αaL <  (.)

and we can choose a constant δ > , such that

αrM – βrL + βbM (B + ε)(B + ε) < –δ < . (.)
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For the above ε, it follows from Lemma . that there exists a large enough N such that

xi(n) < Bi + ε, n >N . (.)

For any p >N , according to the equations of system (.) and (.), we can get

ln
x(p + )

x(p)
= r(p) – a(p)x(p) –

a(p)x(p)

 + x(p)
– b(p)x(p)x(p)

≥ rL – aMx(p) – aMx(p) – bM x(p)x(p),

ln
x(p + )

x(p)
= r(p) – a(p)x(p) –

a(p)x(p)

 + x(p)

≤ rM – aLx(p) –
aLx(p)

 + B + ε
.

(.)

Therefore, inequalities (.)-(.) show that

α ln
x(p + )

x(p)
– β ln

x(p + )

x(p)

≤
(

αrM – βrL
)

+

(

βaM –
αaL

 + B + ε

)

x(p) +
(

βaM – αaL
)

x(p)

+ βbM x(p)x(p)

< αrM – βrL + βbM (B + ε)(B + ε)

< –δ < , p >N . (.)

Summing both sides of the above inequalities from N +  to n –  leads to

α ln
x(n)

x(N + )
– β ln

x(n)

x(N + )
< –δ(n –N – ), (.)

hence

x(n) <

[(

x(n)

x(N + )

)β
(

x(N + )
)α

]

α

exp

(

–
δ

α
(n –N – )

)

. (.)

The above inequality together with the ultimate boundedness of x(n) shows that

limn→+∞ x(n) = . The proof is completed. �

Theorem . In addition to (H), further suppose that

(H) bM <
rL a

L
 – ( + B)a

M
 r

M


( + B)Br
M


holds,where Bi (i = , ) is defined in Lemma ., then for any positive solution (x(n),x(n))
T

of system (.), limn→+∞ x(n) = .

Proof It follows from conditions (H) and (H) that

rM
rL

< min

{

aL
(aM + bM B)( + B)

,
aL
aM

}

. (.)
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Thus, one can choose a small enough positive constant ε such that

rM
rL

< min

{

aL
(aM + bM (B + ε))( + B + ε)

,
aL
aM

}

. (.)

By (.), there exist positive constants α and β such that

rM
rL

<
β

α
< min

{

aL
(aM + bM (B + ε))( + B + ε)

,
aL
aM

}

. (.)

So

βaM + βbM (B + ε) –
αaL

 + B + ε
< , βaM – αaL <  (.)

and we can choose a constant δ > , such that

αrM – βrL < –δ < . (.)

Therefore, inequalities (.), (.), (.), and (.) show that

α ln
x(p + )

x(p)
– β ln

x(p + )

x(p)

≤
(

αrM – βrL
)

+

(

βaM –
αaL

 + B + ε

)

x(p) +
(

βaM – αaL
)

x(p)

+ βbM x(p)x(p)

≤
(

αrM – βrL
)

+

(

βaM –
αaL

 + B + ε
+ βbM (B + ε)

)

x(p)

+
(

βaM – αaL
)

x(p)

< αrM – βrL < –δ < , p >N . (.)

The rest of the proof is similar to that of the corresponding proof of Theorem ., we omit

the details here. This ends the proof of Theorem .. �

Theorem. Let (x(n),x(n))
T be any positive solution of system (.), in addition to (H),

further suppose that

(H) bM <
rL a

L
 – rM aM
Br

M


holds, where B is defined in Lemma ., then limn→+∞ x(n) = .

Proof It follows from conditions (H) and (H) that

rM
rL

< min

{

aL
aM ( + B)

,
aL

aM + bM B

}

. (.)
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Thus, one can choose a small enough positive constant ε such that

rM
rL

< min

{

aL
aM ( + B + ε)

,
aL

aM + bM (B + ε)

}

. (.)

By (.), there exist positive constants α and β such that

rM
rL

<
β

α
< min

{

aL
aM ( + B + ε)

,
aL

aM + bM (B + ε)

}

. (.)

Thus,

βaM –
αaL

 + B + ε
< , βaM – αaL + βbM (B + ε) < , (.)

and we can choose a constant δ > , such that

αrM – βrL < –δ < . (.)

Therefore, inequalities (.), (.), (.), and (.) show that

α ln
x(p + )

x(p)
– β ln

x(p + )

x(p)

≤
(

αrM – βrL
)

+

(

βaM –
αaL

 + B + ε

)

x(p)

+
(

βaM – αaL + βbM (B + ε)
)

x(p)

< αrM – βrL < –δ < , p >N . (.)

The rest of the proof is similar to that of the corresponding proof of Theorem ., we omit

the details here. This ends the proof of Theorem .. �

Now, let us investigate the extinction property of species x in system (.) which is also

an interesting problem and we obtain the following result.

Theorem . Let (x(n),x(n))
T be any positive solution of system (.). Suppose

(H)
rL
rM

> max

{

aM
aL

,
aM( + B)

aL

}

holds, where B is defined in Lemma ., then the species x will be driven to extinction,

that is, limn→+∞ x(n) = .

Proof According to (H), one can choose a small enough positive constant ε such that

rL
rM

> max

{

aM
aL

,
aM( + B + ε)

aL

}

. (.)

By (.), there exist positive constants α and β such that

rL
rM

>
β

α
> max

{

aM
aL

,
aM( + B + ε)

aL

}

. (.)
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Thus,

αaM – βaL < , αaM – β
aL

 + B + ε
<  (.)

and we can choose a constant δ > , such that

βrM – αrL < –δ < . (.)

For any p >N , according to the equations of system (.) and (.), we can get

ln
x(p + )

x(p)
≤ rM – aLx(p) –

aL
 + B + ε

x(p) – bLx(p)x(p),

ln
x(p + )

x(p)
≥ rL – aMx(p) – aMx(p).

(.)

Therefore, inequalities (.)-(.) show that

β ln
x(p + )

x(p)
– α ln

x(p + )

x(p)

≤
(

βrM – αrL
)

+
(

αaM – βaL
)

x(p) +

(

αaM – β
aL

 + B + ε

)

x(p)

– βbLx(p)x(p)

< βrM – αrL < –δ < , p >N . (.)

The rest of the proof is similar to that of the corresponding proof of Theorem ., we omit

the details here. This ends the proof of Theorem .. �

3 Global stability

In Section , we get sufficient conditions which guarantee the extinction of the first or

second species in system which motives us to investigate the stability property of the rest

species. Let us first state several lemmaswhichwill be useful in the proof of themain result

of this section.

Lemma . (see []) Assume that {x(n)} satisfies

x(n + ) ≥ x(n) exp
{

a(n) – b(n)x(n)
}

, n≥ N,

lim supn→+∞ x(n) ≤ x∗, and x(N) > , where a(n) and b(n) are nonnegative sequences

bounded above and below by positive constants and N ∈N . Then

lim inf
n→+∞

x(n)≥ min

{

aL

bU
exp

{

aL – bUx∗},
aL

bU

}

.

Lemma. Suppose conditions in Theorem . or ., or . hold, let (x(n),x(n))
T be any

positive solution of system (.), then

A ≤ lim inf
n→+∞

x(n) ≤ lim sup
n→+∞

x(n) ≤ B,

where A =
rL
aM

exp{rL – aMB} and B is defined in Lemma ..
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Proof It follows from Lemma . and Theorem . or ., or . that

lim
n→+∞

x(n) = , lim sup
n→+∞

x(n)≤ B. (.)

To end the proof of Lemma ., it is enough to show that

lim inf
n→+∞

x(n)≥ A. (.)

Since rL > , there exists a small enough ε >  such that

Aε � rL – aMε – bM (B + ε)ε > . (.)

According to (.), for the above ε > , there exists a large enough N > , such that, for

n≥ N,

x(n) ≤ B + ε, x(n) ≤ ε. (.)

Thus, it follows from (.) and the first equation of system (.) that

x(n + ) ≥ x(n) exp
{

rL – aMx(n) – aMε – bM (B + ε)ε
}

. (.)

Since Aε > , by applying Lemma . to (.), it immediately follows that

lim inf
n→+∞

x(n) ≥ min

{

Aε

aM
exp

{

Aε – aMB

}

,
Aε

aM

}

.

Setting ε →  in the above inequality, one can obtain

lim inf
n→+∞

x(n) ≥ min

{

rL
aM

exp
{

rL – aMB

}

,
rL
aM

}

. (.)

By calculation, one can easily get

rL – aMB = rL – aM
exp(rM – )

aL
≤ rL – exp

(

rM – 
)

≤ rL – rM ≤ . (.)

Inequality (.) together with (.) leads to

lim inf
n→+∞

x(n) ≥
rL
aM

exp
{

rL – aMB

}

� A, (.)

that is to say, (.) holds. This ends the proof of Lemma .. �

Lemma . Suppose conditions in Theorem . hold, let (x(n),x(n))
T be any positive

solution of system (.), then

A ≤ lim inf
n→+∞

x(n) ≤ lim sup
n→+∞

x(n) ≤ B,

where A =
rL
aM

exp{rL – aMB} and B is defined in Lemma ..
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Proof The proof of Lemma . is similar to that of the proof of Lemma ., we omit the

details here. �

Consider the following discrete logistic equation:

x(n + ) = x(n) exp
(

r(n) – a(n)x(n)
)

, n ∈N , (.)

where r(n) and a(n) are bounded nonnegative sequences.

Lemma . (see []) For any positive solution x(n) of (.), we have

A ≤ lim inf
n→+∞

x(n)≤ lim sup
n→+∞

x(n)≤ B,

where A, B are defined by Lemma ..

Consider the following discrete logistic equation:

x(n + ) = x(n) exp
(

r(n) – a(n)x(n)
)

, n ∈N , (.)

where r(n) and a(n) are bounded nonnegative sequences.

Lemma . (see []) For any positive solution x̃(n) of (.), we have

A ≤ lim inf
n→+∞

x̃(n)≤ lim sup
n→+∞

x̃(n)≤ B,

where A, B are defined by Lemma ..

Now, we come to showing the main results of this section.

Theorem. Suppose in addition the conditions of Theorem . or ., or . hold, further

suppose that

(H)
aM
aL

exp
(

rM – 
)

< .

Then for any positive solution (x(n),x(n))
T of system (.), we have

lim
n→+∞

(

x(n) – x(n)
)

= , lim
n→+∞

x(n) = ,

where x(n) is any positive solution of system (.).

Proof It follows from Theorem . or ., or . that

lim
n→+∞

x(n) = . (.)

Set y(n) = lnx(n) – lnx(n), then it follows from the first equation of system (.) and (.)

that

y(n + ) = y(n) – a(n)x(n)
(

exp
(

y(n)
)

– 
)

–
a(n)x(n)

 + x(n)
– b(n)x(n)x(n). (.)
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Using the mean value theorem, we can obtain

exp
(

y(n)
)

–  = exp
(

θ (n)y(n)
)

y(n), θ (n) ∈ (, ). (.)

Substituting (.) into the right side of equation (.), we can get

y(n + ) =
(

 – a(n)x(n) exp
(

θ (n)y(n)
))

y(n) –

(

a(n)

 + x(n)
+ b(n)x(n)

)

x(n). (.)

Considering (H) implies that – <  – aMB, there exists a small enough ε >  such that

– <  – aM (B + ε). (.)

According to Lemma ., Lemma ., and (.), for the above ε > , there exists large

enough N > , such that, for n≥ N ,

A – ε ≤ x(n)≤ B + ε, x(n)≤ ε, A – ε ≤ x(n)≤ B + ε. (.)

Note that θ (n) ∈ (, ) implies that x(n) exp(θ (n)y(n)) lies between x(n) and x(n). From

(.) and (.), for n ≥ N , one can get

∣

∣y(n + )
∣

∣ ≤ max
{
∣

∣ – aM (B + ε)
∣

∣,
∣

∣ – aL(A – ε)
∣

∣

}
∣

∣y(n)
∣

∣

+
(

aM + bM (B + ε)
)

ε

� λε

∣

∣y(n)
∣

∣ +Mεε, (.)

where λε = max{| – aM (B + ε)|, | – aL(A – ε)|},Mε = aM + bM (B + ε). This implies that

∣

∣y(n)
∣

∣ ≤ λn–N
ε

∣

∣y(N)
∣

∣ +
 – λn–N

ε

 – λε

Mεε, for n≥ N . (.)

Note that  – aM (B + ε) ≤  – aL(A – ε) < , hence  < λε <  according to (.). Thus,

limn→+∞ y(n) =  can be immediately obtained by (.), and so limn→+∞(x(n) –x(n)) = .

This ends the proof of Theorem .. �

Similarly, by using Lemmas . and ., we have the following theorem.

Theorem . In addition to the conditions of Theorem ., further suppose that

(H)
aM
aL

exp
(

rM – 
)

< .

Then for any positive solution (x(n),x(n))
T of system (.) and any positive solution x̃(n)

of system (.), we have

lim
n→+∞

x(n) = , lim
n→+∞

(

x(n) – x̃(n)
)

= .

As a direct corollary of Theorem . and Theorem ., we have the following corollary.
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Corollary . In addition to (H), further suppose that

(H)
aM
aL

exp
(

rM – 
)

< .

Then for any positive solution (x(n),x(n))
T of system (.) and any positive solution x(n)

of system (.), we have

lim
n→+∞

(

x(n) – x(n)
)

= , lim
n→+∞

x(n) = .

That is to say, the species x will be driven to extinction.

Corollary . Assume that the conditions of Theorem . hold, also

(H)
aM
aL

exp
(

rM – 
)

< .

Then for any positive solution (x(n),x(n))
T of system (.) and any positive solution x̃(n)

of system (.), we have

lim
n→+∞

x(n) = , lim
n→+∞

(

x(n) – x̃(n)
)

= .

That is to say, the species x will be driven to extinction.

4 Examples and numeric simulation

In this section, we give the following two examples to verify the feasibilities of our results.

Example . Consider the following system:

x(n + ) = x(n) exp

{

. – .x(n) –
( + . sin(

√
n))x(n)

 + x(n)
– b(n)x(n)x(n)

}

,

x(n + ) = x(n) exp

{

. – .x(n) –
( + cos(

√
n))x(n)

 + x(n)

}

.

(.)

Case . b(n) = ..

Take easy calculation, we have
rM
rL

= ., B ≈ ., B ≈ .,
aL

aM (+B)
≈ .,

aL
aM

= , rL – rM
aM (+B)

aL
≈ ., rL – rM

aM
aL

= ., thus

rM
rL

= . < min

{

aL
aM ( + B)

,
aL
aM

}

=  (.)

and

bM = . <


BB

min

{

rL – rM
aM ( + B)

aL
, rL – rM

aM
aL

}

≈ .,

bM = . <
rL a

L
 – ( + B)a

M
 r

M


( + B)Br
M


≈ ., (.)
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Figure 1 Dynamical behaviors of the system (4.1) with b1(n) = 0.2 and the initial conditions

(x1(0),x2(0)) = (1, 0.4)T , (0.33, 0.14)T , (0.68, 0.9)T , and (1.3, 0.5)T , respectively.

bM = . <
rL a

L
 – rM aM
Br

M


≈ .,

(.)-(.) show that the coefficients of the system (.) satisfy the conditions of Theo-

rems ., ., and .. Moreover,

aM
aL

exp
(

rM – 
)

= exp(. – ) ≈ . < .

Hence, condition (H) is also satisfied. It follows from Theorem . that, for any positive

solution (x(n),x(n))
T of system (.), we have limn→+∞(x(n)–x(n)) = , limn→+∞ x(n) =

, where {x(n)} is any positive solution of the system

x(n + ) = x(n) exp
{

. – .x(n)
}

.

Our numerical simulation supports our result (see Figure ).

Case . b(n) = .

b(n) =  shows that the two species are all non-toxic. One can easily find that the condi-

tions inCorollary . are satisfied, so for any positive solution (x(n),x(n))
T of system (.)

with b(n) = , x(n) is in extinction while x(n) will be globally attractive (see Figure ).

Example . Consider the following system:

x(n + ) = x(n) exp

{

. – .x(n) –
(. + . sin(

√
n))x(n)

 + x(n)

– b(n)x(n)x(n)

}

, (.)

x(n + ) = x(n) exp

{

. – .x(n) –
( + cos(

√
n))x(n)

 + x(n)

}

.
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Figure 2 Dynamical behaviors of the system (4.1) with b1(n) = 0 and the initial conditions

(x1(0),x2(0)) = (1, 0.4)T , (0.33, 0.14)T , (0.68, 0.9)T , and (1.3, 0.5)T , respectively.

Case . b(n) = ..

In this case, one could easily see that
rL
rM

= , B ≈ .,
aM
aL

= ,
aM(+B)

aL
≈ ., so

rL
rM

=  > max

{

aM
aL

,
aM( + B)

aL

}

=  (.)

and

aM
aL

exp
(

rM – 
)

= exp(. – ) ≈ . < , (.)

(.) and (.) mean that all conditions of Theorem . are satisfied in system (.). Thus,

for any positive solution (x(n),x(n))
T of system (.) and any positive solution {x̃(n)} of

system (.), we have limn→+∞ x(n) = , limn→+∞(x(n) – x̃(n)) = , where {x̃(n)} is any
positive solution of the system

x(n + ) = x(n) exp
{

. – .x(n)
}

.

Figure  shows the dynamical behavior of system (.) with b(n) = ..

Case . b(n) = .

b(n) =  shows that the two species are all non-toxic. One can easily find that the con-

ditions in Corollary . are satisfied, so for any positive solution (x(n),x(n))
T of system

(.) with b(n) = , x(n) is in extinction while x(n) will be globally attractive (see Fig-

ure ).

5 Discussion

In this paper, we consider a two species nonautonomous discrete competitive systemwith

nonlinear inter-inhibition terms and one toxin producing species, i.e., (.). By develop-

ing the analysis technique of Chen et al. [], sufficient conditions which guarantee the
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Figure 3 Dynamical behaviors of the system (4.2) with b1(n) = 0.3 and the initial conditions

(x1(0),x2(0)) = (0.9, 0.3)T , (0.2, 0.1)T , (0.62, 0.8)T , and (0.5, 0.5)T , respectively.

Figure 4 Dynamical behaviors of the system (4.2) with b1(n) = 0 and the initial conditions

(x1(0),x2(0)) = (0.9, 0.3)T , (0.2, 0.1)T , (0.62, 0.8)T , and (0.5, 0.5)T , respectively.

extinction of one of the two species are obtained and the stability property of the other

species are proved. As direct results of Theorem . and Theorem ., Corollaries . and

. show the same conclusions for a non-toxic system, which supplements the results of

[, ]. Moreover, by comparing Theorem . with Corollary ., and Theorem . with

Corollary ., we also found that, for such a kind of system, a lower rate of toxic produc-

tion has no influence on the extinction property of the system.
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