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Abstract: The extinction property of a two species competitive stage-structured phytoplankton system with

harvesting is studied in this paper. Several sets of sufficient conditions which ensure that one of the com-

ponents will be driven to extinction are established. Our results supplement and complement the results

of Li and Chen [Extinction in periodic competitive stage-structured Lotka-Volterra model with the effects

of toxic substances, J. Comput. Appl. Math., 2009, 231(1), 143-153] and Liu, Chen, Luo et al. [Extinction and

permanence in nonautonomous competitive system with stage structure, J. Math. Anal. Appl., 2002, 274(2),

667-684].
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1 Introduction

Throughout this paper, for a given function g(t), we let gL and gM denote inf−∞<t<∞ g(t) and sup−∞<t<∞ g(t),

respectively.

During the last two decades, ecosystem with stage structure become one of the most important research

area, and some substantive progress has been made on this direction, see [1–11] and the references cited

therein. For example, Chen et al. [2] showed that stage structure plays important role on the persistent

property of the cooperative system. For the system without stage structure, the system always admits a

unique positive equilibrium, which means the stable coexistence of the two species. However, if the stage

structure is enough large, despite the cooperation between the two species, the species may still be driven to

extinction. Xiao et al. [3] investigated the Hopf bifurcation and stability property of a Beddington-DeAngelis

predator-preymodel with stage structure for predator and time delay incorporating prey refuge. Among those

works, many scholars ([1], [6–11]) done works on the stage structured competitive system. Also, competitive

system with the effect of toxic substances is another important research area, many excellent results have

been obtained, see [12–37] and the references cited therein. Li et al. [13] studied the stability property of a
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competitive systemwith the effect of toxic substances, they showed that the toxic substance have no influence

to the stability property of the system, though it has influence on the position of the equilibrium. Their result

is then generalized by Chen et al. [23] to the infinite delay case. Some scholars [17, 24, 29, 35] argued that it

is better to describe the relationship between the competitive species by using the nonlinear function, and

they obtained some interesting results, such as the extinction of the species, the existence, uniqueness and

global stability of the periodic solution, etc.

Based on the traditional two species Lotka-Volterra competitive system, Liu et al. [6] first time proposed

the following two-species competitive model with stage structure

ẋ1(t) = b1e
−d1τ1x1(t − τ1) − a11x

2
1 − a12x1x2,

ẏ1(t) = b1x1 − d1y1 − b1e
−d1τ1x1(t − τ1),

ẋ2(t) = b2e
−d2τ2x2(t − τ2) − a22x

2
2 − a21x1x2,

ẏ2(t) = b2x2 − d2y2 − b2e
−d2τ2x2(t − τ2).

(1.1)

As as pointed out by Liu et al. [6], to study the dynamic behaviors of the system (1.1), it is enough to study the

asymptotic behavior of the following subsystem of system (1.1)

ẋ1(t) = b1e
−d1τ1x1(t − τ1) − a11x

2
1 − a12x1x2,

ẋ2(t) = b2e
−d2τ2x2(t − τ2) − a22x

2
2 − a21x1x2.

(1.2)

System (1.2) admits three non-negative equilibria.

E0(0, 0), E1
(b1e

−d1τ1

a11
, 0

)

, E2
(

0,
b2e

−d2τ2

a22

)

. (1.3)

Concerned with the stability property of E1 and E2, the authors obtained the following results.

Theorem A. E1 is globally asymptotically stable provided

b1e
−d1τ1

b2e−d2τ2
>
a11
a21

and
b1e

−d1τ1

b2e−d2τ2
>
a12
a22

. (1.4)

Theorem B. E2 is globally asymptotically stable provided

b1e
−d1τ1

b2e−d2τ2
<
a11
a21

and
b1e

−d1τ1

b2e−d2τ2
<
a12
a22

. (1.5)

Liu et al. [7] proposed the following n-species nonautonomous stage-structured competitive system,

ẋi(t) = bi(t − τi)e
∫ t
t−τi

di(s)dsxi(t − τi) − xi(t)
n
∑

j=1

xj(t),

ẏi(t) = bi(t)xi(t) − di(t)yi(t) − bi(t − τi)e
∫ t
t−τi

di(s)dsxi(t − τi),

(1.6)

where i = 1, 2, ..., n, τi are nonnegative constants. bi(t), aij(t), di(t)(i, j = 1, 2, ..., n) are all nonnegative

continuous and ω-periodic functions. bi(t), aii(t), di(t) > 0 for all t ∈ [0, ω]. Set

Bi(t) = bi(t − τi)e
∫ t
t−τi

di(s)ds .

Then, Liu et al. [7] obtained the following results.

Theorem C. For system (1.6) in the case n = 2, assume

BL1 > B
M
2
aM12
aL22

and BL1 > B
M
2
aM11
aL21

. (1.7)

Then lim
t→+∞

x2(t) = lim
t→+∞

y2(t) = 0.
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Theorem D. For system (1.6) in the case n = 2, assume

BL2 > B
M
1
aM22
aL12

and BL2 > B
M
1
aM21
aL11

. (1.8)

Then lim
t→+∞

x1(t) = lim
t→+∞

y1(t) = 0.

One could easily see that Theorem C and D generalize Theorem A and B to the non-autonomous case.

Based on the works of [5] and [6], Li and Chen [10] proposed the following two species periodic competi-

tive stage-structured system with the effects of toxic substances:

ẋ1(t) = b1(t − τ1)e
−
∫ t
t−τ1

r1(s)dsx1(t − τ1)

−a11(t)x
2
1(t) − a12(t)x1(t)x2(t) − d1(t)x

2
1(t)x2(t),

ẏ1(t) = b1(t)x1(t) − r1(t)y1(t) − b1(t − τ1)e
−
∫ t
t−τ1

r1(s)dsx1(t − τ1),

ẋ2(t) = b2(t − τ2)e
−
∫ t
t−τ2

r2(s)dsx2(t − τ2) − a22(t)x
2
2(t)

−a21(t)x1(t)x2(t) − d2(t)x1(t)x
2
2(t),

ẏ2(t) = b2(t)x2(t) − r2(t)y2(t) − b2(t − τ2)e
−
∫ t
t−τ2

r2(s)dsx2(t − τ2),

(1.9)

where xi(t) and yi(t)(i = 1, 2) represent the density ofmature and immature species at time t > 0, respectively;

bi(t), aij(t), ri(t), di(t)(i, j = 1, 2) are all nonnegative continuous and ω-periodic functions. Li and Chen [10]

obtained the following result.

Theorem E. If the coefficients of system (1.9) satisfy

bL1e
−rM1 τ1

bM2 e
−rL2τ2

>
aM12
aL22

,
bL1e

−rM1 τ1

bM2 e
−rL2τ2

≥
aM11
aL21

,
bL1e

−rM1 τ1

bM2 e
−rL2τ2

≥
dM1
dL2

. (1.10)

Then second species will be driven to extinction while the first one is global attractive to a positive periodic

solution of a stage-structured single species system.

Comparing Theorem A, C and E, one could see that the first two inequalities of Theorem E is the same

as that of the Theorem C. Noting that the authors of [10] is to investigated the dynamic behaviors of a stage-

structured system with toxic substance, hence, one could see that the idea behind that of Theorem E is to

assume that the second species in the system without toxic substance is driven to extinction, and to find

out the suitable restrictions on the coefficients of toxic substances term, to ensure the second species still be

driven to extinction.

Now, one of the interesting issue proposed: What would happen if the first two inequalities in Theorem

E hold, while the third inequality does not holds?

To bring some hints on this issue, let’s consider the following example.

Example 1.1. Consider the following equations

ẋ1(t) = 3e−0.2x1(t − 0.2) − (1.5 + 0.5 cos(t))x
2
1(t)

−(2 + sin(t))x1(t)x2(t) − 0.2x
2
1(t)x2(t),

ẏ1(t) = 3x1(t) − y1(t) − 3e
−0.2x1(t − 0.2),

ẋ2(t) = 2e−0.2x2(t − 0.2) − (3.5 + 0.5 cos(t))x
2
2(t)

−2x1(t)x2(t) − 0.1x1(t)(x2(t))
2,

ẏ2(t) = 2x2(t) − y2(t) − 2e
−0.2x2(t − 0.2),

(1.11)
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where τ1 = 0.2, τ2 = 0.2, b1(t) = 4, r1(t) = 1, a11(t) = 1.5+0.5 cos(t), a12(t) = 2+ sin(t), d1(t) = 0.2, d2(t) =

0.1, b2(t) = 2, r2(t) = 1, a21(t) = 2, a22(t) = 3.5 + 0.5 cos(t).

One could easily see that

bL1e
−rM1 τ1

bM2 e
−rL2τ2

=
3e−0.2

2e−0.2
=
3

2
>
3

3
= 1 =

aM12
aL22

,

bL1e
−rM1 τ1

bM2 e
−rL2τ2

=
3

2
>
2

2
= 1 =

aM11
aL21

,

bL1e
−rM1 τ1

bM2 e
−rL2τ2

=
3

2
<
0.2

0.1
= 2 =

dM1
dL2

.

(1.12)

Inequalities (1.12) show that the coefficients of the system (1.11) satisfies the first two inequalities in (1.10),

while the third inequality no longer holds. Numeric simulation (Fig. 1) shows that in this case, species 2will

be driven to extinction while species 1 is globally attractive.

Above example enlighten us to revisit the dynamic behaviors of the system (1.9), and to find out some

new sufficient conditions which ensure the extinction of some of the species in system (1.9).

On the other hand, based on the traditional two species competitive system with toxic substance, Kar

and Chaudhuri [36] proposed the following non-selective harvesting system

dx
dt

= r1x(1 −
x
k1
) − α1xy − γ1x

2y − q1Ex,

dy
dt

= r2y(1 −
y
k2
) − α2xy − γ2xy

2 − q2Ey,

(1.13)

where q1, q2 are the catchability coefficients of the two species. The authors gave a thoroughly investigation

of the dynamical behaviour about system.

Recently, Gupta et al. [37] made the following assumption: the two species are being harvested by

different agencies, both the species are harvested with harvesting efforts E1 and E2, respectively. This leads

to the following modeling
dx
dt

= r1x(1 −
x
k1
) − α1xy − γ1x

2y − q1E1x,

dy
dt

= r2y(1 −
y
k2
) − α2xy − γ2xy

2 − q2E2y,

(1.14)

The authors showed that the system (1.14) may exists two saddle-node bifurcations for different bifurcation

parameters.

Now stimulated by the works of [36, 37], it is natural to incorporating the harvesting efforts to system

(1.9), here, without loss of generality, we may assume that we only harvest the mature species, and this leads

to the following system:

ẋ1(t) = b1(t − τ1)e
−
∫ t
t−τ1

r1(s)dsx1(t − τ1)

−a11(t)x
2
1(t) − a12(t)x1(t)x2(t) − d1(t)x

2
1(t)x2(t) − q1(t)E1(t)x1(t),

ẏ1(t) = b1(t)x1(t) − r1(t)y1(t) − b1(t − τ1)e
−
∫ t
t−τ1

r1(s)dsx1(t − τ1),

ẋ2(t) = b2(t − τ2)e
−
∫ t
t−τ2

r2(s)dsx2(t − τ2) − a22(t)x
2
2(t)

−a21(t)x1(t)x2(t) − d2(t)x1(t)x
2
2(t) − q2(t)E2(t)x2(t),

ẏ2(t) = b2(t)x2(t) − r2(t)y2(t) − b2(t − τ2)e
−
∫ t
t−τ2

r2(s)dsx2(t − τ2),

(1.15)

where xi(t) and yi(t)(i = 1, 2) represent the density ofmature and immature species at time t > 0, respectively;

bi(t), aij(t), ri(t), di(t), qi(t), Ei(t)(i, j = 1, 2) are all nonnegative continuous and ω-periodic functions.
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Already, there aremany scholars investigated the extinction property of the competitive systemwith toxic

substance, see [12, 13, 17–24], however, all of those works did not consider the influence of harvesting.

The aim of this paper is, by further developing the analysis technique of Li and Chen [10], Chen et al. [35]

and Montes De Oca and Vivas [32], to investigate the extinction property of the system (1.15).

The initial conditions for system (1.15) take the form

xi(θ) = ϕi(θ) > 0, yi(θ) = ψi(θ) > 0, −τ ≤ θ ≤ 0, i = 1, 2, (1.16)

where τ = max{τ1, τ2}. For the continuity of the solutions of system (1.15), in this paper, we always assume

yi(0) = ψi(0) =

0
∫

−τi

bi(s)ϕi(s)e
−
∫
0
s
ri(u)duds, i = 1, 2. (1.17)

The organization of this paper is as follows. In Section 2, we introduce some useful lemmas. In Section

3, we study the extinction property of system (1.15). In Section 4, several numeric examples are carried out to

illustrate the feasibility of the main results. We end this paper by a briefly discussion.

2 Preliminaries

Now let us state several lemmas which will be useful in the proof of our main results.

Lemma 2.1.Solutions of system (1.15) with initial conditions (1.16) and (1.17) are positive for all t > 0.

Proof. The proof of Lemma 2.1 is similar to that of Lemma 3.1 [5], and we omit the detail proof here.

Lemma 2.2. [7] Consider the following equations:

x
′

(t) = bx(t − δ) − a1x(t) − a2x
2(t),

x(t) = ϕ(t) > 0, −δ ≤ t ≤ 0,

and assume that b, a2 > 0, a1 ≥ 0 and δ ≥ 0 are constants, then:

(i) If b ≥ a1, then lim
t→+∞

x(t) =
b − a1
a2

;

(ii) If b ≤ a1, then lim
t→+∞

x(t) = 0.

Lemma 2.3. Let (x1(t), y1(t), x2(t), y2(t))
T be any solution of system (1.15) with initial conditions (1.16) and

(1.17). Then for i = 1, 2

lim sup
t→+∞

xi(t) ≤ Mi , lim sup
t→+∞

yi(t) ≤ Ni , (2.1)

where

Mi =
bMi e

−rLi τi − qLi E
L
i

aLii
, Ni =

bMi Mi

rLi

(

1 − e−r
M
i τi

)

. (2.2)

Proof. It follows from the first or third equation of system (1.15) that

ẋi(t) ≤ bi(t − τ1)e
−
∫ t
t−τi

ri(s)dsxi(t − τi) − aii(t)x
2
i (t) − qi(t)Ei(t)xi(t)

≤ bMi e
−rLi τi xi(t − τi) − a

L
iix

2
i (t) − q

L
i E

L
i xi(t).

Consider the following equation

u̇i(t) = b
M
i e

−rLi τiui(t − τi) − a
L
iiu

2
i (t) − q

L
i E

L
i ui(t)

with ui(t) = xi(t)(−τ ≤ t ≤ 0), i = 1, 2. By Lemma 2.2, lim
t→+∞

ui(t) =
bMi e

−rLi τi − qLi E
L
i

aLii
, and so,

lim sup
t→+∞

xi(t) ≤
bMi e

−rLi τi − qLi E
L
i

aLii

def
= Mi , i = 1, 2. (2.3)
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The rest of the proof is similar to that of the proof of Lemma 2.3 in [10], and we omit the detail here.

Remark 2.1. If bMi e
−rLi τi ≤ qLi E

L
i , i = 1, 2, then lim

t→+∞
xi(t) = 0, and consequently, lim

t→+∞
yi(t) = 0, i = 1, 2. That

is, overfishing will lead to the extinction of both species.

Lemma2.4. [32] (Fluctuation lemma) Let x(t) be a bounded differentiable function on (α,∞), then there exist

sequences τn → ∞, σn → ∞ such that

(a) ẋ(τn) → 0 and x(τn) → lim sup
t→∞

x(t) = x as n → ∞,

(b) ẋ(σn) → 0 and x(σn) → lim inf
t→∞

x(t) = x as n → ∞.

3 Main results

As indicated by the Remark 2.1, overfishing will leads to the extinction of both species, hence, from now on,

we make the following assumption:

bLi e
−rMi τi > qMi E

M
i , i = 1, 2. (3.1)

Before stating the main results of this section, we introduce a set of conditions

bL1e
−rM1 τ1 − qM1 E

M
1

bM2 e
−rL2τ2 − qL2E

L
2

> max
{aM12
aL22

,
aM11
aL21

,
dM1
dL2

}

(3.2)

bL1e
−rM1 τ1 − qM1 E

M
1

bM2 e
−rL2τ2 − qL2E

L
2

> max
{aM12
aL22

,
aM11 + d

M
1 M2

aL21

}

(3.3)

bL1e
−rM1 τ1 − qM1 E

M
1

bM2 e
−rL2τ2 − qL2E

L
2

> max
{aM12 + d

M
1 M1

aL22
,
aM11
aL21

}

(3.4)

bL2e
−rM2 τ2 − qM2 E

M
2

bM1 e
−rL1τ1 − qL1E

L
1

> max
{aM21
aL11

,
aM22
aL12

,
dM2
dL1

}

(3.5)

bL2e
−rM2 τ2 − qM2 E

M
2

bM1 e
−rL1τ1 − qL1E

L
1

> max
{aM21
aL11

,
aM22 + d

M
2 M1

aL12

}

(3.6)

bL2e
−rM2 τ2 − qM2 E

M
2

bM1 e
−rL1τ1 − qL1E

L
1

> max
{aM21 + d

M
2 M2

aL11
,
aM22
aL12

}

(3.7)

where Mi , i = 1, 2 are defined by (2.2).

Before we begin to prove the main results, we need several Lemmas again.

Lemma 3.1. Let (x1(t), y1(t), x2(t), y2(t))
T be any solution of system (1.15) with initial conditions (1.16) and

(1.17). Assume that (3.2) or (3.3) or (3.4) holds, then there exists a α > 0 such that x1(t) ≥ α for all t ≥ 0.

Proof. We first show that the conclusion of Lemma 3.1 holds under the assumption (3.2). It follows from

Lemma 2.3 that lim sup
t→+∞

x2(t) ≤
bM2 e

−rL2τ1−qL2E
L
2

aL22
. Given ε = 1

2

(

bL1e
−rM1 τ1−qM1 E

M
1

aM12
−
bM2 e

−rL2τ2−qM2 E
M
2

aL22

)

, there exists a T ≥ 0

such that for all t ≥ T

x2(t) ≤
bM2 e

−rL2τ1 − qL2E
L
2

aL22
+ ε =

1

2

(bL1e
−rM1 τ1 − qM1 E

M
1

aM12
+
bM2 e

−rL2τ2 − qM2 E
M
2

aL22

)

.
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So, for all t ≥ T, from the first equation of system (1.15), it follows that

ẋ1(t) ≥ bL1e
−rM1 τ1x1(t − τ1) − a

M
11x

2
1(t) − a

M
12x1(t)x2(t)

−dM1 x
2
1(t)x2(t) − q

M
1 E

M
1 x1(t)

≥ bL1e
−rM1 τ1x1(t − τ1) −

(

aM11 +
dM1
2

(

bL1e
−rM1 τ1−qM1 E

M
1

aM12
+
bM2 e

−rL2τ2−qM2 E
M
2

aL22

))

x21(t)

−
(

1
2

(

bL1e
−rM1 τ1 − qM1 E

M
1 + aM12

bM2 e
−rL2τ2−qM2 E

M
2

aL22

)

+ qM1 E
M
1

)

x1(t)

def
= Ax1(t − τ1) − Bx1(t) − Cx

2
1(t).

Let u(t) be a solution of the following equation

u̇(t) = Au(t − τ1) − Bu(t) − Cu
2(t),

with u(T + τ1) = x1(T + τ1). It follows from condition (3.1) that

A − B =
1

2

(

bL1e
−rM1 τ1 − qM1 E

M
1 − aM12

bM2 e
−rL2τ2 − qM2 E

M
2

aL22

)

> 0.

From Lemma 2.2

lim
t→+∞

u(t) =
A − B
C

= α1 > 0.

Therefore, we obtain

x1 = lim inf
t→+∞

x1(t) ≥ α1 > 0.

Given ε = 1
2α1, there exists a T1 ≥ T such that

x1(t) ≥ x1 −
α1
2

≥ α1 −
1

2
α1 =

α1
2
, t ≥ T1.

Let α2 = min{x1(t) : 0 ≤ t ≤ T1} > 0 and α = min{ α12 , α2} > 0. It follows that x1(t) ≥ α > 0 for all t ≥ 0.

Noting that above proof only use the fact

bL1e
−rM1 τ1 − qM1 E

M
1

aM12
>
bM2 e

−rL2τ2 − qM2 E
M
2

aL22
.

Condition (3.3) and (3.4) all implies this inequality holds, hence, under the assumption of (3.2) or (3.3) or (3.4),

the conclusion of Lemma 3.1 holds. This ends the proof of Lemma 3.1.

Our main results are the following Theorems.

Theorem 3.1. Assume that (3.2) holds. Then

m1 ≤ lim inf
t→+∞

x1(t) ≤ lim sup
t→+∞

x1(t) ≤ M1.

n1 ≤ lim inf
t→+∞

y1(t) ≤ lim sup
t→+∞

y1(t) ≤ N1.

lim
t→+∞

x2(t) = 0, lim
t→+∞

y2(t) = 0,

where

m1 =
bL1e

−rM1 τ1 − qM1 E
M
1

aM11
, n1 =

bL1m1

rM1

(

1 − e−r
L
1τ1

)

.

Theorem 3.2. Assume that (3.3) holds. Then the conclusions of Theorem 3.1 hold.

Theorem 3.3. Assume that (3.4) holds. Then the conclusions of Theorem 3.1 hold.
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Noting that system (1.9) is the special case of system (1.15), (qi(t) ≡ 0, Ei(t) ≡ 0, i = 1, 2) Then as a direct

corollary of Theorem 3.1, we have

Corollary 3.1. Assume that in system (1.9)

bL1e
−rM1 τ1

bM2 e
−rL2τ2

> max
{aM12
aL22

,
aM11
aL21

,
dM1
dL2

}

hold. Then
m1 ≤ lim inf

t→+∞
x1(t) ≤ lim sup

t→+∞
x1(t) ≤ M1.

n1 ≤ lim inf
t→+∞

y1(t) ≤ lim sup
t→+∞

y1(t) ≤ N1.

lim
t→+∞

x2(t) = 0, lim
t→+∞

y2(t) = 0,

where

m1 =
bL1e

−rM1 τ1

aM11
, n1 =

bL1m1

rM1

(

1 − e−r
L
1τ1

)

.

Remark 3.1. Corollary 3.1 is Theorem 3.1 of Li and Chen [10], hence we generalize the main result of [10].

As a direct corollary of Theorem 3.2 and 3.3, we have

Corollary 3.2.Assume that in system (1.9)

bL1e
−rM1 τ1

bM2 e
−rL2τ2

> max
{aM12
aL22

,
aM11 + d

M
1 M11

aL21

}

hold, where M11 =
bM1 e

−rL1τ1

aL11
. Then the conclusion of Corollary 3.1 holds.

Corollary 3.3. Assume that in system (1.9)

bL1e
−rM1 τ1

bM2 e
−rL2τ2

> max
{aM12 + d

M
1 M22

aL22
,
aM11
aL21

}

(3.8)

hold, where M22 =
bM2 e

−rL2τ1

aL22
. Then the conclusion of Corollary 3.1 holds.

Remark 3.2. As was showed in Example 1.1, though the conditions of Theorem 3.1 in [10] are not satisfied,

the second species still be possible of driving to extinction. Corollary 3.2 and 3.3 are two set of new sufficient

conditions which ensure the extinction of the second species, hence, Corollary 3.2 and 3.3 supplement and

complement the main results of [10].

Proof of Theorem 3.1. It follows from Lemma 2.1 and 2.3 that xi(t), i = 1, 2 are bounded and positive for all

t ≥ 0. Let x1 = lim inf
t→+∞

x1(t) and x2 = lim sup
t→+∞

x2(t). For above ε1 > 0, it follows from Lemma 2.3 that

x1 < M1 + ε1, x2 < M2 + ε1. (3.9)

From Lemma 3.1 we know that x1 ≥ α > 0. Obviously, x2 ≥ 0. To prove lim
t→+∞

x2(t) = 0, it suffices to show

that x2 = 0. In order to get a contradiction, we suppose that x2 > 0. According to the Fluctuation lemma

(Lemma 2.4), there exist sequences γn → +∞, σn → +∞ such that x
′

1(γn) → 0, x
′

2(σn) → 0, x1(γn) → x1 and

x2(σn) → x2 as n → +∞. It follows from the first equation of system (1.15) that

ẋ1(γn) = b1(γn − τ1)e
−
∫

γn
γn−τ1

r1(s)dsx1(γn − τ1) − a11(γn)x
2
1(γn)

−a12(γn)x1(γn)x2(γn) − d1(γn)x
2
1(γn)x2(γn) − q1(γn)E1(γn)x1(γn)

≥ bL1e
−rM1 τ1 inf

t≥γn−τ1
x1(t) − a

M
11x

2
1(γn)

−aM12x1(γn) sup
t≥γn

x2(t) − d
M
1 x

2
1(γn) sup

t≥γn

x2(t) − q
M
1 E

M
1 x1(γn).

(3.10)
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By taking the limit of the above inequality as n → +∞, we obtain the inequality

bL1e
−rM1 τ1 − qM1 E

M
1 ≤ aM11x1 + a

M
12x2 + d

M
1 x1x2. (3.11)

From the third equation of system (1.15), by a similar argument as above, we obtain

bM2 e
−rL2τ2 − qL2E

L
2 ≥ a

L
21x1 + a

L
22x2 + d

L
2x1x2. (3.12)

(3.11) is equivalent to

1 ≤
aM11

bL1e
−rM1 τ1 − qM1 E

M
1

x1 +
aM12

bL1e
−rM1 τ1 − qM1 E

M
1

x2 +
dM1

bL1e
−rM1 τ1 − qM1 E

M
1

x1x2. (3.13)

(3.12) is equivalent to

1 ≥
aL21

bM2 e
−rL2τ2 − qL2E

L
2

x1 +
aL22

bM2 e
−rL2τ2 − qL2E

L
2

x2 +
dL2

bM2 e
−rL2τ2 − qL2E

L
2

x1x2. (3.14)

(3.13) together with (3.14) leads to

A1x1 + A2x2 + A3x1x2 ≥ 0, (3.15)

where

A1 =
aM11

bL1e
−rM1 τ1 − qM1 E

M
1

−
aL21

bM2 e
−rL2τ2 − qL2E

L
2

,

A2 =
aM12

bL1e
−rM1 τ1 − qM1 E

M
1

−
aL22

bM2 e
−rL2τ2 − qL2E

L
2

,

A3 =
dM1

bL1e
−rM1 τ1 − qM1 E

M
1

−
dL2

bM2 e
−rL2τ2 − qL2E

L
2

.

It follows from (3.2) that Ai < 0, i = 1, 2, 3, this together with the fact x1 > 0, x2 > 0 leads to

A1x1 + A2x2 + A3x1x2 < 0, (3.16)

which is contradiction with (3.15). Then we obtain lim
t→+∞

x2(t) = 0. Since

y2(t) =

t
∫

t−τ2

b2(s)x2(s)e
∫ s
t
r2(u)duds,

it immediately follows that

lim
t→+∞

y2(t) = 0.

Above analysis shows that for 0 < ε <
(bL1e

−rM1 τ1 − qM1 E
M
1 )

aM12
, there exists a T1 > 0, such that for all t ≥ T1,

y2(t) < ε. Lemma 2.3 had showed that

lim sup
t→+∞

x1(t) ≤ M1, lim sup
t→+∞

y1(t) ≤ N1.

To end the proof of Theorem 3.1, it’s enough to show that

lim inf
t→+∞

x1(t) ≥ m1, lim inf
t→+∞

y1(t) ≥ n1.

For t ≥ T1 + τ, from the first equation of system (1.15), we have

ẋ1(t) ≥ b
L
1e

−rM1 τ1x1(t − τ1) − (a
M
11 + d

M
1 ε)x

2
1(t) − (a

M
12ε + q

M
1 E

M
1 )x1(t). (3.17)
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Let u(t) be the solution of the equation

u̇ = bL1e
−rM1 τ1u1(t − τ1) − (a

M
11 + d

M
1 ε)u

2
1(t) − (a

M
12ε + q

M
1 E

M
1 )u(t)

with u(T1 + τ) = x1(T1 + τ). It follows from Lemma 2.2 that

lim
t→+∞

u(t) =
bL1e

−rM1 τ1 − (aM12ε + q
M
1 E

M
1 )

aM11 + d
M
1 ε

.

Therefore, we have

lim inf
t→+∞

x1(t) ≥
bL1e

−rM1 τ1 − (aM12ε + q
M
1 E

M
1 )

aM11 + d
M
1 ε

.

Setting ε → 0, it follows that

lim inf
t→+∞

x1(t) ≥
bL1e

−rM1 τ1 − qM1 E
M
1

aM11

def
m1 .

Noting that

y1(t) =

t
∫

t−τ2

b1(s)x1(s)e
∫ s
t
r1(u)duds.

From this, one could easily obtain

lim inf
t→+∞

y1(t) ≥
bL1m1

rM1
(1 − e−r

L
1τ1 ).

The proof of Theorem 3.1 is completed.

Proof of Theorem 3.2. Let (x1(t), y1(t), x2(t), y2(t))
T be any solution of system (1.15) with initial conditions

(1.16) and (1.17). It follows from (3.3) that there exists a ε2 > 0 enough small, such that

bL1e
−rM1 τ1 − qM1 E

M
1

bM2 e
−rL2τ2 − qL2E

L
2

> max
{aM12
aL22

,
aM11 + d

M
1 (M2 + ε2)

aL21

}

. (3.18)

Let x1 and x2 be defined as that of Lemma 3.3. For above ε2 > 0, it follows from Lemma 2.3 that

x1 < M1 + ε, x2 < M2 + ε2. (3.19)

From Lemma 3.1 we know that x1 ≥ α > 0. Obviously, x2 ≥ 0. To prove lim
t→+∞

x2(t) = 0, it suffices to show that

x2 = 0. In order to get a contradiction, we suppose that x2 > 0. Already, by using the Fluctuation lemma, we

had established the inequalities (3.11) and (3.12). Now, from (3.11) and (3.19), we have

bL1e
−rM1 τ1 − qM1 E

M
1 ≤

(

aM11 + d
M
1 (M2 + ε)

)

x1 + a
M
12x2, (3.20)

which is equivalent to

1 ≤
aM11 + d

M
1 (M2 + ε)

bL1e
−rM1 τ1 − qM1 E

M
1

x1 +
aM12

bL1e
−rM1 τ1 − qM1 E

M
1

x2. (3.21)

Also, it follows from (3.12) that

1 ≥
aL21

bM2 e
−rL2τ2 − qL2E

L
2

x1 +
aL22

bM2 e
−rL2τ2 − qL2E

L
2

x2. (3.22)

(3.21) combine with (3.22) leads to

B1x1 + B2x2 ≥ 0, (3.23)

where

B1 =
aM11 + d

M
1 (M2 + ε)

bL1e
−rM1 τ1 − qM1 E

M
1

−
aL21

bM2 e
−rL2τ2 − qL2E

L
2

.
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B2 =
aM12

bL1e
−rM1 τ1 − qM1 E

M
1

−
aL22

bM2 e
−rL2τ2 − qL2E

L
2

.

Condition (3.18) implies that Bi < 0, i = 1, 2. This together with the fact x1 > 0, x2 > 0 leads to

B1x1 + B2x2 < 0, (3.24)

which is contradiction with (3.23). Then we obtain lim
t→+∞

x2(t) = 0. The rest of the proof is similar to that of

the proof of Theorem 3.1, and we omit the detail here.

Proof of Theorem 3.3. Let (x1(t), y1(t), x2(t), y2(t))
T be any solution of system (1.15) with initial conditions

(1.16) and (1.17). It follows from (3.4) that there exists a ε3 > 0 enough small, such that

bL1e
−rM1 τ1 − qM1 E

M
1

bM2 e
−rL2τ2 − qL2E

L
2

> max
{aM12 + d

M
1 (M1 + ε3)

aL22
,
aM11
aL21

}

. (3.25)

Let x1 and x2 be defined as that of Lemma 3.3. For above ε3 > 0, it follows from Lemma 2.3 that

x1 < M1 + ε3, x2 < M2 + ε3. (3.26)

From Lemma 3.1 we know that x1 ≥ α > 0. Obviously, x2 ≥ 0. To prove lim
t→+∞

x2(t) = 0, it suffices to show that

x2 = 0. In order to get a contradiction, we suppose that x2 > 0. Already, by using the Fluctuation lemma, we

had established the inequalities (3.11) and (3.12). Now, from (3.11) and (3.26), we have

bL1e
−rM1 τ1 − qM1 E

M
1 ≤ aM11x1 +

(

aM12 + d
M
1 (M1 + ε3)

)

x2, (3.27)

which is equivalent to

1 ≤
aM11

bL1e
−rM1 τ1 − qM1 E

M
1

x1 +
aM12 + d

M
1 (M1 + ε3)

bL1e
−rM1 τ1 − qM1 E

M
1

x2. (3.28)

Also, it follows from (3.12) that

1 ≥
aL21

bM2 e
−rL2τ2 − qL2E

L
2

x1 +
aL22

bM2 e
−rL2τ2 − qL2E

L
2

x2. (3.29)

(3.28) combine with (3.29) leads to

C1x1 + C2x2 ≥ 0, (3.30)

where

C1 =
aM11

bL1e
−rM1 τ1 − qM1 E

M
1

−
aL21

bM2 e
−rL2τ2 − qL2E

L
2

.

C2 =
aM12 + d

M
1 (M1 + ε3)

bL1e
−rM1 τ1 − qM1 E

M
1

−
aL22

bM2 e
−rL2τ2 − qL2E

L
2

.

Condition (3.25) implies that Ci < 0, i = 1, 2. This together with the fact x1 > 0, x2 > 0 leads to

C1x1 + C2x2 < 0, (3.31)

which is contradiction with (3.30). Then we obtain lim
t→+∞

x2(t) = 0. The rest of the proof is similar to that of

the proof of Theorem 3.1, and we omit the detail here.

Concerned with the extinction of the first species, we have the following result.

Theorem 3.4. Assume that (3.5) or (3.6) or (3.7) hold. Then

m2 ≤ lim inf
t→+∞

x2(t) ≤ lim sup
t→+∞

x2(t) ≤ M2.

n2 ≤ lim inf
t→+∞

y2(t) ≤ lim sup
t→+∞

y2(t) ≤ N2.

lim
t→+∞

x1(t) = 0, lim
t→+∞

y1(t) = 0,
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where

m2 =
bL2e

−rM2 τ2 − qM2 E
M
2

aM22
, n2 =

bL2m2

rM2

(

1 − e−r
L
2τ2

)

.

Since the proof of Theorem 3.4 is similar to that of Theorems 3.1-3.3, we omit the detail here.

As a direct corollary of Theorem 2.4, we have

Corollary 3.4. Assume that in system (1.9), one of the following three inequalities holds.

bL2e
−rM2 τ2

bM1 e
−rL1τ1

> max
{aM21
aL11

,
aM22
aL12

,
dM2
dL1

}

,

bL2e
−rM2 τ2

bM1 e
−rL1τ1

> max
{aM21
aL11

,
aM22 + d

M
2 M22

aL12

}

,

b12
Le−r

M
2 τ2

bM1 e
−rL1τ1

> max
{aM21 + d

M
2 M11

aL11
,
aM22
aL12

}

,

where Mii =
bMi e

−rLi τi

aLii
, i = 1, 2. Then

m2 ≤ lim inf
t→+∞

x2(t) ≤ lim sup
t→+∞

x2(t) ≤ M2.

n2 ≤ lim inf
t→+∞

y2(t) ≤ lim sup
t→+∞

y2(t) ≤ N2.

lim
t→+∞

x1(t) = 0, lim
t→+∞

y1(t) = 0,

where

m2 =
bL2e

−rM2 τ2

aM22
, n2 =

bL2m2

rM2

(

1 − e−r
L
2τ2

)

.

4 Examples

In this section we shall give two examples to illustrate the feasibility of main results in the previous section.

Example4.1. Consider Example 1.1 in the introduction Section. Already, we had verified

bL1e
−rM1 τ1

bM2 e
−rL2τ2

=
3

2
> 1 =

aM12
aL22

. (4.1)

Noting that

M11 =
bM1 e

−rL1τ1

aL11
=
3e−0.2

1
.

Thus,

aM11 + d
M
1 M1

aL21
=
2 + 0.2 × 3e−0.2

2
<
2 + 0.6

2
<
3

2
=
bL1e

−rM1 τ1

bM2 e
−rL2τ2

. (4.2)

(4.1) together with (4.2) shows that all the conditions of Corollary 3.2 are hold, and so, the second species will

be driven to extinction.
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Figure 1: Dynamics behaviors of the solution (x1(t), y1(t), x2(t), y2(t))
T of system (4.1) with initial condition

(φ1(θ), φ2(θ), ψ1(θ), ψ2(θ))T =(1.2, 0.4, 0.8, 0.2)T , (1.8, 0.6, 0.5, 0.2) and (0.8, 1.4, 1.5, 2)T , θ ∈ [−0.2, 0],

respectively.

Example4.2. Now let’s further incorporate the harvesting effort to system (1.11), this leads to the following

system

ẋ1(t) = 3e−0.2x1(t − 0.2) − (1.5 + 0.5 cos(t))x
2
1(t)

−(2 + sin(t))x1(t)x2(t) − 0.2x
2
1(t)x2(t) − q1(t)E1(t)x1,

ẏ1(t) = 3x1(t) − y1(t) − 3e
−0.2x1(t − 0.2),

ẋ2(t) = 2e−0.2x2(t − 0.2) − (3.5 + 0.5 cos(t))x
2
2(t)

−2x1(t)x2(t) − 0.1x1(t)(x2(t))
2 − q2(t)E2(t)x2,

ẏ2(t) = 2x2(t) − y2(t) − 2e
−0.2x2(t − 0.2),

(4.3)

where τ1 = 0.2, τ2 = 0.2, b1(t) = 4, r1(t) = 1, a11(t) = 1.5+0.5 cos(t), a12(t) = 2+ sin(t), d1(t) = 0.2, d2(t) =

0.1, b2(t) = 2, r2(t) = 1, a21(t) = 2, a22(t) = 3.5 + 0.5 cos(t).

(1) Take q1(t)E1(t) = 3, q2(t)E2(t) = 2, in this case, bMi e
−rLi τi < qLi E

L
i , i = 1, 2 holds, and so, from Remark 2.1,

this is overfishing case, and all the species will be driven to extinction. Fig 2. support this assertion.

(2) Take q1(t)E1(t) = 0.2e−0.2, q2(t)E2(t) = 0, in this case, there are no harvest on the second species, also,

the harvesting of the first species is restrict to a limited case.
bL1e

−rM1 τ1 − qM1 E
M
1

bM2 e
−rL2τ2

=
2.8

2
,

M11 =
bM1 e

−rL1τ1 − qM1 E
M
1

aL11
=
2.8e−0.2

1
.

Thus,

aM11 + d
M
1 M1

aL21
=
2 + 0.2 × 2.8e−0.2

2
<
2 + 0.6

2
<
2.8

2
=
bL1e

−rM1 τ1 − qM1 E
M
1

bM2 e
−rL2τ2

. (4.4)

aM12
aL22

= 1 <
2.8

2
=
bL1e

−rM1 τ1 − qM1 E
M
1

bM2 e
−rL2τ2

. (4.5)

(4.4) and (4.5) show that all the conditions of Corollary 3.2 are hold, then second species will be driven to

extinction. Fig. 3 also support this assertion.

(3) Take q1(t)E1(t) = 2.6e−0.2, q2(t)E2(t) = 0, in this case

bL2e
−rM2 τ2

bM1 e
−rL1τ1 − qL1E

L
1

=
2e−0.2

3e−0.2 − 2.6e−0.2
= 5.

aM21
aL11

= 2,
aM22
aL12

= 4,
dM2
dL1

=
1

2
.
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Hence
bL2e

−rM2 τ2

bM1 e
−rL1τ1 − qL1E

L
1

> max{
aM21
aL11

,
aM22
aL12

,
dM2
dL1

}.

That is, inequality (3.5) holds, from Theorem 2.4, the second species will be driven to extinction. Fig. 4 also

support this assertion.

(4) Take q1(t)E1(t) = 3, q2(t)E2(t) = 0, in this case, the first species is overfishing, while the second one is

free of harvesting. From Remark 2.1, the first species will be driven to extinction. Due to the extinction of the

first species, the second one will be permanent. Fig.5 also support this assertion.

(5) Take q1(t)E1(t) = 1.5, q2(t)E2(t) = 0. Numeric simulation (Fig. 6) shows that in this case, two species

could be coexist in a stable state.

time t
0 1 2 3 4 5 6 7 8 9 10

so
lu

tio
n 

0

0.2

0.4

0.6

0.8

1

1.2

x
1

x
2

y
1

y
2

Figure 2: Dynamics behaviors of the solution (x1(t), y1(t), x2(t), y2(t))
T of system (4.3) with initial condition

(φ1(θ), φ2(θ), ψ1(θ), ψ2(θ))T =(1.2, 0.4, 0.8, 0.2)T ,θ ∈ [−0.2, 0], where q1E1 = 3, q2E2 = 2. respectively.
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Figure 3: Dynamics behaviors of the solution (x1(t), y1(t), x2(t), y2(t))
T of system (4.3) with initial condition

(φ1(θ), φ2(θ), ψ1(θ), ψ2(θ))T =(1.2, 0.4, 0.8, 0.2)T , (1.8, 0.6, 0.5, 0.2) and (0.8, 1.4, 1.5, 2)T , θ ∈ [−0.2, 0],

respectively. Here we take q1E1 = 0.2e−0.2 , q2E2 = 0.
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Figure 4: Dynamics behaviors of the solution (x1(t), y1(t), x2(t), y2(t))
T of system (4.3) with initial condition

(φ1(θ), φ2(θ), ψ1(θ), ψ2(θ))T = (0.8, 0.4, 0.5, 0.4), θ ∈ [−0.2, 0], respectively. Here we take q1E1 =

2.6e−0.2 , q2E2 = 0.

time t
0 2 4 6 8 10 12 14 16 18 20

so
lu

tio
n 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x
1

x
2

y
1

y
2

Figure 5: Dynamics behaviors of the solution (x1(t), y1(t), x2(t), y2(t))
T of system (4.3) with initial condition

(φ1(θ), φ2(θ), ψ1(θ), ψ2(θ))T = (1.8, 0.6, 0.5, 0.2) and (0.8, 1.4, 1.5, 2)T , θ ∈ [−0.2, 0], respectively. Here we

take q1E1 = 3, q2E2 = 0.
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Figure 6: Dynamics behaviors of the solution (x1(t), y1(t), x2(t), y2(t))
T of system (4.3) with initial condition

(φ1(θ), φ2(θ), ψ1(θ), ψ2(θ))T = (0.2, 0.6, 0.5, 0.2) and (0.8, 0.4, 0.5, 0.4)T , θ ∈ [−0.2, 0], respectively. Here

we take q1E1 = 1.5, q2E2 = 0.
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5 Discusion

Li and Chen [10] proposed a two species periodic competitive stage-structured Lotka-Volterra model with the

effects of toxic substances, they studied the extinction property of the system. It is naturally to investigate the

dynamic behaviours of system (1.9) if the conditions in [10] no longer hold, Example 1.1 in the introduction

Section shows that some of the species still could be driven to extinction, this motivated us to revisit the

extinction property of the system (1.9). On the other hand, Kar and Chaudhuri [36] and Gupta, Banerjee and

Chandra [37] studied the influence of harvesting effect on the competition systemwith toxic substance. Their

success motivated us to propose a two species competitive stage-structured system with the effect of toxic

substance and harvesting (system (1.15)). We first show that due to the overfishing, two of the species will be

driven to extinction (Remark 2.1). After that, for the appropriate harvesting case, by applying the fluctuation

theorem, we are able to establish sufficient conditions which ensure one of the components be driven to

extinction.

Theorem 3.1 can be seen as the generalization of Theorem 3.1 in [10], thus, we generalize the main result

of [10] to the harvesting case. Theorem 3.2-3.4 are new results, which supplement and complement the main

results of [6] and [10].

To show the feasibility of our main results, we study a numeric example (Example 4.2), here we make an

assumption that we only harvest the first species, and if q1(t)E1(t) = 0, that is, without the capture of the first

species, the second species will be driven to extinction. Then, depending on the harvesting effect q1(t)E1(t),

the system may have the following dynamic behaviors: (1) the second species still be driven to extinction

(case (2)); (2) the first species will be driven to extinction (cases (3) and (4)); (3) two species could be coexist

in a stable state (case (5)).

Our results and numeric examples show that harvesting is one of the most important factors to influence

the dynamic behaviours of the system.
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