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Abstract The rapid expansion of human activities threatens ocean-wide biodiversity. Numerous 
marine animal populations have declined, yet it remains unclear whether these trends are symptomatic 
of a chronic accumulation of global marine extinction risk. We present the first systematic analysis of 
threat for a globally distributed lineage of 1,041 chondrichthyan fishes—sharks, rays, and chimaeras. 
We estimate that one-quarter are threatened according to IUCN Red List criteria due to overfishing 
(targeted and incidental). Large-bodied, shallow-water species are at greatest risk and five out of the 
seven most threatened families are rays. Overall chondrichthyan extinction risk is substantially higher 
than for most other vertebrates, and only one-third of species are considered safe. Population depletion 
has occurred throughout the world’s ice-free waters, but is particularly prevalent in the Indo-Pacific 
Biodiversity Triangle and Mediterranean Sea. Improved management of fisheries and trade is 
urgently needed to avoid extinctions and promote population recovery.
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Introduction
Populations and species are the building blocks of the communities and ecosystems that sustain humanity 

through a wide range of services (Mace et al., 2005; Díaz et al., 2006). There is increasing evidence that 

human impacts over the past 10 millennia have profoundly and permanently altered biodiversity on land, 

especially of vertebrates (Schipper et al., 2008; Hoffmann et al., 2010). The oceans encompass some of 

the earth’s largest habitats and longest evolutionary history, and there is mounting concern for the increas-

ing human influence on marine biodiversity that has occurred over the past 500 years (Jackson, 2010). So 

far our knowledge of ocean biodiversity change is derived mainly from retrospective analyses usually 

limited to biased subsamples of diversity, such as: charismatic species, commercially-important fisheries, 

and coral reef ecosystems (Carpenter et al., 2008; Collette et al., 2011; McClenachan et al., 2012; 

Ricard et al., 2012). Notwithstanding the limitations of these biased snapshots, the rapid expansion of 

fisheries and globalized trade are emerging as the principal drivers of coastal and ocean threat (Polidoro 

et al., 2008; Anderson et al., 2011b; McClenachan et al., 2012). The extent and degree of the global 

impact of fisheries upon marine biodiversity, however, remains poorly understood and highly contentious. 

Recent insights from ecosystem models and fisheries stock assessments of mainly data-rich northern 

hemisphere seas, suggest that the status of a few of the best-studied exploited species and ecosystems 

may be improving (Worm et al., 2009). However, this view is based on only 295 populations of 147 fish 

species and hence is far from representative of the majority of the world’s fisheries and fished species, 

especially in the tropics for which there are few data and often less management (Sadovy, 2005; Newton 

et al., 2007; Branch et al., 2011; Costello et al., 2012; Ricard et al., 2012).

Overfishing and habitat degradation have profoundly altered populations of marine animals 

(Hutchings, 2000; Lotze et al., 2006; Polidoro et al., 2012), especially sharks and rays (Stevens et al., 

2000; Simpfendorfer et al., 2002; Dudley and Simpfendorfer, 2006; Ferretti et al., 2010). It is not 

clear, however, whether the population declines of globally distributed species are locally reversible or 

symptomatic of an erosion of resilience and chronic accumulation of global marine extinction risk 

(Jackson, 2010; Neubauer et al., 2013). In response, we evaluate the scale and intensity of overfishing 

through a global systematic evaluation of the relative extinction risk for an entire lineage of exploited 

marine fishes—sharks, rays, and chimaeras (class Chondrichthyes)—using the Red List Categories and 

Criteria of the International Union for the Conservation of Nature (IUCN). We go on to identify, (i) the life 

eLife digest Ocean ecosystems are under pressure from overfishing, climate change, habitat 

destruction and pollution. These pressures have led to documented declines of some fishes in some 

places, such as those living in coral reefs and on the high seas. However, it is not clear whether 

these population declines are isolated one-off examples or, instead, if they are sufficiently 

widespread to risk the extinction of large numbers of species.

Most fishes have a skeleton that is made of bone, but sharks and rays have a skeleton that is 

made of cartilage. A total of 1,041 species has such a skeleton and they are collectively known as 

the Chondrichthyes. To find out how well these fish are faring, Dulvy et al. worked with more than 

300 scientists around the world to assess the conservation status of all 1,041 species.

Based on this, Dulvy et al. estimate that one in four of these species are threatened with extinction, 

mainly as a result of overfishing. Moreover, just 389 species (37.4% of the total) are considered to be 

safe, which is the lowest fraction of safe species among all vertebrate groups studied to date.

The largest sharks and rays are in the most peril, especially those living in shallow waters that are 

accessible to fisheries. A particular problem is the ‘fin trade’: the fins of sharks and shark-like rays 

are a delicacy in some Asian countries, and more than half of the chondrichthyans that enter the fin 

trade are under threat. Whether targeted or caught by boats fishing for other species, sharks and 

rays are used to supply a market that is largely unmonitored and unregulated. Habitat degradation 

and loss also pose considerable threats, particularly for freshwater sharks and rays.

Dulvy et al. identified three main hotspots where the biodiversity of sharks and rays was particularly 

seriously threatened—the Indo-Pacific Biodiversity Triangle, Red Sea, and the Mediterranean Sea—

and argue that national and international action is needed to protect them from overfishing.
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history and ecological attributes of species (and taxonomic families) that render them prone to extinction, 

and (ii) the geographic locations with the greatest number of species of high conservation concern.

Chondrichthyans make up one of the oldest and most ecologically diverse vertebrate lineages: they 

arose at least 420 million years ago and rapidly radiated out to occupy the upper tiers of aquatic food 

webs (Compagno, 1990; Kriwet et al., 2008). Today, this group is one of the most speciose lineages 

of predators on earth that play important functional roles in the top-down control of coastal and oce-

anic ecosystem structure and function (Ferretti et al., 2010; Heithaus et al., 2012; Stevens et al., 

2000). Sharks and their relatives include some of the latest maturing and slowest reproducing of all 

vertebrates, exhibiting the longest gestation periods and some of the highest levels of maternal 

investment in the animal kingdom (Cortés, 2000). The extreme life histories of many chondrichthyans 

result in very low population growth rates and weak density-dependent compensation in juvenile sur-

vival, rendering them intrinsically sensitive to elevated fishing mortality (Musick, 1999b; Cortés, 2002; 

García et al., 2008; Dulvy and Forrest, 2010).

Chondrichthyans are often caught as incidental, but are often retained as valuable bycatch of fish-

eries that focus on more productive teleost fish species, such as tunas or groundfishes (Stevens et al., 

2005). In many cases, fishing pressure on chondrichthyans is increasing as teleost target species 

become less accessible (due to depletion or management restrictions) and because of the high, and in 

some cases rising, value of their meat, fins, livers, and/or gill rakers (Fowler et al., 2002; Clarke et al., 

2006; Lack and Sant, 2009). Fins, in particular, have become one of the most valuable seafood 

commodities: it is estimated that the fins of between 26 and 73 million individuals, worth US$400-550 

million, are traded each year (Clarke et al., 2007). The landings of sharks and rays, reported to the 

Food and Agriculture Organization of the United Nations (FAO), increased steadily to a peak in 2003 

and have declined by 20% since (Figure 1A). True total catch, however, is likely to be 3–4 times greater 

than reported (Clarke et al., 2006; Worm et al., 2013). Most chondrichthyan catches are unregulated 

and often misidentified, unrecorded, aggregated, or discarded at sea, resulting in a lack of species-

specific landings information (Barker and Schluessel, 2005; Clarke et al., 2006; Iglésias et al., 2010; 

Bornatowski et al., 2013). Consequently, FAO could only be ‘hopeful’ that the catch decline is due to 

improved management rather than being symptomatic of worldwide overfishing (FAO, 2010). The 

reported chondrichthyan catch has been increasingly dominated by rays, which have made up greater 

than half of reported taxonomically-differentiated landings for the past four decades (Figure 1B). 

Chondrichthyan landings were worth US$1 billion at the peak catch in 2003, since then the value has 

dropped to US$800 million as catch has declined (Musick and Musick, 2011). A main driver of shark 

fishing is the globalized trade to meet Asian demand for shark fin soup, a traditional and usually 

expensive Chinese dish. This particularly lucrative trade in fins (not only from sharks, but also of shark-

like rays such as wedgefishes and sawfishes) remains largely unregulated across the 86 countries and 

territories that exported >9,500 mt of fins to Hong Kong (a major fin trade hub) in 2010 (Figure 1C).

Results

Red List status of chondrichthyan species
Overall, we estimate that one-quarter of chondrichthyans are threatened worldwide, based on the observed 

threat level of assessed species combined with a modeled estimate of the number of Data Deficient spe-

cies that are likely to be threatened. Of the 1,041 assessed species, 181 (17.4%) are classified as threat-

ened: 25 (2.4%) are assessed as Critically Endangered (CR), 43 (4.1%) Endangered (EN), and 113 (10.9%) 

Vulnerable (VU) (Table 1). A further 132 species (12.7%) are categorized as Near Threatened (NT). 

Chondrichthyans have the lowest percentage (23.2%, n = 241 species) of Least Concern (LC) species of all 

vertebrate groups, including the marine taxa assessed to date (Hoffmann et al., 2010). Almost half (46.8%, 

n = 487) are Data Deficient (DD) meaning that information is insufficient to assess their status (Table 1). 

DD chondrichthyans are found across all habitats, but particularly on continental shelves (38.4% of 482 

species in this habitat) and deepwater slopes (57.6%, Table 2). Of the 487 DD species for which we 

had sufficient maximum body size (n = 396) and geographic distribution data (n = 378), we were able 

to predict that at least a further 68 DD species are likely to be threatened (Table 3, Supplementary 

file 1). Accounting for the uncertainty in threat levels due to the number of DD species, we estimate 

that more than half face some elevated risk: at least one-quarter (n = 249; 24%) of chondrichthyans are 

threatened and well over one-quarter are Near Threatened (Table 1). Only 37% are predicted to be 

Least Concern (Table 1).

http://dx.doi.org/10.7554/eLife.00590
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Drivers of threat
The main threats to chondrichthyans are overexploitation through targeted fisheries and incidental 

catches (bycatch), followed by habitat loss, persecution, and climate change. While one-third of threat-

ened sharks and rays are subject to targeted fishing, some of the most threatened species (including 

sawfishes and large-bodied skates) have declined due to incidental capture in fisheries targeting other 

species. Shark-like rays, especially sawfishes, wedgefishes and guitarfishes, have some of the most valu-

able fins and are highly threatened. Although the global fin trade is widely recognized as a major driver 

of shark and ray mortality, demand for meat, liver oil, and even gillrakers (of manta and other devil rays) 

also poses substantial threats. Half of the 69 high-volume or high-value sharks and rays in the global 

fin trade are threatened (53.6%, n = 37), while low-value fins often enter trade as well, even if meat 

demand is the main fishery driver (Supplementary file 2A). Coastal species are more exposed to the 

combined threats of fishing and habitat degradation than those offshore in pelagic and deepwater 

ecosystems. In coastal, estuarine, and riverine habitats, four principal processes of habitat degradation 

(residential and commercial development, mangrove destruction, river engineering, and pollution) 

jeopardize nearly one-third of threatened sharks and rays (29.8%, n = 54 of 181, Supplementary file 2B). 

The combined effects of overexploitation and habitat degradation are most acute in freshwater, where 

over one-third (36.0%) of the 90 obligate and euryhaline freshwater chondrichthyans are threatened. 

Figure 1. The trajectory and spatial pattern of chondrichthyan fisheries catch landings and fin exports. (A) The landed catch of chondrichthyans reported to 

the Food and Agriculture Organization of the United Nations from 1950 to 2009 up to the peak in 2003 (black) and subsequent decline (red). (B) The rising 

contribution of rays to the taxonomically-differentiated global reported landed catch: shark landings (light gray), ray landings (black), log ratio [rays/sharks], 

(red). Log ratios >0 occur when more rays are landed than sharks. The peak catch of taxonomically-differentiated rays peaks at 289,353 tonnes in 2003.  

(C) The main shark and ray fishing nations are gray-shaded according to their percent share of the total average annual chondrichthyan landings reported to 

FAO from 1999 to 2009. The relative share of shark and ray fin trade exports to Hong Kong in 2010 are represented by fin size. The taxonomically-differenti-

ated proportion excludes the ‘nei’ (not elsewhere included) and generic ‘sharks, rays, and chimaeras’ category.

DOI: 10.7554/eLife.00590.003
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Their plight is exacerbated by high habitat-specificity and restricted geographic ranges (Stevens et al., 

2005). Specifically, the degradation of coastal, estuarine and riverine habitats threatened 14% of sharks 

and rays: through residential and commercial development (22 species, including river sharks Glyphis 

spp.); mangrove destruction for shrimp farming in Southeast Asia (4 species, including Bleeker’s varie-

gated stingray Himantura undulata); dam construction and water control (8 species, including Mekong 

freshwater stingray Dasyatis laosensis), and pollution (20 species). Many freshwater sharks and rays 

suffer multiple threats and have narrow geographic distributions, for example the Endangered 

Roughnose stingray (Pastinachus solocirostris) that is found only in Malaysian Borneo and Indonesia 

(Kalimantan, Sumatra and Java). Population control of sharks, in particular due to their perceived risk 

to people, fishing gear, and other fisheries has contributed to the threatened status of at least 12 species 

(Supplementary file 2B). Sharks and rays are also threatened due to capture in shark control nets 

(e.g. Dusky shark Carcharhinus obscurus), and persecution to minimise: damage to fishing nets 

(e.g. Green sawfish Pristis zijsron); their predation on aquacultured molluscs (e.g. Estuary stingray 

Dasyatis fluviorum); interference with spearfishing activity (e.g. Grey nurse shark Carcharias taurus), 

and the risk of shark attack (e.g. White shark Carcharodon carcharias). So far the threatened status of 

only one species has been directly linked to climate change (New Caledonia catshark Aulohalaelurus 

kanakorum, Supplementary file 2B). the climate-sensitivity of some sharks has been recognized (Chin 

et al., 2010) and the status of shark and ray species will change rapidly in climate cul-de-sacs, such 

as the Mediterranean Sea (Lasram et al., 2010).

Correlates and predictors of threat
Elevated extinction risk in sharks and rays is a function of exposure to fishing mortality coupled with 

their intrinsic life history and ecological sensitivity (Figures 2–6). Most threatened chondrichthyan 

species are found in depths of less than 200 m, especially in the Atlantic and Indian Oceans, and the 

Western Central Pacific Ocean (79.6%, n = 144 of 181, Figure 2). Extinction risk is greater in larger-bodied 

Table 1. Observed and predicted number and percent of chondrichthyan species in IUCN Red List categories

Taxon

Species  

number (%)

Threatened  

species number (%) CR EN VU NT LC DD

Skates and rays 539 (51.8) 107 (19.9) 14 (1.3) 28 (2.7) 65 (6.2) 62 (6.0) 114 (11.0) 256 (24.6)

Sharks 465 (44.7) 74 (15.9) 11 (1.1) 15 (1.4) 48 (4.6) 67 (6.4) 115 (11.0) 209 (20.1)

Chimaeras 37 (3.6) 0 0 0 0 3 (0.3) 12 (1.2) 22 (2.1)

All observed 1041 181 (17.4) 25 (2.4) 43 (4.1) 113 (10.9) 132 (12.7) 241 (23.2) 487 (46.8)

All predicted 249 (23.9) – – – 312 (29.9) 389 (37.4) 91 (8.7)

CR, Critically Endangered; EN, Endangered; VU, Vulnerable; NT, Near Threatened; LC, Least Concern; DD, Data Deficient. Number threatened is the 

sum total of the categories CR, EN and VU. Species number and number threatened are expressed as percentage of the taxon, whereas the percentage 

of each species in IUCN categories is expressed relative to the total number of species.

DOI: 10.7554/eLife.00590.004

Table 2. Number and percent of chondrichthyans in IUCN Red List categories by their main habitats

Habitat Species (%) Threatened (%) CR (%) EN (%) VU (%) NT (%) LC (%) DD (%)

Coastal and continental 
shelf

482 (46.3) 127 (26.3) 20 (4.1) 26 (5.4) 81 (16.8) 73 (15.1) 97 (20.1) 185 (38.4)

Neritic and  
epipelagic

39 (3.7) 17 (43.6) 0 3 (7.7) 14 (35.9) 13 (33.3) 5 (12.8) 4 (10.3)

Deepwater 479 (46.0) 25 (5.2) 2 (0.4) 6 (1.3) 17 (3.5) 45 (9.4) 133 (27.8) 276 (57.6)

Mesopelagic 8 (0.8) 0 0 0 0 0 4 (50.0) 4 (50.0)

Freshwater (obligate  
species only)

33 (3.2) 12 (36.4) 3 (9.1) 8 (24.2) 1 (3.0) 1 (3.0) 2 (6.1) 18 (54.5)

Totals 1041 181 (17.4) 25 (2.4) 43 (4.1) 113 (10.9) 132 (12.7) 241 (23.2) 487 (46.8)

CR, Critically Endangered; EN, Endangered; VU, Vulnerable; NT, Near Threatened; LC, Least Concern; DD, Data Deficient.

DOI: 10.7554/eLife.00590.005
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species found in shallower waters with narrower depth distributions, after accounting for phyloge-

netic non-independence (Figures 3 and 4). The traits with the greatest relative importance (>0.95) are 

maximum body size, minimum depth, and depth range. In comparison, geographic range (measured 

as Extent of Occurrence) has a much lower relative importance (0.79, Figure 3), and in the predictive 

models it improved the variance explained by 2% and the prediction accuracy by 1% (Table 3). The prob-

ability that a species is threatened increases by 1.2% for each 10 cm increase in maximum body length, 

and decreases by 10.3% for each 50 m deepening in the minimum depth limit of species. After ac-

counting for maximum body size and minimum depth, species with narrower depth ranges have a 

1.2% greater threat risk per 100 m narrowing of depth range. There is no significant interaction 

between depth range and minimum depth limit. Geographic range, measured as the Extent of 

Occurrence, varies over six orders of magnitude, between 354 km2 and 278 million km2 and is positively 

correlated with body size (Spearman’s ρ = 0.58), and hence is only marginally positively related to 

extinction risk over and above the effect of body size. Accounting for the body size and depth effects, 

the threat risk increases by only 0.5% for each 1,000,000 km2 increase in geographic range (Table 4). 

The explanatory and predictive power of our life history and geographic distribution models increased 

with complexity, though geographic range size contributed relatively little additional explanatory 

power and a high degree of uncertainty in the parameter estimate (Tables 3 and 4). The maximum 

variance explained was 69% (Table 4) and the predictive models (without controlling for phylogeny) 

explained 30% of the variance and prediction accuracy was 77% (Table 3).

By habitat, one-quarter of coastal and continental shelf chondrichthyans (26.3%, n = 127 of 482) and 

almost half of neritic and epipelagic species (43.6%, n = 17 of 39) are threatened. Coastal and continental 

shelf and pelagic species greater than 1 m total length have a more than 50% chance of being threatened, 

compared to ∼12% risk for a similar-sized deepwater species (Figure 5). While deepwater chondrichthyans, 

due to their slow growth and lower productivity, are intrinsically more sensitive to overfishing than their 

shallow-water relatives (García et al., 2008; Simpfendorfer and Kyne, 2009) for a given body size they are 

less threatened—largely because they are inaccessible to most fisheries (Figure 5).

As a result of their high exposure to coastal shallow-water fisheries and their large body size, sawfishes 

(Pristidae) are the most threatened chondrichthyan family and arguably the most threatened family of 

marine fishes (Figure 6). Other highly threatened families include predominantly coastal and continental 

shelf-dwelling rays (wedgefishes, sleeper rays, stingrays, and guitarfishes), as well as angel sharks and 

thresher sharks; five of the seven most threatened families are rays. Least threatened families are com-

prised of relatively small-bodied species occurring in mesopelagic and deepwater habitats (lanternsharks, 

catsharks, softnose skates, shortnose chimaeras, and kitefin sharks, Figure 6, Figure 6—source data 1).

Geographic hotspots of threat and conservation priority by habitat
Local species richness is greatest in tropical coastal seas, particularly along the Atlantic and Western 

Pacific shelves (Figure 7A). The greatest uncertainty, where the number of DD species is highest, is 

centered on four areas: (1) Caribbean Sea and Western Central Atlantic Ocean, (2) Eastern Central 

Atlantic Ocean, (3) Southwest Indian Ocean, and (4) the China Seas (Figure 7B). The megadiverse 

China Seas face the triple jeopardy of high threat in shallow waters (Figure 7CD), high species richness 

(Figure 7A), and a large number of threatened endemic species (Figure 8), combined with high risk 

due to high uncertainty in status (large number of DD species, Figure 7B). Whereas the distribution of 

Table 3. Summary of predictive Generalized Linear Models for life history and ecological correlates of IUCN status

Model

Model structure  

and hypothesis

Degrees of  

freedom, k

Log  

likelihood AICc ΔAIC

AIC  

weight

Accuracy 

(AUC) R2

1 ∼maximum length 2 −227.479 459 43.67 0.000 0.678 0.139

2 ∼ …+ minimum depth 3 −210.299 426.7 11.34 0.003 0.746 0.243

3 ∼ …+…+ depth range 4 −204.703 417.5 2.19 0.25 0.762 0.276

4 ∼ …+…+…+ geographic range 5 −202.578 415.3 0 0.748 0.772 0.298

Species were scored as threatened (CR, EN, VU) = 1 or Least Concern (LC) = 0 for n = 367 marine species. AICc is the Akaike information criterion 

corrected for small sample sizes and ΔAIC is the change in AICc. The models are ordered by increasing complexity and decreasing AIC weight (largest 

ΔAIC to lowest), coefficient of determination (R2), and prediction accuracy (measured using Area Under the Curve, AUC).

DOI: 10.7554/eLife.00590.006
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Figure 2. IUCN Red List Threat status and the depth distribution of chondrichthyans in the FAO Fishing Areas of the 

Atlantic, Indian and Pacific Oceans, and Polar Seas. Each vertical line represents the depth range (surface-ward minimum 

to the maximum reported depth) of each species and is colored according to threat status: CR (red), EN (orange), VU 

(yellow), NT (pale green), LC (green), and DD (gray). Species are ordered left to right by increasing median depth. The 

depth limit of the continental shelf is indicated by the horizontal gray line at 200 m. The Polar Seas include the following 

FAO Fishing Areas: Antarctic–Atlantic (Area 48), Indian (Area 58), Pacific (Area 88), and the Arctic Sea (Area 18).

DOI: 10.7554/eLife.00590.007

Figure 2. Continued on next page
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threat in coastal and continental shelf chondrichthyans is similar to the overall threat pattern across 

tropical and mid-latitudes, the spatial pattern of threat varies considerably for pelagic and deepwater 

species. Threatened neritic and epipelagic oceanic sharks are distributed throughout the world’s 

oceans, but there are also at least seven threat hotspots in coastal waters: (1) Gulf of California, 

(2) southeast US continental shelf, (3) Patagonian Shelf, (4) West Africa and the western Mediterranean 

Sea, (5) southeast South Africa, (6) Australia, and (7) the China Seas (Figure 7D). Hotspots of deepwater 

threatened chondrichthyans occur in three areas where fisheries penetrate deepest: (1) Southwest 

Atlantic Ocean (southeast coast of South America), (2) Eastern Atlantic Ocean, spanning from Norway to 

Namibia and into the Mediterranean Sea, and (3) southeast Australia (Figure 7E).

Hottest hotspots of threat and priority
Spatial conservation priority can be assigned using three criteria: (1) the greatest number of threatened 

species (Figure 7A), (2) greater than expected threat (residuals of the relationship between total number 

of species and total number of threatened species per cell, Figure 9), and (3) high irreplaceability—high 

numbers of threatened endemic species (Figure 8). Most threatened marine chondrichthyans (n = 

135 of 169) are distributed within, and are often 

endemic to (n = 73), at least seven distinct threat 

hotspots (e.g., for neritic and pelagic species 

Figure 7D). With the notable exception of the US 

and Australia, threat hotspots occur in the waters 

of the most intensive shark and ray fishing and 

fin-trading nations (Figure 1C). Accordingly 

these regions should be afforded high scientific 

and conservation priority (Table 5).

The greatest number of threatened species 

coincides with the greatest richness (Figure 7A 

vs 7C–E); by controlling for species richness we 

can reveal the magnitude of threat in the pelagic 

ocean and two coastal hotspots that have a 

greater than expected level of threat: the Indo-

Pacific Biodiversity Triangle and the Red Sea. 

Throughout much of the pelagic ocean, threat is 

greater than expected based on species richness 

alone, species richness is low (n = 30) and a high 

percentage (86%) are threatened (n = 16) or Near 

Threatened (n = 10). Only four are of Least Concern 

(Salmon shark Lamna ditropis, Goblin shark 

Mitsukurina owstoni, Longnose pygmy Shark 

Heteroscymnoides marleyi, and Largetooth 

cookiecutter shark Isistius plutodus) (Figure 9). The 

Indo-Pacific Biodiversity Triangle, particularly the 

Gulf of Thailand, and the islands of Sumatra, Java,  

Borneo, and Sulawesi, is a hotspot of greatest 

residual threat especially for coastal sharks and 

rays with 76 threatened species (Figure 9). Indeed, 

the Gulf of Thailand large marine ecosystem has 

The following figure supplements are available for figure 2:

Figure supplement 1. Map of Food and Agriculture Organization of the United Nations Fishing Areas and their 

codes: 18, Arctic Sea; 21, Atlantic, Northwest; 27, Atlantic, Northeast; 31, Atlantic, Western Central; 34, Atlantic, 

Eastern Central; 37, Mediterranean and Black Sea; 41, Atlantic, Southwest; 47, Atlantic, Southeast; 48, Atlantic, 

Antarctic; 51, Indian Ocean, Western; 57, Indian Ocean, Eastern; 58, Indian Ocean, Antarctic and Southern; 61, 

Pacific, Northwest; 67, Pacific, Northeast; 71, Pacific, Western Central; 77, Pacific, Eastern Central; 81, Pacific, 

Southwest; 87, Pacific, Southeast; and, 88, Pacific, Antarctic. 

DOI: 10.7554/eLife.00590.008

Figure 2. Continued

Figure 3. Standardized effect sizes with 95% confidence 

intervals from the two best explanatory models of life 

histories, geographic range and extinction risk in 

chondrichthyans. The data were standardized by 

subtracting the mean and dividing by one standard 

deviation to allow for comparison among parameters. 

The relative importance is calculated as the sum of the 

Akaike weights of the models containing each variable. 

Chondrichthyans were scored as threatened (CR, EN, 

VU) = 1 or Least Concern (LC) = 0 for n = 367 marine 

species. Threat status was modeled using General 

Linear Mixed-effects Models, with size, depth and 

geography treated as fixed effects and taxonomy 

hierarchy as a random effect to account for phyloge-

netic non-independence.

DOI: 10.7554/eLife.00590.009
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the highest threat density with 48 threatened 

chondrichthyans in an area of 0.36 million km2. 

The Red Sea residual threat hotspot has 29 threat-

ened pelagic and coastal species (Figure 9). 

There are 15 irreplaceable marine hotspots that 

harbor all 66 threatened endemic species (Figure 8; 

Supplementary file 2C).

Discussion
In a world of limited funding, conservation priori-

ties are often based on immediacy of extinction, 

the value of biodiversity and conservation oppor-

tunity (Marris, 2007). In this study, we provide 

the first estimates of the threat status and hence 

risk of extinction of chondrichthyans. Our system-

atic global assessment of the status of this lineage 

that includes many iconic predators reveals a risky 

combination of high threat (17% observed and 

23.9% estimated), low safety (Least Concern, 23% 

observed and >37% estimated), and high uncer-

tainty in their threat status (Data Deficient, 46% 

observed and 8.7% estimated). Over half of spe-

cies are predicted to be threatened or Near 

Threatened (n = 561, 53.9%, Table 1). While no 

species has been driven to global extinction— 

as far as we know—at least 28 populations of 

sawfishes, skates, and angel sharks are locally 

or regionally extinct (Dulvy et al., 2003; Dulvy 

and Forrest, 2010). Several shark species have 

not been seen for many decades. The Critically 

Endangered Pondicherry shark (Carcharhinus 

hemiodon) is known only from 20 museum speci-

mens that were captured in the heavily-fished 

inshore waters of Southeast Asia: it has not been 

seen since 1979 (Cavanagh et al., 2003). The 

now ironically-named and Critically Endangered 

Common skate (Dipturus batis) and Common angel 

shark (Squatina squatina) are regionally extinct 

from much of their former geographic range in 

European waters (Cavanagh and Gibson, 2007; 

Gibson et al., 2008; Iglésias et al., 2010). The 

Largetooth sawfish (Pristis pristis) and Smalltooth 

sawfish (Pristis pectinata) are possibly extinct 

throughout much of the Eastern Atlantic, particu-

larly in West Africa (Robillard and Séret, 2006; 

Harrison and Dulvy, 2014).

Our analysis provides an unprecedented un-

derstanding of how many chondrichthyan species 

are actually or likely to be threatened. A very high 

percentage of species are DD (46%, 487 species); 

that is one of the highest rates of Data Deficiency 

of any taxon to date (Hoffmann et al., 2010). This 

high level of uncertainty in status further elevates 

risk and presents a key challenge for future assess-

ment efforts. We outline a first step through our 

estimation that 68 DD species are likely to be 

Figure 4. Life history sensitivity, accessibility to fisheries 

and extinction risk. Probability that a species is 

threatened due to the combination of intrinsic life 

history sensitivity (maximum body size, cm total length, 

TL) and accessibility to fisheries which is represented as 

minimum depth limit, depth range, and geographic 

range size (Extent of Occurrence). The lines represent 

the variation in body size-dependent risk for the upper 

quartile, median, and lower quartile of each range 

metric. The examplar species are all of similar maximum 

body length and the difference in risk is largely due to 

differences in geographic distribution. Chondrichthyans 

were scored as threatened (CR, EN, VU) = 1 or Least 

Concern (LC) = 0 for n = 366 marine species. The lines 

are the best fits from General Linear Mixed-effects 

Models, with maximum body size and geographic 

Figure 4. Continued on next page
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threatened based on their life histories and distribu-

tion. Numerous studies have retrospectively 

explained extinction risk, but few have made a 

priori predictions of risk (Dulvy and Reynolds, 

2002; Davidson et al., 2012). Across many taxa, 

extinction risk has been shown to be a function of 

an extrinsic driver or threat (Jennings et al., 

1998; Davies et al., 2006) and the corresponding 

life history and ecological traits: large body size (low 

intrinsic rate of population increase, high trophic level), small geographic range size, and ecological spe-

cialization. Maximum body size is an essential predictor of threat status, we presume because of the close 

relationship between body size and the intrinsic rate of population increase in sharks and rays (Smith 

et al., 1998; Frisk et al., 2001; Hutchings et al., 2012). Though we note that this proximate link may 

be mediated ultimately through the time-related traits of growth and mortality (Barnett et al., 2013; 

Juan-Jordá et al., 2013). Our novel contribution is to show that depth-related geographic traits are more 

important for explaining risk than geographic range per se. The shallowness of species (minimum 

depth limit) and the narrowness of their depth range are important risk factors (Figure 3). We hypoth-

esize that this is so because shallower species are more accessible to fishing gears and those with 

narrower depth ranges have lower likelihood that a proportion of the species distribution remains 

beyond fishing activity. For example, the Endangered Barndoor skate (Dipturus laevis) was elimi-

nated throughout much of its geographic range and depth distribution due to bycatch in trawl fish-

eries, yet may have rebounded because a previously unknown deepwater population component lay 

beyond the reach of most fisheries (Dulvy, 2000; Kulka et al., 2002; COSEWIC, 2010). We find that 

geographic range (measured as Extent of Occurrence) is largely unrelated to extinction risk. This is in 

marked contrast to extinction risk patterns on land (Jones et al., 2003; Cardillo et al., 2005; Anderson 

et al., 2011a) and in the marine fossil record (Harnik et al., 2012a, 2012b), where small geographic 

range size is the principal correlate of extinction risk. We suggest that this is because fishing activity is 

now widespread throughout the world’s oceans (Swartz et al., 2010), and even species with the larg-

est ranges are exposed and often entirely encompassed by the footprint of fishing activity. By contrast, 

with a few exceptions (mainly eastern Atlantic slopes, Figure 7E), fishing has a narrow depth pene-

tration and hence species found at greater depths can still find refuge from exploitation (Morato et 

al., 2006; Lam and Sadovy de Mitcheson, 2010).

The status of chondrichthyans is arguably among the worst reported for any major vertebrate lineage 

considered thus far, apart from amphibians (Stuart et al., 2004; Hoffmann et al., 2010). The percentage 

and absolute number of threatened amphibians is high (>30% are threatened), but a greater percentage 

are Least Concern (38%), and uncertainty of status is lower (32% DD) than for chondrichthyans. Our 

discovery of the high level of threat in freshwater chondrichthyans (36%) is consistent with the 

emerging picture of the intense and unmanaged extinction risk faced by many freshwater and estuarine 

species (Darwall et al., 2011).

Our threat estimate is comparable to other marine biodiversity status assessments, but our findings 

caution that ‘global’ fisheries assessments may be underestimating risk. The IUCN Global Marine Species 

Assessment is not yet complete, but reveals varying threat levels among taxa and regions (Polidoro 

et al., 2008, 2012). The only synoptic summary to-date focused on charismatic Indo-Pacific coral reef 

ecosystem species. Of the 1,568 IUCN-assessed marine vertebrates and invertebrates, 16% (range: 

12–34% among families) were threatened (McClenachan et al., 2012). This is a conservative estimate 

of marine threat level because although they may be more intrinsically sensitive to extinction drivers, 

charismatic species are more likely to garner awareness of their status and support for monitoring and 

conservation (McClenachan et al., 2012). The predicted level of chondrichthyan threat (>24%) is dis-

tinctly greater than that provided by global fisheries risk assessments. These studies provide modeled 

estimates of the percentage of collapsed bony fish (teleost) stocks in both data-poor unassessed fish-

eries (18%, Costello et al., 2012) and data-rich fisheries (7–13%, Branch et al., 2011). This could be 

because teleosts are generally more resilient than elasmobranchs (Hutchings et al., 2012), but in 

addition we caution that analyses of biased geographic and taxonomic samples may be underesti-

mating risk of collapse in global fisheries, particularly for species with less-resilient life histories.

Our work relies on consensus assessments by more than 300 scientists. However, given the 

uncertainty in some of the underlying data that inform our understanding of threat status, such as 

distribution traits treated as fixed effects and taxonomy 

hierarchy as a random effect to account for phylogenetic 

non-independence. Each vertical line in each of the 

‘rugs’ represents the maximum body size and Red List 

status of each species: threatened (red) and LC (green).

DOI: 10.7554/eLife.00590.010

Figure 4. Continued
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fisheries catch landings data, it is worth consid-

ering whether these uncertainties mean our 

assessments are downplaying the true risk. 

While there are methods of propagating uncer-

tainty through the IUCN Red List Assessments 

(Akcakaya et al., 2000), in our experience this 

approach was uninformative for even the best-

studied species, because it generated confidence 

intervals that spanned all IUCN Categories. Instead 

it is worth considering whether our estimates of 

threat are consistent with independent quantita-

tive estimates of status. The Mediterranean Red 

List Assessment workshop in 2005 prompted 

subsequent quantitative analyses of catch landings, 

research trawl surveys, and sightings data. 

Quantitative trends could be estimated for five 

species suggesting they had declined by 96% to 

>99.9% relative to their former abundance sug-

gesting they would meet the highest IUCN Threat 

category of Critically Endangered (Ferretti et al., 

2008). By comparison the earlier IUCN regional 

assessment for these species, while suggesting 

they were all threatened, was more conservative 

for two of the five species: Hammerhead sharks 

(Sphyrna spp.)—Critically Endangered, Porbeagle 

shark (Lamna nasus)—Critically Endangered, 

Shortfin mako (Isurus oxyrinchus)—Critically 

Endangered, Blue shark (Prionace glauca)—

Vulnerable, and Thresher shark (Alopias 

vulpinus)—Vulnerable.

We can also make a complementary comparison 

to a recent analysis of the status of 112 shark and 

ray fisheries (Costello et al., 2012). The median 

biomass relative to the biomass at Maximum 

Sustainable Yield (B/BMSY) of these 112 shark and 

ray fisheries was 0.37, making them the most 

overfished groups of any of the world’s unassessed 

fisheries. Assuming BMSY occurs at 0.3 to 0.5 of 

unexploited biomass then the median biomass of 

shark and ray fisheries had declined by between 

81% and 89% by 2009. These biomass declines 

would be sufficient to qualify all of these 112 

shark and ray fisheries for the Endangered IUCN 

category if they occurred within a three-generation 

time span. By comparison our results are consider-

ably more conservative. Empirical analyses show 

that an IUCN threatened category listing is trig-

gered only once teleost fishes (with far higher den-

sity-dependent compensation) have been fished 

down to below BMSY (Dulvy et al., 2005; Porszt et 

al., 2012). Hence, our findings are consistent 

with only around one-quarter of chondrichthyan 

species having been fished down below the BMSY 

target reference point. While there may be con-

cern that expert assessments may overstate 

declines and threat, it is more likely that our con-

Figure 5. Life history, habitat, and extinction risk in 

chondrichthyans. IUCN Red List status as a function of 

maximum body size (total length, TL cm) and accessibility 

to fisheries in marine chondrichthyans in three main 

habitats: coastal and continental shelf <200 m 

(‘Continental shelf’); neritic and oceanic pelagic <200 m 

(‘Pelagic’); and, deepwater >200 m (‘Deepwater’),  

n = 367 (threatened n = 148; Least Concern n = 219). 

The upper and lower ‘rug’ represents the maximum 

Figure 5. Continued on next page
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servative consensus-based approach has under-

stated declines and risk in sharks and rays.

For marine species, predicting absolute risk of 

extinction remains highly uncertain because, even 

with adequate evidence of severe decline, in many 

instances the absolute population size remains 

large (Mace, 2004). There remains considerable un-

certainty as to the relationship between census and 

effective population size (Reynolds et al., 2005). Therefore, Red List categorization of chondrichthyans 

should be interpreted as a comparative measure of relative extinction risk, in recognition that unmanaged 

steep declines, even of large populations, may ultimately lead to ecosystem perturbations and eventually 

biological extinction. The Red List serves to raise red flags calling for conservation action, sooner rather 

than later, while there is a still chance of recovery and of forestalling permanent biodiversity loss.

Despite more than two decades of rising awareness of chondrichthyan population declines and  

collapses, there is still no global mechanism to ensure financing, implementation and enforcement of 

chondrichthyan fishery management plans that is likely to rebuild populations to levels where they 

would no longer be threatened (Lack and Sant, 2009; Techera and Klein, 2011). This management 

shortfall is particularly problematic given the large geographic range of many species. Threat increased 

only slightly when geographic range is measured as the Extent of Occurrence; however, geographic 

range becomes increasingly important when it is measured as the number of countries (legal jurisdic-

tions) spanned by each species. The proportion of species that are threatened increases markedly with 

geographic size measured by number of Exclusive Economic Zones (EEZs) spanned; one-quarter of 

threatened species span the EEZs of 18 or more countries (Figure 10). Hence, their large geographic 

ranges do not confer safety, but instead exacerbates risk because sharks and rays require coherent, 

effective international management.

With a few exceptions (e.g., Australia and USA), many governments still lack the resources, expertise, 

and political will necessary to effectively conserve the vast majority of shark and rays, and indeed many 

body size and Red List status of each species: threat-

ened (upper rugs) and Least Concern (lower rugs). The 

lines are best fit using Generalized Linear Mixed-effects 

Models with 95% confidence intervals (Table 9).

DOI: 10.7554/eLife.00590.011

Figure 5. Continued

Figure 6. Evolutionary uniqueness and taxonomic conservation priorities. Threat among marine chondrichthyan families varies with life history sensitivity 

(maximum length) and exposure to fisheries (depth distribution). (A) Proportion of threatened data sufficient species and the richness of each taxonomic 

family. Colored bands indicate the significance levels of a one-tailed binomial test at p=0.05, 0.01, and 0.001. Those families with significantly greater 

(or lower) than expected threat levels at p<0.05 against a null expectation that extinction risk is equal across families (35.6%). (B) The most and least 

threatened taxonomic families. (C) Average life history sensitivity and accessibility to fisheries of 56 chondrichthyan families. Significantly greater 

(or lower) risk than expected is shown in red (green).

DOI: 10.7554/eLife.00590.012

The following source data are available for figure 6:

Source data 1. Number and IUCN Red List status of chondrichthyan species in IUCN Red List categories by family (alphabetically within each order). 

DOI: 10.7554/eLife.00590.013
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other exploited organisms (Veitch et al., 2012). More than 50 sharks are included in Annex I (Highly 

Migratory Species) of the 1982 Law of the Sea Convention, implemented on the high seas under the 

1992 Fish Stocks Agreement, but currently only a handful enjoy species-specific protections under the 

world’s Regional Fishery Management Organizations (Table 6), and many of these have yet to be 

implemented domestically. The Migratory Sharks Memorandum of Understanding (MoU) adopted by 

the Parties to the Convention on Migratory Species (CMS) so far only covers seven sharks, yet there 

may be more than 150 chondrichthyans that regularly migrate across national boundaries (Fowler, 

2012). To date, only one of the United Nations Environment Programme’s Regional Seas Conventions, 

the Barcelona Convention for the Conservation of the Mediterranean Sea, includes chondrichthyan 

fishes and only a few of its Parties have taken concrete domestic action to implement these listings. 

Despite two decades of effort, only ten sharks and rays had been listed by the Convention on 

International Trade in Endangered Species (CITES) up to 2013 (Vincent et al., 2014). A further seven 

species of shark and ray were listed by CITES in 2013—the next challenge is to ensure effective imple-

mentation of these trade regulations (Mundy-Taylor and Crook, 2013). OSPAR (the Convention for 

the Protection of the marine Environment of the North-East Atlantic) lists many threatened shark and 

ray species, but its remit excludes fisheries issues. Many chondrichthyans qualify for listing under CITES, 

CMS, and various regional seas conventions, and should be formally considered for such action as a 

complement to action by Regional Fisheries Management Organizations (RFMOs) (Table 6).

Bans on ‘finning’ (slicing off a shark’s fins and discarding the body at sea) are the most widespread 

shark conservation measures. While these prohibitions, particularly those that require fins to remain 

attached through landing, can enhance monitoring and compliance, they have not significantly 

reduced shark mortality or risk to threatened species (Clarke et al., 2013). Steep declines and the high 

threat levels in migratory oceanic pelagic sharks suggest raising the priority of improved management 

of catch and trade through concerted actions by national governments working through RFMOs  

as well as CITES, and CMS (Table 7).

A high proportion of catch landings come from nations with a large number of threatened chon-

drichthyans and less-than-comprehensive chondrichthyan fishery management plans. Future research 

is required to down-scale these global Red List assessments and analyses to provide country-by-country 

diagnoses of the link between specific fisheries and specific threats to populations of more broadly 

distributed species (Wallace et al., 2010). Such information could be used to focus fisheries management 

and conservation interventions that are tailored to specific problems. There is no systematic global 

monitoring of shark and ray populations and the national fisheries catch landings statistics provide 

invaluable data for tracking fisheries trends in unmanaged fisheries (Newton et al., 2007; Worm 

et al., 2013). However, the surveillance power of such data could be greatly improved if collected at 

greater taxonomic resolution. While there have been continual improvements, catches are under-

reported (Clarke et al., 2006), and for those that are reported only around one-third is reported at the 

Table 4. Summary of explanatory Generalized Linear Mixed-effect Models of the life history and 

geographic distributional correlates of IUCN status

Model structure 

and hypothesis

Degrees of 

freedom, k

Log  

likelihood AICc ΔAIC

AIC 

weight

R2GLMM(m) 

of fixed 

effects only

R2GLMM(c) 

of fixed 

and random 

effects

∼ maximum length 5 −197.06 404.3 28.31 0.000 0.32 0.58

∼ …+ minimum 
depth

6 −187.013 386.3 10.29 0.005 0.48 0.65

∼ …+…+ depth 
range

7 −182.139 378.6 2.62 0.212 0.49 0.66

∼ …+…+…+ 
geographic range

8 −179.785 376.0 0 0.784 0.69 0.80

Species were scored as threatened (CR, EN, VU) = 1 or Least Concern (LC) = 0 for n = 367 marine species. AICc is 

the Akaike information criterion corrected for small sample sizes; ΔAIC is the change in AICc. The models are 

ordered by increasing complexity and decreasing AIC weight (largest ΔAIC to lowest). R2GLMM(m) is the marginal 

R2 of the fixed effects only and R2GLMM(c) is the conditional R2 of the fixed and random effects.

DOI: 10.7554/eLife.00590.014
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species level (Fischer et al., 2012). To comple-

ment improved catch landings data, we recom-

mend the development of repeat regional 

assessments of the Red List Status of chondrich-

thyans to provide an early warning of adverse 

changes in status and to detect and monitor the 

success of management initiatives and inter-

ventions. Aggregate Red List Threat indices  

for chondrichthyans, like those available for 

mammals, birds, amphibians, and hard corals 

(Carpenter et al., 2008) would provide one 

of the few global scale indicators of progress 

toward international biodiversity goals (Walpole 

et al., 2009; Butchart et al., 2010).

Our global status assessment of sharks and 

rays reveals the principal causes and severity of 

global marine biodiversity loss, and the threat 

level they face exposes a serious shortfall in the 

conservation management of commercially-

exploited aquatic species (McClenachan et al., 

2012). Chondrichthyans have slipped through 

the jurisdictional cracks of traditional national and 

international management authorities. Rather 

than accept that many chondrichthyans will inevi-

tably be driven to economic, ecological, or bio-

logical extinction, we warn that dramatic changes 

in the enforcement and implementation of the 

conservation and management of threatened 

chondrichthyans are urgently needed to ensure  

a healthy future for these iconic fishes and the 

ecosystems they support.

Methods

IUCN Red List Assessment process 
and data collection
We applied the Red List Categories and Criteria 

developed by the International Union for 

Conservation of Nature (IUCN) (IUCN, 2004) to 

1,041 species at 17 workshops involving more 

than 300 experts who incorporated all available 

information on distribution, catch, abundance, 

population trends, habitat use, life histories, 

threats, and conservation measures.

Some 105 chondrichthyan fish species had been 

assessed and published in the 2000 Red List of 

Threatened Species prior to the initiation of the 

Global Shark Red List Assessment (GSRLA). These 

assessments were undertaken by correspondence 

and through discussions at four workshops 

(1996—London, UK, and Brisbane, Australia; 

1997—Noumea, New Caledonia, and 1999—

Pennsylvania, USA). These assessments applied earlier versions of the IUCN Red List Criteria and, where 

possible, were subsequently reviewed and updated according to version 3.1 Categories and Criteria 

during the GSRLA. The IUCN Shark Specialist Group (SSG) subsequently held a series of 13 regional and 

thematic Red List workshops in nine countries around the world (Table 8). Prior to the workshops, each 

Figure 7. Global patterns of marine chondrichthyan 

diversity, threat and knowledge. (A) Total chondrichthyan 

richness, (B) the number of Data Deficient and threat 

by major habitat: (C) coastal and continental shelf 

(<200 m depth), (D) neritic and epipelagic (<200 m 

depth), and (E) deepwater slope and abyssal plain 

(>200 m) habitats. Numbers expressed as the total 

number of species in each 23,322 km2 cell. The 

numbers are hotspots refereed to in the text.

DOI: 10.7554/eLife.00590.015
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participant was asked to select species for assessment based on their expertise and research areas. 

Where possible, experts carried out research and preparatory work in advance, thus enabling more syn-

thesis to be achieved during each workshop. SSG Red List-trained personnel facilitated discussion and 

consensus sessions, and coordinated the production of global Red List Assessments for species in each 

region. For species that had previously been assessed, participants provided updated information and 

assisted in revised assessments. Experts completed assessments for some wide-ranging, globally distrib-

uted species over the course of several workshops. In total, 302 national, regional, and international 

experts from 64 countries participated in the GSRLA workshops and the production of assessments. All 

Red List Assessments were based on the collective knowledge and pooled data from dedicated experts 

Figure 9. Spatial variation in the relative extinction risk of marine chondrichthyans. Residuals of the relationship 

between total number of data sufficient chondrichthyans and total number of threatened species per cell, where 

positive values (orange to red) represent cells with higher threat than expected for their richness alone.

DOI: 10.7554/eLife.00590.017

Figure 8. Irreplaceability hotspots of the endemic threatened marine chondrichthyans. Endemics were defined as 

species with an Extent of Occurrence of <500,000 km2 (n = 66). Irreplaceable cells with the greatest number of 

small range species are shown in red, with blue cells showing areas of lower, but still significant irreplaceability. 

Irreplaceability is the sum of the inverse of the geographic range sizes of all threatened endemic species in the cell. 

A value of 0.1 means that on average a single cell represents one tenth of the global range of all the species 

present in the cell. The numbers are hotspots referred to in the text.

DOI: 10.7554/eLife.00590.016
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Figure 10. Elevated threat in chondrichthyans with 

the largest geographic ranges, spanning the 

greatest number of national jurisdictions. Frequency 

distribution of number of jurisdictions spanned by all 

chondrichthyans (black, n = 1,041) and threatened 

species only (red, n = 174), for (A) country EEZs, and 

(B) the overrepresentation of threatened species 

spanning a large number of country EEZs, shown by 

the log ratio of proportion of threatened species 

over the proportion of all species. The proportion of 

threatened species is greater than the proportion of 

all species where the log ratio = 0, which corre-

sponds to range spans of 16 and more countries.

DOI: 10.7554/eLife.00590.019

across the world, ensuring global consultation 

and consensus to achieve the best assessment for 

each species with the knowledge and resources 

available (‘Acknowledgements’). Any species 

assessments not completed during the workshops 

were finalized through subsequent correspondence 

among experts.

The SSG evaluated the status of all described 

chondrichthyan species that are considered to 

be taxonomically valid up to August 2011 (see 

“Systematics, missing species and species cov-

erage” below). Experts compiled peer-reviewed 

Red List documentation for each species, including 

data on: systematics, population trends, geo-

graphic range, habitat preferences, ecology, life 

history, threats, and conservation measures. The 

SSG assessed all species using the IUCN Red List 

Categories and Criteria version 3.1 (IUCN, 2001). 

The categories and their standard abbreviations 

are: Critically Endangered (CR), Endangered (EN), 

Vulnerable (VU), Near Threatened (NT), Least 

Concern (LC), and Data Deficient (DD). Experts 

further coded each species according to the 

IUCN Habitats, Threats and Conservation Actions 

Authority Files, enabling analysis of their habitat 

preferences, major threats and conservation action 

requirements. SSG Program staff entered all data 

into the main data fields in the IUCN Species 

Information Service Data Entry Module (SIS DEM) 

and subsequently transferred these data into  

the IUCN Species Information Service (SIS) in 

2009.

Systematics, missing species and 
species coverage
The SSG collated data on order, family, genus, 

species, taxonomic authority, commonly-used 

synonyms, English common names, other common 

names, and taxonomic notes (where relevant). 

For taxonomic consistency throughout the spe-

cies assessments, the SSG followed Leonard J V 

Compagno’s 2005 Global Checklist of Living 

Chondrichthyan Fishes (Compagno, 2005), only deviating from this where there was extensive 

opposing consensus with a clear and justifiable alternative, as adjudicated by the IUCN SSG’s Vice 

Chairs of Taxonomy, David E Ebert and William T White.

Keeping pace with the total number of chondrichthyans is a challenging task, especially given the 

need to balance immediacy against taxonomic stability. One-third of all species have been described 

in the past thirty years. Scientists have described a new chondrichthyan species, on average, almost 

every 2–3 weeks since the 1970s (Last, 2007; White and Last, 2012). Since Leonard V J Compagno 

completed the global checklist in 2005, scientists have recognized an additional ∼140 species (mostly 

new) living chondrichthyan species. This increase in the rate of chondrichthyan descriptions in recent 

years is primarily associated with the lead up to the publication of a revised treatment of the entire 

chondrichthyan fauna of Australia (Last and Stevens, 2009), requiring formal descriptions of previ-

ously undescribed taxa. In particular, three CSIRO special publications published in 2008 included 

descriptions of 70 previously undescribed species worldwide (Last et al., 2008a, 2008b, 2008c). The 

number of new species described in 2006, 2007 and 2008 was 21, 23, and 81, respectively, with all but 

http://dx.doi.org/10.7554/eLife.00590
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nine occurring in the Indo–West Pacific. Additional nominal species of chondrichthyans are also 

included following resurrection of previously unrecognized species such as the resurrection of 

Pastinachus atrus for the Indo–Australian region, previously considered a synonym of P. sephen (Last 

and Stevens, 1994). Scientists excluded some nominal species of dubious taxonomic validity from 

this assessment. Thus, the total number of chondrichthyan species referred to in this paper (1,041) 

does not include all recent new or resurrected species, which require future work for their inclusion in 

the GSRLA.

Many more as yet undescribed chondrichthyan species exist. The chondrichthyan faunas in several 

parts of the world (e.g., the northern Indian Ocean) are poorly known and a large number of species 

are likely to represent complexes of several distinct species that require taxonomic resolution, for 

example some dogfishes, skates, eagle rays, and stingrays (Iglésias et al., 2010; White and Last, 

2012). Many areas of the Indian and Pacific Oceans are largely unexplored and, given the level of 

micro-endemism documented for a number of chondrichthyan groups, it is likely that many more 

species will be discovered in the future (Last, 2007; Naylor et al., 2012). For example, recent surveys 

of Indonesian fish markets revealed more than 20 new species of sharks out of the approximately 130 

recorded in total (White et al., 2006; Last, 2007; Ward et al., 2008).

Distribution maps
SSG experts created a shapefile of the geographic 

distribution for each chondrichthyan species with 

GIS software using the standard mapping protocol 

for marine species devised by the IUCN GMSA 

team (http://sci.odu.edu/gmsa/). The map shows 

the Extent of Occurrence of the species cut to 

one of several standardized basemaps depending 

on the ecology of the species (i.e., coastal and 

continental shelf, pelagic and deepwater). The 

distribution maps for sharks are based on orig-

inal maps provided by the FAO and Leonard JV 

Compagno. Maps for some of the batoids were 

originally provided by John McEachran. New maps 

for recently described species were drafted 

where necessary. The original maps were updated, 

corrected, or verified by experts at the Red List 

workshops or out-of-session assessors and SSG 

staff and then sent to the GMSA team who mod-

ified the shapefiles and matched them to the dis-

tributional text within the assessment.

Occurrence and habitat preference
SSG assessors assigned countries of occurrence 

from the ‘geographic range’ section of the Red 

List documentation and classified species to the 

FAO Fishing Areas (http://www.iucnredlist.org/

technical-documents/data-organization) in which 

they occur (Figure 2—figure supplement 1). 

Each species was coded according to the IUCN 

Habitats Authority File (http://www.iucnredlist.

org/technical-documents/classification-schemes/

habitats-classification-scheme-ver3). These cate-

gorizations are poorly developed and often irrel-

evant for coastal and offshore marine animals. 

For the purposes of analysis presented here we 

assigned chondrichthyans to five unique habi-

tat-lifestyle combinations (coastal and continental 

shelf, pelagic, meso- and bathypelagic, deepwater, 

Table 6. Progress toward regional and 

international RFMO management measures  

for sharks and rays

1. Bans on ‘finning’ (the removal of a shark’s fins and 
discarding the carcass at sea) through most RFMOs 
(Fowler and Séret, 2010);

2. North East Atlantic Fisheries Commission (NEAFC) 
bans on directed fishing for species not actually 
targeted within the relevant area (Spiny dogfish 
[Squalus acanthias], Basking shark [Cetorhinus 
maximus], Porbeagle shark [Lamna nasus]) (NEAFC, 
2009);

3. Convention on the Conservation of Antarctic Marine 
Living Resources bans on ‘directed’ fishing for skates 
and sharks and bycatch limits for skates (CCMLR, 
2011);

4. A Northwest Atlantic Fisheries Organization (NAFO) 
skate quota (note: this has consistently been set higher 
than the level advised by scientists since its 
establishment in 2004) (NAFO, 2011);

5. International Commission for the Conservation of 
Atlantic Tunas (ICCAT) bans on retention, 
transshipment, storage, landing, and sale of Bigeye 
Thresher (Alopias superciliosus), and Oceanic whitetip 
shark (Carcharhinus longimanus), and partial bans 
(developing countries excepted under certain 
circumstances) on retention, transshipment, storage, 
landing, and sale of most hammerheads (Sphyrna spp.), 
and retention, transshipment, storage, and landing (but 
not sale) of Silky shark (Carcharhinus falciformis) (Kyne 
et al., 2012);

6. An Inter-American Tropical Tuna Commission (IATTC) 
ban on retention, transshipment, storage, landing, and 
sale of Oceanic whitetip sharks (IATTC, 2011);

7. An Indian Ocean Tuna Commission (IOTC) ban on 
retention, transshipment, storage, landing, and sale of 
thresher sharks-with exceptionally low compliance and 
reportedly low effectiveness (IOTC, 2011); and,

8. A Western and Central Pacific Fisheries Commission 
ban on retention, transshipment, storage, and landing 
(but not sale) of Oceanic whitetip sharks (Clarke et al., 
2013).
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and freshwater) mainly according to depth distri-

bution and, to a lesser degree, position in the 

water column. The pelagic group includes both 

neritic (pelagic on the continental shelf) and epi-

pelagic oceanic (pelagic in the upper 200 m of 

water over open ocean) species. Species habitats 

were classified based on the findings from the 

workshops combined with a review of the pri-

mary literature, FAO fisheries guides and field 

guides (Cavanagh et al., 2003; Cavanagh and 

Gibson, 2007; Cavanagh et al., 2008; Gibson 

et al., 2008; Camhi et al., 2009; Kyne et al., 

2012). Species habitat classifications tended to 

be similar across families, but for some species 

the depth distributions often spanned more than 

one depth category and for these species habitat 

was assigned according to the predominant loca-

tion of each species throughout the majority of its 

life cycle (Compagno, 1990). This issue was mainly 

confined to coastal and continental shelf species 

that exhibited distributions extending down the 

continental slopes (e.g., some Dasyatis, Mustelus, 

Rhinobatos, Scyliorhinus, Squalus, and Squatina). 

We caution that some of the heterogeneity in 

depth distribution or unusually large distributions 

may reflect taxonomic uncertainty and the exist-

ence of species complexes (White and Last, 

2012). We defined the deep sea as beyond the 

continental and insular shelf edge at depths greater 

than or equal to 200 m. Coastal and continental 

shelf includes predominantly demersal species 

(those spending most time dwelling on or near 

the seabed), and excluded neritic chondrichthy-

ans. Pelagic species included macrooceanic and 

tachypelagic ocean-crossing epipelagic sharks 

with circumglobal distributions as well as sharks 

suspected of ocean-crossing because they exhibit 

circumglobal but disjunct distributions, for example 

Galapagos shark (Carcharhinus galapagensis).

Our classification resulted in a total of 33 obli-

gate freshwater and 1,008 marine and euryhaline 

chondrichthyans of which 482 species were found 

predominantly in coastal and continental shelf, 39 

in pelagic, 479 in deepwater, and eight in meso- 

and bathypelagic habitats. To evaluate whether 

the geographic patterns of threat are robust to 

alternate unique or multiple habitat classifications 

we considered two alternate classification schemes, 

one where species were classified into a single 

habitat and another where species were classified 

in one or more habitats. The alternate unique 

classification scheme yielded 42 pelagic (Camhi 

et al., 2009), and 452 deepwater chondrichthyans 

(Kyne and Simpfendorfer, 2007), leaving 517 

coastal and continental shelf and 33 obligate 

freshwater species (totaling 1,044, based on an 

Table 7. Management recommendations: the 

following actions would contribute to rebuilding 

threatened chondrichthyan populations and 

properly managing associated fisheries

Fishing nations and regional fisheries management 
organizations (RFMOs) are urged to:

 1. Implement, as a matter of priority, scientific advice 
for protecting habitat and/or preventing overfishing of 
chondrichthyan populations;

 2. Draft and implement Plans of Action pursuant to 
the International Plan Of Action (IPOA–Sharks), which 
include, wherever possible, binding, science-based 
management measures for chondrichthyans and their 
essential habitats;

 3. Significantly increase observer coverage, 
monitoring, and enforcement in fisheries taking 
chondrichthyans;

 4. Require the collection and accessibility of 
species-specific chondrichthyan fisheries data, including 
discards, and penalize non-compliance;

 5. Conduct population assessments for 
chondrichthyans;

 6. Implement and enforce chondrichthyan fishing 
limits in accordance with scientific advice; when 
sustainable catch levels are uncertain, set limits based 
on the precautionary approach;

 7. Strictly protect chondrichthyans deemed 
exceptionally vulnerable through Ecological Risk 
Assessments and those classified by IUCN as Critically 
Endangered or Endangered;

 8. Prohibit the removal of shark fins while onboard 
fishing vessels and thereby require the landing of sharks 
with fins naturally attached; and,

 9. Promote research on gear modifications, fishing 
methods, and habitat identification aimed at mitigating 
chondrichthyan bycatch and discard mortality.

National governments are urged to:

 10. Propose and work to secure RFMO management 
measures based on scientific advice and the 
precautionary approach;

 11. Promptly and accurately report species-specific 
chondrichthyan landings to relevant national and 
international authorities;

 12. Take unilateral action to implement domestic 
management for fisheries taking chondrichthyans, 
including precautionary limits and/or protective status 
where necessary, particularly for species classified by 
IUCN as Vulnerable, Endangered or Critically 
Endangered, and encourage similar actions by other 
Range States;

 13. Adopt bilateral fishery management agreements 
for shared chondrichthyan populations;

 14. Ensure active membership in Convention on 
International Trade in Endangered Species (CITES), 
Convention for the Conservation of Migratory 
Species (CMS), RFMOs, and other relevant regional 
and international agreements;

 15. Fully implement and enforce CITES 
chondrichthyan listings based on solid non-detriment 
findings, if trade in listed species is allowed;

Table 7. Continued on next page
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older taxonomic scheme). When species were 

classified in more than one habitat this resulted in 

513 species in the coastal and continental shelf, 

564 in deepwater, 54 in pelagic, and 13 meso- 

and bathypelagic habitats. We found the geo-

graphic pattern of threat was robust to the choice 

of habitat classification scheme, and we present 

only the unique classification (482 coastal and 

continental shelf, 39 pelagic, 479 deepwater hab-

itat species).

Major threats
SSG assessors coded each species according to 

the IUCN Major threat Authority File (http://www.

iucnredlist.org/technical-documents/classification-schemes/habitats-classification-scheme-ver3). 

We coded threats that appear to have an important impact, but did not describe their relative impor-

tance for each species.

The term ‘bycatch’ and its usage in the IUCN Major threat Authority File do not capture the 

complexity and values of chondrichthyan fisheries. Some chondrichthyans termed ‘bycatch’ are actually 

caught as ‘incidental or secondary catch’ as they are used to a similar extent as the target species or 

are sometimes highly valued or at least welcome when the target species is absent. ‘Unwanted bycatch’ 

refers to cases where the chondrichthyans are not used and fishers would prefer to avoid catching 

them (Clarke, S personal communication, Sasama Consulting, Shizuoka, Japan). If the levels of unwanted 

bycatch are severe enough, chondrichthyans can be actively persecuted to avoid negative and costly 

gear interactions—such as caused the near extirpation of the British Columbian population of Basking 

shark (Cetorhinus maximus) (Wallace and Gisborne, 2006).

Red List Assessment
We assigned a Red List Assessment category for each species based on the information above using 

the revised 2001 IUCN Red List Categories and Criteria (version 3.1; http://www.iucnredlist.org/technical-

documents/categories-and-criteria). We provided a rationale for each assessment justifying the classi-

fication along with a description of the relevant criteria used in the designation. Data fields also present 

the reason for any change in Red List categories from previous assessments (i.e., genuine change in 

status of species, new information on the species available, incorrect data used in previous assessments, 

change in taxonomy, or previously incorrect criteria assigned to species); the current population trend 

(i.e., increasing, decreasing, stable, unknown); date of assessment; names of assessors and evaluators 

(effectively the peer-reviewers); and any notes relevant to the Red List category. The Red List docu-

mentation for each species assessment is supported by references to the primary and secondary literature 

cited in the text.

Data entry, review, correction, and consistency checking
Draft regional Red List Assessments and supporting data were collated and peer-reviewed during the 

workshops and through subsequent correspondence to produce the global assessment for each 

species. At least one member of the SSG Red List team was present at each of the workshops to facilitate 

a consistent approach throughout the data collection, review and evaluation process. Once experts 

had produced draft assessments, SSG staff circulated summaries (comprised of rationales, Red List 

Categories and Criteria) to the entire SSG network for comment. As the workshops took place over a 

>10-year period, some species assessments were reviewed and updated at subsequent workshops or 

by correspondence. Each assessment received a minimum of two independent evaluations as a part of 

the peer-review process, either during or subsequent to the consensus sessions (a process involving 

65 specialists and experts across 23 participating countries) prior to entry into the database and 

submission to the IUCN Red List Unit.

SSG Red List-trained personnel undertook further checks of all assessments to ensure consistent 

application of the Red List Categories and Criteria to each species, and the then SSG Co-chair Sarah 

L Fowler, thoroughly reviewed every assessment produced from 1996 to 2009. Following the data 

review and evaluation process, all species assessments were entered in the Species Information Service 

database and checked again by SSG Red List Unit staff. IUCN Red List Program staff made the final 

 16. Propose and support the listing of additional 
threatened chondrichthyan species under CITES and 
CMS and other relevant wildlife conventions;

 17. Collaborate on regional agreements and the CMS 
migratory shark Memorandum of Understanding (CMS, 
2010), with a focus on securing concrete conservation 
actions; and,

 18. Strictly enforce chondrichthyan fishing and 
protection measures and impose meaningful penalties 
for violations.
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check prior to the acceptance of assessments in the Red List database and publication of assessments 

and data online (http://www.iucnredlist.org/).

Subpopulation and regional assessments
We included only global species assessments in this analysis. In many cases, subpopulation and  

regional assessments were developed for species before a global assessment could be made. For very 

wide-ranging species, such as the oceanic pelagic sharks, a separate workshop was held to combine 

these subpopulation or regional assessments (Table 8). A numerical value was assigned to each threat 

category in each region where the species was assessed, and where possible these values were then 

averaged to calculate a global threat category (Gärdenfors et al., 2001). Hence, the Red List categories 

of some species may differ regionally; for example, porbeagle shark (Lamna nasus) is classified as VU 

globally, but CR in the Northeast Atlantic and Mediterranean Sea. Often population trends were not 

available across the full distribution of a species. In these cases, the degree to which the qualifying 

threshold was met was modified according to the degree of certainty with which the trend could be 

extrapolated across the full geographic range of a species. The calculation of the overall Red List cat-

egory for globally distributed species is challenging, particularly when a combination of two or more 

of the following issues occurs: (1) trend data are available only for a part of the geographic range; 

(2) regional trend data or stock assessments are highly uncertain; (3) the species is data-poor in some 

other regions; (4) the species is subject to some form of management in other regions; and, (5) the 

species is moderately productive (Dulvy et al., 2008). This situation is typified by the Blue shark 

(Prionace glauca) that faces all of these issues. The best abundance trend data come from the 

Atlantic Ocean, but the different time series available occasionally yield conflicting results; surveys 

of some parts of the Atlantic exhibit declines of 53–80% in less than three generations (Dulvy et al., 

2008; Gibson et al., 2008), while a 2008 stock assessment conducted for the International Commission 

for the Conservation of Atlantic Tuna (ICCAT) indicate, albeit with substantial uncertainty, that the 

North Atlantic Blue shark population biomass is still larger than that required to generate Maximum 

Sustainable Yield (BMSY) (Gibson et al., 2008). The Blue shark is one of the most productive of the 

oceanic pelagic sharks, maturing at 4–6 years of age with an annual rate of population increase of 

∼28% per year and an approximate BMSY at ∼42% of virgin biomass, B0 (Cortés, 2008; Simpfendorfer 

et al., 2008). While the available data may support the regional listing of the Atlantic population 

of this species in a threatened category, the assessors could not extrapolate this to the global 

distribution because the species may be subject to lower fishing mortality in other regions. Hence 

the Blue shark was listed as NT globally. Further details on this issue and additional data require-

ments to improve the assessment and conservation of such species are considered elsewhere 

(Gibson et al., 2008; Camhi et al., 2009).

Red Listing marine fishes
We assessed most threatened chondrichthyans (81%, n = 148 of 181) using the Red List popula-

tion reduction over time Criterion A. Only one of the threatened species, the Skate (Dipturus) was 

assessed under the higher decline thresholds of the A1 criterion, where ‘population reduction in 

the past, where the causes are clearly reversible AND understood AND have ceased’. The remaining 

threatened species were assessed using the IUCN geographic range Criterion B (n = 29) or the 

small population size and decline Criterion C (n = 4: Borneo shark Carcharhinus borneensis, 

Colclough’s shark Brachaelurus colcloughi, Northern river shark Glyphis garricki, and Speartooth 

shark Glyphis glyphis). The Criterion A decline assessments were based on statistical analyses and 

critical review of a tapestry of local catch per unit effort trajectories, fisheries landings trajectories 

(often at lower taxonomic resolution), combined with an understanding of fisheries selectivity and 

development trajectories.

We assessed most chondrichthyans using the Red List criterion based on population reduction 

over time (Criterion A). The original thresholds triggering a threatened categorization were 

Criterion A1: VU 20%; EN 50%; and CR 80% decline over the greater of the past (A1) or future (A2) 

10 years or three generations (IUCN Categories and Criteria version 2.3). IUCN raised these 

thresholds in 2001 to VU, ≥30%; EN, ≥50%; and CR, ≥80% decline over the greater of 10 years or 

three generations in the past (A2), future (A3) and ongoing (A4), and changed A1 to a reduction 

over the past 10 yrs or 3 generations of VU ≥50%; EN ≥70%; CR ≥90%, where the causes of reduction 

are understood AND have ceased AND are reversible. This was in response to concerns that the 
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original thresholds were too low for managed populations that are being deliberately fished down 

to MSY (typically assumed to be 50% of virgin biomass under Schaeffer logistic population growth) 

(Reynolds et al., 2005). This revision was designed to improve consistency between fisheries limit 

reference points and IUCN thresholds reducing the likelihood of false alarms—where a sustainably 

exploited species incorrectly triggers a threat listing (Dulvy et al., 2005; Porszt et al., 2012). 

Empirical testing shows that this has worked and demonstrates that a species exploited at fishing 

mortality rates consistent with achieving MSY (FMSY) would lead to decline rates that would be 

unlikely to be steep enough to trigger a threat categorization under these new thresholds (Dulvy 

et al., 2005).

It is incontrovertible that a species that has declined by 80% over the qualifying time period is 

at a greater relative risk of extinction than another that declined by 40% (in the same period). 

Regardless, there may be a wide gap in the population decline trajectory between the point at 

which overfishing occurs and the point where the absolute risk of extinction becomes a real con-

cern (Musick, 1999a). In addition, fisheries scientists have expressed concern that decline criteria 

designed for assessing the extinction risk of a highly productive species may be inappropriate for 

species with low productivity and less resilience (Musick, 1999a), although this was addressed 

with the use of generation times to rescale decline rates to make productivity comparable (Reynolds 

et al., 2005; Mace et al., 2008). In response to concerns that IUCN decline thresholds are too low 

and risk false alarms, the American Fisheries Society (AFS) developed alternate decline criteria 

(Musick, 1999a) to classify North American marine fish populations (Musick et al., 2000). This 

approach only categorizes species that have undergone declines of 70–99% over the greater of 

three generations or 10 years. Nonetheless, most of the species so listed by AFS also appear on 

the relevant IUCN Specialist Group lists and vice versa, although the risk categories are slightly 

different. The reason for the concordance is that in most instances the decline had far exceeded 

50% over the appropriate timeframe long before it was detected. Consequently, SSG scientists 

generally agreed in assigning threat categories to species that had undergone large declines, but 

many were reluctant to assign a VU classification to species that were perceived to be at or near 

50% virgin population levels and presumably near BMSY. In practice, the latter were usually classified as 

NT unless other circumstances (highly uncertain data, combined with widespread unregulated 

fisheries) dictated a higher level of threat according to the precautionary principle.

Table 8. The locations, dates, number of participants and the number of countries represented at 

each of the SSG Red List workshops, along with unique totals

Red List workshop Location Date Participants Countries

Australia and Oceania Queensland, Australia March 2003 26 5

South America Manaus, Brazil June 2003 25 8

Sub-equatorial Africa Durban, South Africa September 2003 28 9

Mediterranean San Marino October 2003 29 15

Deep sea sharks Otago Peninsula,  
New Zealand

November 2003 32 11

North and Central  
America

Florida, USA June 2004 55 13

Batoids (skates and  
rays)

Cape Town, South Africa September 2004 24 11

Expert Panel Review Newbury, UK March 2005 12 5

Northeast Atlantic Peterborough, UK February 2006 25 9

West Africa Dakar, Senegal June 2006 25 12

Expert Panel Review Newbury, UK July 2006 9 12

Pelagic sharks Oxford, UK February 2007 18 11

Northwest Pacific/ 
Southeast Asia

Batangas, Philippines June/July 2007 23 13

Totals 227 57
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Statistical analysis

Modeling correlates of threat
Vulnerability to population decline or extinction is a function of the combination of the degree to 

which intrinsic features of a species’ behavior, life history and ecology (sensitivity) may reduce the 

capacity of a species to withstand an extrinsic threat or pressure (exposure). We tested the degree to 

which intrinsic life histories and extrinsic fishing activity influenced the probability that a chondrichthyan 

species was threatened. Threat category was modeled as a binomial response variable; with LC 

species assigned a score of 0, and VU, EN & CR species assigned a 1. We used maximum body length 

(cm), geographic range size (Extent of Occurrence, km2), and depth range (maximum–minimum depth, 

m) as indices of intrinsic sensitivity, and minimum depth (m) and mean depth (maximum–minimum 

depth/2) as a measure of exposure to fishing activity. All variables were standardized to z-scores by 

subtracting the mean and dividing by the standard deviation to minimize collinearity (variance inflation 

factors were less than 2). Mean depth was not included in model evaluation as it was computed from, 

and hence, correlated to minimum depth (Spearman’s ρ = 0.52). We fitted Generalized Linear Mixed-

effect Models with binomial error and a logit link to model the probability of a species being threatened, 

using taxonomic structure as a nested random effect (e.g., order/family/genus) to account for phylo-

genetic non-independence. The probability of a species i being threatened was assumed to be binomially 

distributed with a mean pi, such that the linear predictor of pi was:

0 , , , ,log =   ,
1–

i
i j i j i k i k

i

p
X X

p

     
β β β+ +  (2)

where βi,j and βi,k are the fitted coefficients for life history or geographic range traits j and k, and Xi,j and 

Xi,k are the trait values of j and k for species i (Tables 4 and 9). The effect of a one standard deviation 

increase in the coefficient of interest was computed as:

( )( ) ( )( )0 1 0 11/ 1 exp 1/ 1 ( ,)exp * 2β β β β─+ + + +  (3)

following (Gelman and Hill, 2006). Models were fitted using the lmer function in the R package lme4 

(Bates et al., 2011). The amount of variance explained by the fixed effects only and the combined 

fixed and random effects of the binomial GLMM models was calculated as the marginal R2GLMM(m) 

and conditional R2GLMM(c), respectively, using the methods described by Nagakawa and Schlielzeth 

(2012).

Estimating the proportion of potentially threatened DD species
We predicted the number of Data Deficient species that are potentially threatened based on the 

maximum body size and geographic distribution traits (Table 3; Supplementary file 1). Specifically, 

based on the explanatory models described above, all variables were log10 transformed and we 

fitted generalized linear models of increasing complexity assuming a binomial error and logit link 

(Equation 2; Table 3). Model performance was evaluated using Receiver Operating Characteristics 

by comparing the predicted probability that the species was threatened p(THR) against the true 

observed status (Least Concern = 0, and threatened [VU, EN & CR] = 1) (Sing et al., 2005; Porszt 

et al., 2012). The prediction accuracy was calculated as the Area Under the Curve (AUC) of the 

relationship between false positive rates and true positive rates, where a false positive is a model 

prediction of ≥0.5 and true observed status is 0 (or <0.5 and 1) and a true positive is a prediction of 

≥0.5 and true observed status is 1 (or <0.5 and 0). True and false positive rates, and accuracy (AUC) 

were calculated using the R package ROCR (Sing et al., 2005). The probability that a DD species 

was threatened p(THR)DD was predicted based on the available life history and distributional traits. 

DD species with p(THR)DD ≥ 0.5 were classified as threatened and <0.5 as Least Concern. This 

optimum classification threshold was confirmed by comparing accuracy across the full range of possible 

thresholds (from 0 to 1). We fitted models using the gls function and calculated pseudo-R2 using the 

package rms.

With these models we can estimate the number and proportion of species in each category 

(Table 1). We estimated that 68 of 396 DD species are potentially threatened, and hence the 

remainder (396–68 = 328) is likely to be either Least Concern or Near Threatened. Assuming these 

species are distributed between these categories according to the observed ratio of NT:LC species of 
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0.5477 this results in a total of 312 (29.9%) Near Threatened species (132 known + 180 estimated) 

and 389 (37.4%) Least Concern species (241 known +148 estimated). After apportioning the DD 

species among threatened (68), NT (312), and LC (389), only 91 (8.7%; 487–396) are likely to be 

Data Deficient (Table 1).

Spatial analysis
The SSG and the GMSA created ArcGIS distribution maps as polygons describing the geographical 

range of each chondrichthyan depending on the individual species’ point location and depth informa-

tion. Pelagic species distribution maps were digitized by hand from the original map sources. For spatial 

analyses, we merged all species maps into a single shapefile. We mapped species using a hexagonal grid 

composed of individual units (cells) that retain their shape and area (∼23,322 km2) throughout the globe. 

Specifically, we used the geodesic discrete global grid system, defined on an icosahedron and projected 

to the sphere using the inverse Icosahedral Snyder Equal Area (ISEA) (Sahr et al., 2003). A row of cells 

near longitude 180°E/W was excluded, as these interfered with the spatial analyses (Hoffmann et al., 

2010). Because of the way the marine species range maps are buffered, the map polygons are likely 

to extrapolate beyond known distributions, especially for any shallow-water, coastal species, hence 

not only will range size itself likely be an overestimate, but so will the number of hexagons.

We excluded obligate freshwater species from the final analysis as their distribution maps have yet 

to be completed. The maps of the numbers of threatened species represent the sum of species that 

have been globally assessed as threatened, in IUCN Red List categories VU, EN or CR, existing in each 

∼23,322 km2 cell. We caution that this should not be interpreted to mean that species existing within 

that grid cell are necessarily threatened in this specific location, rather that this location included species 

that are threatened, on average, throughout their Extent of Occurrence. The number of threatened 

species was positively related to the species richness of cells (F1, 14,846 = 1.5 e5, p<0.001, r2 = 0.91). To 

remove this first-order effect and reveal those cells with greater and lower than expected extinction 

risk, we calculated the residuals of a linear regression of the number of threatened species on the 

number of non-DD species (referred to as data sufficient species). Cells with positive residuals were 

mapped to show areas of greater than expected extinction risk compared to cells with equal or 

negative residuals. Hexagonal cell information was converted to point features and smoothed across 

neighboring cells using ordinary kriging using a spherical model in the Spatial Analyst package of ArcView. 

Such smoothing can occasionally lead to contouring artefacts, such as the yellow wedge west of southern 

Africa in Figure 7D, and we caution against over-interpreting marginal categorization changes.

We identified hotspots of threatened endemic chondrichthyans to guide conservation priorities. To 

describe the potential cost of losing unique chondrichthyan faunas, we calculated irreplaceability 

scores for each cell. Irreplaceability scores were calculated for each species as the reciprocal of its area 

of occupancy measured as the number of cells occupied. For example, for a species with an Extent of 

Occurrence spanning 100 hexagons, each hexagon in its range would have an irreplaceability 1/100 or 

0.01 in each of the 100 hexagons of its Extent of Occurrence. The irreplaceability of each cell was 

calculated by averaging log10 transformed irreplaceability scores of each species in each cell. Averaging 

irreplaceability scores controls for varying species richness across cells. We calculated irreplaceability 

both for all chondrichthyans and for threatened species only. Irreplaceability was also calculated using 

only endemic threatened species, whereby endemicity was defined as species having an Extent of 

Occurrence of <50,000, 100,000, 250,000 or 500,000 km2. Different definitions of endemicity gave 

similar patterns of irreplaceability and we present the results of only the largest-scale definition of 

endemicity. Hence the irreplaceability of threatened species and particularly the threatened endemic 

chondrichthyans represents those locations or ‘hotspots’ (Myers et al., 2000) at greatest risk of losing 

the most unique chondrichthyan biodiversity.

Fisheries catch landings and shark fin exports to Hong Kong
We extracted chondrichthyan landings reported to FAO by 146 countries and territories from a total 

of 128 countries (as some chondrichthyan fishing nations are overseas territories, unincorporated 

territories, or British Crown Dependencies) from FishStat (FAO, 2011). We categorized landings into 

153 groupings, comprised of 128 species-specific categories (e.g., angular roughshark, piked dogfish, 

porbeagle, Patagonian skate, plownose chimaera, small-eyed ray, etc) and 25 broader nei (nei = not 

elsewhere included) groupings (e.g., such as various sharks nei, threshers sharks nei, ratfishes nei, raja 

rays nei). For each country, all chondrichthyan landings in metric tonnes (t) were averaged over the decade 

2000–2009. Landings reported as ‘<0.5’ were assigned a value of 0.5 t. Missing data reported as ‘.’ were 
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Table 9. Continued on next page

Table 9. Parameter estimates for General Linear Mixed-effects Models testing the probability that a 

species is threatened p(THR) given either categorical habitat class or continuous measure of depth 

distribution and maximum size

(A) Habitat category

p(THR) = maximum length + habitat category, random effect = Order/Family/Genus

Fixed effects Standardized coefficient Standard error p-value

Intercept (Coastal and  
continental shelf)

0.27 0.33 0.4

Deepwater −2.01 0.39 <0.001

Pelagic −0.46 0.94 0.62

Maximum length 2.59 0.69 <0.001

marginal R2GLMM(m) of fixed effects only = 0.40.

conditional R2GLMM(c) of fixed and random effects = 0.60.

ΔAIC without taxonomic inclusion = −18.7.

ΔAIC for differing threat metrics: binomial THR (CR + EN + VU + NT) = −165.7; categorical = −975.6.

(B) Minimum depth

p(THR) = maximum length + minimum depth, random effect = Order/Family/Genus

Fixed effects Standardized coefficient Standard error p-value

Intercept −0.74 0.31 0.015

Minimum depth −2.73 0.78 <0.001

Maximum length 2.46 0.61 0.002

marginal R2GLMM(m) of fixed effects only = 0.48.

conditional R2GLMM(c) of fixed and random effects = 0.64.

ΔAIC without taxonomic inclusion = −12.9.

ΔAIC for differing threat metrics: binomial THR (CR + EN + VU + NT) = −153.4; categorical = −985.8.

(C) Maximum depth

p(THR) = maximum depth + maximum length, random effect = Order/Family/Genus

Fixed effects Standardized coefficient Standard error p-value

Intercept −0.60 0.28 <0.001

Maximum depth −2.35 0.54 <0.001

Maximum length 3.03 0.63 <0.001

marginal R2GLMM(m) of fixed effects only = 0.45.

conditional R2GLMM(c) of fixed and random effects = 0.63.

ΔAIC without taxonomic inclusion = −17.2.

ΔAIC for differing threat metrics: binomial THR (CR + EN + VU + NT) = −156.7; categorical = −981.7.

(D) Depth range

P(THR) = median depth + maximum length, random effect = Order/Family/Genus

Fixed effects Standardized coefficient Standard error p-value

Intercept −0.51 0.26 0.002

Depth range −1.82 0.50 <0.001

Maximum length 3.17 0.64 <0.001

marginal R2GLMM(m) of fixed effects only = 0.42.

conditional R2GLMM(c) = 0.62.

ΔAIC without taxonomic inclusion = −22.3.

ΔAIC for differing threat metrics: binomial THR (CR + EN + VU + NT) = −158.7; categorical = −982.3.
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assigned a zero. Total annual chondrichthyan landings are underestimated as data are not reported for 

1,522 out of a total count of 13,990 entries in the dataset. Therefore, 11% of chondrichthyan landings 

reported to the FAO over the 10-year period are ‘data unavailable, unobtainable’. We mapped FAO 

chondrichthyan landings as the national percent share of the average total landings from 2000 to 2009.

For the analysis of landings over time we removed the aggregate category ‘sharks, rays, skates, etc’ 

and all nine of the FAO chimaera reporting categories. The ‘sharks, rays, skates, etc’ FAO reported 

category comprised 15,684,456 tonnes of the reported catch from all countries during 1950–2009, 

which is a total of 45% of the total reported catch for this time period. However, the proportion of 

catch in this category has declined from around 50% of global catch to around 35%, presumably due to 

better reporting of ray catch and as sharks have declined or come under stronger protection (Figure 1). 

The nine chimaera categories make up a small fraction of the global catch, 249,404.5 tonnes from 

1950 to 2009, representing 0.72% of the total catch.

Hong Kong has long served as one of the world’s largest entry ports for the global shark fin trade. 

While fins are increasingly being exported to Mainland China where species-specific trade data is more 

difficult to obtain, each year (from 1996 to 2001) Hong Kong handled around half of all fin imports 

(Clarke et al., 2006). Data on shark fin exports to Hong Kong were requested directly from the Hong 

Kong Census and Statistics Department (Hong Kong Special Administrative Region Government, 

2011). We mapped exports to Hong Kong as the proportion of the summed total weight of the four 

categories of shark fin exported to Hong Kong in 2010: (1) shark fins (with or without skin), with cartilage, 

dried, whether or not salted but not smoked (trade code: 3055950), (2) shark fins (with or without skin), 

without cartilage, dried, whether or not salted but not smoked (3055930), (3) shark fins (with or without 

skin), without cartilage, salted or in brine, but not dried, or smoked (3056940), and (4) shark fins (with or 

without skin), with cartilage, salted or in brine, but not dried or smoked (3056930). We could not correct 

the difference in weight due to product type. To identify the threat classification of the chondrichthyan 

species in the fin trade, we included records of the most numerous species used in the Hong Kong fin 

trade as well as those species with the most-valued fins (Clarke et al., 2006, 2007; Clarke, 2008).
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Table 9. Continued

(E) Geographic range (Extent of Occurrence)
p(THR) = geographic range + maximum length, random effect = Order/Family/Genus
Fixed effects Standardized coefficient Standard error p-value
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marginal R2GLMM(m) of fixed effects only = 0.65.

conditional R2GLMM(c) = 0.81.

ΔAIC without taxonomic inclusion = −25.8.

ΔAIC for differing threat metrics: binomial THR (CR + EN + VU + NT) = −156.5; categorical = −982.9.

The improvement of model fit by inclusion of phylogenetic random effect was calculated as the difference in AIC 

(ΔAIC) between the GLMM (with phylogenetic random effect) and a GLM as ΔAIC = AIC(GLMM)-AIC(GLM). p(THR) 

was binomially distributed assuming species that were CR, EN or VU were threatened (1) and LC species were not 
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