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ABS'mACf 

A rigorous analysis based upon the extinction theorem is presented to 

~tudy anomalous resonance effects from single- and multilayer-overcoated. 

low-efficiency diffraction gratings. Anomalously high diffraction 

efficiency at resonance results from the coupling of the incident beam into 

guided waves that can be propagated within the composite structure. Both 

the traditional characteristic matrix technique and a recursive or R-matrix 

propagation technique are presented. The R-matrix propagation algorithm 

was found to be stable numerically. and computational results agree 

favorably with both experimental and other theoretical work. Numerical 

results are presented in order to investigate the influence of certain 

parameters (i.e.. groove depth and shape and the number of high- and low­

index overlayers) on the diffraction efficiency at resonance. In this 

analysis. a wavelength of 0.6328 ~m and grating period of O. 7 ~m were chosen 

so that only a -1 diffracted order other than the specular is reflected from 

the gratings. Perfect transfer of the grating relief to the film boundaries 

does not occur in all instances; it depends on the grating and film 

characteristics together with the conditions during deposition. Investigated 

in this work is the effect of non replication of the grating profile at film 

interfaces on anomalous diffraction; a transition from trapezoidal profile at 

the grating substrate to a rounded relief at the top surface of the multilayer 

structure is assumed. For the cases studied. it was found that nonreplication 

has the effect of reducing the strength of the resonance outcoupling. 
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Finally. experimental results on anomalous resonance effects for multilayer-

coated gratings are presented. 

was attained. 

Good agreement with computational results 



Chapter 1 

DISSERTA nON OUlLINE 

1 5 

In this dissertation. anomalous resonance effects in multilayer­

overcoated diffraction gratings are studied theoretically. numerically. and 

experimentally. The term "grating anomaly" is used to describe observed 

abrupt variations of intensity in the diffracted order with a change in either 

the wavelength or angle of incidence. In this work. grating anomaly is to be 

distinguished from anomalous behavior associated with ruling imperfections 

known as Rowland or Lyman ghost lines. 

Much has been written on anomalous behavior of uncoated and coated 

diffraction gratings. Phenomena associated with Rayleigh anomalies and 

surface plasmon excitation are 

Guided-wave excitation and 

extensively reported 

anomalous diffraction 

in the literature. 

efficiencies for 

multilayer-overcoated gratings. however. have received less attention. 

Much of the work in this area has concentrated on high-efficiency gratings 

with sinusoidal profiles; consequently. a deg. adation of diffraction 

efficiency was reponed. Although the extinction theorem technique is exact 

in that small groove-depth-to-wavelength ratio is not assumed. the purpose 

of this work is to concentrate on diffraction anomalies from low-efficiency 

gratings. where the groove-depth-to-wavelength ratio is a few percent. In 

order to place the results of this dissenation in context. al. historical review 
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that summarizes the more relevant observations and explanations of grating 

anomalies is presented in Chapter 2. 

Anomalous resonance effects in multilayer-overcoated gratings result 

from the coupling of the incident light into guided waves supported by the 

multilayer structure. In order to determine the incident angles for which 

resonance effects are expected, it is important to detennine the allowed 

guided-wave modes. Presented in Chapter 3 is a simple graphical method that 

utilizes the characteristic matrix technique to detennine waveguide modes in 

multilayer assemblies. This method is approximate, since the substrate and 

interfaces of the overlayers are assumed to be planar. The advantage of this 

technique is that an estimate of incident coupling angles can be found 

readily without recourse to a rigorous calculation. 

The first theoretical approach to the problem of anomalous diffraction 

was that of Lord Rayleigh,l who assumed that the diffracted wave could 

everywhere be represented as a sum of outgoing plane waves. Subsequently, 

more rigorous theories have been fonnulated, limited at first to the study of 

diffraction from single surfaces. The effort to calculate diffraction 

efficiencies from high-power beamsplitter mirrors led to an integral 

equation fonnalism with the ability to predict the behavior of multilayered, 

highly modulated structures. The theoretical analysis developed in this 

dissertation is based on the extinction theorem, which is also an integral 

method, applied originally by Toigo et al. 2 to a single rough surface. Since 

this method avoids the Rayleigh plane-wave hypothesis, it provides an exact 

formulation of the boundary problem and description of the diffracted field. 

The extinction method has been used extensively in the analysis of 
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diffraction and plasmon excitation for a single-modulated interface. To the 

author's knowledge, it has not been used in the analysis of resonance effects 

in multilayer structures. Beginning with a mathematical description of the 

extinction method as it applies to a single grating surface (Chapter 4), this 

formalism is extended in Chapter 5 to the analysis of multilayer-coated 

gratings. The analysis accommodates 

perpendicular to the plane of incidence. 

any groove shape with grooves 

Both transverse electric (TE) and 

transverse magnetic (TM) polarizations are considered. 

Numerical analysis of resonance effects in single- and multilayer-coated 

gratings is presented in Chapter 6. In the same chapter, the influence of 

groove shape and depth and the number of high- and low-index multilayers 

on diffraction efficiency are investigated. 

An additional factor that may influence diffraction efficiency is the 

degree of replication of the grating profile at each interface of the 

multilayer coating. Previously, resonance effects were studied assuming 

perfect replication of the substrate grating profile at each film interface. 3 

However, perfect transfer of the grating relief to the film boundaries does 

not occur in all instances; it depends on the grating and film characteristics 

together with the conditions during deposition. Also in Chapter 6, the effect 

of non replication of the grating profile at film interfaces on anomalous 

diffraction is investigated; a transition from trapezoidal profile at the 

grating substrate to a rounded relief at the top surface of the multilayer 

structure is assumed. It seems likely, however, that the effect of 

nonreplication would be to broaden the resonance and reduce the coupling 

strength while simultaneously increasing absorption. This has been 
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confirmed by preliminary experimental and analytical work.4 Numerical 

calculations reponed herein indicate that a small degree of nonreplication 

has only a minimal impact on the guided-wave resonance phenomena. 

A comparison between theory and experiment for a single-Iayer-

overcoated grating is made in Chapter 7. Chapter 8 presents a summary of 

results as well as suggestions for future work. 
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HISTORICAL SURVEY OF ANOMALOUS EFFECfS fROM 
UNCOATED AND COATED DIFfRACflON GRATINGS 

INrRODUCflON 

1 9 

It might be expected that the efficiency of a grating in a diffracted order 

(the ratio of the energy in a diffracted order to the incident energy) would 

be a smooth function of wavelength. However. such is not the case. 

Anomalous effects from diffraction gratings were first observed by WoodS; 

when using a white light source. he found abrupt changes in the spectral 

intensities over a small wavelength range. Much of the subsequent 

experimental and theoretical investigations of anomalous effects from 

gratings were made in order to explain the anomalies observed by Wood. The 

efforts by Rayleigh 1 and others successfully predicted some of the features 

of the diffraction intensity profiles. However. Rayleigh's explanation of the 

Wood anomalies as due to the appearance of a new spectral order was not 

sufficient to account for all the intensity variation observed. New insight 

into the anomalous behavior of gratings was provided by Hessel and Oliner6 

by theorizing that two distinct types of anomalies exist. The first is a 

nonresonance feature associated with Rayleigh's explanation of a 

redistribution of energy when a diffracted order disappears or emerges from 

the grating surface. The second is a resonant anomaly connected with 

surface plasmon excitation or guided-wave propagation. Nonresonant and 
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resonant anomalies may occur separately. as for overcoated gratings as well 

as for bare gratings with deep grooves-()r they may coincide. as is observed 

for uncoated gratings with shallow groove profiles. Many observations 

reported in the literature 7 -9 concern the mergence or reluctance to merge 

of these anomalies under various conditions. 

There are a number of good historical surveys of anomalous effects from 

di ffraction gratings. 6.7.10 -12 Phenomena associated with Rayleigh 

anomalies and surface plasmon excitation on bare metallic gratings have 

been studied extensively. 

to protect the metallic 

When thin films are deposited on a grating surface 

grating or to enhance performance. the film 

modulated; this replicates the grating profile to various boundaries are 

degrees. Diffraction anomalies from modulated layer structures of this sort 

have features that differ from those of uncoated gratings. These differences 

are important in that an increase in anomalous diffraction may occur under 

certain conditions. 

In this chapter. anomalous effects from uncoated gratings are reviewed 

first. Observations of anomalous effects by Wood and the theory of Rayleigh 

that attempted to explain these observations are described. The Rayleigh 

theory. however. failed to account for a number of significant observations. 

The reasons for the failure and the attempts to improve upon Rayleigh's 

theory are discussed. An exact formulation of the diffraction problem was 

made using rigorous analytical techniques based upon integral equation 

methods. Also reviewed are theoretical and experimental investigations of 

plasmon oscillations that led to further understanding of grating anomalies. 

Finally. we look at more recent research of anomalous effects from coated 
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gratings where excitation of guided waves plays a critical role in diffraction 

efficiency. 

UNCOATED MET ALLIe GRATINGS 

WOOD'S ANOMALIES AND RAYLEIGH'S THEORY 

Anomalous diffraction effects from gratings are not new discoveries. As 

early as 1902. using a white light source. WoodS observed rapid variations in 

the intensity of diffracted spectral orders from reflection gratings. Instead 

of observing a smooth continuous spectrum for fixed angle of incidence. 

dark and bright bands appeared over a narrow wavelength range. He 

noticed that light missing from dark bands in the zero-order reflected beam 

corresponded to bright lines in the diffracted beam. and. conversely. that 

light missing from dark bands in diffracted beam was to be found in the 

bright lines of the zero-order. Funhermore. Wood observed these anomalies 

for TM polarization only when the ruling lines were perpendicular to the 

plane of incidence-never for TE polarization. The electric field parallel to 

plane of incidence is called transverse magnetic (TM). and the electric field 

perpendicular to the incident plane is termed transverse electric (TE). 

The effects observed by Wood were called anomalies because they could 

not be explained by the grating theory of the time. The scalar diffraction 

theory of Fresnel-Kirchhoff13 described the efficiency of a grating in terms 

of the Fourier transform of the groove profile. The Huygens and Kirchhoff 

assumptions are implicit in the Fourier optics theory. This theory assumes 
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that light propagates across the grating surface, is then reflected, and 

interferes constructively or destructively with other reflected beams to 

produce the diffracted wave front. Because the theory does not impose any 

boundary conditions that couple together the various diffraction orders, it 

was inadequate to predict anomalous efficiencies. In fact, it was not until the 

early 1970s that rigorous theories were developed that could predict, with the 

aid of high-speed computers, the observed efficiencies of a grating from the 

groove profile. 

The first theoretical treatment of Wood's anomalies was given by 

Rayleigh 1 in 1907 in a paper called "On the Dynamic Theory of Gratings." His 

theory was based upon an expansion of the diffracted field in terms of 

outgoing plane waves and allowed coupling between the diffracted orders by 

means of surface boundary conditions. In his paper, he considered a plane 

wave incident on a sinusoidal profile surface and postulated the reflected 

field to be a discrete sum of outgoing planes or evanescent waves above the 

surface and within the selvage region of the grating. 

Having assumed that the diffracted field could be expanded in terms of 

outgoing wave functions, Rayleigh suggested that the anomalies resulted 

from the redistribution of light when a diffracted order 'passes off over the 

horizon. In other words, a singularity in the scattered field occurs when a 

spectral order is diffracted from the grating at grazing angle (± 90°). With 

the disappearance or emergence of an order, a rearrangement of energy in 

the diffracted orders is assumed to take place and can be expressed as a sum of 

plane waves whose amplitudes are determined from electromagnetic 

boundary conditions. 
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The wavelengths that correspond to Wood's anomalies have become 

known as Rayleigh wavelengths (A. R) and can be determined from the 

grating equation: 

where 

0 

90 

9d 

m 

A. 
sin9d =sin9o +m ;- =±1 

= groove spacing 

= incident angle 

= diffracted angle at +900 

for negative grazing 

for 

= positive or negative integer 

order. 

(I) 

positive grazing orders and -900 

corresponding to the diffracted 

As the angle of incidence decreases, A.R for positive order becomes larger; for 

negative order. it moves to smaller wavelengths. 

FAILURE OF THE RAYLEIGH TIlEORY 

Even though the Rayleigh theory predicted anomalies for TM-polarized 

light at just those wavelengths found by Wood and that they should be absent 

for TE orientation. it failed to explain the dark bands observed by Wood and to 

correctly predict the intensity distribution in the diffracted orders. 

Anomalous effects in metallic gratings were further investigated by 

Woo d • 14.1 S where the dark bands in the diffraction spectra were 

hypothesized to be caused by destructive interference of surface waves along 

the grating. Observing that the total light reflecting from the grating was 
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less than that reflecting from an unruled area. Wood attempted-

unsuccessfully-to determine if the anomalies corresponded to increased 

absorption by the grating. 

Attempts to overcome the limitations of Rayleigh's theory were made by 

Fan 0 16 and Anmann 1 7 by assuming the grating material to be a lossy. 

nonperfect conductor. Fano explained Wood's anomalies as the interaction of 

surface waves with the incident light. He assumed that a diffracted wave at 

grazing angles (which he called a superficial wave) travels along the 

grating surface. If the superficial wave travels to the adjacent groove so that 

it is in phase with the incident light. a resonance condition develops and 

anomalous behavior results in the diffracted waves. This condition can be 

described mathematically J 8 by 

D sin 90 - D 
X +X;=m 

(2) 

where A and Ap are the wavelengths of the incident and superficial w a v e s. 

respectively. This may also be written as 

. c - A. 
SID 8 = -+m-

o v D (3) 

where c and v are the velocities of light and the surface wave. respectively. 

If v = c or equivalently Ap = A. these equations define the Rayleigh 

wavelength. Thus. for lossy metallic gratings. Fano predicted a displacement 

of the anomalies from the Rayleigh wavelengths toward longer wavelength. 
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Extensive observations by Hutley and Bird8•19 revealed anomalies that 

occurred at wavelengths other than the Rayleigh wavelength. These 

resonant anomalies were shown to be associated with surface waves 

(plasmons) supported by the grating. The two types of anomalies-one 

associated with the redistribution of diffracted light at the Rayleigh 

wavelength and the other caused by the resonant effects-were observed to 

occur separately or at other times to coincide. 

The theoretical investigations of McPhedran and Waterworth9 

demonstrated much of the properties of grating anomalies observed by 

Hutley. Although exact agreement was not achieved. discrepancies were 

probably caused by the assumption of a perfect conducting grating. They 

showed that the effect of increasing the groove depth of a sinusoidal grating 

was to increase the width of the anomalous region and increase the 

separation of the resonant peak from the Rayleigh wavelength. As the 

groove-depth-to-incident-wavelength ratio increases further. the Rayleigh 

wavelength occurs at an inflection point in the slope of the efficiency curve. 

These trends indicate the effects of increased damping of the resonance as a 

departure from the assumption of shallow surface profile is made. 

Not only was the Rayleigh theory limited in predicting the shape of the 

diffracted intensity curves. but it also failed to account for anomalies caused 

by the TE-polarized light. The theoretical studies of Fano and Artmann 

agreed with Rayleigh's conclusion that failed to predict TE anomalies. There 

is a simple explanation in terms of Rayleigh's hypothesis that explains why 

anomalies could only occur for TM polarization.} 9 For TM polarization. the 

electric vector lies in the plane of incidence and perpendicular to the groove 
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orientation. For a diffracted beam at grazing angle, the electric field would 

be modulated by the groove profile. For TE polarization, however, the 

electric field vector lies in the direction of the grooves and, for a perfect 

conductor, cannot be sustained. Thus, the field strength is much larger for 

TM than for TE polarization, and more energy is available for redistribution 

when a diffracted order passes off. Palmer,20,21 however, confirmed the 

existence of anomalies for TE-polarized light when using gratings with 

grooves much deeper than the wavelength of the incident light. 

Funhermore, the TE anomalies were much fainter than the corresponding 

TM anomalies but occurred at exactly the same wavelengths. 

The primary reason for the failure of the Rayleigh theory was the 

unrealistic assumption that the grooves were shallow compared to the 

wavelength of the incident light. The Rayleigh hypothesis, which assumes 

outgoing plane waves only, was questioned in 1953 by Lippmann. 2 2 

Although the outgoing plane wave expansion is correct outside the groove 

region, it is not necessarily the complete solution within the selvage region. 

This choice of the scattered field is justified well away from the groove 

region where the radiation condition requires plane waves. A point within 

the groove region receives energy from the incident field as well as from the 

diffracted fields, which includes contributions from fields scattered off the 

sides of the groove in both the outgoing and incoming directions. This 

omission of incoming waves in the selvage region inherent in the Rayleigh 

hypothesis becomes more serious as the groove depth increases. Utilizing a 

multiple scattering technique and without assuming shallow grooves, 

Twersk y23 was able to predict TE as well as TM anomalies. 
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In the 1960s. the validity of the Rayleigh plane wave assumption was 

detennined analytically. For a sinusoidal groove profile of the fonn z = b cos 

(271:/0). Petit and Cadilhac24 demonstrated that the Rayleigh assumption is 

invalid when bID > 0.0713. By locating singularities of solutions to the 

Helmholtz equation in the complex plane. Millar2's.26 demonstrated that the 

Rayleigh assumption is strictly valid only if 0 < bID < 0.0713. Funhennore. it 

has been shown that it is never valid for profile shapes (Le.. triangular or 

rectangular) that contain a singularity (sharp comer).2 7 Nevenheless. it is 

possible to modify Rayleigh's method by developing a sequence of linear 

combinations of plane waves such that the sequence converges to the 

diffracted field. 28 Even when used outside of the domain of analytical 

validity. accurate numerical results can be obtained for shallow groove 

profiles five times larger than the theoretical limit. 29.30 

~GOROUSTHEORYOFGRATINGOn¥RAcnON 

A rigorous analysis of the problem of diffraction by a grating. which 

considers the exact groove shape. is a difficult boundary value problem 

involving the integration of Maxwell's equations. Only with the assistance of 

high-speed computers can accurate computational results be achieved. 

Because integral methods entail an integration of the fields along the groove 

profile. the scattered field is everywhere properly accounted for. However. 

because of its simplicity over integral techniques. the Rayleigh hypothesis is 

still useful for analyzing diffraction from shallow groove gratings. 

The first rigorous techniques used to analyze the problem of diffraction 

by a perfectly conducting grating were based upon integral methods that 
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take into account the effect of multiple scattering within the groove region. 

They were originally proposed by Petit and Cadilhac,31 Wirgin,32 and 

Uretski 33 for TE polarization only and for specific groove profiles. A more 

rigorous approach by Pavageau and Bousquet34 was capable of calculating 

diffraction for both TE and TM polarization and for any infinitely conducting 

grating. Employing the integral formulation of Pavageau and Bousquet, 

McPhedran and Waterworth,9 McPhedran and Maystre,35 and Maystre and 

Petit36 calculated anomalies for sinusoidal and blazed profile gratings. 

The assumption of infinitely conducting gratings inherent in the early 

integral methods failed to account for two experimental observations. First, 

Strong 37 found in 1936 that the position of the anomalies for visible 

wavelengths was influenced by the type of metal used to coat the grating. 

Secondly, Hagglund and Sellberg38 observed that significant absorption 

evidently occurred in the region of the anomaly. Thus, the theoretical 

formalism of an infinitely conducting grating that may be adequate for 

infrared wavelengths could not predict, successfully, anomalies at visible 

wavelengths. 

An integral method was developed by May!Ure39,40 to analyze diffraction 

from nonperfect conducting or dielectric gratings. Another calculational 

technique used to explore the problem of the interaction of light with rough 

surfaces is based upon the extinction theorem. This technique is exact and 

does not require the Rayleigh-Fano hypothesis of plane waves near the 

grating surface. The extinction theorem was employed by Toigo tt al. 2 to 

describe the scattering of light from • single rough surface of a material of 

finite permittivity. Waterman utilized an extinction theorem method to 
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analyze scattering from a single surface of periodic roughness.41 The 

extinction theorem has been used also to obtain the dispersion relation for a 

surface wave across a metallic grating.42-44 Details of the extinction 

theorem technique are given in Chapters 4 and S. 

PLASMON EXCITATION 

Another approach to understanding the grating anomalies was to 

investigate the influence of grating profile on surface plasmons, which are 

the collective wave-like oscillations of the free electrons on the surface of a 

metal. The existence of surface plasmons was postulated by Ritchie45 in 1957, 

who showed that the piasmon wave vector kp for a given oscillation 

frequency CI) was of the form 

(4 ) 

where £ 1 (CI) is the real pan of the dielectric function given by 

where nand K are the real and imaginary pans, respectively, of the 

refractive index. 

Coupling the incident light into a plasmon takes place only for TM 

polarization and only when the surface is rough. Since a grating surface 

can be considered as periodic roughness, coupling of incident TM light 
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occurs when the tangential component of the incident wave vector ko plus 

the wave vector associated with the grating kg match the wave vector of the 

surface plasmon. The condition for coupling is, therefore, 

(5) 
or 

( 

() 
1/2 

00 . 21t 00 El CI) 

C sm60 + m D = C 1 + E
1

(OO) ) 
(6) 

For a free-electron-like metal where £ 1 (ro) is large, the plasmon wave vector 

approximately equals ro/c and this expression becomes identical to Equation 

(1), which describes the Rayleigh wavelength. Thus, for a low-profile 

metallic grating in the infrared, the Rayleigh and plasmon anomalies would 

coincide. Expression (6), however, is only an approximation, since it takes no 

account of the grating surface profile other than the period and assumes that 

the grating does not penurb the surface plasmon oscillations. 

It must be mentioned that the description of anomalous effects in 

gratings in terms of (1) propagating and evanescent orders or (2) surface 

plasmons is equivalent in that both are based upon Maxwell's equations. 

Fan 0 16 was probably the first to suggest that the excitation of surface 

(superficial) waves was responsible for Wood's anomalies. In 1968, Ritchie e I 

al. 46 analyzed diffraction anomalies found in TM-polarized light in terms of 

resonant coupling between the incident electromagnetic wave and plasmon 

waves on the grating surface. This incident photon-diffracted photon 

surface process was interpreted from quantum-mechanical calculational 
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methods as a second-order effect wher~!>y surface plasmons exist in an 

intermediate vinual state between the incident and diffracted photons. 

Kroger and Kretschmann47 studied theoretically the influence of 

surface roughness on 

integral equation system. 

diffraction grating was 

plasmon dispersion by penurbatively solving an 

The dispersion of surface plasmons by a sinusoidal 

studied also by Reinisch and Neviere48 using a 

nonperturbative integral theory and Glass tt al.49 employing the extinction 

method. Although the mathematical details differ. these authors agree in the 

general conclusions. It was found that at first the plasmon wave amplitude 

increases with increasing groove depth (h) and then decreases as h is 

further increased. Because of the plasmon excitation. the zero-order 

reflected beam exhibits a strong minimum. Due to grating-induced radiative 

damping. the plasmon and specular beam Iinewidth increases proponionally 

to h2. This damping depresses the dispersion curve below the zero roughness 

dispersion curve. Finally. the plasmon peak shifts toward lower frequencies 

at constant incident coupling angle as h increases. 

These theoretical predictions were supported in general by the 

experimental findings of Pockrand and Raether.SO Funher studiesS1 .S2 show 

that the -1 diffracted order anomaly caused by the plasmon resonance also 

displays a minimum. However. the influence of higher harmonics of the 

surface profile (resulting from deviations of grating profile from an exact 

sinusoid) was found to deform the expected minimum into a maximum. 

Higher diffracted orders display very different resonant structures.S 3 which 

appear as a maximum and minimum typical of harmonic oscillation. It was 

determined also that the form of the efficiency profile strongly depends on 
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the grating modulation height; to a small degree, it depends on the shape of 

the groove profile. However, for a low-profile grating whose period and 

configuration allow only one diffracted order in addition to the specular, the 

diffracted light is distributed between the -1 order and specular in 

proponion to the groove depth. 

OVPRCOA1EO GRATINGS 

Improved optical performance may be realized by overcoating metallic 

diffraction gratings witb a dielectric layer or multilayer. For example, a 

single dielectric layer is commonly used to prevent the formation of an oxide 

layer on aluminum or silver gratings. Also, a dielectric stack of alternating 

higb- and low-index material provides enbanced efficiency for gratings 

used as wavelength selectors in tunable lasers. 

include acousto-optics, integrated optics, 

analysis. S4 

Other areas of application 

holography, and spectral 

Tbe presence of a dielectric layer cannot only disturb tbe shape of the 

bare grating efficiency curve, but it can influence the bebavior of tbe 

anomalous diffraction region. A single dielectric layer or composite 

dielectric structure can suppon a wider class of guided waves than metallic 

surfaces. The guided waves may be of eitber TE or TM polarization, and more 

than one mode may be associated witb each polarization depending upon the 

pbase thickness of tbe layer. Tbe influence of a dielectric layer on grating 

anomalies was first realized by researcbers working witb an uncoated 

grating. Tbey observed that tbe sbape and position of the anomalies 

depended upon the condition of the grating surface. 
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A thin oxidation layer over the grating surface was hypothesized by 

Ritchie et al. 4 6 to be responsible for deviations between the observed 

resonance and the theoretically determined plasmon dispersion curve. Soon 

after, Cowan and ArakawaS S demonstrated that dielectric films alter the 

position of the bare grating anomalies. It was observed that dielectric layers 

only SO A thick shifted the resonant peaks to longer wavelengths. For 

thicker dielectric layers, additional anomalies were observed to occur.S 6 

A dielectric multilayer is used also on high-power optical elements for 

use in the infrared. Beam sampling is necessary to monitor the phase and 

shape of the wave front; however, ordinary beamsplitters could not survive 

these intense power levels. To overcome this difficulty, a multilayer­

overcoated, low-efficiency grating (where the grating amplitude is a few 

percent of the wavelength) is utilized that diffracts a small portion of the 

incident light for beam diagnostics while achieving enhanced specular 

reflection of the high-energy beam. 

Diffraction of light by periodic structures has been analyzed by 

numerous methods that incorporate a wide range of assumptions. The 

importance of predicting diffraction efficiencies and absorption for 

multilayer-coated gratings for use as high-energy beamsplilters has led to 

the development of an improved integral method. The differential technique 

of NeviereS 7, S 8 was capable of efficiency calculations for multilayer 

structures. However, numerical difficulties developed for calculations with 

low-conductivity metals in the visible and infrared wavelength region. In 

collaboration with the Air Force Weapons Laboratory, Albuquerque, NM, 

Maysue S9 -61 modified his integral formalism to include the effect of 
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dielectric multilayer structures with low-modulation interface profiles. 

Utilizing this integral formalism. Maystre showed that the energy absorbed 

by a diffraction grating can be reduced drastically by overcoating with a 

multilayer high-reflection coating. On the other hand. he went on to show 

that a large increase in absorption can occur at a cenain incident angle 

caused by the excitation of guided-wave modes in the dielectric films. 

However. in this study.59-61 anomalies in the diffracted orders caused by the 

guided-wave excitation were not addressed. The problem of diffraction from 

a grating also has been analyzed utilizing a coupled-wave approach in which 

the grating region is divided into a number of horizontal slabs. The relative 

permittivity of the selvage region is periodic and is expanded in a Fourier 

series. This technique has led to very stable numerical results for high 

grat ing-ampli tude-to- wavelength ratios. 

Observation of anomalies in the diffracted beam from a multilayer­

overcoated grating was made by Mashev and Popov. 62 A strong anomalous 

drop in the first-order efficiency caused by the guided-wave excitation was 

reponed. These authors drew the conclusion that. in general. guided-wave 

excitation reduces the efficiency of overcoated gratings. The reason that 

anomalous behavior was observed by these authors as a minimum in 

diffraction efficiency was caused probably by the particular grating profile. 

The grating was fabricated interferometrically in a photoresist. which 

usually results in a sinusoidal groove shape. It has been shown that. whereas 

a trapezoidal or laminar profile allows much of the guided-wave energy to 

outcouple into the outgoing diffracted orders. a sinusoidal or 50% duty cycle 

laminar profile suppresses such effects. resulting in increased absorption) 
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Mashev and Popov63 also have investigated the zero-order diffraction 

efficiency of a three-layer, dielectric-coated sinusoidal grating. In this case, 

the resonant anomaly was associated with an increase in the reflection of the 

specular beam. A theoretical study by these authors64 predicts a modulation 

of the zero-order anomalous diffraction efficiency from 0 to 100% for a 

corrugated single-layer dielectric waveguide. 

diffraction was not an issue. 

Again, nonzero anomalous 

High-diffraction efficiency has been observed in multilayer dielectric­

overcoated, low-efficiency diffraction gratings designed for high reflection 

of an infrared beam.6 S For shallow-ruled gratings, the efficiency is 

influenced by the groove depth (h) and period (0), is influenced 

approximately by (h/O)2, and is nearly constant over a large range of 

incidence angles. 66 However, at cenain precise angles of incidence that 

depend on the characteristics of the grating and the dielectric overlayers, 

guided-wave coupling results in enhanced diffraction. For high-efficiency 

gratings, however, the smooth, bare, grating-efficiency curves are 

transformed into irregular curves; the increase in diffraction efficiency is 

not as dramatic because of the heavy damping of the guided wave. 

A comparison of theory and experiment of anomalous resonance effects 

on a nine-layer-overcoated, low-efficiency grating was made. 4 The 

numerical analysis based on the Rayleigh-Fourier method compared closely 

with observed resonant angles and efficiencies. When the grating was 

irradiated with infrared wavelength light at certain precise angles of 

incidence, a dramatic increase in the -1 diffracted order intensity occurred. 

It was accompanied by a reduction of intensity in the specular beam. 
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Anomalous diffraction associated with coupling into the Oth, 1 st, and 2nd 

guided-wave modes of the nine-layer structure was observed.65 Numerical 

computation supponed by experimental data shows a reduction in resonant 

width as well as a decrease in diffraction efficiency as the guided-wave 

coupling increased. 

An imponant factor that influences diffraction efficiency is the degree 

of replication of the grating profile at each interface of a multilayer coating. 

Perfect replication of the substrate groove profile through the multilayer 

coating was assumed in the analysis reponed in Reference 4. Thus, perfect 

phase correlation between interfaces was inherent in the calculated effects. 

However, perfect transfer of the substrate relief to the film boundaries does 

not occur in all instances. When thin films are deposited on modulated 

surfaces, the boundaries between film layers are also modulated. 6 7 The 

modulation period is usually the same; however, depending on the ruling 

amplitude and deposition conditions, the depth and shape of the profile may 

differ from that of the grating surface. For example, profilometry 

measurements on a nine-layer-coated grating with low-modulation relief 

displayed almost complete profile transfer; whereas, a similar coating design 

on a blazed grating resulted in a sinusoidal surface profile.68 Diffraction by 

a three-layer modulated structure with slightly varying interface profiles 

has been considered analytically. 69 However, the solution was written as a 

power series expansion for small height-to-wavelength parameters, and 

resonant effects were not explicitly considered. 
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CHAPfER SUMMARY 

Diffraction anomalies are rapid variations over a narrow wavelength 

region (or over a narrow range of incidence angles at constant wavelength) 

in the intensity of light diffracted from gratings. Rayleigh was the first to 

theorize on the existence of Wood anomalies. He suggested that they result 

from the redistribution of light when a diffracted order grazes the surface of 

a grating. This occurs at a panicular wavelength known as the Rayleigh 

wavelength. Subsequent investigations revealed the limitations of the 

Rayleigh theory. Not only did anomalous effects occur for TM grating 

orientation but TE as well, which were not predicted by Rayleigh. Also, it was 

evident that some anomalous features in the diffracted spectra occurred at 

wavelengths other than the Rayleigh wavelength. These anomalies were 

associated with resonant coupling of the incident light into plasmons 

supponed by the grating and occur only for TM-polarized light. In addition 

to surface plasmons, composite dielectric structures can suppon a wider class 

of guided waves; they may be either TE- or TM-polarized and, within a given 

dielectric layer, may be evanescent or oscillatory. Phenomena associ ated 

with Rayleigh anomalies and plasmon excitation are reponed extensively in 

the literature. Guided-wave excitation and anomalous diffraction efficiencies 

for multilayer-overcoated gratings, however, have received less attention. 

Much of the work in this area has concentrated on high-efficiency gratings 

with sinusoidal profiles. Funhermore, guided-wave excitation is usually not 

a focal point in these investigations. The influence of thin-film or grating­

profile characteristics on anomalous diffraction efficiencies has not been 

investigated extensively. 
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The importance of groove profile on anomalous diffraction was widely 

recognized. but the difficulties of grating fabrication limited the data base 

from which to draw conclusions. Most observations of anomalous effects 

were made with sinusoidal or echelette (highly blazed) gratings. Anomalies 

from laminar (rectangular) and triangular profile gratings also have been 

investigated but to a lesser extent. Systematic studies involving theoretical 

analysis based on the formalism of Maystre and extensive experimental 

observations present efficiency data for echelette. blazed. sinusoidal. and 

laminar profile gratings.70 However. the influence of these grating profiles 

on anomalous diffraction was not considered in detail. 
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Chapter 3 

GRAPHICAL METHOD FOR THE DETERMINATION OF WAVEGUIDE MODE IN 
MUL TILA YER-OVERCOA TED DIFFRACTION GRATINGS 

INfRODUCTION 

Light incident upon a periodic rough surface-or grating-is diffracted 

into specific directions: a specular (or Oth order) and a number of diffracted 

and transmitted orders. The diffraction angles ad for light reflected back 

into the incident medium are given by the grating formula 

(7) 

where Eo is the permittivity of the incident medium (the other symbols have 

been defined previously). The angles of the diffracted orders transmitted 

into medium I are given by the corresponding equation 

(8) 

If air is the incident medium. then E I > EO; therefore. it is possible to have 

more diffracted orders in transmission than in reflection. This has 
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important consequences on the optical performance of coated gratings when 

guided-wave coupling occurs. 

If medium 1 is a thin film, it may support a number of guided-wave 

modes. These may be characterized by propagation angles am g w or wave 

vectors (CJ) Ic) nIsin am g w . If a transmitted diffracted order with angle ad 

coincides with a guided-wave propagation angle, then it is possible to 

achieve coupling of the incident light into guided waves supported by the 

thin film (see Figure 1). The wave-vector equation may be written as 

(9) 

which is just Equation (8) multiplied by 21C1'A.. The above is actually a vector 

equation in which kgw may be positive or negative. Thus, kgw > 0 and kgw < 0 

indicate guided waves propagating in the +x and -x directions, respectively. 

A multilayer system may support a number of guided-wave modes, which are 

classified by mode number 0, 1, 2, ... and arranged such that the kgw(O) < 

kg w (1) < kg w (2), etc. The parameter m indicates the number and direction of 

grating wave numbers 21CID. 

The theory of guided modes in a single, dielectric, thin film is well 

known. 71 Waveguiding in a multilayer has been investigated utilizing the 

substrate -to-top-Iayer-transfer equation. 7 2 Also, an admittance approach 

has been used to determine allowable modes in a planar dielectric 

waveguide.?3 The admittance, which is the ratio of the magnitudes of the 

magnetic to the electric fields, is a powerful concept in analyzing reflection 

and transmission of a thin-film assembly. A similar method is used here. 
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Waveguide modes are determined by developing a phase expression in terms 

of the admittance of the multilayer. This technique has an advantage in that 

guided-wave modes can be analyzed in terms of a phase condition or in terms 

of the reflection coefficient. Bound waves are specified when the 

denominator of the reflection coefficient vanishes. Another advantage in 

using the characteristic matrix method is that shifts in the waveguide modes 

can be determined readily as conditions of the assembly (i.e., film 

thicknesses or indexes) are altered. This is panicularly useful for design 

considerations when high diffraction efficiency is required for a specific 

incidence angle. 

In this chapter, the characteristic matrix te('hniqu~ used in performance 

calculations of thin-film multilayer systems is reviewed. Utilizing this 

technique, it is shown how bound as well as lossy modes of a multilayer thin­

film waveguide can be found by calculating the phase shifts of a negative-

and a positive-traveling wave within the assembly. It is shown also that, 

under conditions of no loss within the multilayer stack, an equivalent simple 

expression involving the admittances of the negative and positive waves also 

define bound modes. 

An analysis is made of guided-wave modes in overcoated diffraction 

gratings by the characteristic matrix method. As described in this chapter, 

the analysis assumes that the grating resonant condition can be separated 

into diffraction of the incident beam at the film interfaces and subsequent 

waveguiding of the diffracted light within the multilayer assembly. This 

postulates that the only effect of the grating profile is to couple the incident 

light into the multilayer stack at angles greater than allowed by simple 
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refraction at the film surface. Waves at large diffraction angles are trapped 

within the stack by internal reflection. The penurbation caused by a 

periodic surface contour on the solution to Maxwell's equations is neglected. 

A resonance condition is assumed to develop when the angle of the diffracted 

beam allows coupling into a guided-wave mode. Although the angles at 

which resonance occurs can be closely approximated by this method, the 

efficiency of the resonance cannot be detennined. A rigorous analysis of 

resonant effects in multilayer-coated gratings is presented in Chapters 4 and 

5. 

If we consider guided waves from the point of view of ray optics, a simple 

phase condition can be arrived at intuitively. Figure 2 shows a single-layer 

waveguide and the phase fronts associated with a guided ray. The ray travels 

from point A to B and on to C. For constructive interference to occur, the 

total phase lag of the beam transversing the optical path A to C must be a 

multiple of 2Jt. The phase change of the light beam traveling this distance is 

found from twice the phase thickness of the film 2~, plus the phase change 

on reflection from the bottom surface .1 and top surface .2. Thus, the 

condition for a single layer to suppon a guided wave can be written as 

(10) 

where m is an integer and ~ is the phase thickness given by 

(11) 
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A multilayer waveguide is simply a stack of thin films. and the phase 

relation [Equation (10)] still can be used to describe the waveguide conditions 

where the phase thickness of the multilayer must now be considered. In 

practice. it is convenient to calculate the phase terms by standard 

mathematical techniques used in the analysis of thin-film optical coatings. 

CHARACI'ERISTIC MATRIX APPROACH 

The characteristic matrix formalism. which is extensively reponed in 

the literature. is a prime imponance in optical thin-film analysis and forms 

the basis of many calculations.74 The elements of the matrix are solutions to 

the wave equation that satisfy the conditions of continuity of the tangential 

components of the electric and magnetic fields across a plane-film boundary. 

A brief review of the characteristic matrix method for determining 

admittance and phase through a thin-film multilayer follows. 

Thin-film multilayer systems consist of a number of boundaries between 

homogeneous media. A multilayer assembly of J layers is shown in Figure 3. 

The coordinate system is chosen such that the plane of incidence is parallel 

to the x.z plane and the z-axis points down. The film layers ue numbered 1 to 

J beginning at the superstrate. The refractive index of the jth layer is 

referred to as nj. where nj can be complex. The index of the incident medium 

is no. and that of the substrate is n.. We assume a material discontinuity in 

the z-direction only. 

We write the electric field E as 

-+ -+ 
E = Eo exp {i[(a)t + konj (ajX + PjY + 'Yf)]} (12) 
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This represents plane waves traveling in a direction given by the direction 

cosines (a.p.y) with amplitude Eo. The wave vector leo is 27C/)..0. where )..0 is the 

wavelength of light in vacuo and (J) is the angular frequency. For a wave 

propagating in the plane of incidence. 

a· = cos 9· J J 

~j = 0 

Y· = sin 9· J J 

where OJ is the angle of propagation from the normal within the jth layer. 

The ratio of the amplitudes of the magnetic H to the electric field E of the 

wave in the jth layer is called the optical admittance Yj; for normal 

incidence. it is given by 

(13 ) 

where Yo is the admittance of free space and is related to the permittivity to 

and permeability ~o of free space by 

( 

£ )112 { 1 in Gaussian units 
y=-!!.. = 

o J.1 o 1/377 Siemens in SI units (14) 

At optical frequencies. ~ 0 is assumed to be unity and the admittance is 

numerically equal to the refractive index in Gaussian units. 
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At oblique incidence, the admittance is modified by the propagation 

angle of the wave in the medium in which it is traveling and has a different 

value for each of the two polarizations. The modified admittances Yj for the 

two polarizations are 

y. = y. cos 9· 
J J J t TE polarization (15) 

y.= Yj TM polarization 
J cos 9· t 

J (16) 

The matrix 

[ coslij 1.. sin Ii] M·= y. J 

J iY. sin~. 
J 

cos ~j (17) J J 

characterizes the jth layer of a thin film by containing constants relevant to 

one layer of the stack only and is called the characteristic matrix. In this 

matrix expression, 6 j is the phase thickness of the jth layer and Yj is the 

modified admittance given by Equations (15) and (16). 

For a thin-film assembly of J-Iayers, the equivalent characteristic matrix 

of the assembly is the product of the individual matrices beginning at the 

substrate, i.e., 

(18) 

Since there is only a positive-going wave in the substrate, the tangential 

components of Eo and Ho at the surface of the multilayer are related to the 
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tangential components of Es and Hs. which are transmitted through the final 

interface into the substrate by 

(19) 

By nonnalizing the electric and magnetic fields to the electric field at the 

substrate Es. we arrive at 

The equivalent admittance Y of the multilayer assembly is then 

B 
y=­

A 

and the reflection coefficient p is 

where Yo is the modified admittance of the incident medium. 

(20) 

(21) 

(22) 
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WAVEGUIDE MODES 

In this section. the technique for determining allowed waveguide modes 

from the modified admittance of a multilayer assembly is discussed. 

Bound as well as lossy modes occur within a thin-film stack when the 

phase condition of Equation (10) is satisified. For bound modes. the wave is 

confined within the stack by total internal reflection; energy flow is in the 

direction parallel to the film interfaces. In an ideal system. total internal 

reflection occurs at the top surface and substrate interfaces; no power is lost 

from the system. In a lossy system. the field decays as the wave propagates 

down the multilayer. If absorption is neglected within the dielectric layers 

of a multilayer-overcoated diffraction grating. energy loss from the guided 

wave occurs by two methods: (1) diffraction into air of the beam at the top 

surface and (2) absorption in the metal substrate. 

The technique used to determine guided-wave modes within a multilayer 

assembly involves the calculation of the phase-shift terms in Equation (10) 

for a wave traveling in the positive and negative z-directions. The situation 

is illustrated in Figure 3. which shows a multilayer waveguide assembly. For 

purposes of phase calculation. the multilayer may be divided at any 

convenient z-plane within the stack. The top surface is chosen here for 

illustration. The positive-traveling wave begins at the top surface. reflects 

off the substrate. and returns to the surface with total phase • +. This phase 

term includes the phase shift resulting from twice the optical thickness of 

the multilayer and the phase shift on reflection from the substrate. The 

negative-traveling wave is allowed only a phase shift ._ on reflection from 

the surface boundary layer. 
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We assume that the negative-traveling wave is incident at the top surface 

beyond the critical angle and that total internal reflection occurs. For this 

wave, the medium above the surface of the stack becomes the effective 

substrate. The modified admittance of the air substrate is then 

(23 ) 

y = Yo ,for TM 
o cos 9

0 (24) 

where Yo = 1. Since total internal reflection has occurred, cos 9 0 is 

imaginary. Using Snell's law, 

Yo sin 90 = Yl sin 91 

and 

cos2 90 + sin 2 90 = 1 

Equations (23) and (24) can be written 

y = o 

.{ 2 . 29 2}1n. 
-1 Yl sm 1 - Yo 

{ 

2 }-In. 
. Y 1 . 2 1 

-1 - SID 9 1 --Y! Y! 

, for TE 

, for TM 

(25 ) 

(26) 

(27) 
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In this case, since the modified admittance is imaginary, only evanescent 

waves are present in the air and no energy flow occurs. Funhermore, the 

negative-traveling wave is allowed a phase shift caused by the reflection 

only, and the equivalent admittance of this wave Y_ equals the modified 

admittance of the air substrate Yo. 

The reflection coefficient p_ for the negative-traveling wave is 

(28) 

where the appropriate expressions for TE and TM polarization are to be 

substituted for Y I and Y _. Since in this case Y _ is purely imaginary, the 

phase on reflection +_ is 

(29) 

For the positive-traveling wave, we use the characteristic matrix 

expression [Equations (10) and (11)] to arrive at an equivalent admittance Y + 

of the multilayer stack. The reflection coefficient for the wave p+ becomes 

(30) 

where B/A = Y +. Again, the appropriate values for TE and TM polarization are 

to be substituted for YI, A, and B. 
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Multiplying the above expression by p+ * (where * signifies the complex 

conjugate) and separating real and imaginary terms, the phase .+ is found to 

be 

[ 
iY I(BA* - AB*)] 

~+=arctan 
Y?AA*-BB* (3 1 ) 

Substituting Equations (29) and (31) into the phase condition [Equation 

(10)] results in a general expresdon whose solutions define guided-wave 

modes within the multilayer assembly in terms of the mode propagation 

angle. Since this expression is transcendental, it cannot be solved 

analytically. Graphical or numerical solutions are required. A graphical 

technique to determine the solutions to the waveguide expression is discussed 

below. 

There exists a discrete set of solutions in terms of the mode angle or wave 

vector that satisfies the waveguide expression. For convenience in 

experimentally identifying modes, the zero mode is assigned to the smallest 

propagation angle. Higher order mode solutions occur with greater 

propagation angle. At propagation angles below the critical angle at either 

the top or substrate interface, a radiation condition exists and the continuum 

of modes results. This is characterized by standing waves through the 

multilayer, and the thin-film assembly acts as a reflector of the incident 

light. In this case, the wave is said to be beyond cutoff. 
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BOUND MODES 

If the equivalent admittance of the multilayer in Equation (21) is purely 

imaginary. the phase shift of the positive-traveling wave .+ can be expressed 

in a manner similar to Equation (29) for the negative-traveling wave. The 

phase shift .+ becomes 

(32) 

Substitution of Equations (29) and (32) into Equation (10) results in a 

simple expression specifying the waveguide condition in terms of the 

admittances. 

(33) 

If we consider Y _ as the equivalent admittance of the incident medium and Y + 

as the equivalent admittance of the multilayer assembly. the reflection 

coefficient can be written as 

(34) 

When the admittance condition Y + = -y_ is satisfied. bound modes are 

determined by the poles of the reflection coefficient. 3.75 

We have seen that bound modes of a multilayer stack exist if the 

equivalent admittance of the multilayer is purely imaginary. Equations (20) 

and (21) show that the admittance of the multilayer assembly becomes 
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imaginary if the modified admittance of the substrate is itself imaginary. A 

purely imaginary admittance value for the substrate results for (1) total 

internal reflection on a dielectric substrate or (2) a pure metal substrate 

whose index of refraction is purely imaginary. 

In the case of total internal reflection from a dielectric substrate. the 

admittance of the substrate can be expressed similarly to the admittance of 

the negative-traveling wave at the surface interface. where 

y = s 

.[( . 8)2 2] In. 
-1 Yl sm 1 - Y. forTE 

-{(~; sin OJ -(:.H'12 . forTM 

(35 ) 

and multiplication of Y I with the characteristic matrix of the multilayer 

results in a real A and imaginary B value in Equation (21). 

LOSSY WAVES 

The phase condition [Equation (10)] applies to leaky waves as well as 

bound waves. provided correct expressions for the phase of the positive- and 

negative-traveling waves are used. For a leaky system. the substrate is now 

absorbing and energy flows from the positive-traveling wave into the 

substrate. 

We have seen that for a substrate whose admittance is imaginary. the 

expression Y + = -Y _ determines the condition for which bound modes exist 

within the multilayer stack. For a substrate with complex admittance. 
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however, the equivalent admittance of the multilayer is also complex. Thus, 

the total phase shift of the positive-traveling wave given by Equation (31) 

cannot be simplified in the manner of Equation (32). Funhermore, the 

admittance condition [Equation (33)] cannot be satisfied since Y + is complex 

and Y _ is imaginary. In this case, the denominator of the reflection 

coefficient goes through a minimum (not necessarily zero). 

GUIDED-WAVE CALCULATIONS 

Waveguide modes within a multilayer dielectric assembly with smooth 

interfaces can be found by solving the phase condition. For a metallic 

substrate, bound modes can be approximated by the admittance condition 

[Equation (33)], provided the real pan of the refractive index of the metal is 

small compared to the imaginary pan. 

Guided-wave modes for the multilayer-coated grating designs considered 

in this work have been determined using the graphical method developed in 

this chapter [see Figures 8(a) through 8(0]. The guided-wave modes are 

determined by the intersection points of the phase curves for the upward­

and downward-traveling waves. Discrepancy between the guided-wave 

modes as determined by the method outlined in this chapter and those found 

by the rigorous solution (Chapter 6) results from the fact that the planar 

waveguide method is only an approximation when the penurbations due to 

groove shape are considered. The smaller the groove height, the better the 

approximation. 
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The exact integral equation formulation of the problem of diffraction 

from multilayer-coated gratings (Chapter 5) may be cast into the following 

simplified matrix expression: 

I=MX, (36) 

where I is a column vector related to the incident field, X is a column vector 

whose elements are related to the unknown diffracted field, and M is a square 

matrix. The poles to this expression, specified when the determinant of M 

(det M) vanishes, indicate the allowed guided-wave modes. A simple method 

for finding guided-wave modes is to numerically scan over a wave number 

until a minimum in det M is located. Once the approximate waveguide modes 

have been determined, the rigorous calculation is utilized to find exact 

guided-wave modes and to calculate diffraction efficiencies. This graphical 

method readily locates allowed guided-wave solutions by the intersections of 

phase curves. The planar waveguide method is advantageous in locating the 

approximate guided-wave modes and, hence, the approximate incidence 

angle for which coupling is expected. 

CONa..USIONS 

It has been shown that waveguide modes within a multilayer stack can be 

determined by calculating the phase or admittance of upW'\ard- and 

downward-traveling waves within the assembly. These calculations involve 

the characteristic matrix technique commonly employed in optical 

performance calculations of multilayer coatings. Utilizing the method 
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presented here, approximate guided-wave modes have been determined for 

the cases studied in Chapter 6. 
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Chapter 4 

EXTINCflON TIIEOREM: SINGLE SURFACE 

FlFLD EQUATIONS 

In this chapter, the extinction theorem relations for a single surface of 

periodic roughness are developed following the methodology of Toigo et al. 2 

and Laks et al.44 An excellent review of the extinction theorem as it relates 

to scattering theory is given by Wolf.76 

The geometry considered is shown in Figure 4. A dielectric or metallic 

medium fills the lower space z > do + hex) (region s) characterized by an 

isotropic frequency-independent dielectric constant £5. The upper half-

space z < do + hex) consists of the incident medium of dielectric constant £0. 

The surface profile function hex) is periodic in x with period 0, and do is the 

mean reference level of the interface. 

The extinction theorem is based on Green's identity.77 The general form 

of this identity relates a volume and surface integral and is given by 

v' 5' (37) 

where v' represents the volume of integration bounded by a closed surface s'. 

In this work, the scalar field U is taken to be a component of either the 

electric or magnetic field. For example, for TM-polarization, U is taken to be 
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the amplitude of the magnetic field vector. The function Gj is the three-

dimensional Green's function associated with an arbitrary medium j of 

permittivity tj. The Green's function satisifies the Helmholtz equation78 in 

the form 

(38) 

-+ -+ -+ 
which is homogeneous everywhere except at the point r = r '. The vectors r 

-+ 
= (x,y,z) and r' = (x',y',z') are the observation and source points, respectively. 

The Green's function in three dimensions may be written explicitly in 

integral form 79 as 

~ ~ 

-+ -+ iK 1 r -r 'I i 1- eilk(x-x')+P(Y-Y'»)eiqj 1 z-z'l 
G, (r-r ') = _e ___ - - dkdP 

J 1-+ -+ 1 - 211: -- qJ' 
r-r' (39) 

where 

K=~ I£. c 11/ c.j 

and 

(40) 

Green's identity [Equation (37)] is first used by considering a volume 

enclosing the region above the boundary (incident medium j = 0). The 
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magnetic field anywhere within the volume of integration enclosing the 

incident medium satisfies the homogeneous Helmholtz equation. 

(41) 

--+ --+ " 
where H is the total magnetic field given by H = yH. 

Green's identity is simplified by substituting V2G o and V2H from Equations 

(38) (where j = 0) and (41) into Equation (37). resulting in 

41t J J J H ~(x-x') ~(y-y') ~(z-z') dv' = J J (Go S~ -H ~o ) ds' 

v' s' (42) 

The surface profile is given by z' = do + h(x'). and the differential surface 

area ds' in Equation (42) may be written as 

ds' = dy' .J (dx,)2 + (dz,)2 = dy' dx' .J 1 + (h'(x,»2 
(43) 

Since the surface is uniform in the y-direction. integration of Green's 

function over dy' results in a Dirac delta function 6(P). Funher integration 

over dP results in setting p = O. This is seen easily by using &tuations (39) and 

(41) in Equation (42). With this. the surface and volume integrals in 

Equation (42) reduce to one- and two-dimensional integrals. respectively. 

Thus. the problem in three dimensions can be reduced to an analysis in two 

dimensions only. The evaluation of the surface integral yields the incident 

plane wave Hinc plus an integration along the grating surface. 
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The second integral results in the total field Ho total for observation points 

anywhere within the incident medium. If the points of observation are 

located outside the incident medium, the integral vanishes. After the 

procedures outlined above are carried out, Green's identity for the incident 

medium can be written in the form of the extinction theorem as 

Hine __ 1 1 (H .2.. G - G .2.. H ) dx' J 1 + h'( ,)2 
o 41t 0 do 0 0 do 0 x • 

= I H~otal Z < <lo + hex) 

o z > <lo + hex) 

where Go is the two-dimensional Green's function given 

G '1- dk i[lt(ll-ll') + 'Ie, , z-z" J 
0=1 -e 

-qo 

(44a) 

(44b) 

in integral form by 

(45) 

and Ho is the magnetic field at the boundary within the incident medium, 

evaluated from above. Details of the analysis leading to this result are shown 

in Appendix A. Equation (44b) implies that the magnetic field and its normal 

derivative on the surface cancels or 'extinguishes' the incident field for all 

points of observation below the surface do + h(x) and outside the volume of 

integration. For points of observation above the surface as in Equation (44a), 

the incident field and the field contributions from the surface generate the 

total field. 

The extinction theorem relations for the lower region are derived in a 

similar manner as that for the incident medium. In this case, the volume and 
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surface of integration in Green's theorem [Equation (37)J enclose the lower 

or substrate region U = s). The magnetic field within the lower region 

satisfies the homogeneous Helmholtz equation, 

(46) 

Substitution of Equations (38) (where j = s) and (46) into (37) yields 

(47a) 

(47b) 

where Hs trans is the field transmitted into the substrate. Ho is the magnetic 

field evaluated on the boundary. 

The extinction relation Equation (47a) assens that the field radiated by 

induced surface currents must exactly cancel the incident wave when viewed 

from below the boundary. Equation (47b) states that the induced surface 

currents radiate into the substrate to form the transmitted magnetic field. 

BOUNDARY CONDmONS 

The extinction theorem relations (44) and (47) may be simplified by 

utilizing appropriate boundary conditions across the interface defined by Zo 
~ ~ 

= do + h(x). A normal vector, N, to the interface is given by V Zu or 
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-+ " " N=z-xh'(x) (48a) 

" " " where h'(x) = ah(x)/ax and z. y. and x are unit vectors in z, y, and x directions, 

respectively. The unit normal is 
-+ 

N " " " 2 -1/2 -- = n = (z - xh'(x»(1 + h'(x) ) 

INI 

-+ 
The tangent vector T to the surface in the plane of incidence is 

-+ -+" "" 
T = N x y = - (x + z h'(x» 

" and the unit tangent t becomes 

-+ 

"T "" 2-1/2 
t = - = - (x + z h'(x» (1 + h'(x) ) 

ITI 

-+ 

(48b) 

(49a) 

(49b) 

For TM polarization, the magnetic field (H) is perpendicular to the plane 

of incidence. Tbe boundary conditions to be satisfied are tbe continuity of 
-+ 

the tangential components of the magnetic field H and electric field E at the 

boundary interface. The electric field for region j is found from Maxwell's 

equation,80 

-+ -+ . C1) -+ 
V X H=-I- £0 E c J (SO) 
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The tangential component of E is 
-+ -+ 

-+" (V x H) " 
Etan=E-t=i -t 

CI) 

Ere 

-+ " 
. (V H x y) " 

= 1 - t 
CI) 

E·-
Jc 

-+ " 
where H = yH. Also, using the vector identity 

-+ -+ -+ -+ -+ -+ 
(8 x C) - A = (C x A) - 8 

E tan can be written as a normal derivative of the magnetic field, i.e., 

Etan = i 
" " -+ (y x t) - VH i oH 

CI) 
E·­

J C 

= ---w dO 
E· -

J C 
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(51) 

(52) 

(53 ) 

In the case of TE polarization, the electric field vector is perpendicular to 

the plane of incidence and, hence, tangent to the y-x surface. The magnetic 

field in this case is found from Maxwell's equation 

-+ -+ CI) -+ 
VxE=i-H 

c (54) 

In a manner similar to the derivation of Etan , the tangential component of 

the magnetic field Htan is found to be 



-i dE 
Htan = ro do 

c 
-+ 1\ 

where E = yEo 
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(55) 

Therefore, the boundary conditions to be satisfied by H for TM 

pol arization are 

(56) 

-l..L R 1(j) =..!...L R(j) 
£i-l :L--:r £J' ::In+ J d h() • un u z= 0+ II (57) 

and for TE polarization, 

(58) 

(59) 

In these equations, the subscript on the fields specifies the medium and the 

index in parentheses designates the boundary. Also, iJ/iJn- and iJ/iJn+ signify 

differentiation along the normal, directed upward and downward, 

respectively. The relation between the normal derivative is 

d d 
-=--

(60) 

where from Equation (48a), 
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(61 ) 

The analysis carried out in this work is developed for TM polarization. 

where the field equations involve the magnetic field and its derivative. For 

TE polarization. the electric field and its derivative are utilized in the 

extinction theorem equations and the form of the resulting equations are 

similar to the TM case. 

Substitution of the boundary condition [Equations (56) and (57)] and the 

definition of iJ/iJn _ [Equation (61)] into the extinction theorem relations 

[Equations (44) and (47)] results in 

inc 1 J { " (dGo(X-X',z-z') dGo(X-X',z-z'») 
Ho - 41t dx Ho(x ,z ) dz' h'(x) dX' 

{

l\,total for z < do + h(x) 
- G.(X-X',Z-Z')L.(X"Z')] , = 

Z=do+h(ll) 0 fi A () orZ>"'o+h x (62) 

and 

- 41t dx Ho(x ,z) 'dzi G. (x-x ,z-z )-h (x ) dX' ) 
1 f f " ( d '" , dG. (x-x',z-z')') 

f. ] - G.(x-x',z-z') '£ L(x',z') 
o z'=d +h(ll') o 

{ 

0 for z < do + h(x) 

- ~tr_ for z > do + h(x) 
(63 ) 
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In these expressions, the definition for L(x',z') = [1 + h'(x')2]l/2 iJ/iJn H(x',z') 

has been introduced. Lo(x',z') and Go(x',z') are the fields on the surface 

evaluated from above, since the boundary conditions have been employed in 

Equation (63) to transition the surface from the substrate to the incident 

medium. 

Explicit extinction theorem formulas are obtained by using the integral 

representation of the Green's function, Equation (45). Subtracting the 

incident field from both sides of Equation (62) and substituting the Fourier 

representation of the Green's function lead to 

1 rJ-41t 1 _ dx'dk{ Ho{x',z') i[-qo sgn{z-z') + kh'{x')] - Lo{x"z')} 

• .diff 
-H~- for z < <10 + h(x) 

ei'lo , z-z" eik(x-x') 

x = 
qo 

Hoinc for z > <10 + h(x) 
(64) 

where Ho diff represents the diffracted field in the incident medium. 

Multiplying the above equation by 

(65) 

where kn = ko + n 2K/O, and carrying out the integration over dx results in 
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-J~ dx ~ff e-~" for z < ~ + h(x) 

eiqn,o I z-z'l e~'" 
x = 

qn,o 

J~ dx I('c e -~" for z > ~ + h(x) 

(66) 

where the integral representation of the Dirac delta function, 

(67) 

has been used. Also, qn,o is related to kn by 

2 2 2 (00) 
Qn,o + Ie;; = £0 C 

(68) 

Note that the integrand in Equation (66) is periodic in x and that the infinite 

limits on dx' are over an infinite number of periods. Thus, Equation (66) can 

be written as an integral over one period times an integer N, where N -+ -

and becomes 
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. 1012 
~ N dx {H(x,z')['ln.osgn(z-z') - ~h'(x)] - iL(x,z')} 

-Ofl 

I
NOfl 

y riiiff . - dx H~ e-~ x 
-NOfl 

for z < do + hex) 
(69a) 

eiCI.,) z-z'l il. INOfl . il. 

---- e --nx = dx l\,tnc e --n x for z > do + hex) 
qn,o -NOfl , (69b) 

where the prime on x bas been dropped. Away from the grating surface 

where z < do + h(x), the diffracted field can be expanded as 

-
Heliff = ~ udiff i'lp,o z ik,x 

o ~ &&p.o e e 
~ (70) 

Also, tbe incident plane wave can be written as 

(71 ) 

where IH 0 inc 1 represents the incident field amplitude. Substituting HodiCC of 

Equation (70) into tbe right side of Equation (69a) gives 

(72) 
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Since kp - kn = 2x(p-n)lD. only the p = n tenn survives and the right side of 

the above equation may be written as 

Similarly. the right side of Equation (69b) is 

lu inc I ill 7. NO 
& '"0 e-"'-

Since the surface profile function is periodic. the Hand L fields must possess 

the Bloch property where 

Ho(x + a. z') = eika Uo(x.z') 

and 

Lo(x + a.z') = eika Lo(x.z') 

H o(x.z') and Lo(x.z') are now expanded in tenns of a Fourier series as 

-
Ho<x.z') = L eik.lll\n 

m=--

-
Lo<x.z') = L eik.llLro 

m=--



69 

which retain the Bloch propeny and are substituted into Equation (69), 

resulting in 

- on 
2 1 D L I dx {('In,o sgn(z-z') - ~h '(x» H.n -iLm } 

Cln,o -on m=--

for z < ~ + h(x) (73a) 

I H!IIC I eiq.,z for z > ~ + h(x) (73b) 

where z' is to be evaluated on the surface [do + h(x»). The modulus sign is 

dropped from subsequent development, but the amplitude of Hoine is assumed. 

Generally, integration of the Green's function is made more difficult 

because of the modulus sign appearing in the exponent. Although the source 

point z' lies on the surface, the observation point z may be chosen so not to 

penetrate the selvage region. In this case, simpler equations are obtained. 

Thus, for observation in the upper region, we let z < min h(x); for the lower 

region, z > max h(x). 

If the observation point z lies in the substrate outside the selvage region, 

then z-z' points down in the +z direction. Evaluation of Equation (73b) is now 

carried out with sgn(z-z') = + 1, and integrating the term 

(74 ) 
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by pans results in 

= ~nc for z > rlo + hex) (75) 

For an observation point in the upper region. z-z' points upward and 

sgn(z-z') = -1. Integrating Equation (73a) by pans results in 

__ '[.diff 
On.o for z < rlo + hex) (76) 

Notice that the groove profile enters the analysis within an integral over the 

grating period; explicit derivatives of the grating profile do not appear. By 

defining matrix elements .±mn.o and '1±mn.o as 

and 

",± = ..!.. JD12 dx e±V(X> ei(ka. - k.)x 
't"nm,O D 

-D/2 (77) 

(78) 
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the extinction theorem Equations (75) and (76) can be conveniently written 

as 

L (l1~o e -i'l"pdo l\n - i cj)~o e -iq,.,odo 40) 
rn=--

= 2<In.o H!nc for z > <fo + h(x) (79) 

and -
L (- l1!m.o e +iq,.,odo l\n - i ~o e +KJ..,odo 40) 

rn---

If-iff = - 2<ln.o 11.0 for z < <fo + h(x) (80) 

In these expressions. the exp(iqn.odo) term is unity. since the mean interface 

surface level is defined as do = O. 

The extinction theorem Equation (63) for the substrate region is now 

considered in a manner analogous to the derivation carried out for the upper 

region. This results in 

i (-ll;';...,e +iq",.d. H", - i ~ ':""'e ~d. L,.. ) 
rn=--

= 0 for z < <fo + h(x) (8 I) 

and 
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t (T\~ e -..... d. H", - i t. ~ .. -.... d. L", ) 
m=-

= - 2Qn.' H!.-:U for z > <lo + h(x) (82) 

In these expressions. the subscript s (signifying the substrate region) has 

been substituted in place of subscript 0 for the incident medium. 

REfLECl'ION COEFFICIE..W MATRIX 

Equations (79) through (82) represent linear equation systems with 

unknowns Hm.Lm. Hn.odiff. and Hn.strans. This type of problem is usually 

solved numerically by truncating the system of equations such that In I ~ N 

and 1m I ~ N. When this is done. each equation (79) through (82) yields a 2N + 1 

eq uation system and unknowns Hm and Lm. In addition. the Hn .o d i ff and 

H n.5 trans are unknown quantities. In matrix notation. Equations (79) and (80) 

can be written as 

~ H - i ,~ L = 2<Jo n:c 
(83 ) 

and 

+11: H + i ,: L = 2<Jo H~fJ (84 ) 

where. after truncation. .%0 and "%0 are square matrices of dimension 2N + 1 

with elements .%0 = [.%om.o] and "%0 = ["%om.o]. The integers n and m range 

from -N to N and designate the rows and columns. respectively. of the .0 and 

"0 matrices. H and L are column vectors of size 2N + 1 with elements Hm and 
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L m. and Ho ine is a column vector with all zeros except the central terms. The 

square matrix qo is of size 2N + I, which is diagonal. That is. qo = dia[qn.o]. 

where qn.02 = £0(ro/c)2 - kn2. JIodiff is a 2N + 1 column vector representing the 

unknown diffracted magnetic field. Similarly. with the matrix definitions 

discussed above. Equations (81) and (82) become 

(85) 

and 

E - H . • ... - L 2 J,.ttrll1l Tt. - 1 £'" ". = - q .... 
o (86) 

The system of equations represented by Equations (83) through (86) may 

be solved for the unknown quantities Hodiff by first solving Equation (85) for 

L in terms of H. yielding 

(87) 

Substituting this equation into Equations (83) and (84) determines the 

reflection coefficient matrix p in the form Hodiff = P Hoine. Thus. the 

following relationship is obtained: 

(88) 
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For a planar boundary, the above expression reduces to the standard Fresnel 

reflection coefficient for TM-polarized light 

Ififf 
o 

p=-= 
HiD<: 

o 

TE POLARIZATION 

(89) 

In the case of TE polarization, the electric field is now normal to the 

plane of incidence and the boundary condition Equation (59) implies the 

continuity of the normal derivative of the electric field across the interface. 

The wave function U in Green's theorem now designates the electric field, 

and the inhomogeneous Helmholtz equation is utilized in solving Green's 

identity for the incident medium. The results derived in the section above 

for TM polarization become valid for TE polarization, provided the following 

substitution is made: 

(90) 
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Chapter 5 

EXTINCTION THEOREM ANALYSIS FOR MUL TILA YER STRUCI1JRES 

INfRODUcnON 

The extinction method technique reviewed in the previous chapter is 

extended in this chapter to analyze diffraction of light from multilayer 

structures. Figure 5 illustrates the geometry that will be considered. As in 

the previous section, the coordinate system is chosen such that the plane of 

incidence is parallel to the x,Z plane and the z-axis points downward. The 

film layers are numbered from j = 1 to j = J. The refractive index of the jth 

layer is referred to as nj, which may be complex. The grating profile is 

given by Zj = dj + h(x), where dj is the mean level of the jth layer and h(x) is 

the height profile function. As shown in Figure 5, h(x) is assumed to be the 

same for each interface. However, in a numerical analysis given later in 

this paper, the h(x) is taken to be generally different for each interface. In 

the equations developed in this chapter, the j index in parentheses refers to a 

specific interface at which the fields are evaluated. Funhermore, the j and j-

subscripts on the fields E and H refer to a specific layer. 

To begin the analysis, the extinction theorem is applied to an arbitrary 

layer bounded by its bottom and top interfaces. Also, the boundary 

conditions across the bounding interfaces are applied. In order to develop a 

propagation scheme through the multilayer, the fields are initialized in the 

substrate. The fields are then transferred to the top surface by two methods: 
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(1) repeated multiplication or (2) recursion of the propagation matrices. 

Once the fields at the top interface have been determined, the diffracted field 

can be calculated by using the appropriate extinction theorem equation for 

the incident medium. 

The two methods for propagating the magnetic and electric fields from 

the substrate to the top surface of the multilayer are outlined as follows. In 

the first method. the traditional characteristic matrix formalism is employed. 

The characteristic matrix for the jth layer Mj relates the tangential 

components of the electric Ej and magnetic Hj fields at the jth boundary to 

the fields at the j-l boundary E(j-I), H(j-l) by the following expression: 

(
E(j-l») (E(j)) 
HCj--l) = Mj H(j) 

(91 ) 

The characteristic matrix for an assembly of J-Iayers is the product 

(beginning at the layer next to the substrate) of the individual layer 

matrices. The electric and magnetic fields at the substrate Es , Hs are then 

related to the fields at the superstrate Eo, Ho by Equation (19). Details of the 

characteristic matrix technique were reviewed in Chapter 3. 

For the R-matrix technique, Equation (91) can be rewritten as 

( 
HO ) ( H'O ) J = R J 

H(j-I) J H'(j-I) (92) 

where the prime denotes differentiation with respect to the interface 

normal. H' is related to the electric field, and R is the R-matrix for the jth 

layer. The R-matrix for the j-l layer Rj-l is generated from Rj by a recursion 

relation. By using this recursive scheme, the R-matrix is propagated from 
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the substrate to the superstrate. where the diffracted field can be calculated 

by using the appropriate extinction theorem equation for the incident 

medium. The essential di fference between the characteristic matrix and the 

R-matrix propagation schemes are illustrated by Equations (91) and (92). In 

the characteristic matrix technique. the electric and magnetic fields at one 

interface are related to the fields at a lower interface by a propagation 

matrix. On the other hand. the R-matrix relates the magnetic field at two 

interfaces to the electric fields at those same interfaces. 

It was found that the characteristic matri x approach frequently resulted 

in ill-conditioned matrices when guided waves were present. leading 

sometimes to numerical difficulties. These problems were avoided by 

incorporating an R-matrix or recursive method of generating a propagation 

mat ri x .8 I .82 This approach leads to much better numerical stability and 

correspondingly improved algorithms. The greater numerical stability of 

the R-matrix technique results from the stability associated with the matrix 

e I e men t s .83 For an evanescent state and planar boundaries. the 

characteristic matrix elements are hyperbolic functions. sinh and cosh; 

whereas. the R-matrix elements are coth and csch. For large arguments. the 

coth and csch are well behaved; whereas. the sinh and cosh that arise in the 

characteristic matrix formulation increase exponentially. Thus. the R­

matrix scheme is numerically stable and retains precision when evanescent 

waves corresponding to large arguments are present. However. for small 

arguments of the hyperbolic functions. the stability situation is reversed. 
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EXTINcnON TIIEOREM: j11l LAYER 

Extinction theorem equations for layer j are derived by employing the 

Green's identity to the volumn enclosing the jth layer, bounded by the 

interfaces j and j-l. This results in an integration along the closed path ABCD 

as shown in Figure S. Since the integration from A to B will cancel that of C 

to D, the integrals along the j and j-l surfaces only need be considered. 

For both the lower and upper surfaces, two integral equations are 

developed for which the fields are extinguished. One equation determines 

the field relations for a point of observation below and outside the volume 

enclosing the jth layer, and the second incorporates the observation 

direction upward and again outside the volume of integration. 

The extinction relation for the jth layer region developed by using 

Green's theorem along the bottom and top surfaces for field observation in 

the +z direction is 

-
~ { - . -i'ln ,d(j) J.I .(j) _ .... - . -iqD,.d(j)L .(j)} .tl.J T'lnm,j e .J &.&ro,j I"nm,j e J m,j 

-~ {- -iq .d(j-I)H (. 1) 
- ~ T'lnm,j e DJ m,j-l J-
m=-

.... - Ej -iq .d(j-I)L (j 1 )}- 0 - I" .~ e DJ . I - -nm,jE' m,j-
j-l (93 ) 

where qn,j is the wave-vector component in the z-direction given by 
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(94) 

Equation (93) is seen easily by considering the development of Green's 

identity in the last chapter that led to Equations (79) through (82). As 

already mentioned, the evaluation of Green's identity within layer-j involves 

the integration along the lower (j) and upper (j-I) surfaces of the layer. 

Evaluation of Green's identity along the lower interface results in the left 

side of Equation (79) (where the subscript 0 is set = j). Similarly, the left side 

of Equation (82) (where 0 = j-I and s = j) results from the evaluation of the 

surface integral along the upper surface. Equation (93) thus represents the 

surface integration appearing in Green's identity along the lower and upper 

boundaries. 

An expression similar to Equation (l 0 1) results for the jth region by 

taking the observation point in the -z direction, i.e., 

~ {-,,+ . e+iqnjd(j)H '(J') - iit.+ . e+iqnjd(j)L .(j)} 
~ nmJ mJ TnmJ mJ 

m=-DO 

DO 

~{-,,+ . e+iqnjd(j-l)H . (j-l) 
~ nmJ mJ-l 

m::oo 

- i~ it. + . e +iqnjd(j-l)L . (j-l)} = 0 
E' 1 TnmJ m,J-l 
J- (95) 

This equation follows from Equations (80) (where 0 = j) and (81) (where 0 = j-

1 and s = j). The left side of Equation (80) results from the integration along 
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the lower surface and the left side of Equation (81) from integration along 

the upper interface. 

The extinction theorem expressions are now rearranged in the form of a 

propagation matrix by which the fields in the substrate may be transferred 

to the top surface. This effectively reduces the multilayer problem to one of 

a single interface in terms of equivalent fields at the top surface. Once the 

fields at the top surface are known, the diffracted field in air is determined 

by use of the extinction theorem relation for the incident medium. 

Combining Equations (93) and (95) in the form of a matrix expression 

results in 

("(j-O) = 0 
L(j-O 

(96) 

This is the primary equation for the analysis of diffracted fields from 

multilayer, periodic-modulated, thin-film layer and relates the magnetic and 

electric fields at the boundary surfaces by means of the layer and surface 

roughness characteristics. 
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CHARACTERISTIC MATRIX PROPAGATION 

Even though the R-matrix propagation scheme resulted in greater 

numerical stability, the characteristic matrix technique is considered in this 

section. This is because the characteristic matrix technique leads to a more 

intuitive notion of field propagation through each consecutive thin-film 

layer. Equation (96) is rewritten in matrix notation as 

(97) 

where 9 j is a square matrix that is diagonal and has the form 

(98) 

where the off-diagonal zeros represent null matrices and the diagonal terms 

are diagonal matrices with elements ~m,De:tiqD.j(dj_l - dj }. Qj and Qj are square 

matrices of the form 

Q. = (11; 
J + 

-l1j 

and 

-i~f ) 
.... + 

-l't'j 

E· • J -
-l-~' 

Ej-l J 

E· 
-i ....:L.~:t 

Ej-l J 

(99) 

( 100) 
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The ",(j-I) and ",(j) are column vectors given by 

(~1) = (H(j-1)) 
'II \I L(j-l) (101 ) 

and 

(j) = (H(j») 
'II L(j) , (102) 

where H(j). H(j-l). L(j). and L(j) are also column vectors. 

Equation (97) is in the form of a propagation matrix Pj. where 

--1 p.=Q. 9· Q. 
J J J J • (103 ) 

This matrix propagates the fields from the jth interface (evaluated on the 

negative or upper side) to the positive side of its j-l interface. Because the 

boundary conditions have been applied to the Qj matrix. the fields are 

continuous across the j-l interface. For a multilayer structure of J layers. 

the overall propagation is determined by multiplication of the individual 

layer propagation matrices beginning at the substrate. i.e .• 

(104 ) 

In the propagation scheme given by the above equation. the boundary 

conditions are repeatedly applied to the top surface of each layer of the 

multilayer structure. Thus. the fields are propagated through each layer and 

across the top interface into the adjacent layer. which effectively allows 
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computation of the field at the top surface of the multilayer stack in terms of 

the fields at the substrate boundary. 

EXTINCl10N THEOREM: SUBSTRATE INmALIZATION 

In the propagation scheme given by Equation (97), the fields are 

initialized in the substrate region. This is accomplished by solving Equation 

(85) in terms of L(J): 

L(J) = i(.t.+r1 n+ £J H(J) 
". "1 £ • (105) 

Combining Equations (97), (101), (102), (104), and (lOS) results in 

(106) 

where Pij are square submatrices of the propagator P of order 2N + 1. 

EXTINCTION TIIEOREM: INCIDENT MEDIUM 

Use of the extinction theorem at the top surface follows directly from the 

single-surface analysis presented in the previous chapter. A reflection 

coefficient expressed in terms of the H and L fields at the top surface is now 

developed. The final result is found by propagating the fields at the substrate 

boundary to the top surface. This determines a relation of the fields in terms 
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of the propagation matrix that is then substituted into the reflection 

coefficient expression. 

The unknown diffracted field "odiff is found by substituting the fields at 

the surface of the multilayer [given by "(0) and L(o) from Equation (106) 

into Equations (83) and (84)]. thus giving 

(107) 

where A is the 2N + 1 sQ.~are matrix given by 

EXTINCI10N THEOREM: R-MATRlX PROPAGATION 

Consistent with utilizing the R-matrix propagation scheme Equation (92). 

the extinction theorem relation for the jth layer Equation (96) is now cast in 

the form of the R-matrix relation. resulting in 



[
rll r12J( L(j) ) 

- r21 r22 L(j-O 

£. 
-i-=:l... ~:­

£. I J J-

-i.:L ~~ 
£. I J J-
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( 

L(j) ) 

L(j-l) 

( 108) 

where the electric field has been substituted for the derivative of the 

magnetic field. Rj is the sector matrix for the jth layer and is written as 

square submatrices rmn: 

( 109) 

The ~l is also a square matrix. which is diagonal and has elements 

(~f)m,n = Sm,n exp[± <In}d(j-l) - d(j»] , ( 110) 

where ~m.n is the Kronecker 6-function. 

Propagation of the fields through the multilayer is accomplished by 

developing a recursive scheme. At each step of the recursion. a global R-

matrix R is formed by combining a new sector matrix with the previous 

global R-matrix. The global R-matrix is developed by assuming that the 

magnetic field is related to the electric field in the following manner: 
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HG) = R(j)L(j) (111 ) 

HG-l) = RG-l)LG-l) ( 112) 

Combining Equations (108), (109), (111), and (112) determines the global R-

matrix recursion, 

RG-I) = r12 [RG) - r22]-1 r21 + rt 1 . (113) 

This equation propagates the fields from the jth to the j-l boundary. In the 

propagation scheme given above, the boundary conditions are repeatedly 

applied to the top surface of each layer of the multilayer structure. Thus, the 

fields are propagated through each layer and across the top interface into 

the adjacent layer, which again effectively allows computation of the field at 

the top surface of the multilayer stack in terms of the fields at the substrate 

boundary. 

The R-matrix recursion equation is initiated in the substrate by the 

following: 

(114 ) 

which is derived directly from the extinction theorem relation for the 

substrate region. 

Beginning with R(s). a recursive global matrix is generated from 

Equations (109) and (113) by assembling the previous global matrix with the 

sector R-matrix. By repeated use of Equation (113), the magnetic and electric 
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fields are transferred to the top surface of the multilayer assembly. A 

funher discussion of the R-matrix technique can be found in Reference 83. 

Once the final global R-matrix R (0) has been determined from Equation 

(113). the diffracted field can be found from the extinction theorem 

Equations (83) and (84) for the incident medium. which can be written in 

matrix notation as 

- i~~ rH(O») = (2QOH(0)inc) 
+ i~: "L(O) 2QoH(0)diff 

(115) 

By using the above equation and the following relation. 

H(o) = R(o) L(o) • (116) 

the diffractive field can be solved for. resulting in 

( 117) 

CONa..USIONS 

To solve Equation (107) or (117). note that Hoine is a column vector. which 

is null everywhere except the central element. This nonzero element is I. 

the incident beam intensity. Notice that solutions to Equation (117) are 

inversely proponional to the determinant of the matrix M = ['" R(o) - i~~J. If 

the incident intensity is zero. the boundary conditions can be satisified only 

if the determinant of M (det M) vanishes. This provides the dispersion 
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relations or allowable wave vectors for guided modes that can be supported 

by the multilayer stack. Solutions to the homogeneous equation 

corresponding to Equation (117) do not always exist. however. For cases 

where the incident medium is air. there cannot be direct coupling between 

an incident beam and a guided wave. This is because the wave vectors 

parallel to the surface of the incident beam ko and guided wave kgw are ko = 

(ro/c)sin90 < (ro/c) and kgw > (ro/c). Thus. phase matching cannot occur. When 

a grating profile is introduced at the multilayer interfaces. a resonant 

condition exists when det M passes through a minimum and the guided wave 

becomes a leaky wave. 

We have compared numerical results utilizing the extinction theorem to 

results derived from other calculational techniques. The extinction theorem 

calculation for a dielectric waveguide is compared in Figure 6 to the results 

given by Chandezon et al. 84 utilizing their differential method. Excellent 

agreement was attained. Also. extinction theorem calculations at resonance 

agreed with those of a Rayleigh-Fourier method3 for multilayer-coated 

gratings as well as those of the Maystre 'Omega Code'S for a nine-layer-coated 

metallic grating. 85 Additional comparisons were made with both 

experimental and theoretical data. and good agreement was attained.53.86-88 

It was found that the characteristic matrix approach frequently resulted 

in ill-conditioned matrices. which sometimes led to numerical difficulties. 

These problems were avoided by incorporating an R-matrix method of 

generating a propagation matrix. This approach led to much better 

numerical stability and a correspondingly improved algorithm. The 
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numerical analysis perfonned and reponed in the following chapter utilized 

the R-matrix propagation scheme. 



Chapter 6 

NUMERICAL RESULTS 

INTRODUcnON 

90 

This chapter presents numerical results on resonance effects on single­

and multilayer-overcoated gratings. Because of the experimental difficulty 

of exploring the effects of various parameters such as grating profile and 

coating design, a calculational approach was employed to examine the 

influence of various parameters on diffraction efficiency at resonance. 

Although it was not the purpose of this research to perform a numerical 

analysis of various calculational tecbniques, botb tbe cbaracteristic matrix 

and R-matrix methods were programmed. The core of eacb program was the 

same~ only the propagation metbod differed. It was found tbat tbe R-matrix 

propagation scbeme led to mucb better numerical stability and a 

corresponding improved algoritbm over the traditional characteristic matrix 

method. This was determined in two ways. First, as the groove deptb (h) of 

the surface profile was increased, the energy balance became > 1 for the 

characteristic matrix method wben b/A - 0.1 ~ whereas, this occurred at h/A -

1.0 for the R-matrix method. Second, computer subroutines were used to 

solve linear equation systems of the form Ax = B and to estimate the condition 

of A. Tbe condition of the equation system is a quantity that measures the 

sensitivity of tbe solution x to round off errors in A and B. Thus, it is an 

estimate of the accuracy of whicb the elements of x can be computed. When 
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the exponent of the condition value approaches the precision of the 

computer. the computed results may be suspect. For a nine-Iayer-overcoated 

grating problem. the condition of the characteristic propagation matrix was 

on the order of 1023 ; whereas. the R-matrix calculation algorithm had a 

condition of 103• indicating vastly improved numerical precision. 

Using the extinction theorem equations and the R-matrix propagation 

scheme. diffraction efficiencies for single- and multilayer-overcoated 

gratings were calculated. Both TE- and TM-polarized light were considered at 

a 0.6328-~m wavelength. The grating period was 0.7 J.Lm; thus. for the angles 

of incidence considered here. only a -1 diffracted order (other than the 

specular) was present in air. Numerical results show diffraction efficiencies 

at resonance for the -2. -1. O. + 1. +2 order as functions of the incident angle. 

Many of the numerical analysis results that follow share the same substrate 

profile shape. which is shown in Figure 7(a). Sinusoidal and rectangular 

shapes were investigated also. The grating grooves are perpendicular to the 

plane of incidence. 

Anomalous resonance effects were investigated for both replication and 

nonreplication of groove profile at the interfaces between layers. For the 

case of perfect replication. the substrate profile shape was assumed at each 

film interface. For cases of nonreplication. a rounding of the trapezoidal 

shape was assumed. as illustrated in Figure 7(b). where the profile was 

rounded to a greater extent at each film interface above the substrate. A 

reduction in groove depth also was investigated for some of the 

nonreplication cases. Most of the calculations were carried out to the 7th 
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order on the Naval Weapons Center's VAX facility and the Naval Research 

Laboratory's CRAY. 

This chapter is divided into four sections that deal with (1) resonance 

effects associated with a single-dielectric layer upon a dielectric substrate 

(TE polarization) as well as the effect of groove shape, groove depth, and 

nonreplication on resonance; (2) single-dielectric layer upon a metallic 

substrate (TE polarization); (3) effects of nonreplication through multilayers 

for TE polarization; and (4) effects of nonreplications for a multilayer high­

(H) and low-index (L) pair upon a metallic substrate (TM polarization). 

Waveguide modes for each of the four cases considered were found by 

using the graphical technique outlined in Chapter 3, where the phase shifts 

for the upward- (._) and downward- (.+) traveling waves within the film 

assembly are calculated and plotted. The allowed guided-wave modes are 

determined by the intersection points of the phase curves, which are 

solutions of the equation .+ + ._ = m2x, as shown in Figures 8(a) through (f). 

These points indicate the propagating angle 9, w of the guided wave within 

the top layer of the assembly. Shown in Table 1 are the normalized wave 

modes and the phase-matching angles of incidence calculated from the 

grating equation for the cases investigated. 



TABLE 1. Nonnalized Guided-Wave Numbers kgw and 
Mode Coupling Angles 90 (kgw = nl sin 9; nl = 2.26). 

9gw, 
Design Mode deg. kgw m=1 m=2 m=3 

9 0 , deg 

H/L 0 43.5 1.556 40.7 -14.6 proh 
th=O.25 J.l 1 67.4 2.086 proh -16.1 -38.8 

TE 

H/Ag 0 43.0 1.541 39.6 -15.5 proh 
th=O.3 J.l 1 68.0 2.095 proh -16.7 -38.1 

1E 

HL/Ag 0 45.2 1.604 44.4 -11.8 proh 
1E 

(HL)2/Ag 0 41.5 1.498 36.4 -18.1 proh 
TE 1 52.0 1.781 61.3 -1.5 -68.6 

(HL)4/Ag 0 37.3 1.370 27.8 -26.0 proh 
TE 1 44.0 1.570 41.8 -13.8 proh 

2 50.0 1.731 55.8 -4.4 -78.8 
3 54.2 1.833 68.3 1.4 -61.5 

(HL)2/Ag 0 35.0 1.296 23.1 -30.1 proh 
TM 1 49.0 1.706 53.3 -5.9 proh 

2 63.5 2.023 Droh 12.4 -43.6 

SINGLE-DIELEcrRlC LAYER UPON A DIELEcrRlC SUBSTRATE: 
TE POLARIZATION 
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Considered is a 0.2S-J.lm-thick, thin-film layer of dielectric constant £ 1 = 

(5.11, 0.0) upon a semi-infinite substrate of dielectric constant £. = (2.25, 0.0). 

The diffraction efficiencies for the 0, -1, and + 1 orders for the H/L-coated 

grating are plotted in Figure 9 near the resonant angle of 40.5°. The groove 

shape is trapezoidal. The incident beam couples into the Oth guided-wave 

mode at the film surface. Notice that the guided-wave resonance causes rapid 
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variation in the specular reflectance [Figure 9(b»). The variation in the -1 

order intensity increases from 0.0003 to 0.1. Figure 9(c) clearly shows the 

resonance associated with the + 1 order, which is evanescent in the air and 

substrate regions but is propagating in the thin-film layer. 

The influence of groove depth on the diffraction efficiencies at 

resonance is considered in Figures 10 and 11. Figure 10 shows the 0, I, and + 1 

intensities at resonance when the trapezoidal groove depth is increased ten 

times to 0.1 J,.Lm. The sharp resonant features are broadened because of the 

increased damping. The + 1 order coupling into the guided wave is lower by 

two orders of magnitude in this case from that seen in Figure 9. The-l 

intensity has increased; however, it no longer displays a sharp resonant 

structure. 

The resonant response when the groove depth is decreased from 0.01 to 

0.001 J,.Lm is shown in Figure 11. At resonance, the intensities for the 0, -I, 

and + 1 orders are lower; however, they are narrower than was seen for the 

O.OI-J,.Lm-groove-depth case. 

Figures 12 through 1 S examine the influence of the duty cycle of a 

rectangular grating on diffraction efficiencies. The duty cycle is defined as 

the ratio of the length of the raised position of the profile to the period. 

Furthermore, since the height parameter L is equivalent to -L in the 

theoretical treatment, a 90% duty cycle is identical to a 10% duty cycle, for 

example. It is interesting to note that as the duty cycle decreases from 90 to 

SO%, the intensity in the + 1 guided wave increases. Also, the resonant 

coupling in the specular reflected beam increases and attains a maximum for 

the SO% duty cycle case. Also, note that the intensity in the -1 diffracted 
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order for a 50% duty cycle dips at the resonant angle below the off­

resonance intensity level. As the duty cycle increases from 50%, the -1 order 

efficiency also increases. 

In the case of the 50% duty cycle rectangular profile, the Fourier 

coefficients are similar to that of the trapezoidal profile in that they fall off 

with increasing order. However, comparison of Figures 9 and 13 indicates 

that the behavior is different. As reported in Reference 3, the cause for such 

a difference lies in the fact that for the 50% duty cycle rectangular profile 

the coupling matrix elements given by Equations (83) and (84) are reduced 

for even combinations of n-m. In other words, the grating only allows 

changes of ± 1, 3, 5, etc. to the wave vector parallel to the surface. For the 

case considered in this section, the incident beam is coupled via the + 1 

diffraction order into a guided wave. In order for the energy in the guided 

wave to outcouple into the -1 diffracted order, a -2 order matrix element is 

needed. Since even orders are greatly reduced, outcoupling does not occur 

and, instead, the guided wave is transmitted in the case of a transparent 

substrate or absorbed for a metallic substrate. 

Triangular and sinusoidal profile shapes are considered in Figures 16 and 

17. For both the triangular and sinusoidal cases, the specular intensity is 

increased slightly while the resonant intensities in the -1 order are 

drastically reduced over the trapezoidal profile case, Figure 9. Furthermore, 

the intensity curves for both the triangular and sinusoidal profiles closely 

resemble the intensities seen for the 50% duty cycle rectangular profile 

(Figure 13). 



96 

The primary cause of the difference in intensities in the -1 order between 

the trapezoidal and sinusoidal profiles is the coupling strengths that depend 

upon Fourier transforms of the grating profile. For a sinusoidal profile. the 

coupling strengths entail Bessel functions. Coupling of the incident beam 

via a + 1 diffraction order into a guided wave and then outcoupling into the -1 

order involves a second-order Bessel function. For a grating whose 

sinusoidal amplitude is small compared to the wavelength of light. the 

arguments of the Bessel functions are typically small. It is believed. 

therefore. that the weak coupling strength is the primary cause of lack of 

resonant enhancement of the -1 order. 

Two extreme cases of nonreplication of the grating profile at the film 

interfaces for the H/L design are considered in Figures 18 and 19. In Figure 

18 can be seen the 0-. -1. and + 1 intensities at resonance for a trapezoidal 

grating profile on the substrate only. the top surface being flat. The 

intensities at resonance are reduced over those shown in Figure 9. Also. the 

position of the resonance has shifted from 41.5 to 43.25°. Figure 19 shows the 

case for a trapezoidal profile only on the top surface of the film. while the 

substrate interface is smooth. Note. that there is a shift in the resonant 

coupling angle in the direction of smaller angle from 41.5 to 39.5°. Also. note 

the presence of an additional resonance at 39.3° in the O. -1. + 1 intensity 

plots. This resonance is caused by the m = -3 coupling into the 4th guided­

wave mode and can be explained as follows. The propagation angle of the 4th 

guided-wave mode is beyond the critical angle for the substrate boundary 

and for a flat substrate profile is totally reflected. A grating profile on the 

substrate. however. creates diffracted orders in transmission. thus reducing 
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the intensity of the guided wave available for outcoupling at the top 

interface. 

SINGLE-DIELEcrRIC LAYER UPON A METAlLIC SUBSTRATE: 
TE POLARIZATION 

In this section, the effects of nonreplication of the trapezoidal grating 

profile are explored. Alternate groove shapes are not considered. In this 

case, a single-dielectric layer of dielectric constant £ 1 = (5.11, 0.0) and a 

thickness of 0.30 J,lm is placed upon a semi-infinite silver substrate of £5 = 

(-16.4, 0.52). The allowed guided-wave modes are indicated in Table I. Figure 

20 plots the diffraction efficiencies at resonance when the trapezoidal 

profile is replicated at both the top and bottom interfaces. Two resonant 

situations are present: (1) OJ = 38.3°, representing coupling of the m = -3 

diffraction order into the lst mode and (2) OJ = 38.7°, representing m = +1 

coupling into the Oth guided-wave mode. From Figure 20, it is apparent that 

there can be large differences in the resultant resonant effects of coupling 

into different guided-wave modes. 

In Figure 21, a trapewidal profile at the substrate is assumed while the top 

surface is flat. This has the effect of eliminating the 1 st mode guided-wave 

resonance and reducing the zero guided-wave resonance while shifting its 

position to OJ = 41.3°. The resonant condition for the grating on the top 

surface only is shown in Figure 22. The angular position of the resonance 

has moved to 36.2°, and the diffraction intensities are lower than the above 

case. 
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An important difference in the shape of the diffraction efficiency curves 

between the dielectric and metallic substrate cases can be seen by comparing 

Figures 9 and 20. In the case of the dielectric substrate. the specular 

efficiency goes through a maximum and minimum near the resonant 

coupling angle. However. in the case of the metallic substrate. the specular 

efficiency curve exhibits a dip at resonance. This is most likely due to the 

absorptive nature of the metal. 

MULTILAYER DIFLECfRlC UPON A METAL SUBSTRATE: 
TE POLARIZATION 

In this section. increasing a high- and low-index layer pair upon a 

metallic substrate is considered. The substrate is Ag with a dielectric 

constant ta = (-16.4. 0.52) at A = 0.6328 J.Lm. The high- and low-index dielectric 

constants are t H = (5.11. 0.0) and tL = (2.25. 0.0). respectively. with the low-

index layer being adjacent to the Ag substrate. The layer thicknesses are tH = 

0.0737 J.Lm and tL = 0.1196 J.Lm. which correspond to one-quarter-wave optical 

thickness at A = 0.6328 J.Lm and 45° angle of incidence. The substrate profile is 

assumed to be trapezoidal in this section. and various degrees of 

nonreplication are considered. A number of guided-wave mode coupling 

possibilities have been investigated. A wide range of behavior was found in 

the resonant effects on the -1 order and specular beam among the various 

coupling possibilities. Several possibilities yielded only minimal effects on 

the -1 and specular intensities. There arc many other possibilities that are 

unexplored here. and some of these situations may predict strong optical 
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anomalies. This section concentrates on resonant effects resulting from the 

m = + 1 coupling into the Oth guided-wave mode. 

Figures 23 and 24 illustrate the effect of one and two high- and low-index 

layer pairs on resonant diffraction efficiencies. respectively. In general. 

increasing the number of layer pairs has the effect of (1) deepening the dip 

in the specular reflectance and (2) increasing the diffraction efficiency in 

the -1 order and coupling via the + 1 order into the guided wave. 

Figure 25 shows numerical results for the design (HL)4/ Ag with perfect 

replication of the trapezoidal profile at all interfaces. Figure 26 considers 

the (HL)4/Ag case when the grating profile appears on the top surface only. 

and Figure 27 shows the resonant behavior when the grating is on the 

substrate only. all other film interfaces being flat. It can be seen from 

Figures 26 and 27 that a grating profile on one surface only of a multilayer 

drastically reduces the resonant behavior. The intensity in the -1 and + 1 

orders is considerably lower. while the dip in the specular is nearly 

eliminated. 

Figure 28 shows the effect upon resonance for the (HL)4/ Ag case when 

the trapezoidal profile is rounded at each interface. as indicated in Figure 

7(b); however. it retains the same groove height. The minimum in the 

specular increases to approximately 0.2 from 0.002. as seen in Figure 25 for 

perfect replication. Also. the range in the -1 order intensity is reduced from 

six to five orders of magnitude. The +1 guided-wave intensity appears to have 

remained about the same. In Figure 29. the trapezoidal profile is again 

rounded at each interface; however. in addition. the profile height is reduced 

from 0.01 ~m at the substrate to 0.002 ~m at the top surface in O.OOI-~m steps. 
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This has the effect of reducing further the resonant coupling. In this case, 

the specular dips to 0.62 and the -1 intensity peaks at 0.1, as opposed to 0.8 for 

perfect replication. Again, the + 1 guided-wave intensity was not appreciably 

reduced. Interestingly, the lack of profile replication does not seem to 

broaden the resonant intensity curves. 

MULTILAYER DIFLECfRIC UPON A METAL SUBSTRATE: 
TM POLARIZA nON 

Resonant diffraction efficiency for TM-polarized light is examined in this 

section. The design considered is (HL)2 Ag, and the substrate profile is 

trapezoidal. 

Figure 30 shows the intensities in the 0, -I, and + 1 orders at resonance for 

the (HL)2/Ag design and TM polarization. The + 1 diffractive order is 

evanescent in air. For the situations investigated, it was found generally that 

TM polarization results in a weaker resonant condition than TE polarization; 

this can be seen by comparing the specular intensity from Figure 30 to the 

corresponding case for TE polarization (Figure 24). Also, the intensities in 

the -1 are down an order of magnitude for TM polarization over the TE-

polarization case. In Figure 31, the trapezoidal profile is rounded at each film 

interface and reduced in height. Again, this has the effect of lessening the 

coupling strength at resonance. Other cases have been investigated for TM 

polarization. Generally, the resonance behavior for TE and TM polarization 

follows the same trends; however, resonance strengths are weaker for TE 

polarization. 
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It has been mentioned that numerical results calculated using the 

extinction theorem technique compared closely to results derived from other 

theoretical methods. In this chapter, a comparison is made of theory and 

experiment of anomalous resonant effects associated with coated low­

efficiency gratings. 

Calculations and measurements of anomalous diffraction efficiencies 

were made at 3.8 ~m for a single-dielectric-Iayer-coated grating. The coating 

was sapphire (AI203) of thickness 0.164 ~m and dielectric constant t = 2.56, 0.0. 

The grating material was silver (t = -769.84, 111.1). The grating period was 4.2 

~m with a ruling depth of approximately 0.1 ~m. The groove profile was 

assumed to be similar to the trapezoidal profile of Figure 7(a). 

The coupling angles associated with the guided-wave modes supponed by 

the sapphire layer were determined by the graphical technique described 

previously. No TE-polarized modes were found. A TM mode for m = 1 

diffraction order was determined for a coupling angle of 6.5°. Figure 32 

shows the efficiencies in the -1, 0, and + 1 diffraction orders calculated from 

the extinction theorem method. 

Diffraction efficiency measurements in the -1 order were made on the 

coated grating at 3.8 ~m. The light source was a deuterium-fluoride laser, 

operating single line at 3.8-~m TM polarization with an output power of 30 to 
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40 m W. The experimental arrangement is shown in Figure 33. The angle of 

incidence on the grating was chosen by rotating the optical dividing head on 

which the sample was mounted. A high-Curie-temperature pyroelectric 

detector was moved by hand and aligned to measure the intensity in either 

the specular or -1 diffracted beam. To minimize the effect of fluctuations in 

the laser output power, the intensity in the diffracted beams was normalized 

to the intensity measured by a reference detector. The diffraction efficiency 

was then calculated by ratioing this value to the normalized intensity of the 

incident beam. The incidence angle was varied slowly about the predicted 

coupling angle to locate resonant angles. 

Numerical and experimental results are summarized in Table 2. Close 

agreement between calculated and experimentally determined resonant 

angles and efficiencies was attained. 

TABLE 2. Numerical and Experimental Results for the 
Sapphire-Coated Grating (A = 3.8 ~m. TM Polarization, m = 1 
Coupling Into the Oth Guided-Wave Mode). 

Calculated 

Incident 
coupling 

angle 

o 

Efficiency 
at resonance, 
-1 order 

0.30 

Off-resonant 
efficiency, 
-1 order 

0.01 
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This dissenation concludes with a brief summary of the results attained, 

followed by suggestions for future work. 

SUMMARY 

Observations of anomalous diffraction phenomena were surveyed in 

Chapter 2. As early as 1902, using a white light source, Wood observed rapid 

variation in the intensity of diffracted spectral orders from reflection 

gratings. The first theoretical treatment of Wood's anomalies was given by 

Rayleigh in 1907. His theory was based upon an expansion of the diffracted 

field in tenns of outgoing plane waves. Rayleigh explained these anomalies 

as resulting from the redistribution of energy when a diffracted order grazes 

the surface of the grating. Another type of anomaly evident on bare metallic 

gratings is associated with surface plasmon excitation. Surface plasmons are 

transverse-magnetic (TM) evanescent waves. Multilayer dielectric 

structures can suppon a wider class of guided waves and may be TM or 

transverse-electric (TE) polarized. 

Resonant phenomena in multilayer-overcoated gratings result from the 

coupling of the incident light into guided waves within the multilayer 

assembly. If the propagating angle of the diffracted beam corresponds to a 

waveguide mode supponed by the multilayer, energy flows into the guided 
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wave, a resonance condition develops, and energy is reradiated into air by 

subsequent diffraction at the film interfaces. 

Chapter 3 presented a method for the calculation of waveguide modes in 

thin-film multilayer coatings using the characteristic matrix technique. By 

using the grating equation, it was possible to determine the incident angles 

by which diffracted light may be coupled into guided waves supponed by the 

multilayer structure. 

In this dissertation, an integral method based upon the extinction 

theorem was used to calculate diffraction efficiencies at resonance from 

overcoated gratings. The extinction method is based on Green's theorem, 

which involves the electric or magnetic fields and their derivatives on the 

diffracting surface. 

The extinction theorem technique discussed in Chapter 4 for a single­

grating surface was extended in Chapter S to analyze the diffracted field for a 

multilayer structure of periodic roughness. The calculation scheme began 

by analyzing the fields within an arbitrary layer and employing the 

extinction theorem at the bottom and top interfaces of that layer with 

appropriately applied boundary conditions. In order to develop a 

propagation scheme through the multilayer, the fields are initialized in the 

substrate. The fields are then transferred to the top surface by ( 1) repeated 

multiplication or (2) recursion of the propagation matrices. Once the fields 

at the top interface have been determined, the diffracted field can be 

calculated by using the appropriate extinction theorem equation for the 

incident medium. 
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It was found that the characteristic matrix approach frequently resulted 

in ill-conditioned matrices, which sometimes led to numerical difficulties. 

These problems were avoided by incorporating an R-matrix or recursive 

method of generating a propagation matrix. This approach leads to greater 

numerical stability and correspondingly improved algorithms. 

By using the extinction theorem equations and the R-matrix propagation 

scheme. numerical analyses of overcoated gratings were presented in 

Chapter 6. Both TE- and TM-polarized light were considered at a O.6328-J,Lm 

wavelength. The grating period was 0.7 J,Lm; thus. for the angles of incidence 

considered here. only a -1 diffracted order other than the specular will be 

present in air. Numerical results showed diffraction efficiencies at 

resonance for the -1. O. 1 order as functions of the incident angle. The effect 

on resonant diffraction due to sinusoidal, rectangular. trapezoidal. and 

triangular groove profiles as well as non replication of the groove profile 

through the multilayer was examined. 

Following is a review of the conclusions reached. 

1. In general. increasing the grating amplitude to a cenain depth causes 

an enhancement in resonant effects. This is because the coupling strength 

increases with groove depth. However, funher groove-depth increases do 

not cause a significant enhancement in resonant effects but, rather. broaden 

the diffraction efficiency curves caused by damping introduced by the 

grating. 

2. An enhanced diffraction efficiency in the -1 order and a reduction in 

the specular occur as the duty cycle for a rectangular grating increases 
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beyond 50%. For a 50% duty cycle grating, the specular is at maximum 

efficiency and the -1 order dips below the off-resonant intensity. 

3. The sinusoidal profile, like the 50% rectangular duty cycle, provided 

strong coupling into guided-wave modes. However, whereas the trapezoidal 

profile allowed strong outcoupling into the -1 diffracted order, the sinusoidal 

profile suppressed such effects. 

4. Resonant effects increase with increasing number of high-/low- index 

pairs. 

5. In this dissertation, emphasis was placed on comparing cases of 

non replication of the grating profile to that of perfect replication of the 

substrate profile at each film interface. A simple rounding of the profile 

with no reduction in grating amplitude had little effect on the resonant 

efficiencies. However, only when the groove height was reduced 

substantially did a significant reduction in resonant effects occur. 

SUGGESTIONS FOR FU11JRE WORK 

In many numerical investigations-some not presented here-it was found 

that coupling into certain waveguide modes led to enhanced resonant 

intensity in the -1 order; for other modes, little effect was calculated. The 

reason why some modes produce strong outcoupling and others do not was 

not investigated in this dissertation; however, it probably depends on the 

complex phase behavior of the overall coupled system. Many factors such as 

profile shape, thin-film optical thickness, and guided-wave mode number 

can affect the phase. 
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Calculations of the electric-field distribution though the multilayer 

assembly, although laborious, would provide additional insight concerning 

the guided-wave phenomena. 

A funher effon-not covered in this work-would be a penurbative 

analysis of resonant diffraction from multilayer-coated gratings. This type 

of analysis may lead to a greater physical interpretation of the influence of 

the many parameters on resonance effects. A penurbative analysis for a 

single surface has been used to study the dispersion of plasmons on metallic 

gratings and reflectivity of a grating. Unfonunately, this method is as 

complex as the rigorous integral solution, and it is not cenain if this type of 

penurbative analysis can be extended to a multilayer case.8 9 

Another possible fruitful area of guided-wave resonant research is 

binary-coated optics. Improved optical performance of infrared optical 

systems can be achieved with diffractive optical elements. Developments in 

the last ten years in pattern generation and deposition and large-scale dry 

reactive ion-etching techniques have made it feasible to generate binary 

holographic gratings with blaze-like characteristics.90 A combination of 

binary-etched surfaces with multilayer-coated optics in which resonant 

effects are exploited may lead to improved performance or additional 

applications of diffractive elements. 

It was found that diffraction efficiency calculations utilizing the 

extinction theorem technique developed numerical instabilities when the 

grating amplitude approached the wavelength of light used in the 

calculations. Although the limit of stability depended upon the parameters of 

the Irating and number of layers, the low limit is discouraging. Excellent 
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numerical stability appears to have been achieved employing a coupled­

wave analysis. 88 •91 In this analysis. the grating region is divided into a 

number of planar-grating slabs and the permittivity of each slab is expanded 

in a Fourier series. Greater computational ability may be achieved by 

employing the coupled-wave approach. thereby allowing a greater grating 

amplitude to be used in the resonant effects calculations. 



109 

Appendix A 

DERIVATION OF THE EXTINCfION THEOREM FROM GREEN'S IDENTITY 

In this Appendix, the extinction theorem relations are derived92 for the 

incident and substrate regions [Equations (44) and (47)]. Equations (38) and 

(41) are substituted into the Green's identity [Equation (37)] resulting in the 

following relation for the upper or incident medium: 

411: f f f H S(x-x')S(y-y')S(z-z')dx'dy'dz 

v' 

5' (A-I) 

where the volume and surface of integrations penain to the upper or 

incident medium. Note that Equation (A-I) is for p-polarization and that the 

elemental surface area ds' = dy'dx'-J I + [h'(x')]2 over the interface with 

profile shape given by h(x') and h'(x') = dh(x')/dx'. 

In order to evaluate the surface integral appearing on the right side of 

Equation (A-I), a rectangular contour is used as shown in Figure 35. The 

contour is divided along four paths of integration PI, P2, P3, P4, where PI is 

parallel to the x-axis and is within the incident medium; P2 and P3 are 

parallel to the z-axis and will be moved to x = ± -; and P4 is the contour along 
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the grating profile. The surface integral can be written as the sum of the 

surface integrals along Pl. P2. P3. and P4 yielding 

f f ( Go ~ - H ~ ) ds' = f f + f f + f f + f f 
s' (A-2) 

In order to evaluate the surface integral along the paths Pl. P2. and P3. the 

total magnetic field is written as the sum of the incident Hinc and diffracted 

fields Hdif: 

H = Hinc + Hdif . 

The total field H. however. is used in the evaluation of the surface 

integral along the grating profile P4. Thus. the right side of Equation (A-2) 

can now be written: 

(A-3) 

The integral along the grating surface P4 is to be retained in the 

extinction theorem. This integral is considered first. With the integral fonn 

of the three-dimensional Green's function [Equation (39)]. the surface 

integral along P4 becomes 
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II (G ~ - H (0 0
) ds' =..!.. II dx'dy'.J 1+h'(x,)2 

o dn dn 2x 
P4 

(A-4) 

Integration over dy' may be done easily by taking advantage of the fact that 

the geometry of this work dictates that the H fields are independent of y'. 

The dy' integration yields 2Jt~HPo). Consequently, integration over dpo sets Po = 

o. With this, the right side of Equation (A-2) reduces to 

I dx' J 1+(h'(x,»2 [~ f: eilk(Il-Il'~lz-z'IJ 
P4 

- H in f : ei[kb-ll'~ I z-z'l J] 

(A-5) 

The surface integral along P4 can thus be written simply as 

f (G~2) ~ -H ~:2)) <Ix'.J l+[h'(x,)]2 

P4 (A-6) 

where Go(2) is the two-dimensional Green's function given by 

G(2) . I dk i[k(ll-ll'}+a I z-z'l ) 
o =1 -e .,., 

qo 
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and qo = .J(ro/c2 to-k 2. The superscript (2) in Go(2) is assumed from here on. 

Each of the PI, P2, and P3 integrals in Equation (A-3) can be further 

divided into an integration over Hinc plus Hdif. However, the integrals 

containing Hdif satisfy the radiation condition since only outgoing waves are 

involved, and thus vanish. The remaining integrals on PI, P2, and P3 

contain the incident field Hinc only. 

Consider first the integral 

I I .... = I I ( Go ~ - H
UK ~ ) ds' 

(A-7) 

where 

~o = _ fz~ = - J dk sgn (z + Z) ei[tb-ll')+q I z+z II 

and 

---= =-
dn dZ' 

With these substitutions and the fact that ds' = dx' when evaluating the two-

dimensional Green's function, Equation (A-7) becomes 
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+x - ~ ] I dx' ei<koll'-q..z> I ~ + sgn (z + Z) eilk<X-ll')+ql7J+zIJ 

-x -- q 

= IX dx' ei<ko-Jt)ll' I- -,J qo + sgn (z + Z)]ei<kll+qI z+zl-q.,z> 

-x -- ~ q , (A-8) 

As X -.+-, 

and Equation (A-8) becomes 

HiDe I I = 21t[t + sgn (z +Z) ]ei(koll+q., I z+z 1-iJoZ) 

PI 

Therefore, 

41t Hinc if Z > -z' 

o ifZ < z' 
(A-9) 

The surface integral along P2 is considered next, i.e., 

(A-IO) 
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where 

aGo = ()Go = f dk ! ei[kb-X).+q I z-z'l ) 
dn dX' q 

and 

:'IHine :'IHine 
u U ,J, i/'" Y .... 7') 
~ = "di' = ~e ~'''''-

Again, the integration variable ds' = dz' when considering the two-

dimensional Green's function. Equation (A-IO) becomes 

(A-II) 

where 

f(x, Z _ z'} = (k:ko ) eilb+q I z-z'l ) 
(A-12) 

For a well-defined function f(x, z - z'), the Fourier transform tends to zero as 

X ~ _.93 Thus, the contribution along path P2 vanishes in this limit. 

Likewise, it can be shown that 

(A-I3) 
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Therefore, the only contributions to the surface integral along the closed 

contour made up of paths PI, P2, P3, and P4 are due to (1) P4. the grating 

surface path and (2) PI. the path resulting in the incident source field. 

Integration of the volume integral in Equation (A-I) results in the 

magnetic field evaluated at the observation point (x,y,z). This is the total 

magnetic field in the upper region, Ho total, which equals the incident plus 

diffracted magnetic fields. If, however, the observation point is located 

outside the region of integration, then this volume integral is zero. This 

term can thus be written: 

41t I I I HS(x-x')S(y-y')S(z-z')dx'dy'dz' 

v 

z < <10 + h(x) 

z > <10 + h(x) (A-14) 

Finally, combining Equations (A-6), (A-9), and (A-14) gives the 

extinction theorem, Equation (44). 

The extinction theorem relations for the substrate region U = s) are 

formed by substituting Equations (38) and (46) into Green's identity, yielding 

41t I I I H S(x-x') S(y-y') S(z-z') dv' 

v' 

= II (G dH - H dOl) ds' ldo do 
s' (A-IS) 
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Integration of the left side of Equation (A-IS) over the volume enclosing the 

lower medium results in the magnetic field evaluated at observation points 

(x,y,z) within the lower region. This field H(x,y,z) is termed the transmitted, 

diffracted field Hstrans. Again, if the observation point is located outside of 

the volume of integration, the volume integral equals zero. 

Finally, substitution of the elemental surface area ds' = dy'dx '.J 1 + [h' (x') ] 2 

into Equation (A-IS) results in the extinction theorem relation, Equation (47). 



Appendix B 

CALCULATION OF MATRIX FLEMENTS FOR 
ARBITRARY GROOVE PROFll..E 
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Calculation of the matrix elements .n m ± and "n m ± can be accomplished 

explicitly for trapezoidal and sinusoidal groove profiles. For an arbitrary 

shape. a point-to-point integration was used; .nm± is written as 

(B-1 ) 

Next. the following substitution is made: 

which results in 

(B-2) 

Considering Figure 35. the equation of a line between points yO> and y(j+ 1) is 

( 
h(j+1) - h(j») . . 

h(a) = y(j+ I) _ y(j) (a - y(j» + h(j) 

= ( h(j+ I) - h(j) ) _ ( h(j+ I) - hQ») (j) h(j) 
y(j+ I) - y(j) a y(j+ I) - y(j) y + (B-3 ) 
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The integration over one period is divided into integrations over J 

straight-line segments. Thus, +±nm is separated into J-independent elements, 

+±j,nm, where j = 1, 2, .,. J. 

For convenience, let 

then 

h(j+ 1) - h(j) 
S = y(j+ 1) _ y(j) (B-4) 

(B-5) 

It is advantageous to change the integration limits from y(j) ~ y (j + 1) to 

PO) - ~P ~ PU) + ~P, where PO) is the midpoint of the jth segment and ~P is 

half the length of the jth segment along the y-axis. 

Direct integration of Equation (B-5) results in 

[ 
e

i(2w<m-n>tq.S)(P(j) + I1P) i(2x(m-n)±q.S)(P(j) -dP)] 
III.± _ ±iq.(-Sy(j) + h(j» ~ 
". - e J.nm i(2x(m-n)±q,.S) 

= etiq,,(-Sy(j) + h(j» e i(2x(m-nhq"S)P(j) sin(2x(m-n)±q,.S)AP 
x(m-n)±q,.S (B-6) 
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Finally, 

N 
± ~ ± 
~= LJ~j.nm 

j=l (B-7) 

The matrix elements Tlnm± are related to .nm± by Equation (78). 



Appendix C 

CALCULA nON OF MATRIX ELEMENTS FOR 
SINUSOIDAL GROOVE PROflLE 

The matrix elements for a sinusoidal groove profile. where 

hex) = b sin (~ x) 

are calculated as follows. Let 

Recognizing that the Bessel function94 Jp(z) is 

J (z) = ...!...12K e -Hz sin 8 - pO) d9 
p 2n: o 

the following substitution. 

2n: 
9=-x 

D 

is made in (C-2) above. resulting in 
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(C-l) 

(C-2) 

(C-3) 

(C-4) 



~ = _1 12K e±ilxln lin 8 + i(m-n)8 dO 
21t 0 

={ Jp=m-n(-ixln) = (-It Jp=m-n(lxIn) 

Jp=rn-n (ixln) for ~m 

for~~ 
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(C-5) 
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Appendix D 

EXTINCflON TIlEOREM COMPUTER PROGRAM 

The computer program. written in Fonran. calculates intensities of the 

diffracted fields and coefficients of the evanescent fields just above the 

surface of the film for each diffraction order up to the order of the 

calculation. Intensities are calculated as a function of angle of incidence. 

wavelength. or grating period. It would be a simple matter to modify the 

program to scan in groove height as well. The program allows for 

homogeneous multilayers. transverse electric (TE) or transverse magnetic 

(TM) polarization. and any groove profile at each film interface. Absorption 

is allowed for all media except the incident. The groove profile is divided into 

a number of straight-line segments. and the integration routine calculates 

the matrix elements between r"ints connecting the straight-line segments. 

The order of the calculation is also variable; for any order. however. 

convergence should be tested by comparing numerical results attained by 

increasing the order of the calculation. 

As it is currently written. the main program calls for data file 20 in which 

input data are stored. A sample input file is shown in Table 3(a). The 

program can be specified by the following input parameters that are stored 

in the data file: 
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1. Grating period. number of overlayers. order of the calculation. and 

wavelength in microns for the calculation if a wavelength scan is not 

wanted 

2. Beginning. final. and increment in angle of incidence 

3. Complex permittivity and thickness in microns of each layer (layer 1 

is the substrate) 

4. Number of points for each interface in which the groove profile over 

one period is divided 

5. Beginning at the substrate. the groove profile specified over one 

period. 

TABLE 3(a). Sample Input Files . 

. 7 , 1 , 7 , . 6328 
40 . 5 , 42 . 0, . 1 
(2.25,0.0),0.0 
(5.11,0.0), .25 
(1.0,0.0) ,0.0 
6,6 
0.0,0.0 
.05,0.0 
.15, .0 
.85, .0 
.g5,0.0 
1.0,0.0 
0.0,0.0 
.05,0.0 
.15, .01 
.85, .01 
.g5,0.0 
1.0,0.0 

The number of points at each interface must be identical to the number of 

points stated in 4 above. Each point specifying the groove profile contains 
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two numbers: (1) the fraction of a period along the x-axis and (2) the height 

of the groove (in microns) at the x-value. 

Interactive input parameters to be entered are the following: 

1. TE or TM polarization (s or p) 

2. The beginning. final. and wavelength increment if a wavelength scan 

is to be used. 

In case 2. the angle of incidence used in the calculation is the beginning 

angle stored in the input file. 

The program output is sent to the screen and to output file 25. where the 

data can be used in a plotting routine. Table 3(b) shows a sample screen 

output. Following the angle of incidence. a three-number line appears. The 

first is the condition of the matrix. The determinant of the propagation 

matrix is given by the next two numbers as a singly subscripted array with 

two elements in the form det (A) = DET(l) • 10.0 •• DET(2). Next appears three 

columns. The first column is the diffracted order. followed by the expansion 

coefficient of the field evaluated just above the top surface of the film 

assembly in the second column. The third column gives the field intensity 

for each propagating order. The sum of the intensities in the propagating 

fields is shown also. The output stored in file 25 can be used for plotting 

purposes. 



125 
TABLE 3(b). Sample Output Files. 

40.50000000000000 
5.221582531949289 (0.5108838962376867,0.5917645529352254) 

-7 7.2377867514169247B-08 O.OOOOOOOOOOOOOOOOB+OO 
-6 1.2871755826966346B-07 O.OOOOOOOOOOOOOOOOB+OO 
-5 2.5118561285902428B-08 O.OOOOOOOOOOOOOOOOB+OO 
-4 1.0868438538519593B-06 O.OOOOOOOOOOOOOOOOB+OO 
-3 3. 4976888590827479B-04 O.OOOOOOOOOOOOOOOOB+OO 
-2 6.0496733178791677B-05 O.OOOOOOOOOOOOOOOOB+OO 
-1 1.9062593197104572B-04 2. 4243174126400967B-04 
o 0.3527354678283363 0.3527354678283363 
1 3.8930510438667169B-02 O.OOOOOOOOOOOOOOOOB+OO 
2 1.2904674263245593B-04 O.OOOOOOOOOOOOOOOOB+OO 
3 1.9020389749217778B-05 O.OOOOOOOOOOOOOOOOB+OO 
4 2. 8693726883088512B-06 O.OOOOOOOOOOOOOOOOB+OO 
5 2.0635922920448664B-07 O.OOOOOOOOOOOOOOOOB+OO 
6 3. 4353937305555226B-09 O.OOOOOOOOOOOOOOOOB+OO 
7 2. 9830442682932901B-08 O.OOOOOOOOOOOOOOOOB+OO 

0.3529778995696003 

The structure of the program closely follows the theory developed in the 

text. A copy of the program is included in this Appendix. Numbers to the 

right of the program statements refer to the equations numbered in the text. 

A number of subroutines are called during execution of the program. The 

subroutines TINV5 and TINVB5 used Linpack routines to solve linear equation 

systems of the fonn Ax = B. When B is the identity matrix. the inverse of A is 

founc These subroutines also factor A and estimate its condition. 9 5 The 

subroutine DETER also uses Linpack routines to calculate the determinant of a 

matrix. The subroutine BESSEL calculates Bessel functions and matrix 

elements for sinusoidal groove profiles. A modification to the program as it 

is currently written must be made in order to call the BESSEL subroutine for a 

particular layer interface. Finally. the 10 file allows interactive declaration 

of the input and output data files. 



EXTINCl10N THEOREM COMPUTER PROORAM 

C R-MATRIX TECHNIQUE - POINT TO POINT PROFILE 
C EXTINTION THEORY PROGRAM - ORDER VARIABLE-l3 LAYERS MAX 
C S OR P POLARIZATION 

INTEGER ORDER,0,02,LA,LDA 
PARAMETER (0-lS,02-30,LA-lS,LDA-lS) 
INTEGER WA(0),WA2(02) ,NPTS(LA) ,PT 
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COHPLEX*l6 I,E(LA),Q(0,LA),Ql(02,02,LA),Cl(0),C2(02),Q2(02,02,LA) 
COHPLEX*l6 Q3(02,02,LA),Z4(0,0),ZS(0,0),Z6(0,0),MU(0) 
COHPLEX*l6 Rl,R2,RJ,R4,RS,ZO,Pl(0,0,LA),P3(0,0,LA),ICINC(0,0) 
COHPLEX*l6 Zl(0,0),ZO(0,0),Z2(0,0),Z3(0,0),PSl(0,0) 
COHPLEX*l6 IPS2(0,0),HIL(0,0),CDIF(0,0),CINC(C,O),JV(0:200) 
COHPLEX*l6 A(02,02),B(02,02),X(0,0),Y(0,0),Y2(0,0),Y3(0,0) 
COHPLEX*l6 PS2(0,0),ICDIF(0,0),MU2(02),Z7(0,0),Z8(0,0) 
REAL*8 K(O) ,KO,D(LA) ,T(LA) ,PERIOD,LAHDA,BETA,Sl,S2,ABC 
REAL*8 WC,TO,H(20,LA),PI,Tl,T2,DT,SUH,ALPHA,DELTAPT(20,LA) 
REAL*8 DELTAPT2(20,LA) ,SLOPE(20,LA) ,YY(20,LA) ,YPOS,LLl,LL2,DL 

COHPLEX*l6 QS4(0,0,LA),QS3(0,0,LA),IQS3(0,0),RR(0,0,LA),Xl,X2 
CC' ~LEX*l6 ZZ(0,0,LA),IZZ(0,0),ZZl(0,0,LA),ZZ2(0,0,LA) 
COMPLEX*16 RU(O,O),DRU(O,O),ABl(O,O,LA) ,AB2(0,0,LA) ,AB3(0,0,LA) 
COHPLEX*l6 AB4(0,0,LA),IABl(0,0),IAB2(0,0),IAB3(O,0),IAB4(0,0) 
COHPLEX*16 AA5(0,0,LA),AA6(0,0,LA),AA(0,0,LA),Ic_~(0,0) 
COHPLEX*l6 BBS(0,0,LA),BB6(0,0,LA),BB(0,0,LA),IBB(0,0) 
COHPLEX*16 INC1(0,0,LA),INC2(0,0,LA),INC3(0,0,LA),INC(0,0,LA) 
COHPLEX*16DIFl(0,0,LA),DIF2(0,0,LA),DIF3(0,0,LA),DIF(0,0,LA) 
COHPLEX*16 IINC(O,O),IDIF(O,O),PIU(O,O,LA),PIL(O,O,LA) 
COHPLEX*16 P3L(0,0,LA),P3U(0,0,LA) 

CHARACTER*lOO Inpu~_Fi1. 
CHARACTER S*1,P*1,POLAR*1,ANSWER*4,YES*4,NINE*4 
INTEGER INUNIT,OUTUNIT 
PARAMETER (INUNIT-20,OUTUNIT-25) 
CALL Ior11. (InUn1~, 0u~Un1~, Inpu~_F11.) 

TYPE*,'S OR P POLARIZATION SIP' 
ACCEPT lO,POLAR 

10 FORMAT (A) 

READ(20,*) PERIOD,LAYERS,ORDER,LAHDA 
READ(20,*) Tl,T2,DT 

C WRlTE(2S,172) H 
172 FORMAT('HEIGHT-',FIO.8) 

Ll-LAYERS+ 1 
L2-LAYERS+2 
READ(20,*) (E(L),T(L),L-l,L2) 
R!AD(20,*) (NPTS(L),L-l,Ll) 



DO 179 L-1,L1 
READ(20,*)(YY(PT,L),H(PT,L),PT-l,NPTS(L» 

179 CONTINUE 
NO-2*ORDER+1 
N02-2*NO 
NULL-ORDER+1 
1-(0.0000,1.0000) 
PI-OACOS(-1.0000) 
WC-2.0000*PI/LAHDA 

TYPE*,'WAVELENGTH SCAN! YES/NINE' 
ACCEPT 10,ANSWER 
IF(ANSWER.EQ.'NINE') THEN 
ITLIK-INT«T2-T1)/OT)+1 
WRITE(25,*) ITLIK 
ELSE 
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TYPE*,'ENTER BEGINNING,FINAL WAVELENGTH AND INCREMENT IN MICRONS' 
ACCEPT*,LL1,LL2,OL 
ITLIK-INT«LL2-LL1)/OL)+1 
WRITE(25,*) ITLIK 
END IF 

80 DO 1000 IT-1,ITLIM 
IF(ANSWER.EQ.'NINE') GO TO 85 
LAHDA-LL1+(IT-1)*OL 
TYPE*,'WAVELEGTH-',LAHDA 
TO-Tl 
WC-2.0000*PI/LAHDA 
WRITE(25,*) LAHDA 
GO TO 175 

85 TO-T1+(1T-1)*OT 
TYPE*,'ANGLE OF INCIDENCE -',TO 
WRITE(25,*) TO 

171 FORKAT('ANGLE OF 1NC10ENCE-',F6.2) 
175 KO-OSIN(TO*PI/180.0000) 

O(l )-0. 0000 
IF(L1.EQ.1) GO TO 202 
DO 203 L-2,L1 

203 0(L)-0(L-1)+T(L) 
C NEXT THREE LINES FOR TRAP CALCS ONLY 
202 DO 209 ISIGN-1,Z 

IF (ISIGN.EQ.1) IS-1 
IF (ISIGN.EQ.2) 15--1 
DO 201 LL-1,L2 
DO 201 JJ-1,NO 
N-JJ-NULL 
K(JJ)-(KO+N*LAHDA/PERIOO)*WC (71 ) 



Q(JJ,LL)-IS*COSQRT(E(LL)*WC**2-K(JJ)**2) 
C USE Q ABOVE FOR TRAP.CALC 
C USE Q BELOW FOR BESSEL ROUTINE 
C Q(JJ,LL)-COSQRT(E(LL)*WC**2-K(JJ)**2) 
201 CONTINUE 
C CALL BESSEL(Q,JV,LZ,NO,H,Pl,P3,LA,PIQ,P3Q) 

JJ-l 
204 DO Z08 N-l,NO 

DO Z08 M-l,NO 
YPOS-O.OOOO 
IF(ISIGN.EQ.l) Pl(N,M,L)-(O.OOOO,O.OOOO) 
P3(N,M,L)-(0.OOOO,0.0000) 

206 DO 211 PT-2,NPTS(JJ) 
OELTAPT(PT,JJ)-Y!(PT,JJ)-Y!(PT-l,JJ) 
IF (OELTAPT(PT,JJ).EQ.O.O) GO TO ZII 
OELTAPT2(PT,JJ)-OELTAPT(PT,JJ)/Z.0000 
YPOS-YPOS+OELTAPT(PT-l,JJ) 
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(102) 

SLOPE(PT ,JJ) -(H(PT ,JJ) -H(PT-l ,JJ) ) /OELTAPT( PT, JJ) (S: cq. 8-.. ) 
XI-Q(N,L)*(-SLOPE(PT,JJ)*YPOS+H(PT-l,JJ» 
X2-Z.0*PI*(M-N)+Q(N,L)*SLOPE(PT,JJ) 
RI-Z.0*COEXP(I*Xl) 
RZ-COEXP(I*XZ*(YPOS+OELTAPTZ(PT,JJ») 
RJ-COSIN(XZ*OELTAPTZ(PT,JJ» 
IF(ISIGN.EQ.l.ANO.XZ.EQ.(O.O,O.O» THEN 
Pl(N,M,L)-Pl(N,M,L)+Rl*RZ*OELTAPTZ(PT,JJ) 
ELSEIF(ISIGN.EQ.l) THEN (O+nm.j: cq.8-6) 
Pl(N,M,L)-Pl(N,M,L)+Rl*RZ*RJ/XZ 
ELSE 
CONTINUE 
ENOU' 
IF(ISIGN.EQ.Z.ANO.XZ.EQ.(O.O,O.O» THEN 
P3(N,M,L)-P3(N,M,L)+Rl*RZ*OELTAPTZ(PT,JJ) 
ELSEIF(ISIGN.EQ.Z) THEN 
P3(N,M,L)-P3(N,M,L)+Rl*RZ*R3/XZ (O-nm.j: cq. 8-6) 
ELSE 
CONTINU! 
ENOIl" 

ZII CONTlNU! 
208 CONTINU! 

Il"(L.EQ.LZ) GO TO 210 
L-L2 
JJ-LZ-l 
GO TO 204 

210 IF(Ll.EQ.l) GO TO 209 



DO 220 L-2,L1 
DO 220 N-1,NO 
DO 220 H-1,NO 
YPOS-O.ODOO 
IF(ISIGN.EQ.1) P1U(N,H,L)-(0.ODOO,0.ODOO) 
P3U(N,H,L)-(0.ODOO,O.ODOO) 
DO 221 PT-2,NPTS(L) 
DELTAPT(PT,L)-YY(PT,L)-YY(PT-1,L) 
IF (DELTAPT(PT,JJ).EQ.O.O) GO TO 221 
DELTAPT2(PT,L)-DELTAPT(PT,L)/2.0DOO 
YPOS-YPOS+DELTAPT(PT-1,L) 

SLOPE(PT,L)-(H(PT,L)-H(PT-1,L»/DELTAPT(PT,L) 
X1-Q(N,L)*(-SLOPE(PT,L)*YPOS+H(PT-1,L» 
X2-2.0*PI*(H-N)+Q(N,L)*SLOPE(PT,L) 
R1-2.0*CDEXP(I*X1) 
R2-CDEXP(I*X2*(YPOS+DELTAPT2(PT,L») 
RJ-CDSIN(X2*DELTAPT2(PT,L» 
IF(ISIGN.EQ.1.ANO.X2.EQ.(0.0,0.0» THEN 
P1U(N,H,L)-P1U(N,H,L)+R1*R2*DELTAPT2(PT,L) 
ELSEIF(ISIGN.EQ.1) THEN 
P1U(N,H,L)-PIU(N,H,L)+Rl*R2*R3/X2 
ELSE 
CONTlNU! 
ENDIF 
IF(ISIGN.EQ.2.AND.X2.EQ.(0.0,0.0» THEN 
P3U(N,H,L)-P3U(N,H,L)+R1*R2*DELTAPT2(PT,L) 
ELS!IF(ISIGN.EQ.2) TH!N 
P3U(N,H,L)-P3U(N,H,L)+R1*R2*R3/X2 
ELSE 
CONTINUE 
ENDIF 

221 CONTlNU! 
220 CONTINUE 

DO 230 L-2,L1 
DO 230 N-1,NO 
DO 230 H-1,NO 
YPOS-O.ODOO 
IP(ISIGN.EQ.l) P1L(N,H,L)-(0.ODOO,0.ODOO) 
P3L(N,H,L)-(0.ODOO,0.ODOO) 
DO 231 PT-2,NPTS(L-1) 
DELTAPT(PT,L)-YY(PT,L-1)-YY(PT-1,L-1) 
IP (D!LTAPT(PT,L).EQ.O.O) GO TO 231 
D!LTAPT2(PT,L)-D!LTAPT(PT,L)/2.0DOO 
YPOS-YPOS+DELTAPT(PT-l,L) 
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(O+nm.f ('q. 8-0) 
upper surface 

(~-nm.f eg. 8-6) 
upper surface 



SLOPE(PT,L)-(H(PT,L-l)-H(PT-l,L-l»/DELTAPT(PT,L) 
X1-Q(N,L)*(-SLOPE(PT,L)*(YPOS)+H(PT-l,L-l» 
X2-2.0*PI*(H-N)+Q(N,L)*SLOPE(PT,L) 
R1-2.0*COEXP(I*X1) 
R2-COEXP(I*X2*(DELTAPT2(PT,L)+YPOS» 
R3-COSIN(X2*DELTAPT2(PT,L» 
IF(ISIGN.EQ.l.AND.X2.EQ.(0.0,0.0» THEN 
P1L(N,H,L)-PIL(N,H,L)+Rl*R2*DELTAPT2(PT,L) 
ELSEIF(ISIGN.EQ.l) THEN 
P1L(N,H,L)-PIL(N,H,L)+R1*R2*R3/X2 
ELSE 
CONTINUE 
ENDIF 
IF(ISIGN.EQ.2.AND.X2.EQ.(0.0,0.0» THEN 
P3L(N,H,L)-P3L(N,H,L)+R1*R2*DELTAPT2(PT,L) 
ELSEIF(ISIGN.EQ.2) THEN 
P3L(N,H,L)-P3L(N,H,L)+R1*R2*R3/X2 
ELSE 
CONTINUE 
ENDIF 

231 CONTINUE 
230 CONTINUE 
209 CONTINUE 

240 DO 291 LL-1,L2 
DO 291 JJ-1,NO 
N-JJ-NULL 
K(JJ)-(KO+N*LAHDA/PERIOD)*WC 

Q(JJ,LL)-CDSQRT(E(LL)*WC**2-K(JJ)**2) 
291 CONTINUE 

DO 3000 13-1,NO 
DO 3000 14-1,NO 
L-1 
IF (POLAll. EQ. 'P') THEN 
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(~+ nm.f cq. B-6) 
lower surface 

(~-nm.j= eq. B-6) 
lower surface 

QS4(I3,I4,L)--I*Pl(I3,I4,L)*E(I)/E(2) 
QS3(I3,I4,L)-Pl(I3,I4,L)*«E(L)*WC**2-K(I3)*K(I4»/Q(I3,L» 
ELSE 
QS4(I3,I4,L)--I*P1(I3,I4,L) 
QS3(I3,I4,L)-Pl(I3,I4,L)*Q(I3,L) 
END IF 

3000 CONTINUE 
CALL TINV5(QS3,IQS3,X,HU,WA,NO,L,L2,Cl,RCOND,LDA) 
DO 3110 IJ-l,NO 



DO 3110 14-1,NO 
RR(I3,I4,1)-(0.ODOO,0.ODOO) 
DO 3100 H-1,NO 

13 1 

3100 RR(I3,I4,1)-RR(I3,I4,1)+IQS3(I3,H)*QS4(H,I4,1) 
3110 CONTINUE 

(122) 

DO 2000 L-2,L2 
IF(T(2).EQ.0.0) THEN 
DO 712 IJ-1,NO 
DO 712 I4-1,NO 
RU(I3,I4)-RR(I3,I4,1) 

712 CONTINUE 
GO TO 6650 
ELSE IF(T(L).EQ.O.O) THEN 
LO-L 
GO TO 3115 
ELSE 
GO TO 293 
END IF 

293 DO 700 I4-1,NO 
DO 700 IJ-1,NO 
ZO-I*Q(I3,L)*T(L) 

IF(POLAR.EQ.'P') THEN 
Q1(I3,I4,L)-«!(L)*WC**2-K(I3)*K(I4»/Q(I3,L» 

**P3L(I3,I4,L)*CD!XP(-ZO) 
Ql(I3,I4+NO,L)--«E(L)*WC**2-K(I3)*K(I4»/Q(I3,L»*P3U(I3,I4,L) 
Ql(I3+NO.I4,L)--«E(L)*WC**2-K(I3)*K(I4»/Q(I3,L» 

**P1L(I3,I4,L)*CD!XP(ZO) 
Ql(I3+NO,I4+NO,L)-«E(L)*WC**2-K(I3)*K(I4»/Q(I3,L»*P1U(I3,I4,L) 

Q2(I3,I4,L)-I*P3L(I3,I4,L)*CD!XP(-ZO) 
Q2(I3,I4+NO,L)--I*P3U(I3,I4,L)*!(L)/!(L+l) 
Q2(I3+NO,I4,L)-I*PIL(I3,I4,L)*CD!XP(ZO) 
Q2(I3+NO,I4+NO,L)--I*PIU(I3,I4,L)*!(L)/!(L+1) 
!LS! 
Ql(I3,I4,L)-Q(I3,L) 

**P3L(I3,I4,L)*CD!XP(-ZO) 
Q1(I3,I4+NO,L)--Q(I3,L)*P3U(I3,I4,L) 
Q1(I3+NO,I4,L)--Q(I3,L) 

**P1L(I3,I4,L)*CD!XP(ZO) 
Q1(I3+NO,I4+NO,L)-Q(I3,L)*P1U(I3,I4,L) 

Q2(I3,I4,L)-I*P3L(I3,I4,L)*CD!XP(-ZO) 



Q2(I3,I4+NO,L)--I*P3U(I3,I4,L) 
Q2(I3+NO,I4,L)-I*P1L(I3,I4,L)*CDEXP(ZO) 
Q2(I3+NO,I4+NO,L)--I*P1U(I3,I4,L) 
END IF 

700 CONTINUE 
CALL TINVB5(Q1,A,B,HU2,WA2,N02,L,L2,C2,RCOND,LDA) 

C WRITE(25,34) L,RCOND 
34 FORHAT('L-',I2'RCOND-',D13.4) 

DO 710 I4-1,N02 
DO 710 IJ-1,N02 
Q3(I3,I4,L)-(0.ODOO,0.ODOO) 
DO 711 K-1,N02 

711 Q3(I3,I4,L)-Q3(I3,I4,L)+A(I3,K)*Q2(K,I4,L) 
710 CONTINUE 
2000 CONTINUE 

3115 DO 4000 L-2,LO-1 
DO 5000 IJ-1,NO 
DO 5000 I4-1,NO 
ZZ(I3,I4,L)-Q3(I3,I4,L)-RR(I3,I4,L-1) 

5000 CONTINUE 
CALL TINVS(ZZ,IZZ,X,HU,WA,NO,L,L2,C1,RCOND,LDA) 
DO 5110 I3-1,NO 
DO 5110 !4-1,NO 
ZZl(I3,I4,L)-(0.ODOO,0.ODOO) 
DO 5100 K-1,NO 

5100 ZZl(I3,I4,L)-ZZl(I3,I4,L)+IZZ(I3,K)*Q3(K,I4+NO,L) 
5 110 CONTINUE 

DO 6000 IJ-1, NO 
DO 6000 I4-1,NO 
ZZ2(I3,I4,L)-(0.ODOO,0.ODOO) 
DO 6500 K-1,NO 

6500 ZZ2(I3,I4,L)-ZZ2(I3,I4,L)+Q3(I3+NO,K,L)*ZZl(K,I4,L) 
RR(I3,I4,L)-Q3(I3+NO,I4+NO,L)-ZZ2(I3,I4,L) 

6000 CONTINUE 

4000 CONTINUE 
DO 4050 IJ-1, NO 
DO 4050 !4-1,NO 
RU(I3,I4)-RR(I3,I4,LO-1) 
DRU(I3,I4)-RU(I3,I4) 

4050 CONTINUE 

CALL DETER(DRU,WA,NO,C1,RCOND,LDA,COND,DET,WORK) 
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6650 DO 7000 I3-1,NO 
DO 7000 I4-1,NO 
AB1(I3,I4,L2)-P3(I3,I4,L2) 

IF(POLAR.EQ.'P') THEN 
AB2(I3,I4,L2)-P3(I3,I4,L2)*«E(L2)*WC**2-K(I3)*K(I4»/Q(I3,L2» 
AB4(I3,I4,L2)-P1(I3,I4,L2)*«E(L2)*WC**2-K(I3)*K(I4»/Q(I3,L2» 
ELSE 
AB2(I3,I4,L2)-P3(I3,I4,L2)*Q(I3,L2) 
AB4(I3,I4,L2)-P1(I3,I4,L2)*Q(I3,L2) 
END IF 
AB3(I3,I4,L2)-P1(I3,I4,L2) 

7000 CONTINUE 
L-L2 
CALL TINV5(AB1,IAB1,X,HU,WA,NO,L,L2,C1,RCOND,LOA) 
CALL TINV5(AB2,IAB2,X,HU,WA,NO,L,L2,C1,RCOND,LOA) 
CALL TINV5(AB3,IAB3,X,HU,WA,NO,L,L2,C1,RCOND,LDA) 
CALL TINV5(AB4,IAB4,X,HU,WA,NO,L,L2,C1,RCOND,LDA) 

DO 7500 I3-1,NO 
DO 7500 I4-1,NO 
AAj(I3,I4,L2)-(0.ODOO,0.ODOO) 
AA6(I3,I4,L2)-(0.ODOO,0.ODOO) 
BB5(I3,I4,L2)-(0.ODOO,0.ODOO) 
BB6(I3,I4,L2)-(0.ODOO,O.ODOO) 
DO 7700 H-1,NO 
AAj(I3,I4,L2)-AAj(I3,I4,L2)+IAB1(IJ,H)*AB2(H,I4,L2) 
AA6(I3,I4,L2)-AA6(I:.I4,L2)+IAB3(I3,H)*AB4(H,I4,L2) 
BB5(I3,I4,L2)-BB5(IJ,I4,L2)+IAB2(I3,H)*AB1(H,I4,L2) 

7700 BB6(I3,I4,L2)-BB6(I3,I4,L2)+IAB4(I3,H)*ABJ(H,I4,L2) 
AA(I3,I4.L2)-AAj(I3,I4,L2)+AA6(I3,I4,L2) 
BB(I3,I- 2)-'BB5(I3,I4,L2)+BB6(I3,I4,L2»*I 

7500 CONTINU~ 

CALL TINV5(AA,IAA,X,HU,WA,NO,L,L2,C1,RCOND,LOA) 
CALL TINV5(BB,IBB,X,HU,WA,NO,L,L2,C1,RCOND,LOA) 
DO 8000 13-1,NO 
DO 8000 I4-1, NO 
INC1(I3,I4,L2)-(0.ODOO,0.ODOO) 
DO 8100 H-1,NO 

8100 INC1(I3,I4,L2)-INC1(I3,I4,L2)+IBB(I3,H)*IAB2(H,I4) 
8000 CONTINU! 

DO 8200 I3-1,NO 
DO 8200 I4-1,NO 
INC2(I3,I4,L2)-(0.ODOO,0.ODOO) 
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INC3(I3,I4,L2)-(0.0000,0.0000) 
DO 8300 H-l,NO 
INC2(I3,I4,L2)-INC2(I3,I4,L2)+RU(I3,H)*INC1(H,I4,L2) 

8300 INC3(I3,I4,L2)-INC3(I3,I4,L2)+IAA(I3,H)*IAB1(H,I4) 
INC(I3,I4,L2)-INC3(I3,I4,L2)+INC2(I3,I4,L2) 

8200 CONTINUE 

DO 8500 13-l,NO 
DO 8500 14-l,NO 
OIF1(I3,I4,L2)-(0.0000,0.0000) 
DO 8600 H-l,NO 

8600 OIFl (I3, 14 ,L2) -OIF,! (I3, 14 ,L2) + IBB (I3 ,H) *IAB4 (H, 14) 
8500 CONTINUE 

DO 8700 IJ-l,NO 
DO 8700 14-1 ,NO 
DIF2(I3,I4,L2)-(0.ODOO,0.ODOO) 
DIF3(I3,I4,L2)-(0.ODOO,0.ODOO) 
DO 8800 H-l,NO 
DIF2(I3,I4,L2)-DIF2(I3,I4,L2)+RU(I3,H)*DIF1(H,I4,L2) 

8800 DIF3(I3,I4,L2)-Dlr3(I3,I4,L2)+IAA(I3,H)*IAB3(H,I4) 
DIF(I3,I4,L2)-DIF3(I3,I4,L2)-DIF2(I3,I4,L2) 

8700 CONTINUE 

C CALL TINV5(INC,IINC,X,MU,WA,NO,L,L2,Cl,RCONO,LDA) 
C CALL TINV5(DIF,IDIF,X,MU,WA,NO,L,L2,Cl,RCOND,LDA) 

DO 901 13-l,NO 
DO 901 14-l,NO 

C TYP!*,I3,I4,CDIF,ICOIF 
MU(I3)-INC(I3,NULL,L2)*Q(NULL,L2) 

C TYPE*,'MU(I3)',I3,I4,MU(I3),'ANGLE OF INCIOENCE',TO 
X(I3,I4)--DIF(I3,I4,L2)*Q(I4,L2) 

901 CONTlNUI 

C 
CALL ZGECO(X,LDA,NO,WA,RCOND,Cl) 
WRIT!(25,35) RCOND 

CALL ZG!SL(X,LDA,NO,WA,MU,O) 
DO 520 13-l,NO 

C WRIT!(25,45) 13-NULL,MU(I3) 
TYP!*,I3-NULL ,(COABS(MU(I3»)**2,0R!AL(Q(I3,L2)/Q(NULL,L2» 

C*(COABS(MU(I3»)**2 
C TYPI*,'ORD!R,FIELD-',I3-NULL,MU(I3) 
520 CONTINU! 

DO 533 13-l,NO 
TYP!*,I3-NULL,'PHAZ IS',ASINO(DlHAG(MU(I3»/CDABS(MU(I3») 
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533 CONTINU! 

SUM-O.ODOO 
DO 2 I3-l,NO 
ABC-DR!AL(Q(I3,L2)/Q(NULL,L2» 
IF(DABS(K(I3».G!.WC) WRIT!(25,*) (CDABS(HU(I3»)**2 
IF(DABS(K(I3».LT.WC) WRIT!(25,*) ABC*(CDABS(HU(I3}})**2 

Il(DABS(K(I3».G!.WC) GO TO 2 
SUM-SUM+DR!AL(Q(I3,L2)*(CDABS(HU(I3»)**2) 

2 CONTINU! 
SUM-SUM/Q(NULL,L2) 
TYP!* , ' SUM-' ,SUM 
WRIT!(2S,*) SUM 

65 FORHAT('SUM-',2D15.5) 
1000 CONTINU! 
45 FORHAT(I5,2D1S.5) 
55 FORHAT(2D1S.S) 

STOP 
!ND 

C234567 
SUBROUTIN! TINVS(Pl,Y,X,HU,WA,NO,L,L2,Cl,RCOND,LDA) 
REAL*8 T ,RCOND 
COHPL!X*16 Pl(NO,NO,L2),Y(NO,NO),HU(NO),X(NO,NO),Cl(NO) 
INTEG!R WA (NO) , LOA 

J-l 
DO 4 K-l,NO 
DO 4 I-l,NO 
X(I,K)-Pl(I,K,L) 

4 CONT I NU! 

CALL ZG!CO(X,LOA,NO,WA,RCOND,Cl) 
T-l.O+RCOND 
IF(T.!Q.l.O) GO TO 90 
DO 2 K-l,NO 
DO 1 I-l,NO 

1 KU(I)-(O.DOO,O.DOO) 
KU(K)-(l.DOO,O.DOO) 
CALL ZG!SL(X,LOA,NO,WA,KU,O) 
DO 6 I-l,NO 

6 Y(I,J)-KU(I) 
J-J+l 
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2 CONTINUE 
RETURN 

90 TYPE *,'HATRIX IS SINGULAR TO WORKING PRECISION' 
RETURN 
END 

SUBROUTINE TINVB5(Q1,A,B,KU2,WA2,N02,L,L2,C2,RCOND,LDA) 
C234567 

REAL*8 T ,RCOND 
COMPLEX*16 Q1(N02,N02,L2),B(N02,N02),KU2(N02),C2(N02),A(N02,N02) 
INTEGER WA2(N02),LDA,LDA2 
LDA2-LDA*2 
J-1 
DO 4 K-1,N02 
DO 4 I-1,N02 
B( I ,K)-Q1(I ,K,L) 

4 CONTINUE 
CALL ZGECO(B,LDA2,N02,WA2,RCOND,C2) 
T-1.0+RCOND 
IF(T.EQ.1.0) GO TO 90 
DO 2 M-1,N02 
DO 1 I-1,N02 

1 KU2(I)-(0.DOO,0.DOO) 
KU2(M)-(1.DOO,0.DOO) 
CALL ZG!SL(B,LDA2,N02,WA2,KU2,0) 
DO 6 I-1,N02 

6 A(I,J)-M02(I) 
J-J+1 

2 CONTINUE 
RETURN 

90 TYP!*,'HATRIX IS SINGULAR TO WORKING PRECISION' 
RETURN 
END 

C2345678 
SUBROUTIN! D!T!R(A,WA,NO,C1,RCOND,LDA,COND,DET,WORK) 
REAL*8 RCOND,COND 
COKPL!X*16 A(NO,NO),C1(NO),DET(2),WORK(NO) 
INTEG!. WA(NO),LDA2 
LDA2-LDA*2 
CALL ZG!CO(A,LDA,NO,WA,RCOND,C1) 
IF(RCOND.!Q.O.O) GO TO 10 
COND-1.0/11COND 
CALL ZGIDI (A,LDA,NO,WA,DET ,WORK, 10) 
K-INT(D!T(2» 

10 TYP!*,COND,D!T(1),K 
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R!1'tJRH 
!ND 

SUBROUTINE BESSEL(Q,JV,L2,NO,H,P1,P3,LA,P1Q,P3Q) 
C234567 
C PROGRAHM TO CALCULATE BESSELL FUNCTIONS OF ANY ORDER 

COHPLEX*16 JV(0:200),J(0:200),ZO,FAC,Q(NO,LA),P1(NO,NO,LA) 
COHPLEX*16 SUH,P3(NO,NO,LA) ,P1Q(NO,NO,LA) ,P3Q(NO,NO,LA) 
REAL*8 H,PI 
INT!G!R L2,NO,P,PO,P01,GAHKA,NO 
PI-DACOS(-1.0DOO) 
DO 100 L-1,L2 
DO 100 N-1,NO 
DO 100 H-1,NO 
ZO-Q(N,L)*H/2.0DOO 
PO-5 

10 J(PO)-«2.7182*ZO/(2.0*PO»**PO)/DSQRT(2.0*PO*PI) 
Ir(CDABS(J(PO».LT.10.0**-lS) GO TO 15 
PO-PO+1 
GO TO 10 

15 P01-PO-1 
J(P01)-«2.7182*ZO/(2.0*P01»**P01)/DSQRT(2.0*P01*PI) 
DO 20 P-P01,1,-1 
J(P-1)-«2*P/ZO)*J(P»-J(P+1) 

20 CONTINO! 
SUH-(O.ODOO,O.ODOO) 
DO 30 P-1,INT(PO/2) 
SUH-SUH+2*J(2*P) 

30 CONTINO::: 
rAC-SUH .... (O) 
DO 40 P-O,PO 
JV(P)-J(p)/rAC 

40 CONTINO! 

Ir(H.LT.N) GO TO 70 
P-H-N 
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P3(N,H,L)-JV(P) 
Pl(N,H,L)-(-l)**P*JV(P) 
Ir(CDABS(Q(N,L».LT.10.0**-S) GO TO 80 
GO TO 100 

(4I O nm: cq. Co 5) 
(41+ nm: cq. C-5) 

70 

75 

P-N-H 
P3(N,H,L)-(-1.0)**P*JV(P) 
P1(N,H,L)-JV(P) 
Ir(CDABS(Q(N,L».LT.10.0**-S) GO TO 80 

(¢-nm: cq. C-5) 



GO TO 100 

80 IF(H.LT.N) GO TO 90 
P-H-N 
GAMMA-l 
IF(P.EQ.O) GO TO 100 
DO 60 NU-P,l,-l 
GAMMA-GAHHA *NU 

60 CONTINUE 
P3Q(N,H,L)-«0.5)**P)*(ZO**(P-l»/GAMMA 
P1Q(N,H,L)-«-1)**P)*«0.5)**P)*(ZO**(P-l»/GAHHA 
GO TO 100 

90 P-N-H 
GAMMA-l 
DO 95 NU-P,l,-l 
GAMMA-GAHHA*NU 

95 CONTINUE 
P3Q(N,H,L)-«-1)**P)*«0.5)**P)*(ZO**(P-l»/GAHHA 
P1Q(N,H,L)-«0.5)**P)*(ZO**(P-l»/GAHHA 

1 00 CONTINUE 
C TYPE*,'ZO-',ZO 
C TYPE*,'N,JV' 
C DO 200 N-O,PO 
C TYPE*,N,JV(N) 
C200 CONTINUE 
C DO 300 L-l,L2 
C DO 300 H-l,NO 
C DO 300 N-l,NO 
C TYPE*,'H,N,L,Q,Pl,P3' 
C TYPE*,H,N,L,Q(N,L),Pl(N,H,L),P3(N,H,L) 
C TYPE*,'PIQ,P3Q' 
C TYPE*,PIQ(N,H,L),P3Q(N,H,L) 
C300 CONTINUE 

RETURN 
END 
SUBROUTINE IOPil.(InUnit,OutUnit, Input_Pil.) 

INTEGER InUnit, I.rr, OutUnit 
CHARACTER*lOO Input_Fil., OutPut_Fil. 

C .... R •• d in the nama of the input fil •••.. 
C 

----_. -_. 
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100 PRINT., 'Enter in the name of the input file' 
READ(S,SO) Input_File 

e WRITE(6,SO) Input_File 
OPEN (Unit • InUnit, File • Input_File, Status • 'old', 

• iostat • Ierr) 
IF (Ierr .NE. 0) THEN 

PRINT·, 'Error in opening input file, Ierr • ',Ierr 
GO TO 100 

ENDIF 
PRINT., 'Enter in the name of the output file' 
READ(S,SO) Output_File 
OPEN (Unit • OutUnit, File • OutPut_File, Status· 'N.w', 

* iostat • Ierr) 

50 FORHAT(AIOO) 
RETURN 
END 
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FIGURE 1. Schematic of a Single-Layer 
Coated Grating With Identical 
Trapezoidal Profiles at Each Interface. 
The m = 0 and m = -1 represent the 
specular and -1 order reflected beams. 
respectively. The m = +1 and m = -2 
orders represent guided waves 
propagating in the +x and -x 
directions. respectively. The incident 
beam is at angle 90 and is the x-z plane. 

£0. £ 1. and £5 are the dielectric functions 
of the superstate. layer 1, and the 
substrate. respectively. 

B 
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FIGURE 2. Illustration of the Phase Condition .1 + .2 + 26 = 2xm for a Single­
Layer Planar Waveguide Where the Phase Thickness 6 = 2X/Aonb cos 9gw . 
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FIGURE 3. Schematic of a Multilayer Assembly Divided at 
the Surface Boundary and Showing Phase • and Admittance 
Y of the Ingoing and Outgoing Waves. 
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FIGURE 4. Schematic of a Grating Surface of Period 
D and With Profile Function f(x). Region 0 is the 
superstrate and j is tbe substrate. The mean 
reference level of the surface is do. 
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FIGURE S. Schematic Representation of a 
Multilayer-Coated Sinusoidal Grating. The dashed 
line indicates the path of integration of Green's 
theorem in layer j. 
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......................... . . . . . . . .. .. . . . . .... . . .. . . 
(Figure 2(b) in Reference 64.) 
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FIGURE 6(a). Diffraction Efficiency of the Zeroth 
Reflected Order of the Sinusoidal Grating. as Shown 
in Figure 2(b) in Reference 64. Parameters of the 
system: nl = n2 = 1. n3 = 2.3. t = 0.19 J,Lm. h = 0.04 J,Lm. 
d = 0.37 J,Lm, and A = 632.8 om for TE polarization; a = 
sin ai. 

143 



I 

~ 06 -
~ -~ 
o 04 

02 

181 

INC ANGLE 

21 1 

FIGURE 6(b). Comparison of Extinction 
Method Calculation Used in This Paper 
for a Dielectric Waveguide Shown in 
Figure 6(a). 
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FIGURE 7(a). The Trapezoidal Profile Used in the 
Numerical Analysis. The period 0 = 0.7 ~m. where 
the a and ~ values were 0.050 and 0.10. respectively. 
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FIGURE 7(b). Rounded Trapezoidal Profile Used in 
the Numerical Analysis. The period 0 = 0.7 ~m. 
where the a and ~ values were 0.050 and 0.10. 
respecti vely. 
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FIGURE 8(a). Phase Plot for the Upward- (9----) and Downward- (9+- -) 
Traveling Waves. Intersection points determine the guided-wave propagation 
angles 9gw with wave vector {J)/c nl sin 9gw : single-dielectric layer (£1 = 5.11. 
0.0). thickness 0.25 ~m. upon a dielectric substrate (£s = 2.25. 0.0). 
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FIGURE 8(b). Phase Plot for the Upward- (t----) and Downward- (t+- -) 
Traveling Waves. Intersection points determine the guided-wave propagation 
angles 9gw with wave vector fJ)/c nl sin Ogw: single-dielectric layer (t 1 = 5.11, 
0.0), thickness 0.30 J,lm, upon a metallic substrate (ts = -16.4, 0.52). 
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FIGURE 8(c). Phase Plot for the Upward- (._---) and Downward- ( •• - -) 
Traveling Waves. Intersection points determine the guided-wave 
propagation angles 9gw with wave vector CJ'J/c nl sin 9gw : multilayer dielectric 
of design HL (£ H = 5.11. 0.0; e: L = 2.25. 0.0). quaner-wave optical thickness at 
45 0 angle of incidence. metallic substrate (£s = -16.4. 0.52). 
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FIGURE 8(d). Phase Plot for the Upward- <._---) and Downward- (.+- -) 
Traveling Waves. Intersection points determine the guided-wave 
propagation angles 9 g w with wave vector CI) Ic nisin 9 g w : multilayer 
dielectric of design (HL)2 (£H = 5.11, 0.0; £L = 2.25, 0.0), quaner-wave optical 
thickness at 45° angle of incidence, metallic substrate (£s = -16.4, 0.52). 
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FIGURE 8(e). Phase Plot for the Upward- <+_---) and Downward- <++- -) 
Traveling Waves. Intersection points determine the guided-wave 
propagation angles 9 g w wi th wave vector m/c nisin 9 g w : multilayer dielectric 
of design (HL)4 (£H = 5.11. 0.0; £L = 2.25, 0.0), quaner-wave optical thickness at 
45 0 angle of incidence. metallic substrate (ts = -16.4. 0.52). 
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FIGURE 18. Intensity Versus Angle of Incidence for (a) 0 and (b) -1 Order 
Reflected Beams and (c) +1 Order Coupling to the j = 0 Guided-Wave Mode 
(H/L: Nonreplicating Trapezoid; h = O. h = 0.01 ~m; s-Polarized). 
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FIGURE 22. Intensity Versus Angle of Incidence for (a) 0 and (b) -1 Order 
Reflected Beams and (c) + 1 Order Coupling to the j = 0 Guided-Wave Mode 
(WAg: Nonreplicating Trapezoid; h = 0.01. h = 0 ).Lm; s-Polarized). 
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