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Abstract—With respect to recent advances in remote sensing
technologies, the spatial resolution of airborne and spaceborne
sensors is getting finer, which enables us to precisely analyze even
small objects on the Earth. This fact has made the research area
of developing efficient approaches to extract spatial and contex-
tual information highly active. Among the existing approaches,
morphological profile and attribute profile (AP) have gained great
attention due to their ability to classify remote sensing data.
This paper proposes a novel approach that makes it possible to
precisely extract spatial and contextual information from remote
sensing images. The proposed approach is based on extinction
filters, which are used here for the first time in the remote sensing
community. Then, the approach is carried out on two well-known
high-resolution panchromatic data sets captured over Rome, Italy,
and Reykjavik, Iceland. In order to prove the capabilities of the
proposed approach, the obtained results are compared with the
results from one of the strongest approaches in the literature,
i.e., APs, using different points of view such as classification
accuracies, simplification rate, and complexity analysis. Results
indicate that the proposed approach can significantly outperform
its alternative in terms of classification accuracies. In addition,
based on our implementation, profiles can be generated in a
very short processing time. It should be noted that the proposed
approach is fully automatic.

Index Terms—Attribute profile (AP), extinction profile (EP),
image classification, random forest (RF), remote sensing data.

I. INTRODUCTION

UNDOUBTEDLY, supervised classification plays a funda-

mental role in the analysis of remote sensing images, and

many applications, such as crop monitoring, forest applications,

urban development, mapping and tracking, and risk manage-

ment, can be handled by an efficient classifier [1].
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A large amount of data with different specifications (e.g.,

spectral, spatial, and temporal resolutions) is progressively

being made available for different applications. It is now well

known that the extraction of spatial information can greatly im-

prove the classification of remote sensing images, particularly

for those with high spatial resolution [1].

Conventional spectral classifiers exploit the input image as

a stack of spectral measurements without considering their

spatial arrangement. To further improve the performance of

conventional classification approaches, one can feed spatial

information to the classification system. The spatial information

can provide extra information related to the shape and size of

different objects, which is useful to reduce the salt-and-pepper

appearance of labeled pixels and the labeling uncertainty that

exits when only spectral information is taken into account [1].

Two types of approaches are commonly used for spatial

information extraction: a crisp neighborhood system and an

adaptive neighborhood system. While the former mostly con-

siders spatial and contextual dependence within a predefined

neighborhood system, the latter is more flexible and is not

bounded within a given neighborhood system. As an example

for the first group, one can consider Markov random field

(MRF)-based approaches. For instance, in [2], a fully automatic

spatial–spatial classifier was proposed, based on the integration

of hidden MRF and Support Vector Machine (SVM). In [3], the

result of the probabilistic SVM was regularized by an MRF.

Although the spectral–spatial classifiers based on a set of crisp

neighbors can provide acceptable results in terms of classifica-

tion accuracies, their concept suffers from a few shortcomings,

such as the following: 1) a crisp neighborhood system may not

contain enough samples to characterize the specification of the

object, and consequently, this downgrades the effectiveness of

the classification step (in particular, when the input data set is of

high resolution and the neighboring pixels are highly correlated

[4]; and 2) a larger neighborhood system leads to intractable

computational problems [4].

To address the shortcomings of the crisp neighborhood sys-

tem, one can consider spectral–spatial classification approaches

based on adaptive neighborhood approaches. Among those

approaches, there are a considerable number of contributions

in the literature on the use of segmentation approaches such

as [5]–[7]. Another possible set of adaptive approaches used

to extract spatial information is based on the concept of mor-

phological profiles (MPs). MPs are composed of a number

of features constructed by applying a set of openings and

closings by reconstruction with a structuring element (SE) of

an increasing size. Pesaresi and Benediktsson [8] considered
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using morphological transformations to build an MP. There are

a considerable number of works in the literature in which MPs

have been taken into consideration. For example, in [9], an MP

was used to assess the damage caused by the earthquake in

Bam on a Quickbird panchromatic image. In [10], an automatic

hierarchical segmentation approach was proposed based on the

analysis of the derivative of the MP (DMP). The MP was also

investigated in [11] by extracting a fuzzy measure of the char-

acteristic scale and contrast of each structure in the image. The

computed measures were compared with the possibility distri-

bution predefined for each thematic class, generating a value

of membership degree for each class used for classification. In

[12], a binary optimization approach was proposed, based on

fractional-order Darwinian particle swarm optimization [13], in

order to select the most informative features produced by MP.

Based on the aforementioned examples, it can be seen that

multiscale processing based on MPs has proven to be effective

in extracting informative spatial features from images [1], [14].

However, MPs have a few limitations, for example, the shape

of SEs is fixed, and SEs are only able to extract information

related to the size of existing objects and are unable to charac-

terize information related to the gray-level characteristics of the

regions.

To overcome these shortcomings, the morphological attribute

profile (AP) was introduced in [15] as a generalization of the

MP, which provides a multilevel characterization of an image

by using the sequential application of morphological attribute

filters (AFs). AFs analyze an input image by considering

only its connected components based on a connectivity rule.

Although the AP has been recently introduced, there are a

significant number of contributions based on it for the analysis

of different types of data. For example, AFs were taken into

account in modeling the structural information of the scene to

increase the efficiency of the classification and building extrac-

tion in [15] and [16], respectively. Those approaches proved

to be efficient methods of modeling structural information in

very high resolution images. As discussed in [1], [14], and

[15], APs are a more flexible tool than MPs, since APs can

process images based on many different types of attributes.

In fact, the attributes can be of any type. For example, they

can be purely geometric, or related to the spectral values of

the pixels, or based on different characteristics, such as spatial

relations to other connected components. In [17] and [18], APs

have been investigated for the integration of optical and LiDAR

data. In [19] and [20], an automatic method was proposed for

the classification of hyperspectral data by considering only

two attributes (area and standard deviation) that are able to

accurately classify hyperspectral images in an acceptable CPU

processing time. In addition, the information provided by such

approaches (i.e., MPs and APs) can be extremely redundant

and demands an efficient form of representation in order to

avoid increasing the dimensionality of the problem, which can

downgrade the subsequent classifier performance due to the

curse of dimensionality. To address such an issue, in [21], a

sparse classification using both spectral and spatial information

was investigated based on extended multivariate AP (EMAP).

On the other hand, in [22], the performance of different feature

extraction approaches, including linear, nonlinear, and manifold

approaches, has been investigated to generate base images to

construct EMAPs. In a few works such as [1], [14], [22], and

[23], the efficiency of different classifiers has been investi-

gated for the classification of features produced by EMAP. For

instance, a few classifiers, such as kernel SVMs, can handle

high-dimensional data due to their lower sensitivity to the

imbalance between dimensionality and the number of training

samples. However, the construction of the aforementioned fil-

tering approaches leads to a very sparse feature space. In this

context, kernel SVMs may complicate the problem and lead to

overfitting of the classification model. A comprehensive survey

on APs and their capabilities for the classification of remote

sensing data can be found in [1] and [14].

Extinction filters (EFs) are extrema-oriented connected fil-

ters, which, unlike AFs, preserve the height of the extrema

kept. Souza et al. [24] showed through experiments that EFs are

better than AFs with respect to simplification for recognition.

EFs are based on the concept of extinction values proposed by

Vachier [25]. They are a generalization of the dynamics concept

[26], which is equivalent to the height extinction value, to

any increasing attribute. Informally speaking, extinction values

measure the persistence of the extrema in the image. The main

contribution of this paper is to propose a fast, accurate, and

automatic approach for the extraction of spatial and contextual

information from remote sensing data. In more detail, our main

contributions are listed in the following with respect to their

importance.

1) Above all, this paper proposes a novel approach, i.e.,

the extinction profile (EP), for information extraction and

classification. The proposed approach is based on EFs.

This approach simultaneously discards unimportant spa-

tial details and preserves the geometrical characteristics

of the other regions.

2) The most common attributes in the literature are area,

standard deviation, diagonal of the bounding box, and

moment of inertia. In this paper, we have taken into

account a few other attributes such as volume and height

and investigate their usefulness for the classification of

remote sensing data.

3) In addition, the proposed approach is extrema oriented,

in contrast to APs, which are threshold oriented, making

it less sensitive to image resolution. In other words, the

proposed approach is data set distribution independent.

This contribution makes the proposed approach fully au-

tomatic for all different attributes. It should be noted that,

although there are a few recent research works trying to

make the APs automatic [19], [20], [27], its conventional

concept is highly dependent on the threshold values of

different attributes. These values need to be set manually,

and they can be changed from one data set to another one.

However, the proposed approach can, by nature, solve this

issue.

4) The derivative of EP (DEP) is proposed by differentiating

the features produced by EP.

5) The proposed approach is applied to two well-known

panchromatic data sets. We believe that APs are among

the strongest approaches in the literature with regard
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TABLE I
LIST OF NOTATIONS AND ACRONYMS

to extracting and modeling spatial information. To this

end, we only compared the proposed approach with APs

from different perspectives, such as classification accu-

racies, analysis of complexities, simplification rate, and

recognition power. Results indicate that EP is a powerful

approach with respect to simplification for recognition,

since it preserves more regions and correspondences

found by affine region detectors. In addition, the proposed

method can significantly outperform APs in terms of

classification accuracies, and it is fully automatic.

It is important to note that the concept proposed in this paper

is being used for the first time in the remote sensing community.

In summary, in this paper, we tried to prove the capability

of the proposed approach through several experiments. The

approach is capable of providing very high classification ac-

curacy swiftly and automatically. In this context, the proposed

approach outperforms one of the most well-known approaches

in the literature, i.e., AP, in terms of classification accuracy and

automation capability within the same CPU processing time.

The rest of this paper is organized as follows. Section II

introduces the methodology of this paper. Section III is devoted

to experimental results. The main concluding remarks are pro-

vided in Section IV.

II. METHODOLOGY

The classification framework is composed of two steps:

spatial information extraction using EPs and a classification

step. For the classification step, a random forest (RF) classifier

is taken into account since it can efficiently handle the high

redundancy existing in features produced by EPs (as well as

APs). RF is a classifier composed of a collection of tree-like

classifiers. Ideally, an RF classifier should be an independent

and identically distributed randomization of weak learners. RF

uses a lot of individual decision trees, all of which are trained

(grown) to tackle the same problem. A sample is labeled as the

most frequently occurring of the classes as determined by the

individual trees [1]. The following subsections elaborate on

the proposed EPs and some primary backgrounds.

A. Notations and Acronyms

To make this paper easier to follow, Table I presents the main

notations and acronyms.

B. Fundamental Properties

Here, a few preliminary concepts of mathematical morphol-

ogy are recalled. To do so, let us consider f as a discrete

grayscale image.

• Idempotence: A transformation ψ is idempotent if the

output of the transformation is independent of the number

of times it is applied to the image, which can be mathe-

matically shown as ψ(ψ(f)) = ψ(f).
• Increasingness: A transformation is known as increasing

if and only if it keeps the ordering relation between

images, which can be mathematically shown as f ≤
g ⇔ ψ(f) ≤ ψ(g) ∀ f, g. The notation f ≤ g means

that f(x) ≤ g(x) for each pixel x in the definition domain

of the images. A few examples of increasing criteria might

include increasing attributes such as area, volume, and

size of the bounding box. In contrast, nonincreasing at-

tributes, such as scale-invariant measures (e.g., gray-level

homogeneity, shape descriptors, and region orientation),

lead to nonincreasing criteria.

• Extensivity and antiextensivity: A transformation ψ is

extensive if, for each pixel, the transformation output is

greater than or equal to the original image, which can be

mathematically shown as f ≤ ψ(f). The correspondent

property is antiextensive if f ≥ ψ(f) for all the pixels in

the image is satisfied.

• Absorption property: The absorption property is fulfilled

when two transformations, which are defined by the pa-

rameters i, j, are applied to the image, and the following

relation is verified: ψiψj = ψjψi = ψmax(i,j).

Another preliminary concept is the so-called connected com-

ponent. In a binary image, a connected component is defined as

a set of connected pixels. For grayscale images, we have the

concept of flat zone, which is defined as a set of connected

isointensity pixels. Two pixels are connected with respect to

a connectivity rule. The 4- and 8-connected are considered

common connectivity rules, in which a pixel is said to be

adjacent to four or eight of its neighboring pixels, respectively.

The connectivity can be extended by more general criteria

defining a connectivity class [28].

C. Max-Trees

In order to have efficient implementations of AFs and EFs,

one can take advantage of a tree representation of the input data,
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Fig. 1. Classical max-tree filtering (black path) and space of shapes filtering
(black + red paths).

Fig. 2. (a) Component tree and (b) max-tree corresponding to the 1-D image
with intensity values of f = {0, 6, 2, 5, 1, 1, 3, 3, 1, 0}.

which was introduced in [29]. This representation has received

much interest due to the fact that it increases the efficiency of

filtering by dividing the transformation process into three steps:

1) tree creation; 2) filtering; and 3) image restitution (see the

black path in Fig. 1) [15], [19].

The component tree [30] represents the input image through

the hierarchical relationship of its connected components. Each

node of the component tree stores all the pixels of the connected

component it represents. The max-tree can be considered as a

compact structure for the component tree representation. The

only differences are that a connected component whose area

remains unchanged for a sequence of threshold values is stored

in a single node (i.e., composite node) and each node stores

only the pixels of the connected component that are visible

in the image. In order to express this concept in a simple

way, Fig. 2 illustrates the component tree and the max-tree

corresponding to the 1-D image f = {0, 6, 2, 5, 1, 1, 3, 3, 1, 0}.

In the figure, the max-tree composite nodes are shown with

double circles. The leaves of the component tree and the max-

tree correspond to regional maxima. It should be noted that the

min-tree, which is the dual of the max-tree, can be computed

using the max-tree algorithm, with the negated image as input.

D. Max-Tree Node Attributes

One of the main advantages of the max-tree data structure is

that one can compute diverse attributes of the max-tree nodes

that can be used for filtering and object recognition purposes.

The height of a max-tree node is a contrast attribute, the area

is a size attribute, and the volume is a combination of contrast

and size. The diagonal of the bounding box enclosing the node-

connected component is a shape and size attribute. These are

all increasing attributes which can be computed through the

following equations, respectively:

μh(Ci) = max{hk − hi}
∀k∈descendants(i)

(1)

μa(Ci) =
∑

∀x∈Ci

1 (2)

μv(Ci) = μa(Ci) +
∑

k∈descendants(i)

μa(Ck)× nlevels(k)

(3)

μdiag(Ci) =
√

(xi,max − xi,min)2 + (yi,max − yi,min)2 (4)

where i is a max-tree node, Ci is its corresponding connected

component, hi is the gray level of the node i, nlevels represents

the number of sequential threshold values in which the compo-

nent stayed the same, and descendants(i) is a set containing all

the descendants of node i. xi,max, xi,min, yi,max, and yi,min are

the coordinates of the node bounding box.

The standard deviation of a max-tree node is also a contrast

attribute, but unlike the height attribute, it is a nonincreasing

attribute. It is given by the following equation:

μstd(Ci) =

√

1

μa

∑

∀x∈Ci

(f(x)− μgray−level(i))
2

(5)

where μgray−level(i) is the average gray-level intensity of node

i, which is given by

μgray−level(Ci) =
1

μa

∑

∀x∈Ci

f(x). (6)

E. Extinction Values

Extinction values are a measure of persistence of regional ex-

trema. They are a powerful tool with which to measure the per-

sistence of an attribute and are useful to discern relevant from

irrelevant extrema, usually noise. Loosely speaking, the extinc-

tion value of a regional extremum (minimum or maximum) of

any increasing attribute is the maximal size of the AF [31],

such that this extremum still exists after filtering [25].

The formal definition of the extinction value of a regional

maximum given by Vachier [25] is the following: consider M

a regional maximum of an image f , whereas Ψ = (ψλ)λ is a

family of decreasing connected antiextensive transformations.
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The extinction value corresponding to M with respect to Ψ,

which is denoted by εΨ(M), is the maximal λ value, such that

M is still a regional maxima of ψλ(f). This definition can be

expressed through the following equation:

εΨ(M) = sup {λ ≥ 0|∀μ ≤ λ,M ⊂ Max (ψµ(f))} (7)

where Max(ψµ(f)) is the set containing all the regional max-

ima of ψµ(f). Extinction values of regional minima can be

defined in a similar way. Extinction values can be efficiently

computed on the max-tree structure [32].

F. EFs

An EF is a connected filter that preserves the relevant ex-

trema of the image. This filter can be defined as follows: let

Max(f) = {M1,M2, . . . ,MN} be the set of regional maxima

of the image f . Each regional maximum Mi has a correspond-

ing extinction value ǫi, which is defined by Vachier [25]. The

EF of f set to preserve the n maxima with the highest extinction

values is given by

EFn(f) = Rδ
g(f) (8)

where Rδ
g(f) is the reconstruction by dilation [33] of the mask

image g from marker image f . The mask image g is given by

g =
n

max
i=1

{M ′
i} (9)

where max is the pixelwise maximum operation. M ′
1 is the

maximum with the highest extinction value, M ′
2 has the second

highest extinction value, and so on.

EFs can be efficiently implemented in the max-tree struc-

ture [24]. The n maxima (max-tree leaves) with the highest

extinction values with respect to the attribute being analyzed

are chosen. The nodes in the paths from these leaves to the root

are marked as to be kept. All other nodes are pruned from the

max-tree. Due to the fact that the contraction of max-tree nodes

is a connected filter, the EF is a connected filter. Moreover,

it is also idempotent. Fig. 3 illustrates a simple workflow of

the EF. Let n = 3 and nodes 8, 15, and 16 (the blue nodes) in

Fig. 3(a) be the leaves with the highest extinction values with

respect to the attribute being analyzed. The nodes in the paths

from these leaves to the root are presented in red. In Fig. 3(b),

the remaining nodes are pruned. The resulting tree is illustrated

in Fig. 3(c).

An example of a 41 × 68 region of interest of a satellite

image and the result of an area-open and an area EF are

displayed in Fig. 4. The fact that EFs preserve the height of

the maxima can be noted in the max-tree representation and the

filtered images. The tops of the buildings are much brighter in

the area EF result than in the area-open result.

EFs are closely related to dynamic openings [34], and unlike

the usual contrast and size filters, the heights of the remaining

extrema in the image are completely preserved. Souza et al.

showed that EFs are a more efficient alternative than AFs with

respect to simplification for recognition [24] since they are able

to preserve more regions and correspondences found by affine

region detectors. Another advantage of EFs over AFs is that

Fig. 3. (a) Original max-tree; the blue nodes represent the three nodes with
the highest extinction values. (b) Nodes in the path from the three leaves with
the highest extinction values to the root are presented in red. (c) Result of the
pruning of the nodes is not marked in red.

Fig. 4. (a) Original image (all max-tree nodes), (b) area open (green rectangles)
with t = 58, (c) area EF (green rectangles + blue circles) with n = 5, and
(d) max-tree representation.

EFs’ parameters are easier to set, independently of the kind

of attribute being used (e.g., area and volume), since they are

based on the number of extrema. The thresholds used by AFs

vary greatly according to the attribute being used and the data

set being analyzed and are therefore more difficult to set. In

other words, the main shortcoming of conventional APs, which

are related to the initialization of the threshold values, is being

addressed by EPs.

G. EFs With Nonincreasing Attributes

Until recently, it was not possible to compute extinction

values for nonincreasing attributes. In 2012, Xu et al. [35]

proposed an approach called space of shapes, which basically

consists of computing a max-tree from another tree represen-

tation (e.g., max-tree and min-tree). During the second tree

construction, the attribute used should be the attribute you

want to become increasing in the new representation. The

methodology described corresponds to the black path plus the

red path in Fig. 1. The second max-tree construction is much

faster than the first, since the complexity of the second max-

tree construction depends on the number of nodes in the initial

max-tree, whereas the first max-tree construction depends on

the number of image pixels, which, in general, is much higher

than the number of max-tree nodes [36].
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Fig. 5. Simple representation of EP.

H. EPs and DEPs

EPs are built by applying a sequence of thinning and

thickening transformations to a grayscale image. In other

words, EPs carry out a multilevel decomposition of the input

image based on EFs. Similar to MPs and APs, the EP can be

described as a concatenation of a thickening EP, i.e., Πφλ ,

and a thinning EP, i.e., Πγλ , computed with a generic ordered

criterion λ (also called threshold or criteria), which can be

mathematically given by

EP(f) =

⎧

⎪⎨

⎪⎩

φλ1(f), . . . , φλn−1(f), φλn(f)
︸ ︷︷ ︸

Thickening Profile (Πφ)

,

f, γλn(f), γλn−1(f), . . . , f, γλ1(f)
︸ ︷︷ ︸

Thinning Profile (Πγ)

⎫

⎪⎬

⎪⎭

(10)

and/or

EP(f) =

{
Πφλn , n = (n− i+ 1), ∀ i ∈ [1, n];
Πγλn , n = (i − n), ∀ i ∈ [n+ 1, 2n]

}

. (11)

where n is the number of thresholds (i.e., criteria). The set of

ordered thresholds λ = {λ1, λ2, . . . , λn} for λi, λj ∈ λ and

j ≥ i; the relation λi ≤ λj holds for thickening, and λi ≥ λj

holds for thinning.1 The equation also depicts that, by defining

n threshold values λ (here, the number of extrema), one will

come up with 2n+ 1 features, including n features produced

1Please note that, for the proposed method, the higher value of extrema can
provide more detail. This contrasts with the conventional thresholding approach
applied on APs, in which the higher value of the threshold causes more
smoothness. In other words, for the proposed approach, the feature produced
by the higher number of extrema is placed closer to the input image in the
profile.

by thickening, n features produced by thinning, and the input

grayscale image.

The thickening profile is considered in reverse order in which

the highly filtered out image is placed first and the original

image last. The input grayscale image f is also placed in the

profile, since it can be considered as the level zero of both the

thickening and thinning profiles. An EP can be mathematically

given as in (11), where λi represents the number of extrema

(maxima or minima) preserved by EFs, and λn > λn−1 >

· · · > λ1. Fig. 5 illustrates the general idea of the EP. As shown,

the profile is the concatenation of a set of features produced

by thinning and thickening and the input grayscale data set.

Fig. 6 is provided for a better understanding of the concept

of a profile produced by EFs. As shown, the EP is composed

of a number of features produced by an area attribute with

extrema values of 8192, 2048, 512, 128, 32, 8, and 2. The

higher number of extrema contains more detail, whereas the

smaller number smooths out the input data to a great extent.

In other words, the EP simplifies the input data by excluding

unnecessary information, based on the attribute, as the number

of extrema decreases.

In contrast to MPs that are only able to model the size and

structure of different objects, EFs are more flexible and can be

of any type. To this extent, a multi-EP (MEP) concatenates dif-

ferent EPs (e.g., area, height, volume, diagonal of the bounding

box, and standard deviation) into a single stacked vector, which

can be mathematically given by

MEP = {EPa1
,EPa2

, . . . ,EPam
} (12)

where ak, k = {1, . . . ,m}, represents different types of at-

tributes. Since different extinction attributes can extract com-

plementary spatial information, the MEP can extract more

spatial information than a single EP while, at the same time,

the computational cost of producing these features is almost

the same since the max-tree and the min-tree are computed

only once for each grayscale image (except for the standard

deviation extinction attribute) and are filtered with different

attributes at different levels.

As an example, Fig. 7 shows a profile that considers different

attributes (i.e., from top to bottom: thinning profile of area,

thickening profile of area, thinning profile of volume, thicken-

ing profile of volume, thinning profile of height and thickening

profile of height, thinning profile of diagonal of the bounding

box, thickening profile of diagonal of the bounding box, and

thinning profile of standard deviation and thickening profile of

standard deviation). The number of extrema is set as 512, 128,

64, 16, 4, and 1. In order to have a complete profile, the input

feature should be also concatenated, along with all the features,

into a stacked vector. As can be seen, the higher number of

extrema extracts more detail from the input data, whereas the

lower number of extrema considerably simplifies the input data.

By considering different attributes, a diverse set of features

can be obtained, which are useful in terms of classification

accuracy. For example, the features produced by the standard

deviation attribute are different from the ones produced by other

attributes. In other words, different features emphasize different

objects of interest while eliminating other objects.
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Fig. 6. EP made by considering an area attribute. The number of extrema is set to be 8192, 2048, 512, 128, 32, 8, and 2. The first seven features are produced by
thickening, the eighth one is the original image, and the rest are produced by thinning. The higher number of extrema contains more detail, whereas the smaller
number smooths out the input data to a great extent.

MPs are, by nature, able to fulfill the absorption property,

since they are a sequential composition of openings and clos-

ings that consider a structural element of increasing size. How-

ever, this characteristic might not be always verified by EP. If

we consider attributes that cannot fulfill the increasing property,

instead of opening and closing, one might come up with thin-

ning (or thickening). Since attribute thinning (or thickening) is

not always increasing, the absorption law might not be satisfied

in the profile. This can produce a profile in which the elements

are not sequential with respect to the attribute. For instance,

regions eliminated at a certain level of the profile might appear

again in subsequent levels associated with more relaxed criteria

[15]. This effect is not as desirable in applications for which the

order of the features with respect to the attribute is important

since it can be an issue when a derivative of the profile needs to

be computed. If the absorption property is fulfilled by filtered

images, one can obtain a progressively increased simplification

of the image as the filter values get stricter, which makes the

computation of the derivative of the profile well defined. EPs

are able to fulfill this property when the considered criterion

is increasing. Otherwise, a constraint on the criterion has to

be taken into account. The set of criteria λ = {λ1, . . . , λn}
considered in the profile must be formally ordered, leading to

γλi ⊇ γλj and φλi ⊆ φλj for i ≤ j. In EP, since the higher

number of extrema leads to more detail, the higher value of

extrema should be located closer to the original image.

The DEP is composed of the residues of two subsequent fil-

tering operations for two adjacent levels existing in the profile.

The obtained map is generated by associating each pixel with

the level in which the maximum of the DEP (evaluated at the

given pixel) occurs. Since the DEP is the derivative of the EP,

it has a number of levels that are one less than the number of

levels in the EP. Inspired by the DMP and the derivative of AP

(DAP), the DEP can be mathematically presented as

DEP(f)=

{
∆φλk , k = (n− i+ 1), ∀ i ∈ [1, n];
∆γλk , k = (i − n), ∀ i ∈ [n+ 1, 2n]

}

. (13)

In the equation, ∆φ and ∆γ are the derivative of the thickening

profile and the derivative of the thinning profile, respectively.

Fig. 8(a)–(d) shows the DEP by considering 1, 9, and 81

extrema for both thickening and thinning profiles applied on

the Rome data set (see Section III-A) for area, diagonal of the

bounding box, height, and standard deviation, respectively. In

this paper, DEP has been introduced as a new modification

of EP. Analogous to DMP and DAP, this concept can be used

for different applications such as image segmentation [10] and

classification [37]. However, here, we intentionally put the

emphasis on EP, which is the main contribution of this paper.

I. Analysis of Computational Complexity

The MP always demands two complete image transforma-

tions: one performed by a closing and the other by an opening

for each level of the profile. However, in order to produce an

EP or an AP, it is only necessary to represent the input image

once as max-tree for the thinning and once as min-tree for the
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Fig. 7. EP made by considering different attributes. (Top to bottom) Thinning and thickening profiles of area, thinning and thickening profiles of volume, thinning
and thickening profiles of height, thinning and thickening profiles of diagonal of the bounding box, and thinning and thickening profiles of standard deviation.
The number of extrema is set to be 512, 128, 64, 16, 4, and 1.
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Fig. 8. DEP made by considering levels 1, 9, and 81 extrema for both thickening and thinning profiles: (a) area, (b) diagonal of the bounding box, (c) height, and
(d) standard deviation.

TABLE II
COMPLEXITY ANALYSIS OF THE DIFFERENT STAGES IN AP AND EP COMPUTATION. THE PARAMETER “S”

REFERS TO THE NUMBER OF THRESHOLD VALUES IN THE PROFILE

thickening for the entire profile, unless it is a nonincreasing

attribute. In this case, it is necessary to build two max-trees and

two min-trees to compute the EP. The set of filtering is obtained

by sequential pruning of the same trees with different values of

criteria (for EP, the number of extrema). This greatly reduces

the burden of the analysis with respect to MPs, since the most

demanding phase of the filtering, which is the construction of a

tree [38], is done only once.

Computing EPs and APs with the same size and for the same

attribute has similar processing times. Both profiles will have to

build the max-tree and the min-tree once, compute the attribute

being analyzed, and perform the same number of filtering steps.

The main difference is that EFs have to compute the extinction

values for the attribute, but this can be done simultaneously with

the number of nodes [32]. Therefore, it does not add much to the

processing time. For nonincreasing attributes, EPs also require

a second max-tree (min-tree) construction, which APs do not

need, but this second max-tree (min-tree) can be computed

much faster, as discussed before, since its complexity is propor-

tional to the number of nodes M of the first tree instead of the

number of pixels N in the original image, and usually, M ≪ N

[36]. Another factor that influences the computational time of

building EPs and APs is the data type of the images: the max-

tree construction algorithm has different behaviors for integer

images with low quantization, high quantization, and floating-

point images. Table II summarizes the complexity of each stage

in the computation of APs and EPs for floating-point images us-

ing sequential algorithms, considering the most usual attributes.

For a complete survey on max-tree construction, filtering, and

attributes computation algorithms, please see [38]–[40].
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Fig. 9. (a) Rome satellite image and (b) its reference data.

Fig. 10. (a) Reykjavik satellite image and (b) its reference data.

TABLE III
REYKJAVIK: THE NUMBER OF TRAINING AND

TEST SAMPLES FOR DIFFERENT CLASSES

III. EXPERIMENTAL RESULTS

A. Data Sets Descriptions

1) Rome Data Set: The first data set (see Fig. 9) was cap-

tured over an urban area of Rome, Italy, which was acquired by

the QuickBird satellite. It consists of a high-resolution (0.6 m)

panchromatic image. It has nine classes, namely, buildings

(181 255 samples), blocks (109 816 samples), roads (163 529

samples), light train (16 060), vegetation (69 617 samples),

trees (90 880 samples), bare soils (81 271 samples), soil (15 057

samples), and towers (47 916 samples). The classification step

for the Rome data set is repeated ten times, randomly selecting

10% of the samples for training and the rest as test samples to

avoid any bias induced by random sampling of the training and

test samples.

2) Reykjavik Data Set: The second data set (see Fig. 10) is

a high-resolution panchromatic image of Reykjavik, Iceland,

acquired by the Ikonos satellite. This data set consists of six

classes, namely, residential, commercial, shadow, soil, high-

way, and road. The Reykjavik data set comes with the training

and test sets already split. Therefore, RF has been applied

only once to different images. The number of training and test

samples for each class is listed in Table III.

B. Algorithm Setup

An RF classifier with 200 trees is used to classify the im-

ages. In order to compare classification accuracies of different

approaches, overall accuracy (OA), average accuracy (AA),

and kappa coefficient (K) have been taken into account. The

classification procedure was evaluated using the AP and EP

features.

In [41], in order to generate the APs using the area attribute,

ten thresholds {25, 100, 500, 1000, 5000, 10 000, 20 000,

50 000, 100 000, 150 000} were taken into account. This is

our main motivation to set the number of thresholds for all

APs and EPs to 10. The AP thresholds used for the other

thresholds were chosen based on the maximum value of each

attribute, disregarding extreme values such as the root node,

which usually has a much higher attribute than the other nodes.

We divided this maximum value into ten equidistant parts. The

difficulty in choosing the thresholds for APs is one of the major

improvements that EPs address. In order to generate the EP, the

values of n used to generate the profile for different attributes

are automatically given by the following equation:

⌊αj⌋, j = 0, 1, . . . , s− 1. (14)

The total EP size is 2s+ 1, since the original image is also

included in the profile. The preceding equation was determined

experimentally. The larger α is, the larger are the differences

between consecutive images in the profile. The smaller α is,

the fewer extrema there will be, where most of the image

information is usually present [24]. Our recommendation is to

use an α between 2 and 5. In our experiments in this paper, we

used α = 2 and set s = 10, so that both the AP and the EP have

the same length, making it a fair comparison. The profiles were

computed considering the 4-connected connectivity rule.

C. Results and Discussion for EPs

1) Rome: Tables IV and V present classification accuracies

(OA, AA, and kappa coefficient) of the Rome data set by

considering AP and EP composed of a single attribute with

parameters defined in Section III-B. As can be seen, both

approaches considerably outperform the result of the RF on

the original input data (i.e., the Raw data). In this manner, the

extinction attributes EPa, EPh, EPv, EPbb, and EPstd improve

the classification accuracy of Raw by almost 43%, 38%, 42%,

38%, and 31%, respectively. The results confirm that the spatial

information extracted by EPs can significantly improve the clas-

sification accuracies of the situation when spatial information is

discarded by the classification system. The proposed approach

has also outperformed APs for all single attributes, namely,

EPa, EPh, EPv, EPbb, and EPstd, by almost 1%, 4%, 46%,

5%, and 7% in terms of OA, respectively. The main reasons

for the superior performance of EPs over APs are as follows:

the EPs’ ability to preserve more relevant regions suitable for

classification and the EFs’ ability to preserve the height of the

extrema, which is useful for differentiating among different

classes of interest. In addition, it is important to note that EPs

are not as dependent on the threshold values as APs. In other

words, EPs are initialized automatically with respect to the
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TABLE IV
ROME: CLASSIFICATION RESULTS OF THE ROME DATA SET CONSIDERING AP AND EP WITH PARAMETERS DEFINED IN SECTION III-B.

IN THIS TABLE, a, v, AND h REPRESENT THE AREA, VOLUME, AND HEIGHT ATTRIBUTES, RESPECTIVELY. METRICS AA AND

OA ARE REPORTED IN PERCENTAGES. KAPPA IS A COEFFICIENT WITH CHANGES IN THE RANGE OF 0 AND 1

TABLE V
ROME: CLASSIFICATION RESULTS OF THE ROME DATA SET CONSIDERING AP AND EP WITH PARAMETERS DEFINED IN SECTION III-B.

IN THIS TABLE, bb AND std REPRESENT THE DIAGONAL OF THE BOUNDING BOX AND STANDARD DEVIATION ATTRIBUTES, RESPECTIVELY.
METRICS AA AND OA ARE REPORTED IN PERCENTAGES. KAPPA IS A COEFFICIENT WITH CHANGES IN THE RANGE OF 0 AND 1

TABLE VI
ROME: CLASSIFICATION RESULTS OF THE ROME DATA SET CONSIDERING MAP AND MEP WITH PARAMETERS DEFINED IN SECTION III-B.

IN THIS TABLE, a, v, h, AND bb REPRESENT THE AREA, VOLUME, HEIGHT, AND DIAGONAL OF THE BOUNDING BOX ATTRIBUTES, RESPECTIVELY.
METRICS AA AND OA ARE REPORTED IN PERCENTAGES. KAPPA IS A COEFFICIENT WITH CHANGES IN THE RANGE OF 0 AND 1

TABLE VII
ROME: CLASSIFICATION RESULTS OF THE ROME DATA SET CONSIDERING MAP AND MEP WITH PARAMETERS DEFINED IN SECTION III-B. IN THIS

TABLE, a, v, h, bb, AND std REPRESENT THE AREA, VOLUME, HEIGHT, DIAGONAL OF THE BOUNDING BOX, AND STANDARD DEVIATION ATTRIBUTES,
RESPECTIVELY. METRICS AA AND OA ARE REPORTED IN PERCENTAGES. KAPPA IS A COEFFICIENT WITH CHANGES IN THE RANGE OF 0 AND 1

TABLE VIII
REYKJAVIK: CLASSIFICATION RESULTS OF THE REYKJAVIK DATA SET CONSIDERING AP AND EP WITH PARAMETERS DEFINED IN SECTION III-B.

IN THIS TABLE, a, v, h, bb, AND std REPRESENT THE AREA, VOLUME, HEIGHT, DIAGONAL OF THE BOUNDING BOX,
AND STANDARD DEVIATION ATTRIBUTES, RESPECTIVELY. METRICS AA AND OA ARE REPORTED IN

PERCENTAGES. KAPPA IS A COEFFICIENT WITH CHANGES IN THE RANGE OF 0 AND 1

number of extrema. Therefore, by considering a set of numbers,

one can obtain high classification accuracies. However, this is

not applicable to conventional APs. For APs, one needs to have

detailed information regarding the type, sensors, and spatial

resolution of the data in order to specify meaningful thresholds.

These threshold values can be varied for different attributes

and different data sets. However, this is not an issue for EPs.

In terms of multiple attributes, in some cases such as EPa,v,h,bb
and EPa,v,h,bb,std, Multi AP (MAP) provides better results in

terms of classification accuracies than MEP (see Tables VI and

VII). The reason why MAP outperforms MEP in those cases

might be that different EPs may produce a few similar features.

In this context, redundant features may reduce the quality of

the classification. However, due to our way of thresholding

for APs, we were able to initialize the threshold values with

respect to the maximum value of each attribute divided in a few

equidistant parts. As a result, with a high probability, MAP is

composed of different features that are not that similar due to

the fact that the maximum value of each attribute is different.

It is also important to note that the attributes volume and

height have been considered here for the first time along with

APs, which show their efficiency for extracting complementary

information for MAP.

2) Reykjavik: Tables VIII and IX give information on the

classification accuracies obtained by different APs, EPs, MAPs,

and MEPs, respectively. Similar to the Rome data set, both ap-

proaches exponentially boost Raw in terms of classification ac-

curacies. For instance, the extinction attributes EPa, EPh, EPv,

EPbb, and EPstd improve the classification accuracy of Raw by

approximately 21%, 4%, 15%, 17%, and 9%, respectively.
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TABLE IX
REYKJAVIK: CLASSIFICATION RESULTS OF THE REYKJAVIK DATA SET CONSIDERING MAP AND MEP WITH PARAMETERS DEFINED IN SECTION III-B.

IN THIS TABLE, a, v, h, bb, AND std REPRESENT THE AREA, VOLUME, HEIGHT, DIAGONAL OF THE BOUNDING BOX,
AND STANDARD DEVIATION ATTRIBUTES, RESPECTIVELY. METRICS AA AND OA ARE REPORTED

IN PERCENTAGES. KAPPA IS A COEFFICIENT WITH CHANGES IN THE RANGE OF 0 AND 1

With reference to the tables, EPs and MEPs provide better

results in terms of classification accuracies than APs and MAPs.

This way, EP outperforms AP for attributes a, h, v, and bb by

almost 5%, 1%, 11%, and 3% in terms of OA for attributes

area and volume, respectively. For the Reykjavik data set, APstd

improves the OA of EPstd by 6%. The main reason is because

of the way in which the thresholds have been set for APh,

which proves that the results of APs are highly dependent on

the initialization step. In terms of multiple attributes, in all

cases, namely, {a, bb}, {a, v, h}, {a, v, h, bb}, {a, stdd}, and

{a, v, h, bb, std}, MEP outperforms its alternative in terms of

OA by 4%, 6%, 5%, 4%, and 5%, respectively.

D. Structural Similarity, Image Simplification, and Affine

Region Detection Analysis

Here, we analyze the structural similarity, image simplifica-

tion, and affine region detection rates for the EP and the AP. In

order to evaluate the simplification performance, we computed

the flat-zones simplification rate given by the number of flat

zones in the filtered image divided by the number of flat zones

in the original image. This metric ranges between zero and

one, and the closer to zero this metric is, the higher the image

simplification becomes. The images’ similarity was evaluated

through the structural similarity (SSIM) index [42] between the

original image and the filtered image. This metric also ranges

between zero and one, but the higher the metric, the higher the

structural similarity of the images.

The affine region detection analysis was performed using the

maximally stable extremal region (MSER) [43] affine detector.

We chose this detector because it is the one that achieves the

best results in the survey by Mikolajczyk et al. [44], and like

EFs and AFs, it can be efficiently computed from the max-tree

structure.

The flat-zones simplification rates for each image in the

area profile are illustrated in Fig. 11. Both EP and AP have

a similar behavior, as expected, but AP simplifies the image

more. The SSIM indexes are shown in Fig. 12. EP has higher

structural similarity than most corresponding AP images in the

Rome and Reykjavik profiles. These results are due the fact

that EFs preserve the height of the extrema they keep, therefore

simplifying the image less, but preserving more image details

than AFs.

The number of MSERs detected is illustrated in Fig. 13. The

MSERs are computed from the corresponding thickening and

thinning profiles; therefore, the horizontal axis has only n+ 1
points. Index 0 corresponds to the number of regions found

in the original image, index 1 corresponds to the number of

Fig. 11. Flat-zones simplification profiles for the area EP and AP. (a) Rome.
(b) Reykjavik.

Fig. 12. SSIM profiles for the area EP and AP. (a) Rome. (b) Reykjavik.

Fig. 13. Number of MSERs detected. (a) Rome. (b) Reykjavik.

regions found in the first filtering step, and so on. The plot

shows that the number of MSERs found in the EP decreases

more slowly than in the AP. Many images in the AP find 0

MSER, which is undesirable, since this indicates that the rel-

evant information in the image was completely filtered out. We

believe that this is one of the reasons why the EP outperforms

the AP, and it is indirectly related to the problem of setting the

profile thresholds, which is much harder for APs.

E. Quick Note on Processing Time

Our max-tree implementation is a didactic one that computes

many more attributes than necessary to compute the profiles.

The max-tree structure and the filtering algorithm used are the
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Fig. 14. Area EP and area AP processing times for different profile sizes (s).

ones proposed by Souza et al. [36]. In order to illustrate the

processing times to extract APs and EPs, in Fig. 14, we display

the processing time required to compute the area EP and the

area AP with different sizes s using the Reykjavik data set.

We can see that, even without an optimized code, computation

of the profiles occurs very fast, taking less than half a second

for this data set. The processing times were measured on a

4-core virtual machine running in an Intel Xeon X5675 server

with a clock of 3.06 GHz and 12 MB of cache memory.

Our experience and the results reported by Souza et al. [24]

indicate that EPs and APs of the same size require similar

processing times.

IV. CONCLUSION

In this paper, a novel approach has been proposed for the

analysis of remote sensing data based on EFs. The proposed

approach is an EP composed of a sequence of thinning and

thickening transformations applied to a grayscale image. The

proposed approach is efficiently able to carry out a multilevel

decomposition of the input image based on EFs. In addition,

we have adopted a few new attributes, such as volume and

height, for the first time in the remote sensing community.

Furthermore, based on the proposed EP, the derivative of the

EP was proposed in this paper. Then, the proposed approach

was performed on two well-known panchromatic data sets: the

Rome and Reykjavik data sets. The obtained results have been

compared with one of the strongest approaches in the literature,

i.e., APs, from different points of view, including classification

accuracies, the complexity analysis, and the simplification and

recognition rate. With respect to the experiments, the following

promising points can be obtained: 1) EPs can significantly

outperform APs in terms of classification accuracies due to

their ability to preserve more regions and correspondences and

to preserve the height of the extrema; 2) this method works

naturally with the number of extrema, which seems to provide

better results in terms of classification accuracies and decreases

the burden of setting threshold values, which was a shortcoming

for conventional APs; 3) the EP can be generated very fast

and applied in only a few seconds; and, finally, 4) an EP is a

more efficient tool than an AP in terms of simplification for

TABLE X
PERFORMANCE EVALUATION OF APS AND EPS (AS WELL AS MAPS AND

MEPS) BASED ON DIFFERENT METRICS, NAMELY, CLASSIFICATION

ACCURACIES, AUTOMATION, COMPLEXITY, AND SIMPLIFICATION

FOR RECOGNITION. THE HIGHER THE NUMBER OF BULLETS,
THE BETTER THE PERFORMANCE OF THE INDIVIDUAL

recognition. Furthermore, the proposed approach is extrema

oriented, which makes the proposed approach fully automatic

and data set distribution independent. In other words, there is

no need to have any a priori information about the resolution,

type of the sensor, or regions; and the proposed approach can

automatically extract informative features for classification.

Table X summarizes the comparison between EPs and APs

from different points of view. The higher the number of bullets,

the better the performance of the individual.

In future, we intend to investigate the use of EP for other

types of remote sensing data and evaluate the efficiency of

different classifiers for the classification of features produced

by EP. In addition, one might consider the effectiveness of

different classifiers on APs and EPs and compare them from

different perspectives, such as the number of input features

and training samples. For example, in some papers, such as

[45], SVM could lead to better classification accuracy than

RF, whereas RF provided better results than SVM in terms of

classification accuracy in other papers, such as [23] and [27].
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