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Abstract

The logistic birth and death process is perhaps the simplest stochastic

population model that has both density-dependent reproduction, and a phase

transition, and a lot can be learned about the process by studying its extinction

time, τn, as a function of system size n. A number of existing results describe

the scaling of τn as n → ∞, for various choices of reproductive rate rn and

initial population Xn(0) as a function of n. We collect and complete this

picture, obtaining a complete classification of all sequences (rn) and (Xn(0))

for which there exist rescaling parameters (sn) and (tn) such that (τn − tn)/sn

converges in distribution as n → ∞, and identifying the limits in each case.
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deviations; phase transition
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1. Introduction

Fix n ∈ N and r ∈ R+ and consider the continuous-time Markov chain with

X →











X + 1 at rate rX(1 −X/n)

X − 1 at rate X.

(1)

This birth and death process has a simple interpretation in terms of infection spread: in a population of n

individuals, X of them are type I (infectious), and the remaining n−X individuals are type S (susceptible).

Each type I individual, at rate r, selects an individual uniformly at random from the population and infects

them. In addition, each type I individual recovers at rate 1 and is once again immediately susceptible. Since

the state transitions at the individual level are S → I → S, this is called the SIS model.

This model first appears, in a somewhat more general form, in a probabilitistic treatment of logistic

population growth by Feller, in Section 4 of [10] (see [11], pages 471–495, for an english translation), where

it is shown that the expected value of the process at each point in time is bounded above by the solution to
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2 E. Foxall

the corresponding logistic differential equation, namely, X ′ = rX(1−X/n)−X . Later, Kurtz [17] gives limit

theorems that apply to the sequence of processes xn = Xn/n (using the subscript to emphasize dependence

on n), when r is fixed and limn→∞ xn(0) exists, demonstrating convergence, on compact time intervals, to

the solution of the logistic ODE x′ = rx(1−x)−x with x(0) = limn→∞ xn(0), with Gaussian fluctuations of

order 1/
√
n that solve an explicit SDE. Extensions of the ODE convergence to longer (growing slowly with

n) time intervals are possible under certain conditions, see for example the work of Barbour, Chigansky and

Klebaner [3].

Later work has focused on understanding the long-term behaviour of the process for large n, in particular

(i) the time to extinction τn := inf{t : Xn(t) = 0} and (ii) the behaviour prior to extinction. In this article

we shall focus on the distribution of τn, as n → ∞, as a function of the reproductive parameter rn and

the initial value Xn(0), when both are allowed to vary with n. We do so by identifying distributional limits

of (τn), i.e., deterministic sequences (sn), (tn) and random variables T such that (τn − tn)/sn converges in

distribution to T as n → ∞. Much of the work on this problem already exists; here, we provide a survey

and concise proofs of known results, then fill in the remaining gaps to produce a complete theory on the topic.

There is a parallel line of inquiry on model (2) that concerns the so-called quasi-stationary distribution

(QSD), which is the unique stationary distribution conditioned on non-extinction; see the comparatively

recent monograph of Nasell [20] for a comprehensive survey on this topic, which also includes a discussion

of the three phases of the model that we explain below and that are key to understanding the behaviour

of the model. As explained in [20], if Xn(0) has the QSD then τn is exponentially distributed for each

n, and by studying the QSD we can obtain estimates of E[τn], when Xn(0) has either the QSD or the

deterministic value 1. Generally speaking, E[τn] corresponds to (tn) in the rescaling described above, then

further methods are needed to find (sn) and T . These methods appear progressively over time in works that

are not surveyed in [20]. So, by gathering these methods and previous works and completing the picture, we

obtain a complementary perspective to the path taken in [20].

As is easily shown, the ODE x′ = rx(1 − x) − x undergoes a transcritical bifurcation at (x, r) = (0, 1),

and for r > 1 has the endemic equilibrium x⋆ = 1− 1/r. An important question is whether this is mirrored

by the behaviour of the stochastic process. Kryscio and Lefèvre [16] estimate E[τn], as well as the QSD for

large n; in particular, they find that for r < 1, E[τn] = O(log n) uniformly over Xn(0) and that the QSD is

concentrated near 0, while for r > 1, E[τn] grows exponentially with n uniformly over Xn(0) and the QSD

of xn is concentrated near x⋆. Later, Andersson and Djehiche [1] refine results on extinction time to limit

theorems for the distribution of τn when r < 1 and r > 1, in the following cases: (i) Xn(0) is a constant

independent of n, and (ii) limn→∞ xn(0) exists and is positive. When r < 1 and Xn(0) is constant, for large

n, Xn(t) is well approximated by a branching process up until extinction, so τn converges in distribution to
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the extinction time of the branching process. When r < 1 and limn→∞ xn(0) > 0, (1− r)τn− tn converges in

distribution to a standard Gumbel G, with P(G ≤ w) = e−e−w

, for some deterministic correction tn of order

roughly logn. As pointed out by Doering, Sargsyan and Sander, [6], the formula given in [1] has an error in

this case; the corrected formula in the case r < 1 can be found for ex. in the recent work of Brightwell, House

and Luczak [5]. When r > 1 and limn→∞ xn(0) > 0, τn/E[τn] converges in distribution to exponential with

rate 1. The basic reasoning is that xn(t) is metastable around x⋆, with Ornstein-Uhlenbeck-type fluctuations

of order 1/
√
n, which can be deduced from the results of Kurtz [17], so a rare and rather sudden event is

needed to cause extinction.

The behaviour near r = 1 is more delicate. Nasell [18] identifies the transition region rn − 1 = O(1/
√
n),

also known as transition window or critical regime, and finds that for rn = 1 + c/
√
n, E[τn] ∼ f(c)

√
n for

some function f , when the distribution of Xn(0) is the QSD. For the same scale of rn, Dolgoarshinnykh and

Lalley [7] prove convergence in distribution of Yn(t) := Xn(
√
nt)/

√
n to the solution of the modified Feller

diffusion appearing below in Theorem 4, when limn→∞ Yn(0) exists. Brightwell, House and Luczak [5] obtain

the distribution of τn throughout the subcritical regime, i.e., when limn→∞ rn ≤ 1 and
√
n(1− rn) → ∞, for

initial values satisfying Xn(0)(1−rn) → ∞, with particular focus on the barely subcritical case 1−rn = o(1).

Until now, the barely supercritical case, where rn − 1 = o(1) and
√
n (rn − 1) → ∞, has remained unsolved.

In this article we collect and complete existing results concerning the distribution of τn for large n in order

to obtain a complete understanding of the extinction time, for all possible choices of rn and Xn(0). Since the

existing results form a somewhat overlapping patchwork of the different cases, I have opted to include a full

and self-contained proof of all the different cases, which allows us to more accurately view the true extent

of the different methods used. Generally speaking, we shall follow existing methods, although in some cases

some improvement was possible; I shall point out when each is the case. In addition, the barely supercritical

case is new, and in fact it requires the most effort.

The breadth of our results can be summarized as follows. Let δn = rn − 1, an = (|δn| + 1/
√
n)Xn(0)

and cn =
√
n δn. Suppose that Xn(0) → X∞(0) ∈ N ∪ {∞}, rn → r∞ ∈ [0,∞), an → a∞ ∈ [0,∞] and

cn → c∞ ∈ [−∞,∞] as n → ∞. Then there exist sequences (sn), (tn) and a non-degenerate distribution

function F : [0,∞) → [0, 1] (that we identify in every case) such that P((τn− tn)/sn ≤ w) → F (w) as n → ∞
at continuity points w of F . Moreover, F depends only on the values of the limits X∞(0), r∞, a∞ and c∞.

As explained below, an measures whether initial values are small or large, and cn determines the phase of

the process.
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2. Phase diagram and main results

Let us formally state the setting and the assumptions that shall hold throughout the paper. Given n ∈ N,

rn ∈ [0,∞) and Xn(0) ∈ {0, . . . , n}, Xn denotes the Markov chain (Xn(t))t≥0 with initial value Xn(0) and

transition rates

Xn →











Xn + 1 at rate rnXn(1−Xn/n)

Xn − 1 at rate Xn.

(2)

The extinction time of Xn is τn = inf{t : Xn(t) = 0}. We fix a sequence of values (Xn(0))n≥1 and (rn)n≥1

and seek deterministic sequences (tn) and (sn) and a random variable T such that (τn − tn)/sn converges

in distribution to T as n → ∞, that we refer to as a distributional limit for (τn), subject to the following

assumptions.

Assumptions. Let δn = rn − 1, an = ( |δn|+ 1/
√
n)Xn(0) and cn =

√
n δn. As n → ∞, it is assumed that

Xn(0) → X∞(0) ∈ N ∪ {∞}, rn → r∞ ∈ [0,∞),

an → a∞ ∈ [0,∞] and cn → c∞ ∈ [−∞,∞].

The behaviour of τn depends on rn and Xn(0), or equivalently rn and xn(0) = Xn(0)/n. So, we can organize

our results into a phase diagram for (r, x) ∈ R+ × [0, 1]. As observed by Nasell [18], parameter values are

effectively partitioned into three phases:

1. Subcritical: cn → −∞ as n → ∞,

2. Critical: cn → c∞ ∈ R as n → ∞,

3. Supercritical: cn → ∞ as n → ∞.

It’s important to note that since cn =
√
n (rn − 1), the critical phase has width O(1/

√
n) = o(1) around the

point r = 1. Along with parameter values, there is a dependence on the initial value Xn(0). The following

more refined partition into six regions delineates the different regimes for the limit behaviour of τn, as follows:

1. Discrete: X∞(0) ∈ N and r∞ ≤ 1.

2. Linear diffusive: X∞(0) = ∞ and either

(a) subcritical phase and a∞ < ∞, or

(b) critical/supercritical phase and a∞ = 0.

3. Subthreshold cutoff : subcritical phase and a∞ = ∞.

4. Non-linear diffusive: critical phase and a∞ > 0.

5. Threshold: supercritical phase and 0 < a∞ < ∞.
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6. Metastable: supercritical phase and a∞ = ∞.

In each region, the following method is used to establish the distributional limit for (τn).

1. Discrete: as observed by Andersson and Djehiche [1], in this region, for each n, Xn can be coupled

to the linear birth-and-death process Zn with Zn(0) = Xn(0) and transition rates

Zn →











Zn + 1 at rate rn Zn,

Zn − 1 at rate Zn

(3)

in such a way that P(Xn(t) = Zn(t) for all t ∈ [0, τn] ) = 1− o(1).

2. Linear diffusive: as observed by Dolgoarshinnykh and Lalley [7], in this region, Xn(Xn(0) t)/Xn(0)

converges in distribution to the diffusion Y with Y (0) = 1 and

dY = −a∞ Y dt+
√
2Y dB, (4)

where B is standard Brownian motion, and it is not hard to strengthen this result to show that

τn/Xn(0) converges in distribution to inf{t : Y (t) = 0}. This explains nicely the form of the limit.

The method we will use instead, since it applies across several regions, is that of Brightwell, House

and Luczak [5], which is essentially the same coupling method as [1] but extends their approach by

not requiring that Xn(t) = Zn(t) for all t ≤ τn with high probability, but instead using both upper

and lower bounds (Zn) and (Z ′
n), both linear birth-and-death processes, such that the extinction time

of both is comparable to (τn). To define the lower bound (Z ′
n), a ceiling Mn is defined such that the

coupling is valid so long as Xn ≤ Mn and such that Xn hits 0 before Mn with high probability.

3. Subthreshold cutoff : as observed by Brightwell, House and Luczak [5], xn is well approximated by

the logistic ODE x′ = r∞ x (1 − x) until |δn|Xn = O(1) at which point Xn enters the linear diffusive

regime and the above coupling method can be used. In practice, they show the coupling method works

can be applied once |δn|Xn ≤ ωn for some (ωn) tending to ∞ slowly enough as n → ∞ as a function

of (cn).

4. Non-linear diffusive: as observed by Dolgoarshinnykh and Lalley [7], the process Xn(
√
n t)/

√
n

converges in distribution to the diffusion Y with Y (0) = limn→∞ Xn(0)/
√
n and

dY = (c∞Y − Y 2) dt+
√
2Y dB.

In this case we make use of this diffusion limit combined with a result that says lim supn P(τn/
√
n >

t | Xn(0) ≤ α
√
n) → 0 for each t > 0 as α > 0 to establish convergence in distribution of τn/

√
n to

inf{t : Y (t) = 0}.
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5. Threshold: let x⋆
n = 1 − 1/rn, X

⋆
n = ⌊nx⋆

n⌋ and τ⋆n = inf{t : Xn(t) ∈ {0, X⋆
n}}. Then as observed by

Andersson and Djehiche [1] when rn = r∞ > 1 and Xn(0) = X∞(0) for all n, and extended in this

article to the whole supercritical phase,

lim
n→∞

P(Xn(τ
⋆
n) = 0) =











r
−X∞(0)
∞ if X∞(0) < ∞,

e−a∞ if X∞(0) = ∞.

In particular, the limiting probability is in (0, 1). Conditioned on {Xn(τ
⋆
n) = 0}, the process behaves

effectively as though it is in the linear diffusive regime with parameter 1 − 1/r∞, and the same

approximation applies. On the event {Xn(τ
⋆
n) = X⋆

n}, the process enters the metastable regime.

This dichotomy appears to have been first observed in [1].

6. Metastable: In this case, the process Xn reaches X⋆
n relatively quickly, with typical fluctuations

described as follows: the process (Xn(t/δn) − X⋆
n)/

√
n converges in distribution to the Ornstein-

Uhlenbeck process Y described by

dY = −Y dt+
√

2/r⋆dB.

General results of this type can be found in the work of Kurtz [17]. As observed in [1], when rn = r∞ > 1

for each n, on each excursion from X⋆
n, the probability of hitting 0 can be computed quite precisely,

using well-known formulae for birth and death processes. In this article we extend these calculations

to the whole supercritical phase, using essentially the same method but exercising greater care in the

barely supercritical (c∞ = ∞ and r∞ = 1) case.

In stating the results for the subcritical phase it is helpful to define γn = 1 − rn = −δn. We now give

precise statements of the results, take care to cite previous work in the relevant cases.

Theorem 1. (Discrete case, Theorem 1 (B2) in [1].) Suppose r∞ ≤ 1 and X∞(0) ∈ N. For each t > 0, as

n → ∞,

1. if r∞ = 1 then P(τn ≤ t) → (1 + 1/t)−X∞(0), and

2. if r∞ < 1 then P(τn ≤ t) → (1 + γ∞/(eγ∞t − 1))−X∞(0).

Theorem 1 is proved by first studying the extinction time of the linear birth-and-death process Zn from

(3), then transferring the result to Xn using a coupling with the property that P(Xn(t) = Zn(t) for all t ∈
[0, τn]) = 1− o(1).

The next result appears not to have been proved yet in any of the listed references, though it follows

straightforwardly from the coupling method already discussed from [5].

Theorem 2. (Linear diffusive.) Suppose r∞ ≤ 1, X∞(0) = ∞ and either
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a) c∞ = −∞ and a∞ < ∞, or

b) c∞ > −∞ and a∞ = 0.

Then τn/Xn(0)
(d)→ Ha∞

with

P(Ha∞
≤ w) =











e−1/w if a∞ = 0,

e−a∞/(ea∞w−1) if a∞ > 0.

Theorem 2 is proved in a similar way to Theorem 1. In this case, we cannot enforce Xn(t) = Zn(t) for all

t ∈ [0, τn] with high probability, so instead we bound Xn above and below by linear birth-and-death processes

with different parameters. This “sandwiching” idea appears in [5] to prove the final stage of Theorem 3 (see

below). A particular case of Theorem 2, where r = 1 + Cn−α for α < 1/2, is discussed in [7]; they prove

convergence to the diffusion limit in (4), but not the convergence of τn. Although we do not do it here, we

could also prove Theorem 2 via the diffusion limit (4), by the same methods we use to prove Theorem 4.

The next result is the main result of Brightwell, House and Luczak [5].

Theorem 3. (Subthreshold cutoff, Theorem 1.1 in [5].) Suppose that c∞ = −∞ and a∞ = ∞. Let G denote

the standard Gumbel: P(G ≤ w) = exp(−e−w).

Then, γn τn − gn(Xn(0))
(d)→ G as n → ∞, where

gn(X) = log(γ2
nn)− log(rn + γnn/X).

In particular,

gn(Xn(0)) =











log(γnXn(0)) + o(1) if Xn(0) = o(γnn),

log(γ2
nn)− log(r∞ + 1/b⋆) if Xn(0)/γnn → b⋆ ∈ (0,∞].

In [5] the parameter r is denoted λ, and the rate of X → X − 1 is equal to µX instead of X ; since µ can

be set to 1 by a uniform time change, no generality is lost. In [5], Theorem 3 is proved in three stages, which

we describe in the present notation.

(i) initial stage: a differential inequality for xn (incidentally, the same one originally proved in [10]) is

used to show that from any initial value, xn drops to γn|cn|ǫ for some ǫ > 0 within o(1/γn) amount

of time (see their Lemma 4.2 and note that since we take µ = 1, in our notation µ− λ is just γn, and

since µ− λ → 0, λ → 1 as n → ∞).

(ii) intermediate stage: from any initial value xn(0) ≤ γn|cn|ǫ until the first time that xn ≤ γn|cn|−ǫ, xn

remains close to the solution of the corresponding logistic equation x′ = rx(1 − x) − x.
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(iii) final stage: from any initial value xn(0) ≤ γn|cn|−ǫ, a coupling argument is used to bound Xn both

above and below by linear birth-and-death processes with different parameters, as discussed earlier.

Our proof of Theorem 3 in the initial and final stage is basically identical to the one in [5]; in the

intermediate stage we take a somewhat different approach, that we discuss in Section 6.

Theorem 4. (Non-linear diffusive.)

Suppose c∞ ∈ R and a∞ > 0 and let Yn denote the rescaled process Yn(t) = Xn(
√
n t)/

√
n. Let y =

limn→∞ Yn(0) ∈ (0,∞]. Then, Yn converges in distribution in to the diffusion Y that solves the SDE

dY = Y (c∞ − Y ) dt+
√
2Y dB, Y (0) = y,

and τn/
√
n

(d)→ T , where T = inf{t : Y (t) = 0}.

The convergence of Xn(
√
n t)/

√
n to the diffusion limit Y is proved in [7], although they do not prove

convergence of τn. To obtain the latter we employ the continuous mapping theorem to obtain convergence

of the hitting time of ǫ for small ǫ > 0, then show that once Yn ≤ ǫ, Yn is likely to hit 0 in a short time.

The following result is proved in [1] in the particular case where rn = r∞ > 1 for all n , although the

rapid extinction result is expressed without conditioning on hitting 0 before X⋆
n, which is just a difference

in the presentation. Our proof takes the same basic approach as [1], with the following caveats:

(i) the calculations become more delicate when r∞ = 1, requiring a finer analysis, and

(ii) we have found a couple of gaps in their proof of the exponential limit (see discussion below the statement

of Theorem 5), so we took the steps described below to bridge those gaps.

Theorem 5. (Threshold and metastable.) Suppose c∞ = ∞ and a∞ > 0. Let x⋆
n = 1− 1/rn, X

⋆
n = ⌊nx⋆

n⌋,
τ⋆n = inf{t : Xn(t) ∈ {0, X⋆

n}}, A⋆
n = {Xn(τ

⋆
n) = X⋆

n} and B⋆
n = (A⋆

n)
c = {Xn(τ

⋆
n) = 0}.

1. Probability of rapid extinction:

lim
n→∞

P(B⋆
n) =











r
−X∞(0)
∞ if X∞(0) < ∞,

e−a∞ if X∞(0) = ∞.

In particular P(A⋆
n) → 1 if a∞ = ∞.

2. Scaling of τn on rapid extinction: if a∞ < ∞ and

a) r∞ = 1 then for each t ≥ 0,

P(τn/Xn(0) ≤ t | B∗
n) → P(Ha∞

≤ t)

as n → ∞, as in the linear diffusive regime, and
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b) if r∞ > 1 then conditioned on (A∗
n)

c, τn/rn has the same limit as τn in

Case 2. of Theorem 1, except with δ∞/r∞ in place of γ∞.

3. Scaling of τn at metastability:

a) Expected time to extinction:

E[ τn | A⋆
n ] ∼

√

2π

n

rn
δ2n

en (log rn+1/rn−1).

b) Exponential limit: for each t ≥ 0, as n → ∞

P(τn/E[τn | A⋆
n] ≤ t | A⋆

n) → 1− e−t.

Having access to the prefactors (the stuff in front of the exponential function) in the expected time to

extinction allows us to see how it blends into the non-linear diffusive limit as cn approaches O(1). For rn

near 1, a Taylor expansion gives log rn +1/rn− 1 ∼ δ2n/2, so the exponential term is exp((1+ o(1))nδ2n/2) =

exp((1+o(1))c2n/2) since cn =
√
nδn, and the prefactor is

√
2πrn/(

√
nδ2n) =

√
2πnrn/c

2
n. Thus when r∞ = 1,

E[τn | A⋆
n] ∼

√
2πn

c2n
e(1+o(1))c2n/2,

which is of order
√
n when cn = O(1).

Much of the proof of Theorem 5 revolves around precise estimation of various sums that all seem to involve

the function

ν(j, k) :=

k
∏

i=j+1

q−(i)/q+(i),

where q−(i) = i, q+(i) = rX(1 −X/n) is the rate at which Xt decreases, respectively increases, by 1 when

Xt = i. Let’s take a moment to discuss the basic approach for each part:

1. Probability of rapid extinction: An explicit formula for h+(j) := P(A⋆
n | X0 = j) is available, in terms

of the transition rates of the process, and can be estimated. Here is where we first encounter ν(j, k).

2. Scaling on τn on rapid extinction: Using the Doob h-transform applied to the function h− := 1−h+, we

study Xn conditioned on B⋆
n. The transition rates can be written using h−. By estimating transition

rates we show the conditioned process corresponds to the setting of Theorem 1 or 2.

3. Scaling of τn at metastability: Conditioning on A⋆
n, we break up τ into three epochs: the time to

hit X⋆
n (approach), the time spent on excursions that return to X⋆

n (sojourn) and the last excursion

from X⋆
n to 0 (fall). We show the approach and fall time are small compared to the sojourn time, in

expectation; so far this is the same approach as in [1]. We then use a coupling argument that shows

the process is “forgetful” in order to derive the exponential limit for the sojourn time; this method is

a departure from [1].
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We have also found the following gaps in the proofs in [1]:

1. Exponential limit: the exponential limit for τn/E[τn] is obtained in [1] via the same approach taken here:

showing that the approach and fall time are small and that the sojourn time converges to exponential.

Using their notation, for each n, the sojourn time can be written as a sum

Kn
∑

m=1

σn(m)

where (σn(m))∞m=1 are i.i.d. and Kn is geometric independent of (σn(m)), with parameter 1/E[Kn]

that → 0 as n → ∞. In claiming that the normalized sojourn time has an exponential limit, they

appeal to Theorem 8.1A of Kielson [15]. However, the theory discussed in Keilson, including that

result, pertains only to a single i.i.d. sequence (Tm) of random variables. On the other hand, in this

case the fact that the process itself depends on n implies that a doubly indexed sequence must be

considered. I did some calculations (not included) that suggest that uniform integrability of σ1(n)

with respect to n is sufficient in order to adapt Keilson’s result. However, in [1] this is not done.

2. Expected excursion length: when expressing the time to extinction as the sum of approach, sojourn,

and fall time, it must be assumed that during the sojourn, the process necessarily returns to X⋆
n before

hitting zero, which requires conditioning on A⋆
n. However, the formula used to compute the expected

duration of each excursion from X⋆
n, namely E[σn(1)], in the proof of Lemma 2 in [1], does not take

account at all of conditioning on returning to X⋆. The answer comes out correct, since the conditioning

does not have much effect, but it cannot be ignored outright.

The rest of the paper is organized as follows. In Section 3 we discuss some basic coupling results that

are used a few times throughout the paper. Section 4 treats the linear birth-and-death process, essentially

proving Theorems 1 and 2 for the linearization of Xn. In Section 6 we prove Theorems 1 and 2, and the

“final stage” of Theorem 3. In Section 7 we prove the rest of Theorem 3. In Section 6 we prove Theorem 4.

Finally in Section 8 we prove Theorem 5. In most of our proofs we suppress the dependence on n, to avoid

writing subscripts everywhere. I’ll point this out as we go along.

3. Coupling of Birth and Death processes

Recall a birth and death (b-d) process is a right-continuous, continuous time Markov chain with state

space N = {0, 1, 2, . . .} that jumps by ±1 at each transition. There is a natural way to construct such a

process, or even multiple such processes with different transition rates, from all initial conditions on a single

probability space. We will focus on b-d processes with state space {0, . . . , N} for some N , since this is all

that’s needed for this paper. We begin with the case of a single process.
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3.1. Natural coupling for a single process

A b-d process is defined by its transition rates. For x ∈ {0, . . . , N} let b(x), d(x) be the transition rate

from x to x + 1, x − 1 respectively, and assume that d(0) = 0, and that b(N) = 0 and define independent

Poisson point processes B(x), D(x) on R+ with respective rates b(x), d(x). As a function of the collection

(B(x), D(x) : x ∈ {0, . . . , N}) we shall define, for each x ∈ {0, . . . , N}, a process (Φ(x, t) : t ∈ [0,∞)) which is

a copy of the b-d process with the given transition rates, and with initial value x at time 0. Let Φ(x, 0) = x

and define (ti(x))i≤I(x) and (Φ(x, ti(x)))i≤I(x) recursively by

t0(x) = 0, ti+1(x) = inf{t > ti(x) : t ∈ B(Φ(x, ti(x))) ∪D(Φ(x, ti(x))),

Φ(x, ti+1(x)) =











Φ(x, ti(x)) + 1 if ti+1(x) ∈ B(Φ(x, ti(x)))

Φ(x, ti(x)) − 1 if ti+1(x) ∈ D(Φ(x, ti(x)))

and

I(x) = inf{i : b(Φ(x, ti(x))) + d(Φ(x, ti(x))) = 0}.

Then, for i < I(x) let Φ(x, t) = Φ(x, ti(x)) for t ∈ [ti(x), ti+1(x)), and if I(x) < ∞ let Φ(x, t) = Φ(x, tI(x)(x))

for t ∈ [tI(x)(x),∞). This defines the process on [0, ζ(x)) where

ζ(x) :=











limi→∞ ti(x)) if I(x) = ∞

∞ if I(x) < ∞.

To verify that ζ(x) = ∞ when I(x) = ∞, note that {ti(x) : i ≥ 1} ⊂ U :=
⋃

y≤N B(y) ∪ D(y). Since U is

a Poisson point process with finite total intensity
∑

y≤N b(y) + d(y), with probability 1, UN ∩ [0, T ] is finite

for each fixed T > 0, which implies that limi→∞ ti must be infinite.

Having constructed the coupling, we verify the following desirable properties.

Lemma 1. Let Φ(x, t) be as defined above. If Φ(x, s) = Φ(y, s) then Φ(x, t) = Φ(y, t) for all t ≥ s, and if

x ≤ y then Φ(x, t) ≤ Φ(y, t) for all t ≥ 0.

Proof. Suppose Φ(x, s) = Φ(y, s) that we denote by z. Then for some i, j, s ≥ max(ti(x), tj(y)) and

Φ(x, ti(x)) = Φ(y, tj(y)) = z. If b(z) + d(z) = 0 then I(x) = i and I(y) = j, and Φ(x, t) = Φ(y, t) = z for all

t ≥ s. Otherwise, I(x) > i, I(y) > j and min(ti+1(x), tj+1(y)) > s. We then have ti+1(x) = tj+1(y) since

both are equal to inf{t > s : t ∈ B(z)∪D(z)}, and the construction ensures that Φ(x, t) = Φ(y, t) for all t ≥ s.

For the second statement, first note that since (B(x) ∪ D(x) : x ∈ {0, . . . , N}) are independent, from

standard properties of Poisson point processes it follows that if x 6= y then B(x) ∪ D(x) and B(y) ∪ D(y)

are disjoint. It follows from the construction that if Φ(x, t−) 6= Φ(y, t−) then either Φ(x, t) = Φ(x, t−) or

Φ(y, t) = Φ(y, t−), i.e., both cannot jump simultaneously. Since Φ(x, 0)−Φ(y, 0) is integer-valued and since

• for any x, t 7→ Φ(x, t) is piecewise constant,
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• for any x and fixed T > 0, the set {t ∈ [0, T ] : Φ(x, t) 6= Φ(x, t−)} is a.s. finite, and

• for any x, t, |Φ(x, t) − Φ(x, t−)| ∈ {−1, 0, 1},

if x ≤ y and Φ(x, t) > Φ(y, t) then since Φ(x, 0) = x and Φ(y, 0) = y, for some s < t, Φ(x, s) = Φ(y, s).

Using the first statement, we then have Φ(x, t) = Φ(y, t), contradicting Φ(x, t) > Φ(y, t). �

3.2. Natural coupling for two or more ordered processes

Next we describe a similar construction for multiple b-d processes with different transition rates, on

a common state space {0, . . . , N}. Index the processes 1, . . . , k and let bi(x), di(x) denote the transition

rates. We will consider only the case in which rates are ordered such that if i < j then bi(x) ≤ bj(x) and

di(x) ≥ dj(x) for each x. Let β1(x) = b1(x) and δk(x) = dk(x), then for 1 < i ≤ k let βi(x) = bi(x)− bi−1(x)

and for 1 ≤ i < k let δi(x) = di(x) − di+1(x). Define Poisson point processes Bi(x), Di(x) on R+ with

respective rates βi(x), δi(x). Then, for each i ∈ {1, . . . , k} define (Φi(x, t) : t ∈ [0,∞)) in the same way as

Φ from the previous subsection, but using
⋃i

j=1 Bj(x) and
⋃k

j=i Dj(x), and
∑i

j=1 bj(x) and
∑k

j=i dj(x), in

place of B(x) and D(x), and b(x) and d(x), respectively. Then Φi(x, t) is a copy of the b-d process with

transition rates bi, di and initial value x.

For fixed i, the above construction amounts to the same as in the previous subsection, so Lemma 1 applies

to Φi. Another useful property is summarized in the following result.

Lemma 2. Let Φi(x, t), i = 1, . . . , k, x ∈ {0, . . . , N}, t ∈ [0,∞) be as defined above.

If x ≤ y and i ≤ j then Φi(x, t) ≤ Φj(y, t) for all t ≥ 0.

Proof. For the same reason as in the proof of Lemma 1, if x ≤ y and Φi(x, t) > Φj(y, t) then for

some s < t, Φi(x, s) = Φj(y, s). Moreover, s can be chosen so that in addition, for some u ∈ (s, t],

Φi(x, u
−) = Φj(y, u

−) =: z and either

• Φi(x, u) = z + 1 and Φj(y, u) = z or

• Φi(x, u) = z and Φj(y, u) = z − 1.

The first case implies that u ∈
⋃i

m=1 Bm(z) and u /∈
⋃j

m=1 Bm(z) which is impossible since i ≤ j. Similarly,

the second case implies u ∈ ⋃k
m=j Dm(z) and u /∈ ⋃k

m=iDm(z) which again is impossible. �

4. Linear birth-and-death process

The linear birth-and-death process Z+ with parameter r is defined by the transitions

Z →











Z + 1 at rate rZ

Z − 1 at rate Z.

Z can be thought of as the number of cells in a process in which each cell independently dies at rate 1 and splits

into two cells at rate r. For this process we are interested in how the extinction time τ = inf{t : Z(t) = 0}
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scales with r and Z0, in cases where extinction is asymptotically certain, i.e., P(τ < ∞) → 1. The results

are by now routine, but as I could not find a reference that states them all together, and since they are easy

to prove, I have included the proof.

Theorem 6. Let Zn denote a sequence of copies of the above process, with respective initial condition and

parameter Zn(0), rn. Let τn = inf{t : Zn(t) = 0}, γn = 1 − rn and an = γnZn(0). Suppose that Zn(0) →
Z∞(0) ∈ N ∪ {∞}, rn → r∞ ≤ 1 and an → a∞ ∈ [0,∞]. Let γ∞ = limn→∞ γn.

1. Suppose Z∞(0) < ∞ and fix any value of t ≥ 0.

(a) If r∞ = 1 then P(τn ≤ t) → (1 + 1/t)−Z∞(0).

(b) If r∞ < 1 then P(τn ≤ t) → (1 + γ∞/(eγ∞t − 1))−Z∞(0).

2. Suppose Z∞(0) = ∞.

(a) If a∞ ∈ [0,∞) then τn/Zn(0)
(d)→ Ha∞

with

P(Ha∞
≤ w) =











e−1/w if a∞ = 0,

e−a∞/(ea∞w−1) if a∞ > 0.

(b) If a∞ = ∞ and an = bn + o(bn/ log bn) for some sequence (bn) such that bn → ∞ then γn τn −
log bn

(d)→ G, where G has P(G ≤ w) = e−e−w

for w ∈ R.

Proof of Theorem 6. For compactness of notation we’ll suppress the dependence on n in all variables and

write Zt instead of Z(t). In Chapter III of [2] a more general model is considered in which each particle

independently dies at some rate α (they call it a but that notation’s already in use for us) and is replaced with

k particles with probability pk; the present model corresponds to α = 1+r and p0 = 1/(1+r), p2 = r/(1+r).

Using the Kolmogorov backward equation of the process (equation (4) of III.2), for ρ(t) = P(Zt = 0 | Z0 = 1)

they obtain the differential equation (equation (2) of III.4)

ρ′ = α(−ρ+

∞
∑

k=0

pkρ
k).

In our case this gives ρ′ = −(1 + r)ρ + 1 + rρ2, which can be conveniently factored to give

ρ′ = (1− rρ)(1 − ρ), ρ0 = 0. (5)

Separating variables,
dρ

(1− rρ)(1 − ρ)
= dt.

Letting γ = 1− r we note that
1

1− ρ
− r

1− rρ
=

γ

(1− rρ)(1 − ρ)
.

Solving the DE and using ρ(0) = 0,

γ t = log

(

1− rρ(t)

1− ρ(t)

)

.
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If γ 6= 0, solving for ρ(t) then gives

ρ(t)−1 =
eγt − r

eγt − 1
= 1 + γ/(eγt − 1). (6)

Part 1 of Theorem 6 then follows easily; the case r∞ = 1 follows by taking the limit of ρ(t) as γ → 0, or it

could be computed directly by solving the ODE in the special case r = 1.

We now tackle the second part of Theorem 6, using (6) to determine P(τ ≤ t | Z0) = ρ(t)Z0 when Z0 → ∞,

under various limits of γZ0. As Z0 → ∞, ρ(t)Z0 → e−c if γ/(eγt − 1) = c/Z0. Solving this gives

γ t = log(1 + γZ0/c).

Recalling that a = γZ0, there are two cases.

Case 1: a → a∞ ∈ [0,∞). In this case, if ρ(t)Z0 → e−c then t = (Z0/a)(log(1 + a/c)).

Setting w = 1
a log(1 + a/c) gives c = a/(eaw − 1). If a → 0 then a/(eaw − 1) → 1/w and

P(τ ≤ wZ0) → e−1/w,

while if a → a∞ > 0 then

P(τ ≤ wZ0) → e−a∞/(ea∞w−1).

Case 2: a → ∞. Taking γ t = log a− log c gives ρ(t)Z0 → e−c as Z0 → ∞.

Letting w = − log c so that c = e−w,

P(τ ≤ γ−1(log γZ0 + w)) → e−e−w

as Z0 → ∞.

In other words, γτ − log γZ0 has a standard Gumbel distribution.

The following short lemma concludes the proof of case 2, and thus the proof of Theorem 6. �

Lemma 3. Let Zn be a sequence of copies of the linear birth-and-death process with initial value Zn(0) → ∞
and parameter rn = 1 − an/Zn(0) with an → ∞. Let (bn) be a sequence with bn → ∞ and let τn = inf{t :
Zn(t) = 0}. Then

lim
n→∞

P(τn ≤ Zn(0)

bn
(log bn + w)) → e−e−w

for all w ∈ R iff an − bn = o(bn/ log bn).

Proof. As before, suppress the dependence on n. Fix w ∈ R and let v be such that

1

b
(log b+ w) =

1

a
(log a+ v).

Since log a+ v =
a

b
(log b+ u), subtracting log a+ w from both sides gives

v − w = log(b/a) +
a− b

b
log b+

a− b

b
w. (7)
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If a − b = o(b/ log b) the second term is o(1). Since b → ∞, a = b + o(b) so log(b/a) = o(1),
a− b

b
w = o(1)

and so v − w = o(1). On the other hand, suppose that v − w = o(1) for every w ∈ R. Setting w = 0 gives

log(b/a) +
a− b

b
log b = o(1). (8)

Then, setting w = 1 and using (7) and (8) gives
a− b

b
= o(1). This in turn implies that log(b/a) = o(1).

Using (8) once more gives
a− b

b
log b = o(1) as required. �

5. Approximation by linear birth-and-death processes

In this section we use the method of Brightwell, House and Luczak [5], namely, approximation by linear

birth-and-death processes, to prove Theorem 1, 2 and the “final stage” part of Theorem 3. As in the previous

section, we shall suppress dependence on n and write Xt, Zt etc.

For M > X0 > 0 (both depending on n) to be determined, let r′ = r(1−M/n) and let Z,Z ′ be the linear

birth and death processes with respective parameters r, r′ and common initial value X0. Let τM = inf{t :
Xt ∈ {0,M}}. Then, applying the natural coupling of Section 3 to Z ′, X, Z labelled 1, 2, 3 respectively and

using Lemma 2 gives Z ′
t ≤ Xt ≤ Zt for t ≤ τM . Let τZ = inf{t : Zt = 0} and τZ′ = inf{t : Z ′

t = 0}. The

goal is to take M

1. large enough that P(XτM = M) = o(1) and

2. small enough that

(a) P(Xt = Zt for t ≤ τM ) = 1− o(1) if X0 is fixed,

(b) τZ and τZ′ have a common rescaled limit if X0 → ∞.

We begin with a general observation. Let p−(X), p+(X) denote the probability that X → X−1, respectively,

X → X +1 in the embedded discrete time Markov chain, or jump chain, of Xt. Then p−(X) = 1/(1+ r(1−
X/n)) and p+(X) = r(1−X/n)/(1+ r(1−X/n)) and in particular, p−(X)/p+(X) = 1/(r(1−X/n)) ≥ 1/r

for all X , so it follows easily that r−Xt is a supermartingale. Recall that τ = inf{t : Xt = 0}. Using optional

stopping, which is applicable since X is bounded and P(τ < ∞) = 1, it is easy to show that

P(τ 6= τM | X0) = P(XτM = M | X0) ≤
r−X0 − 1

r−M − 1
. (9)

If r < 1 then using the estimate a/b ≤ (a + c)/(b + c) that holds for 0 < a ≤ b and c > 0, we find that if

X0,M > 0 then

r−X0 − 1

r−M − 1
≤ r−X0

r−M
= (1− γ)M−X0 → 0 if γ (M −X0) → ∞. (10)

Recall γ = 1− r. If γ → 0 and if, a fortiori, γM → 0 then

r−X0 − 1

r−M − 1
=

(1 − γ)−X0 − 1

(1− γ)−M − 1
∼ X0

M
→ 0 if X0 = o(M). (11)

We proceed by cases. The first case is Theorem 1.
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Proof of Theorem 1. In this setting, γ → γ∞ ≥ 0 and we can assume X0 is constant. For any t ≥ 0,

|P(τ ≤ t | X0)− P(τZ ≤ t | X0)|

≤ P(τ 6= τM | X0) + P(τ = τM and τM ∧ t 6= τZ ∧ t | X0).

Theorem 1 then follows from Theorem 6 if M can be chosen so that for any t ≥ 0, the above → 0 as n → ∞.

We let p1 = P(τ 6= τM | X0) and p2 = P(τ = τM and τM ∧ t 6= τZ ∧ t | X0).

We first find M such that p1 → 0. If γ∞ > 0, using (10) we find that p1 → 0 if M → ∞.

If γ∞ = 0, then using (11) we find that p1 → 0 if M → ∞ and γM → 0.

We next find M such that p2 → 0. If τ = τM then since X,Z are both absorbed at 0,

p2 ≤ P(Xs 6= Zs for some s ≤ t ∧ τM | X0).

If X,Z ∈ [0,M ] their transition rates differ by at most (r − r′)M = rM2/n, so using the exponential

distribution and noting e−x ≥ 1− x we find that

P(Xs 6= Zs for some s ≤ t ∧ τM | X0) ≤ 1− e−rM2t/n ≤ rM2t/n.

Since r is bounded in n, the right-hand side → 0 for fixed t provided M = o(
√
n).

Thus both p1, p2 → 0 if we take M → ∞ sufficiently slowly.

�

Next we prove Theorem 2.

Proof of Theorem 2. We first re-interpret somewhat the conditions of the theorem.

a) first option: c∞ = −∞ and a∞ < ∞. Since c∞ = −∞, 1/
√
n = o(|δn|) so a∞ = limn→∞ |δn|Xn(0).

Since a∞ < ∞, Xn(0) = O(1/|δn|) = o(
√
n). In shorthand: γX0 → a∞ ∈ [0,∞) and X0 = o(

√
n).

b) second option: c∞ > −∞ and a∞ = 0. If c∞ ∈ R then a∞ = 0 is equivalent to Xn(0)/
√
n → 0,

and implies |δn|Xn(0) → 0. If c∞ = ∞ then in the same way as above, a∞ = limn→∞ |δn|Xn(0) and

Xn(0) = o(
√
n). So in this case as well, γX0 → a∞ ∈ [0,∞) and X0 = o(

√
n).

Thus the theorem is proved, if it can be proved when γX0 → a∞ ∈ [0,∞) and X0 = o(
√
n). First note that

with p1 as in the proof of Theorem 1,

|P(τ ′Z ≤ τ ≤ τZ | X0)| ≥ 1− p1. (12)

Since X0 → ∞ and γX0 → a∞ < ∞, γ → 0. For W ∈ {X,Z,Z ′}, and writing τ as τX , let FW (t) =

P(τW /X0 ≤ t). From (12),

FZ(t)− p1 ≤ FX(t) ≤ FZ′ (t) + p1. (13)
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By Theorem 6, if γX0, γ
′X0 → a∞ then for all t ≥ 0, FZ(t), FZ′ (t) → P(Ha∞

≤ t).

Since γ X0 → a∞ by assumption, it is enough to find M such that i) p1 → 0 and ii) (γ′ − γ)X0 → 0.

For i), using (10) and (11) we need either γM → ∞, or X0/M → 0 and γM → 0.

For ii) we compute (γ′ − γ)X0 = (r − r′)X0 = rX0M/n, so it is enough that X0M/n → 0.

Subcase 1: a∞ = 0. Define β = |γ| ∨ 1/
√
n and let M = β−1(βX0)

1/2. Since γX0 → 0 and X0 = o(
√
n),

βX0 = max(|γ|X0, X0/
√
n) → 0, so X0/M = (βX0)

1/2 → 0 and γ M ≤ βM = (βX0)
1/2 → 0, satisfying i).

Since β ≥ 1/
√
n, β−1 ≤ √

n so M = o(
√
n) and X0M/n → 0, satisfying ii).

Subcase 2: a∞ > 0. Since X0 = o(
√
n) and γX0 has a positive limit,

√
nγ → ∞. Let M = γ−1(

√
nγ)1/2.

Then γM = (
√
nγ)1/2 → ∞, satisfying i). Since X0 = o(

√
n) and M = (

√
n/γ)1/2 =

√
n/(

√
nγ)1/2 = o(

√
n),

X0M/n → 0, satisfying ii). �

Now, we prove Theorem 3 in the “final stage”, i.e., when Xn(0) ≤ nγn|cn|−ǫ for some ǫ > 0. The proof is

broadly the same as in [5], although here the result is applicable to a somewhat larger set of initial values.

Proof of Theorem 3 in the case where Xn(0) ≤ nγn|cn|−ǫ for some ǫ > 0. Using our abbreviated notation,

we shall prove the result under the slightly less restrictive condition X0 log(γX0) = o(γn). To see that this

is less restrictive, suppose X0 ≤ γn|c|−ǫ so that X0|c|ǫ ≤ γn. By assumption in Theorem 3, |c| → ∞ and

a = γX0 → ∞. Using |c| → ∞, log |c| = o(|c|ǫ) so X0 log |c| = o(X0|c|ǫ) = o(γn). Using a → ∞ and

X0 = o(γn), log(γX0) = o(log(γ2n). Since |c| = γ
√
n, log(γX0) = o(log(|c|). Therefore X0 log(γX0) =

o(X0 log |c|) = o(γn) as desired.

If X0 log(γX0) = o(γn) then since γX0 → ∞, X0 = o(γn). As noted in the statement of Theorem 3, in

this case g = log(γX0) + o(1). So, we want to show that γτ − log(γX0) converges to standard Gumbel.

Let a = γX0 and for W ∈ {X,Z,Z ′} let FW (t) = P(γ τW − log a ≤ t). Then, (13) also holds for this

choice of FW (t). According to Theorem 6, for all t ≥ 0 FZ(t) → P(G ≤ t) and if (γ′ − γ)X0 = o(a/ log a)

then for all t ≥ 0, FZ′ (t) → P(G ≤ t). Following again the logic of the proof of Theorem 2, it is enough to

find M such that i) p1 → 0 and ii) (γ′ − γ)X0 = o(a/ log a).

For i) we need γ (M −X0) → ∞, for which M = 2X0 suffices (and which, assuming only γX0 → ∞, cannot

be improved beyond a factor of 2). For ii) we need X0M/n = o(γX0/ log(γX0)). Using M = 2X0, the

condition becomes X0 = o(γn/ log(γX0)), which is the condition given.

�
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6. Subthreshold cutoff

In this section we prove Theorem 3, in the case where Xn(0) ≥ nγn|cn|−ǫ for any ǫ > 0. This corresponds

to the intermediate and initial stages as described in [5]; the final stage, where Xn(0) ≤ nγn|cn|−ǫ, is proved

just above in the previous section. The proof for the initial stage is about identical to their proof. For

the intermediate stage, the setup of the problem follows their approach, then I use a different method to

handle the error term between the process and its deterministic approximation (denoted eN in their paper

and W here). In their paper, an auxiliary result (their Lemma 3.2) is used to show the maximum of the

error term is (deterministically) bounded by 2 times the maximum of the compensator of X , then the latter

is estimated using the corresponding exponential martingale. Here, we compute the drift and diffusivity of

the error term, then after making a time change, use a so-called drift barrier estimate, Lemma 19 which is

proved in [4], to show the error term remains small on the desired time interval. Neither approach seems to

be strictly simpler or more efficient than the other.

Proof of Theorem 3 in the case where Xn(0) ≥ nγn|cn|−ǫ. As before, suppress n from the notation and

write Xt, Yt etc when it is convenient. For this proof only, let c =
√
nγ which amounts to a change of sign;

this saves us from always writing |c|. Fix a small ǫ > 0 to be determined and let Yt = X(t/γ)/(γn). Then

γX0 = c2Y0. Let’s re-write gn(Xn(0)) from the statement of Theorem 3 in terms of Y . Abusing notation a

bit, we have

g(Y0) = 2 log c− log(r + 1/Y0).

Let t⋆ = inf{t : Yt ≤ c−ǫ} = inf{t : X(t/γ) ≤ nγc−ǫ}. The final stage corresponds to t⋆ = 0. Since X jumps

by ±1, Y jumps by ±1/γn = ±1/c
√
n = o(1/c), so

g(Y0)− g(Y (t⋆)) = − log(r + 1/Y0) + log(c−ǫ ± o(1/c)) = − log(r + 1/Y0)− ǫ log c+ o(1).

Thus to prove the result it remains to show that

t⋆ − (− log(r + 1/Y0)− ǫ log c) → 0. (14)

Intermediate stage. Suppose c−ǫ ≤ Y0 ≤ cǫ. We will use the notation for drift and diffusivity discussed

in the Appendix. Using the transition rates from (2) in (56) and noting γ = −(r − 1), for Xt we compute

µ(X) = rX(1 −X/n)−X = −γX − rX2/n,

σ2(X) = (1 + r(1 −X/n))X ≤ (1 + r)X.

From (56) we infer that if Y (t) = αX(βt) then µ(Y ) = αβµ(X) and σ2(Y ) = α2βσ2(X). So,

µ(Y ) =
1

γ2n
µ(X) = − 1

γn
X − r

1

(γn)2
X2 = −Y − rY 2

and using γ2n = c2,

σ2(Y ) =
1

γ3n2
σ2(X) ≤ 1

γc2
(1 + r)X =

1

c2
(1 + r)Y.
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As in [5], we’ll directly estimate the distance between Y and its deterministic approximation. Let y(t) denote

the solution to the initial value problem

y′ = −y − ry2, y(0) = Y0

and let t± = inf{t : y(t) = (1 ± c−ǫ)c−ǫ}. Solving by separation of variables,

t± = log
Y0

1 + rY0
− log

(1± c−ǫ)c−ǫ

1 + r(1 ± c−ǫ)c−ǫ

= − log(r + 1/Y0)− ǫ log c+ o(1).

Thus, t± both have the desired limit for t⋆ as in (14). The result will be proved if we show that t− ≤ t⋆ ≤ t+

with probability 1− o(1). Define the error process Wt = Yt − y(t). If supt≤t− |Wt| ≤ c−2ǫ then t− ≤ t⋆ ≤ t+,

so we will show the former has probability 1−o(1). We first compute the drift and diffusivity ofW . Factoring

the difference of squares,

µ(W ) = µ(Y )− y′ = −Y − rY 2 + y − ry2 = −W (1 + r(Y + y)).

Since (y(t)) is continuous and has finite variation it has zero quadratic variation, so

σ2(W ) = σ2(Y ) ≤ 1

γ2
(1 + r)Y.

Since r, y, Y > 0,

sgn(µ(W )) = −sgn(W ) and
|µ(W )|
σ2(W )

≥ c2r

1 + r
|W |. (15)

Next we change time from t to s such that µs(W ) = −Ws. To do so let

s(t) =

∫ t

0

(1 + r(Yr + y(r))dr.

Since µ(W ) and σ2(W ) are both scaled by dt/ds ∈ (0, 1], (15) remains valid after the time change, so

µs(W ) = −Ws and σ2
s (W ) = O(1/c2).

Also, if |Ws| ≤ c−2ǫ then Ys ≤ y(s) + c−2ǫ ≤ y(0) + c−2ǫ ≤ cǫ + c−2ǫ, so s′(t) ≤ 1 + r(2cǫ + c−2ǫ) = O(cǫ).

Since t− = O(log c), if sups≤s(t−) |Wt| ≤ c−2ǫ then s(t−) = O(cǫ log c) = o(c) so it’s enough to show that

sup
s≤c

|Ws| ≤ c−2ǫ.

We first give an upper bound on W . Next we use Lemma 19 which is proved in [4]. In the notation of Lemma

19, let x = c−2ǫ/2, X = W − x, ∆∞(X) = 1/γn, µ⋆ = x, σ2
⋆ = C/c2 for some constant C, Cµ = 2x and

since ∆∞(X)µ⋆/σ
2
⋆ = c2x/Cγn = γ2nx/Cγn ≤ γ/C = O(1), take C∆ to be some large enough constant.

Then Γ = exp(x2/16σ2
⋆) = exp(c2−2ǫ/16C) ≥ c for large enough c, and since c → ∞ by assumption, with

probability 1 − o(1), Xs ≤ x or equivalently Ws ≤ 2x = c−2ǫ for all s ≤ c. A matching bound for −W is

proved in the same way.



20 E. Foxall

Initial stage. Suppose Y0 ≥ cǫ and let t⋆ = inf{t : Yt ≤ cǫ}. If Y0 ≥ cǫ then Y0 → ∞ so g(Y0) =

2 log c− log r+o(1). Since the result is proved for Y0 ≤ cǫ it is enough to show that t⋆ = o(1). From the drift

of Y and Jensen’s inequality applied to E[Y 2
t ] we find that u(t) = E[Yt] satisfies the differential inequality

u′ ≤ −u− ru2 ≤ −ru2.

Integrating the inequality,

u(t) ≤ (u(0)−1 + rt)−1 ≤ 1/rt.

By Markov’s inequality, Yt ≤ cǫ or equivalently t⋆ ≤ t with high probability if u(t) = o(cǫ), which is the case

if t = c−ǫ/2. Since c−ǫ/2 = o(1), the result is proved. �

7. Non-linear diffusive

Proof of Theorem 4. The first part of the proof is to show convergence to the limiting diffusion, which

is done in [7] by convergence of generators - here we do it using a general result, Lemma 20, that requires

convergence of drift and diffusion coefficients and vanishing jump size. The second part of the proof is to

show the extinction time is short when the initial value is small, relative to the space and time scale of the

limiting diffusion.

For this section let Yn(t) = Xn(
√
nt)/

√
n and let cn =

√
n(rn − 1) as in the statement of the theorem.

There are two cases to cover: Yn(0) → y ∈ (0,∞) and Yn(0) → ∞.

Case 1: Yn(0) → y ∈ (0,∞). First we use Lemma 20 in the Appendix, which is a result from [9], to show

that if Yn(0) → y then for all but countably many R, Yn(· ∧ τRn )
(d)→ Y (· ∧ τR), where τRn and τR are the

exit times of Yn and Y from (1/R,R) as described in Lemma 20. Recall that Yn(t) has transitions

Yn →











Yn + 1/
√
n at rate nY +

√
nY (cn − Y )− cnY,

Yn − 1/
√
n at rate nY,

so Yn has jump size 1/
√
n = o(1) and

µ(Yn) = Y (cn − Y )− cnY/
√
n and σ2(Yn) = 2Y + Y (cn − Y )/

√
n− cnY/n.

For |y| ≤ R, µ(y) → b(y) and σ2(y) → a(y) uniformly, where

b(y) = y(c∞ − y) and a(y) = 2y.

Note that b and
√
a are Lipschitz on compact subsets of (0,∞). By Lemma 20, the desired convergence holds.

For y > 0 define the mapping Ty(f) = inf{t : f(t) ≤ y} from càdlàg functions f : R+ → R+ with the

topology of uniform convergence on compacts. If fi → f and f is continuous then since inf{f(t) : t ∈
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[0, Ty(f) − ǫ]} > y for any ǫ > 0, it follows that lim infi Ty(fi) ≥ Ty(f). On the other hand, if y > 0 then

for any ǫ > 0, Y (T (y) + ǫ) intersects [0, y), since its diffusion coefficient at y is non-zero. In other words,

Q(f : if fi → f then lim supi Ty(fi) ≤ Ty(f)) = 1, where Q is the law of Y . Combining the two, the

discontinuity points of Ty have Q-measure 0. Let Tn(y) = Ty(Yn) and T (y) = Ty(Y ), and let Tn = Tn(0)

and T = T (0). By the continuous mapping theorem and convergence of Yn to Y ,

Tn(y)
(d)→ T (y) for y > 0.

Let Pn be the law of Yn. Since Tn ≥ limy→0+ Tn(y) and T = limy→0+ T (y),

lim sup
n

Pn(Tn ≤ t) ≤ lim sup
y→0+

lim
n

Pn(Tn(y) ≤ t) = lim
y→0+

Q(T (y) ≤ t) = Q(T ≤ t).

To obtain the opposite inequality it’s enough to show that for any ǫ, t > 0 there are α, n0 so that

Pn(Tn > t | Yn(0) ≤ α) ≤ ǫ for n ≥ n0, since then

lim inf
n

Pn(Tn ≤ t) ≥ lim inf
n

Pn(Tn(α) ≤ t) inf
x≤α

Pn(Tn ≤ t | Yn(0) = x)

≥ (1− ǫ) lim
n→∞

Pn(Tn(α) ≤ t)

= (1− ǫ)Q(T (α) ≤ t) ≥ (1− ǫ)Q(T ≤ t).

Returning to the original time scale, Xn is dominated by the linear birth-and-death process Z with parameter

r and Z0 = Xn(0), so using ρ(t) as in the proof of Theorem 6,

P(Xn(
√
nt) > 0 | Xn(0) ≤

√
nα) ≤ 1− (ρ(

√
nt))

√
nα.

If cn ≤ 0 we can take r = 1 which has ρ(t) = 1− 1/(1+ t), so 1− (ρ(
√
nt))

√
nα ≤ α/t is at most ǫ if α ≤ ǫ/t.

If cn > 0 re-write ρ(t) from (6) with δ = r − 1 instead of γ = 1− r to obtain

ρ(t)−1 =
reδt − 1

eδt − 1
= 1 +

δ

1− e−δt
.

Using δn = cn/
√
n,

(ρ(
√
nt))

√
nα = (1 +

cn/
√
n

1− e−cnt
)−

√
nα → exp(−c∞α/(1− e−c∞t)) as n → ∞,

and since for fixed t the limit → 1 uniformly as α → 0, we are done.

Case 2: Yn(0) → ∞. It remains to show the results of Step 2 are true for y = ∞. First we need to make

sense of T when Y (0) = ∞. Let T (y, w) = inf{t : Y (t) ≤ w | Y (0) = y}. Since Y is continuous, and using

the strong Markov property,

T (y, 0)
(d)
= T (y, w) + T (w, 0), (16)

where the last two are independent. In particular, T (y, 0) dominates T (w, 0) for y > w. On the other hand,

letting U = Y − c∞, µ(U) = −U(U + c∞) ≤ −U2 so integrating and using Jensen’s inequality,

E[U(t)] ≤ (1/E[U0] + t)−1 ≤ 1/t.
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Using Markov’s inequality, if y > w > c∞ then

P(T (y, w) > t) ≤ P(U(t) > w − c∞ | Y (0) = y) ≤ ((w − c∞)t)−1.

It follows that T (y, w)
(p)→ 0 uniformly over y ∈ [w,∞) as w → ∞. Combining with (16), there exists

T (∞, 0) such that T (y, 0)
(d)→ T (∞, 0) as y → ∞. A similar argument shows that for Tn(y, 0) = inf{t :

Yn(t) = 0 | Yn(0) = y} there is a limit Tn(∞, 0). By Step 2, Tn(y, 0)
(d)→ T (y, 0) for each y > 0, so it follows

that Tn(∞, 0)
(d)→ T (∞, 0). �

8. Threshold and metastable

In this section we prove Theorem 5. As we’ve done so far in the paper, we’ll avoid writing subscript n

on everything. So, for example X⋆
n is simply denoted X⋆, etc. Since we’ll need some additional decorations

later, we’ll move the ⋆ from τ⋆n into the subscript, so, τ⋆ = inf{t : Xt ∈ {0, X⋆}}. We begin with some basic

theory and estimation of an important function. Let q+(j) = rj(1−j/n) and q−(j) = j denote the transition

rates of X and for later use, let q(j) = q+(j) + q−(j). For integer j, define

h+(j) = P(Xτ⋆ = X⋆ | X0 = j) and

h−(j) = P(Xτ⋆ = 0 | X0 = j) = 1− h+(j).

By definition, h+(X(t ∧ τ⋆)) is a martingale, as is h−(X(t ∧ τ⋆)). Using the generator of the process, it

follows that q+(j)(h+(j+1)−h+(j))+ q−(j)(h+(j− 1)−h+(j)) = 0 and similarly for h−. Let ν(0) = 1 and

for j ≥ 1 let ν(j) =
∏j

i=1 q−(i)/q+(i). Using the linear equations for h+, h− and the boundary conditions

h+(0) = 0, h+(X⋆) = 1, h−(0) = 1, h−(X⋆) = 0, we can solve to find that

h+(j) =

∑j−1
k=0 ν(k)

∑X⋆−1
k=0 ν(k)

and h−(j) =

∑X⋆−1
k=j ν(k)

∑X⋆−1
k=0 ν(k)

. (17)

The solution of the above linear equations for h+, h− to obtain (17) is not hard; it can be found, for example,

in Example 5.3.9 of [8]. We begin by estimating ν(k). Since it not more difficult to estimate, and since we’ll

need it later, we’ll estimate the more general ν(j, k) =
∏k

i=j+1 q−(i)/q+(i), defined for 0 ≤ j < k < n; we

recover from it ν(k) = ν(0, k). It will be helpful to have both a general upper bound and a precise estimate.

Lemma 4. Let V (x) = x(log r − 1)− (1 − x) log(1 − x). Then for integer na, nb with 0 ≤ a < b ≤ 1,

ν(na, nb) ≤ exp(−n(V (b+ 1/n)− V (a+ 1/n)))

and

ν(na, nb) =

√

1− a

1− b
exp(−n(V (b)− V (a))En(a, b), with

| logEn(a, b)| ≤ (12n(1− b)2(b− a))−1.
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Proof. Since q+(i)/q−(i) = r(1 − i/n),

− log ν(j, k) =
k
∑

i=j+1

(log r + log(1 − i/n)) = (k − j) log r −
k
∑

i=j+1

f(i/n), (18)

where f(x) = − log(1 − x) is positive and increasing for x ∈ (0, 1). Since f(x) has the antiderivative

x+(1−x) log(1−x), the upper bound follows. Using a trapezoidal approximation with k− j subintervals of

size 1/n and writing the approximation as an upper Riemann sum minus a telescoping triangular correction,

∫ k/n

j/n

f(x)dx =
1

n

k
∑

i=j+1

f(i/n)− 1

2n
(f(k/n)− f(j/n)) +Rn(j, k), (19)

where the error term (see [22] for a simple proof) has the bound

|Rn(j, k)| ≤
maxx∈[j/n,k/n] |f ′′(x)|

12(k/n− j/n)n2
=

1

(1− k/n)2
1

12(k/n− j/n)n2
.

and using the antiderivative of f together with (18) and (19),

− 1

n
log ν(na, nb) = V (b)− V (a) +

1

2n
log

1− b

1− a
+Rn(na, nb)

and the precise estimate follows. �

Note that V (x) has V (0) = 0, V ′(x) = log(r(1− x)) and V ′′(x) = −1/(1− x). In particular, it is concave

on [0, 1) and has V ′(x⋆) = log 1 = 0, so is increasing and positive on (0, x⋆) and decreasing on (x⋆, 1), with

maximum V⋆ = V (x⋆) = log r+1/r− 1 > 0, and has V ′′(x⋆) = −1/(1− (1− 1/r)) = −r. If δ∞ = limn δ > 0

then V⋆ has a positive limit, while if δ → 0 then V⋆ = log(1+δ)+1/(1+δ)−1 = δ−δ2/2−δ+δ2+O(δ3) ∼ δ2/2.

8.1. Extinction probability

In this section we prove the estimate of extinction probability in Theorem 5. The result in the case δ∞ > 0

belongs to (A2) in Theorem 1 of [1], while in the case δ → 0 it is new. The approach is to estimate h−(X0)

for h− as in (17), and the proof works by estimating the values of ν(k) separately for small and large k.

Lemma 5. Suppose δX0 → a∞ ∈ (0,∞). Then,

P(Xτ⋆ = 0) →











e−a∞ if δ → 0

(1 + δ∞)−X0 if δ → δ∞ > 0.

If δX0 → ∞ then P(Xτ⋆ = X⋆) → 1.

Proof. The quantity of interest is

P(Xτ⋆ = 0) = h−(X0) =

∑X⋆−1
k=X0

ν(k)
∑X⋆−1

k=0 ν(k)
.

Since q−(k)/q+(k) = (r(1 − k/n))−1, for any M ≥ 1 and k ∈ {1, . . . ,M},

r−k ≤ ν(k) ≤ (r(1 −M/n))−k
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and so

r−j 1− r−(M−j)

1− 1/r
≤

M−1
∑

k=j

ν(k) ≤ r−j 1

1− (r(1 −M/n))−1
. (20)

Case 1: δ → 0. Suppose M is taken large enough that δ(M − j) → ∞, and small enough that M = o(δn).

Then r−(M−j) = (1+ δ)−(M−j) ≤ e−δ(M−j) → 0 and r(1−M/n) = (1+ δ)(1−M/n) = 1+ δ+ o(δ), so that

1− 1/(r(1−M/n)) = 1− 1/(1 + δ + o(δ)) = 1− (1− δ + o(δ)) ∼ δ.

Similarly, 1− 1/r ∼ δ. Since δ → 0, r−j = (1 + δ)−j ∼ e−δj , so

M−1
∑

k=j

ν(k) ∼ e−δj/δ. (21)

We have V ′(0) = log r = δ − o(δ), and x⋆ = δ/r = o(1), so V (x) ∼ x uniformly over x ∈ [0, x⋆], as n → ∞.

Using the upper bound from Lemma 4 with a = 0 and nb in the range {M, . . . ,X⋆ − 1}, for large n

ν(nb) = ν(0, nb) ≤ exp(−δnb/2).

Summing over nb,
X⋆−1
∑

k=M

ν(k) ≤ e−δM/2

1− e−δ/2
= o(1/δ),

since δM → ∞ by assumption and 1− e−δ/2 ∼ δ/2. Noting that 1− 1/r ∼ δ and combining with (21),

X⋆−1
∑

k=j

ν(k) ∼ e−δj/δ. (22)

Using the values j = 0 and j = X0, we conclude that if δM − δX0 → ∞ (which also implies δM → ∞) and

M = o(δn), then

h−(X0) ∼
e−δX0/δ

e−0/δ
= e−δX0 → e−a∞ .

If a∞ < ∞, since δX0 has a finite limit and
√
nδ → ∞ it is easy to check that M =

√
n(
√
nδ)1/2 satisfies

the conditions. If a∞ = ∞, since e−a∞ = 0 and h−(X0) decreases with X0 it is enough to consider the

case where δX0 → ∞ arbitrarily slowly; thus, to satisfy the condition δM − δX0 → ∞ it is sufficient that

δM → ∞, for which the above choice of M suffices.

Case 2: δ → δ∞ > 0. Note that r → r∞ = (1 + δ∞) > 1. Also, the condition δX0 → a∞ is equivalent to X0

eventually constant if a∞ < ∞, and to X0 → ∞ if a∞ = ∞. Suppose that (M − j) → ∞ and M = o(n).

Then, r−(M−j) → 0 and 1−M/n → 1. From (20) we find

M−1
∑

k=j

ν(k) ∼ r−j/(1− 1/r∞). (23)

Since V (0) = 0, V is concave and both x⋆ and V (x⋆) have a positive limit, for some constant C1 >

0, eventually V (x) ≥ C1x for x ∈ [0, x⋆]. Using Lemma 2 as before with a = 0 and nb in the range
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{M, . . . ,X⋆ − 1}, since δ is bounded by assumption, 1 − b ≥ 1 − x⋆ which has a positive lower bound and

nb ≥ nM → ∞, so uniformly | logEn(a, b)| → 0 and for large n and some constant C2 > 0,

ν(nb) = ν(0, nb) ≤ C2e
−C1nb.

Again, summing over nb,
X⋆−1
∑

k=M

ν(k) ≤ C2
e−C1M

1− e−C1
→ 0.

Using the values j = 0 and j = X0 for constant X0 < ∞ and letting M =
√
n, combining the above with

(23) we find

h−(X0) =
r−X0/(1− 1/r∞) + o(1)

1− 1/r∞ + o(1)
→ r−X0

∞ .

If X0 → ∞ we may again assume it does so arbitrarily slowly, in which case M =
√
n again suffices. Using

j = 0 and j = X0 as above we find the numerator → 0 while the denominator → 1 − 1/r∞ > 0, so

h−(X0) → 0 as desired. �

8.2. Rapid extinction

Next we prove the results on rapid extinction from Theorem 5. Define the probability measures P ⋆ and

P 0 for events E by

P ⋆(E) = P(E | Xτ⋆ = X⋆) and P 0(E) = P(E | Xτ⋆ = 0). (24)

Using the well-known Doob h-transform (which can be found by computing the generator of the conditioned

process), we find that with respect to P ⋆ and P 0 respectively, for t < τ⋆, X is a continuous-time Markov

chain with transition rates

q⋆+(j) = q+(j)
h+(j + 1)

h+(j)
and q⋆−(j) = q−(j)

h+(j − 1)

h+(j)
, and

q0+(j) = q+(j)
h−(j + 1)

h−(j)
and q0−(j) = q−(j)

h−(j − 1)

h−(j)
. (25)

The following is an equivalent formulation of the rapid extinction results of Theorem 5.

Lemma 6. Suppose δX0 → a∞ ∈ (0,∞) and let P 0 be as in (24).

• If δ → 0, then for w ≥ 0, P 0(τ ≤ wX0) → exp(−a∞/(e−a∞w − 1)).

• If δ → δ∞ > 0 then letting γ∞ = δ∞/r∞,

P 0(τ ≤ t/r∞) → (1 + γ∞/(e−γ∞t − 1))−X0 .

Proof. We first estimate the transition rates (25) with respect to P 0, then approximate by a linear birth-

and-death process as in the proof of Theorems 1 and 2 to obtain the scaling of τ .

h−(j + 1)

h−(j)
=

∑X⋆−1
k=j+1 ν(k)

∑X⋆−1
k=j ν(k)

= 1− ν(j)
∑X⋆−1

k=j ν(k)
= 1− 1

∑X⋆−1
k=j ν(j, k)

(26)
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and similarly,

h−(j − 1)

h−(j)
= 1 +

1
∑X⋆−1

k=j ν(j − 1, k)
. (27)

Again we divide by cases.

Case 1: δ → 0. Let c =
√
nδ so that c → ∞ and c = o(

√
n) by assumption and let M = ⌊2

√

n/c⌋, so that

M/
√
n = o(1), and let M ′ = ⌊√n⌋. For j ≤ M , write

X⋆−1
∑

k=j

ν(j, k) =

M ′−1
∑

k=j

ν(j, k) +

X⋆−1
∑

k=M ′

ν(j, k). (28)

If j ≤ k < M ′ then r−(k−j) ≤ ν(j, k) ≤ (r(1 −M ′/n))−(k−j), so uniformly over j ≤ M ,

1− r−(M ′−M)

1− 1/r
≤

M ′−1
∑

k=j

ν(j, k) ≤ 1

1− 1/(r(1 −M ′/n))
. (29)

Thus the above sum ∼ 1/(1− 1/r) ∼ 1/δ uniformly over j ≤ M provided r−(M ′−M) → 0 and M ′/n = o(δ).

The second point is clear, since M ′/n ≤ 1/
√
n = o(δ). To check the first point, since r−(M ′−M) = (1 +

δ)−(M ′−M) ≤ e−δ(M ′−M) it is enough that δ(M ′ −M) → ∞. Since c =
√
nδ → ∞ and δ = O(1),

δ(M ′ −M) = c− 2
√
c+O(δ) → ∞.

To estimate the second sum on the RHS of (28), we note that since V ′(0) = δ − o(δ) and x⋆ = o(1), for

large n, V (x) − V (y) ≥ δ(x − y)/2 if 0 ≤ y < x ≤ x⋆. With na = j ≤ M and M ′ ≤ nb ≤ X⋆ − 1,

1 − a, 1 − b ≥ 1 − x⋆ → 1 and nb − na ≥ M ′ −M → ∞, so log |En(a, b)| → 0 uniformly over a and b, thus

for large n and j ≤ M , M ′ ≤ k ≤ X⋆ − 1,

ν(j, k) ≤ 2 exp(−δ(k − j)/2).

Summing over k, the second term in (28) is ≤ 2e−δ(M ′−M)/2/(1 − e−δ/2) ∼ 4e−δ(M ′−M)/2/δ = o(1/δ).

Combining the two estimates, it follows that the sum on the LHS of (28) ∼ 1/δ uniformly over j ≤ M .

Since ν(j − 1, k) = ν(j − 1, j)ν(j, k) and 1/r ≤ ν(j − 1, j) ≤ 1/(r(1 −M/n)) which → 1 uniformly over

j ≤ M , using (26),(27) and (25) we find that uniformly over j ≤ M ,

q0+(j) ∼ r j (1− j/n) (1− δ) and q0−(j) ∼ j (1 + δ) (30)

Let X̃ denote the process with X̃0 = X0 and transition rates q̃−(j) = j and q̃+(j) = q0+(j)(j/q−(j)), which

are the same as for X w.r.t. the measure P 0 except multiplied by the factor j/q0−(j) at each non-zero j.

Then X w.r.t. P 0 is obtained from X̃ as Xt = X̃s(t) for t ≤ τ , where s(t) is the inverse of the function

t(s) =

∫ s

0

X̃u

q0−(X̃u)
du.
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From the estimate of (30), we have

sup
t≤τM

s(t)/t ∼ 1 + δ → 1,

so to obtain the desired result for X w.r.t. P 0 it is enough to show it for X̃ . Since M = o(
√
n), M/δn =

o(1/
√
nδ) = o(1). Using r = 1+ δ, uniformly over j ≤ M we have

q̃+(j)/j ∼ (1 + δ)(1− o(δ))(1 − δ)/(1 + δ) = 1− δ + o(δ).

Let γ, γ′ be lower and upper bounds on 1− q̃+(j)/j, respectively, and construct bbps Z,Z ′ with parameters

1− γ and 1− γ′, and initial value X0, so that Z ′
t ≤ Xt ≤ Zt for t ≤ τM . Following the proof of Theorem 2,

combining (9) and (10) we have

P(τ 6= τM | X0) ≤ (1 − γ)M−X0 ,

which → 0 if X0 ≤
√

n/c since then γ ∼ δ and δ(M −X0) ≥ δ
√

n/c =
√
c → ∞. As in the proof of Theorem

2, it only remains to check that (γ − δ)X0, (γ
′ − δ)X0 → 0. This follows easily from the fact that γ, γ′ ∼ δ.

Case 2: δ → δ∞ > 0. Let r∞ = 1+ δ∞. Since δX0 converges, we may assume X0 is constant. We follow the

same approach as before, only with different M . So, let M ′ = ⌊√n⌋ and let M → ∞ slowly. Then M ′/n → 0

and M ′ −M → ∞ and since r → r∞ > 1, r−(M ′−M) → 0. Thus from (29), the first sum on the RHS of (28)

∼ 1/(1− 1/r) → r∞/δ∞. To estimate the second sum, note that if j ≤ M and M ′ ≤ k ≤ X⋆ − 1 then

ν(j, k) = ν(j,M ′)ν(M ′, X⋆ − 1) ≤ ν(M,M ′) ≤ (r(1 −M ′/n))−(M ′−M).

We may assume M = o(
√
n), then for large n, the RHS above is ≤ e−δ∞

√
n/2. Summing over at most n such

terms, the second sum on the RHS of (28) is ≤ ne−δ∞
√
n/2 = o(1), so combining the two, the LHS of (28)

→ r∞/δ∞ uniformly for j ≤ M .

Recall that ν(j − 1, k) = ν(j − 1, j)ν(j, k). Uniformly for j ≤ M , ν(j − 1, j) → 1/r∞ and (1 − j/n) → 1.

In addition, 1− δ∞/r∞ = 1/r∞. Thus uniformly over j ≤ M ,

q0+(j) ∼ r∞j(1− δ∞/r∞) = j and q0−(j) ∼ j(1 + δ∞) = r∞j.

Let X̃ be as before, which has q̃−(j) = j and q̃+(j) ∼ j/r∞. In this case, Xt = X̃s(t) with supt≤τm s(t)/t ∼
r∞. Thus the result for X is obtained from the one for X̃ by changing time by the factor r∞. For X̃, compare

to the linear birth-and-death process Z with parameter 1/r∞. Following the proof of Theorem 1 it suffices

to show that for fixed t > 0, P(τ 6= τM ),P(X̃s 6= Zs for some s ≤ t∧ τM ) = o(1). Since q̃+(j) ≤ q̃−(j), X̃ is a

supermartingale, so the first statement is true provided M → ∞. For t < τm the difference in rates between

X and Z, when they take the same value, is at most supj≤M |̃q+(j) − j/r∞| = o(M), so is o(1) if M → ∞
slowly enough. Thus for constant X0 and fixed t > 0,

P(Xs 6= Zs for some s ≤ t ∧ τM | X0) ≤ 1− e−o(1)t = o(1)

which shows the second statement and completes the proof. �
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8.3. Metastability

In this section we prove the metastability results of Theorem 5. In particular, in this section we condition

on A⋆ = {Xτ⋆ = X⋆}, the event denoted A⋆
n in Theorem 5. On A⋆, τ⋆ is the time of the first visit to X⋆,

and the time to extinction can be broken into three epochs. Define the time of the last visit to X⋆ as

τo⋆ = sup{t : Xt = X⋆},

setting τo⋆ = −∞ if X never reaches X⋆. On A⋆, the time to extinction τ = inf{t : Xt = 0} is the sum of the

approach time τ⋆, the sojourn time τo⋆ − τ⋆ and the fall time τ − τo⋆ . We proceed as follows:

1. Estimate the expected sojourn time Eo
⋆ := E[ τo⋆ − τ⋆ | Xτ⋆ = X⋆ ].

2. Show the expected approach time and fall time are o(Eo
⋆).

3. With a coupling argument, show that the rescaled sojourn time (τo⋆ − τ⋆)/E
o
⋆ ,

conditioned on Xτ⋆ = X⋆, converges in distribution to exponential with mean 1.

Let us make the formal statements that will be the goal of this section.

Lemma 7. (Expected sojourn time.) Eo
⋆ ∼

√

2π

n

r

δ2
exp(n(log r + 1/r − 1)).

Lemma 8. (Approach time.) maxj∈{1,...,n} E[τ⋆ | Xτ⋆ = X⋆, X0 = j] = o(Eo
⋆).

Lemma 9. (Fall time.) E[τ − τo⋆ ] = o(Eo
⋆).

Lemma 10. (Exponential limit.) For each t ≥ 0, P((τo⋆ − τ⋆)/E
o
⋆ > t) → e−t.

Note that the expected sojourn time and fall time does not depend on X0; we have emphasized the

uniformity of the estimate with respect to X0 only in Lemma 8. Before proving these results, let’s use them

to prove the rest of Theorem 5.

Proof of metastability results of Theorem 5. The extinction time is the sum of the approach, sojourn, and

fall time: τ = τ⋆ + (τo⋆ − τ⋆) + (τ − τ⋆o). Combining Lemmas 7, 8 and 9, E[τ | Xτ⋆ = X⋆] ∼ Eo
⋆ which is the

desired estimate of expected time to extinction.

Using Lemmas 8 and 9 and Markov’s inequality, conditioned on Xτ⋆ = X⋆, with probability 1 − o(1),

τ/Eo
⋆ = (τo⋆ − τ⋆)/E

o
⋆ + o(1). The exponential limit for τ then follows from Lemma 10. �

We begin by deriving some formulas for the expected time to hit j + 1 or j − 1, starting from j.

8.3.1. Crossing times Let T+(j) = inf{t : Xt = j + 1} and T−(j) = inf{t : Xt = j − 1}, and let S+(j) =

E[T+(j) | X0 = j] and S−(j) = E[T−(j) | X0 = j]. Define also the conditioned versions

S⋆
±(j) = E[T±(j) | X0 = j and Xτ⋆ = X⋆],

S0
±(j) = E[T±(j) | X0 = j and Xτ⋆ = 0].

We will need to estimate the following quantities:
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i) S⋆
+(j) for j < X⋆,

ii) S−(j) for 1 ≤ j ≤ n, and

iii) S0
−(j) for j < X⋆.

Quantity i). For 1 < j < X⋆ a first step analysis gives

S⋆
+(j) =

1

q⋆+(j) + q⋆−(j)
+

q⋆−(j)

q⋆+(j) + q⋆−(j)
(S⋆

+(j − 1) + S⋆
+(j)),

and solving gives

q⋆+(j)S
⋆
+(j) = 1 + q⋆−(j)S

⋆
+(j − 1).

Following [15, Sec 5.2] we let π(i, i) = 1 and π(i, j) =
∏j−1

k=i q
⋆
+(k)/q

⋆
−(k+1) and multiply through by π(1, j)

above to obtain

q⋆+(j)π(1, j)S
⋆
+(j) = π(1, j) + q⋆+(j − 1)π(1, j − 1)S⋆

+(j − 1).

and then, since q⋆+(1)S
+
1 = 1, we solve to obtain

S⋆
+(j) =

1

q⋆+(j)π(1, j)

j
∑

i=1

π(1, i) =
1

q⋆+(j)

j
∑

i=1

1

π(i, j)
.

Using (25), for i < j

1

π(i, j)
=

j−1
∏

k=i

q−(k + 1)

q+(k)

h+(k)/h+(k + 1)

h+(k + 1)/h+(k)

=

(

h+(i)

h+(j)

)2
q−(j)

q+(i)
ν(i, j − 1).

This gives

S⋆
+(j) =

q−(j)

q⋆+(j)

j
∑

i=1

ν(i, j − 1)
h+(i)

2

h+(j)2
1

q+(i)
. (31)

Quantity ii). For 1 ≤ j < n, a first step analysis gives the recursion

q−(j)S−(j) = 1 + q+(j)S−(j + 1).

Multiplying through by 1/π(j, n) gives

q−(j)

π(j, n)
S−(j) =

1

π(j, n)
+

q−(j + 1)

π(j + 1, n)
S−(j + 1)

and since S−(n) = 1/q−(n), the solution is

S−(j) =
π(j, n)

q−(j)

n
∑

i=j

1

π(i, n)
=

1

q−(j)

n
∑

i=j

π(j, i).

Writing in terms of ν we obtain

S−(j) =
q+(j)

q−(j)

n
∑

i=j

ν(i − 1, j)
1

q−(i)
(32)
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Quantity iii). For 1 ≤ j < X⋆ a first step analysis gives

q0−(j)S
0
−(j) = 1 + q0+(j)S

0
−(j + 1).

In this case it is better to express the solution using the function ν0, defined like ν except with q0± in place

of q±. Since S0
−(X⋆ − 1) = 1/q0−(X⋆ − 1), following the same approach as above we find that

S0
−(j) =

q0+(j)

q0−(j)

X⋆−1
∑

i=j

ν0(i− 1, j)
1

q0−(i)
. (33)

8.3.2. Sojourn time Here we prove Lemma 7. We use the same basic approach as in [1]; the calculations

become more delicate when δ → 0. Define recursively τ⋆(0) = τ⋆ and for 0 < k < K = min{k > 0: Xτ⋆(k) =

0},
τ⋆(k + 1) = inf{t > τ⋆(k) : Xt ∈ {0, X⋆} and Xs 6= X⋆ for some τ⋆(k) < s < t}.

For k = 1, . . . ,K let ρk = τ⋆(k)− τ⋆(k − 1). Then, conditioned on Xτ⋆ = X⋆,

τ0⋆ − τ⋆ =

K−1
∑

k=1

ρk. (34)

By the strong Markov property, K is geometric with success probability p⋆ = P(Xτ⋆ = 0 | X0 = X⋆) and

defining τ+⋆ = inf{t : Xt = X⋆ and Xs 6= X⋆ for some 0 < s < t},

E[ρk | K > k] = E[τ+⋆ | X0 = Xτ+
⋆
= X⋆].

Let L⋆ denote the above expectation. Applying Wald’s equation to (34),

Eo
⋆ = L⋆(1/p⋆ − 1). (35)

Recall V (x) = x(log r − 1) − (1 − x) log(1 − x) defined in Lemma 4, and V⋆ := V (x⋆) = log r + 1/r − 1.

Lemma 7 follows immediately from the following estimates on p⋆ and L⋆.

Lemma 11. p⋆ → 0 and p⋆ ∼ δ

2
√
r
exp(−nV⋆).

Lemma 12. L⋆ ∼ 1√
n δ

√

πr

2
.

First we prove Lemma 11.

Proof of Lemma 11. First we show that if p⋆ ∼ (δ/2
√
r) exp(−nV⋆) then p⋆ → 0, then we establish the

estimate. Since r ≥ 1, V⋆ ≥ 0. If δ → 0 it follows that p⋆ → 0. If δ → δ∞ > 0 then V⋆ → V∞ =

log r∞ + 1/r∞ − 1 > 0 so exp(−nV⋆) → 0 and again p⋆ → 0.

If the first jump of X is to X⋆ + 1 then Xτ⋆ = X⋆. So, conditioning on the first jump,

p⋆ =
q−(X⋆)

q(X⋆)
h−(X⋆ − 1).
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By definition of X⋆, q+(X⋆) ∼ q−(X⋆), so if X0 = X⋆ then its first jump is to X⋆ − 1 with probability

1/2 + o(1). Thus, in the notation of (17) it is enough to show that

h−(X⋆ − 1) ∼ δ√
r
exp(−nV⋆).

We have

h−(X⋆ − 1) =
ν(X⋆ − 1)
∑X⋆−1

k=0 ν(k)
,

and we begin by estimating the numerator, using Lemma 4 with a = 0 and b = (X⋆ − 1)/n. Notice that

|b−x⋆| ≤ 2/n and that x⋆ = δ/r = δ/(1+δ), so the assumption lim supn δ < ∞ implies lim supn b < 1. Since

V ′(x⋆) = 0, b < x⋆ and x 7→ |V ′′(x)| is increasing, it follows that |V (b)−V (x⋆)| ≤ 1
2V

′′(x⋆)(2/n)
2 = O(1/n2).

Since nb ≥ n(x⋆ − 2/n) = nδ/r− 2 → ∞ and lim supn 1− b > 0, it follows that n(1− b)2(b− a) → ∞. Since

1/r = 1− x⋆, 1− b = 1− x⋆ +O(1/n) = (1− x⋆)(1 + o(1)) ∼ 1/r. Putting it together,

ν(X⋆ − 1) ∼
√
r exp(−nV (x⋆))

The denominator is estimated in the proof of Lemma 5; in both cases

X⋆−1
∑

k=0

ν(k) ∼ 1

1− 1/r
= r/δ

and the result follows. �

In order to estimate L⋆ we will need additional information about the function ν. First, extend the

domain of ν by defining ν(k, j) = 1/ν(j, k) for 0 ≤ j < k < n. An equivalent, unifying definition is given by

the formula

ν(j, k) =

∏n
i=j+1 q−(i)/q+(i)

∏n
i=k+1 q−(i)/q+(i)

.

Say that f(n, λ) ∼ g(n, λ) uniformly over λ ∈ A if limn→∞ supλ∈A

∣

∣

∣
log
(

f(n,λ)
g(n,λ)

)∣

∣

∣
= 0.

Lemma 13. Uniformly over |σ| ≤ n1/8,

ν(X⋆ − σ
√
n,X⋆) ∼ exp(−σ2r/2).

Moreover, for 1 ≤ σ ≤ n1/8,

∑

0≤j≤n−1 : |j−X⋆|≥σ
√
n

ν(j,X⋆) ≤ (2 + o(1)) exp(−σ2r/2)

√
n

σr
.

Proof. Since r(1−x⋆) = 1 and x 7→ log(r(1−x)) is differentiable at x⋆, it follows that uniformly over j such

that |j −X⋆| ≤ n1/4, log(r(1 − j/n)) = O(n−3/4). Summing at most n1/4 terms, log ν(j,X⋆) = O(1/
√
n).

This proves the first statement restricted to |σ| ≤ n−1/4.
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If n1/4 < |j −X⋆| ≤ n5/8, then since lim supn x⋆ < 1, 1 − j/n ∼ 1 −X⋆/n. Since |j −X⋆| > n1/4 → ∞,

by Lemma 4, uniformly over such j, En(j/n,X⋆/n) → 1 if j < X⋆ and En(X⋆/n, j/n) → 1 if j ≥ X⋆, so

ν(j,X⋆) ∼ exp(−n(V (X⋆/n)− V (j/n)); (36)

note the last expression is valid not only for j < X⋆ but also for j ≥ X⋆ under the extended definition of

ν. Since lim supn 1 − x⋆ > 0, V ′′′(x) = 1/(1 − x)2 is bounded on [0, x⋆ + o(1))], and recall V ′(x⋆) = 0 and

V ′′(x⋆) = −r. Thus, if |σ| ≤ n1/8, using a second order Taylor approximation we find that

V (x⋆ + σ/
√
n)− V (x⋆) = −σ2r/2n+O(n−9/8). (37)

In particular, V (X⋆/n) − V (x⋆) = O(n−9/8). Combining this with (36) and (37), the first statement is

proved for the remaining values of |σ|, namely, (n−1/4, n1/8].

Next, for j < k < X⋆, since log(r(1 − x⋆)) = 0 and x 7→ log(r(1 − x)) is decreasing,

− log ν(j, k) =

k
∑

i=j+1

log(r(1 − i/n)) ≥ (k − j) log(r(1 − k/n))

and thus ν(j, k) ≤ (r(1 − k/n))−(k−j). Fix σ with 1 ≤ σ ≤ n1/8 and observe that for any j, k, ℓ, ν(j, ℓ) =

ν(j, k)ν(k, ℓ). Using this property with k = X⋆ −
√
nσ and ℓ = X⋆ then bounding the sum by a geometric

series,
X⋆−

√
nσ

∑

j=0

ν(j,X⋆) ≤
(1 + o(1)) exp(−σ2r/2)

1− (r(1 − (X⋆ −
√
nσ)/n))−1

.

Since r(1 −X⋆/n) = r(1 − x⋆) +O(1/n) = 1 +O(1/n), the denominator is

1− (1 +O(1/n) + σr/
√
n)−1 = 1− (1 − (1 + o(1))σr/

√
n) = (1 + o(1))n−1/2σr,

so
X⋆−

√
nσ−1

∑

j=0

ν(j,X⋆) ≤ (1 + o(1)) exp(−σ2r/2)

√
n

σr
.

From the other end, if X⋆ < k < j then since log(r(1 − i/n)) ≤ log(r(1 − x⋆)) = 0 if i > X⋆, we have

log ν(j, k) = − log ν(k, j) =

j
∑

i=k+1

log(r(1 − i/n)) ≤ (j − k) log(r(1 − k/n))

and thus ν(j, k) ≤ (r(1 − k/n))j−k. By an analogous argument we find that

n−1
∑

j=X⋆+
√
nσ

ν(j,X⋆) ≤
(1 + o(1)) exp(−σ2r/2)

1− r(1 − (X⋆ +
√
nσ)/n)

≤ (1 + o(1)) exp(−σ2r/2)

√
n

σr
.

Combining the two estimates completes the proof. �

We are now ready to prove Lemma 12.
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Proof of Lemma 12. Let S⋆
+(j), S−(j) be as in Section 8.3.1. Conditioning on the first step,

L⋆ =
1

q+(X⋆) + q−(X⋆)

(

1 + q−(X⋆)S
⋆
+(X⋆ − 1) + q+(X⋆)S−(X⋆ + 1)

)

.

We have q−(X⋆) = X⋆ and since r(1 −X⋆/n) = 1 +O(1/n), q+(X⋆) ∼ X⋆, so

L⋆ ∼ 1

2

(

1/X⋆ + S⋆
+(X⋆ − 1) + S−(X⋆ + 1)

)

.

Since h+(X⋆) = 1 and h+(X⋆−1) → 1, q⋆+(X⋆−1) ∼ q+(X⋆−1). By definition ofX⋆, q+(X⋆−1) ∼ q−(X⋆−1).

In addition, by Lemma 13 ν(i,X⋆) = ν(i,X⋆ − 2)ν(X⋆ − 2, X⋆) ∼ ν(i,X⋆ − 2) uniformly over i. Thus, using

(31) with j = X⋆ − 1,

S⋆
+(X⋆ − 1) ∼

X⋆−1
∑

i=1

ν(i,X⋆)
h+(i)

2

q+(i)
. (38)

We will estimate the bulk of the sum in (38), finding that it tends to a then show the rest of the sum, as

well as S−(X⋆ + 1), are negligible in comparison. Recall the notation c =
√
nδ, noting that c → ∞ by

assumption. We then have X⋆ ∼ nδ =
√
nc.

Since r(1 − x⋆) = 1, q+(i) = ri(1− i/n) = i(1 + r(x⋆ − i/n)), so q+(i) ∼ X⋆ uniformly over |i−X⋆| ≤ C

provided C = o(X⋆) or equivalently C = o(
√
nc). By Lemma 5, h+(i) → 1 uniformly over i ≥ M provided

δM → ∞. If M = X⋆−C with C = o(
√
nc) then δM ∼ δX⋆ ∼ c2/r → ∞. Thus, if we define Σ =

√
c∧n1/8,

then since
√
nc = o(

√
nc),

X⋆−1
∑

i=⌊X⋆−Σ
√
n⌋+1

ν(i,X⋆)
h+(i)

2

q+(i)
∼ 1

X⋆

X⋆−1
∑

i=⌊X⋆−Σ
√
n⌋+1

ν(i,X⋆).

Using Lemma 13 and the fact that Σ → ∞ and Σ ≤ n1/8,

X⋆−1
∑

i=⌊X⋆−Σ
√
n⌋+1

ν(i,X⋆) ∼
√
n

∫ 0

−∞
e−σ2r/2dσ =

√

nπ

2r
.

Assuming the rest of the sum is negligible in comparison, since X⋆ ∼ nδ/r we then have

S⋆
+(X⋆ − 1) ∼

√
n

X⋆

π

2r
=

1√
nδ

√

πr

2
. (39)

So, we now show the rest of the sum in the brackets in (38) is o(
√
n); we may of course ignore the 1. Using

the trivial estimate q+(i) ≥ 1 and h+(i) ≤ 1 for i ≥ 1 as well as X⋆ ≤ nδ and Lemma 13 with σ = n1/8, if
√
c ≥ n1/8 then the rest of the sum is

⌊X⋆−n5/8⌋
∑

i=1

ν(i,X⋆ − 2)
h+(i)

2

q+(i)
X⋆ ≤ (2 + o(1))e−n1/4r/2n

3/8

r

nδ

r
= O(1) = o(

√
n).

If
√
c < n1/8 we treat the remainder in two parts, beginning with i ≤ 1/δ =

√
n/c. X is dominated by the

bbp Z with Z0 = X0 and parameter r, and using (5), since 0 is absorbing for Z,

P(Zt = 0 for some t > 0 | Z0) = lim
t→∞

ρ(t)Z0 = min(1, 1/r)Z0 = r−Z0
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since r > 1 by assumption in this section. If Zt = i for i > 0, then with probability pi > 0, Z hits 0 before

it returns to i. Thus Z visits any i > 0 at most geometric(pi) number of times, which is almost surely finite

and implies that a.s., limt→∞ Zt ∈ {0,∞}. Therefore

P( lim
t→∞

Zt = ∞ | Z0) = 1− r−Z0 = 1− (1 + δ)−Z0 ≤ δZ0.

The last inequality follows from (1 + δ)−Z0 ≥ e−δZ0 ≥ 1 − δZ0, where we used the estimate 1 + u ≤ eu for

u ∈ R which follows from convexity of u 7→ eu. Since Z dominates X ,

h+(i) ≤ P( lim
t→∞

Zt = ∞ | Z0 = i) ≤ δi. (40)

Since h+(i) ≤ 1, h+(i)
2 ≤ h+(i), and since X⋆ ≤ nδ and q+(i) ≥ i for i < X⋆, h+(i)

2X⋆/q+(i) ≤ δ2n = c2.

Using Lemma 13 with σ = (X⋆ − ⌊√n/c⌋)/√n ∼ c− 1/c = c− o(1),

⌊√n/c⌋
∑

i=1

ν(i,X⋆)
h+(i)

2

q+(i)
X⋆ ≤ (2 + o(1))e−σ2r/2

√
n

σr
c2 ∼ 2e−(c−o(1))2r/2 c

r

√
n = o(

√
n),

since c → ∞ and thus (2c/r)e−(c−o(1))2r/2 → 0 as n → ∞. Using again the trivial estimate h+(i) ≤ 1 and

q+(i) ≥ i, and also ν(i,X⋆) ≤ ν(X⋆ −
√
nc,X⋆) ∼ e−cr/2 for i ≤ X⋆ −

√
nc,

⌊X⋆−
√
nc⌋

∑

i=⌊√n/c⌋+1

ν(i,X⋆)
h+(i)

2

q+(i)
X⋆ ≤ (1 + o(1))e−cr/2

√
nc

⌊X⋆−
√
nc⌋

∑

i=⌊√n/c⌋+1

1

i
,

∼
√
nce−cr/2(log(

√
nc)− log(

√
n/c))

∼
√
n(2c log(c)e−cr/2) = o(

√
n).

This completes the estimation of the sum from (38).

For S−(X⋆ + 1), using (32) with j = X⋆ + 1 and simplifying as before,

S−(X⋆ + 1) ∼
n
∑

i=X⋆+1

ν(i− 1, X⋆)
1

q−(i)
.

Since this case is similar to the one before, we just give an outline. Breaking up the sum in the same way, the

bulk of the sum is estimated in the same way as before and gives the same result. To bound the remainder, it

suffices to note that q−(i) = i ≥ X⋆ for i ≥ X⋆, then use Lemma 13 directly, noting that 2e−Σ2r/2/(Σr) → 0.

Since L⋆ scales like the average of the two values, the result follows from (39). �

8.3.3. Approach time We now prove Lemma 8. For this and for Lemma 9, we first derive a more concrete

lower bound on the expected sojourn time Eo
⋆ , using the formula Eo

⋆ ∼
√

2π/n(r/δ2) exp(nV⋆) of Lemma 7,

where V⋆ = log r + 1/r − 1.

a) If δ → 0 then

V⋆ = log(1 + δ) + 1/(1 + δ)− 1 = δ − δ2/2 + 1− δ + δ2 − 1 +O(δ3) = δ2/2 +O(δ3) ∼ δ2/2

and since c =
√
nδ and r → 1,

√

2π/n(r/δ2) =
√
2π(r/cδ) and nV⋆ ∼ c2/2.



Logistic process 35

b) If δ → δ∞ > 0 then V⋆ → V∞ = log r∞ + 1/r∞ − 1 > 0.

Thus in either case,

Eo
⋆ ≥



















(1− o(1))

√
2π

δ

1

c
exp((1− o(1))c2/2) if δ → 0,

√

2π/n(r∞/δ2∞)e(1−o(1))V∞n if δ → δ∞ > 0.

(41)

Using (41), the following result implies Lemma 8, since c2 log c = o((1/c) exp((1 − o(1))c2/2)) in the case

δ → 0 and n logn = o(exp((1 − o(1))V∞n)) in the case δ → δ∞ > 0.

Lemma 14.

max
j∈{1,...,n}

E[τ⋆ | Xτ⋆ = X⋆, X0 = j] =











O((1/δ)c2 log(c)) if δ → 0

O(n log(n)) if δ → δ∞ > 0.

Proof. Using the natural coupling, by Lemma 1 it is enough to consider the initial values X0 = 1 and

X0 = n; we begin with X0 = n.

We break up the travel time to X⋆ into three checkpoints: 2nx⋆, nx⋆ +
√
n, and X⋆.

First checkpoint. If x > x⋆ then

µ(x− x⋆) = µ(x) = x(r(1 − x) − 1) = rx(x⋆ − x) ≤ −r(x − x⋆)
2 ≤ −(x− x⋆)

2.

The differential equation y′ = −y2 has solution flow φ(t, y) = 1/(1/y + t), so letting τ1 = inf{t : xt ≤ 2x⋆}
and defining the continued process x̃ by

x̃t = φ(t− t ∧ τ1, xt∧τ1),

we have µt(x̃) ≤ −x̃2
t for all t ≥ 0. Taking expectations and using Jensen’s inequality,

d

dt
E[x̃t] ≤ −E[x̃2

t ] ≤ −(E[x̃t])
2,

which gives E[x̃t] ≤ φ(t, x0) = 1/(1/x0 + t). Since x0 ≤ 1, Markov’s inequality then gives

P(τ1 > t) ≤ P(x̃t > 2x⋆) ≤
1

2x⋆

1

1 + t
=

r

2δ(1 + t)
.

Letting t = 1/δ the above is at most 1/2. Using the Markov property and iterating, P(τ1 > k/δ) ≤ 2−k, so

E[τ1] ≤ (1/δ)
∑

k≥0 P(τ1 > k/δ) ≤ 2/δ.

Second checkpoint. To get from 2x⋆ to x⋆ + 1/
√
n, let τ2 = inf{t : xt ≤ x⋆ + 1/

√
n} and note that if x > x⋆

then

µ(x− x⋆) = −rx(x − x⋆) ≤ −rx⋆(x− x⋆) = −δ(x− x⋆).
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Thus ξt = eδ(t∧τ2)(xt∧τ2 − x⋆) is a supermartingale and if x0 ≤ 2x⋆ then ξ0 ≤ x⋆ and

P(τ2 > t | x0 ≤ 2x⋆) ≤ P(ξt ≥ eδt/
√
n) ≤ e−δ

√
nx⋆ ≤ e−δt

√
nδ = e−δtc.

Thus E[τ2 | x0 ≤ 2x⋆] =
∫∞
0 P(τ2 > t | x0 ≤ 2x⋆)dt ≤ c/δ.

Third checkpoint. Finally we estimate τ3 = inf{t : Xt = X⋆}, assuming X0 ≤ nx⋆ +
√
n.

With S−(j) as in (32),

E[τ3 | X0 ≤ nx⋆ +
√
n] ≤

X⋆+
√
n+1

∑

j=X⋆+1

S−(j). (42)

Since h+(i) = h+(j) = 1, q+(j) ≤ q−(j) = q⋆−(j) and q−(i) = i ≥ X⋆ for i, j > X⋆,

S−(j) ≤
1

X⋆

n
∑

i=j

ν(i − 1, j).

If X⋆ < j ≤ X⋆ +
√
n+ 1 then using Lemma 13 with σ ≤ 1 + 1/

√
n,

ν(i − 1, j) =
ν(i − 1, X⋆)

ν(j,X⋆)
≤ (1 + o(1))er/2ν(i − 1, X⋆).

Using again Lemma 13 and approximating the sum by a Gaussian integral we obtain

S−(j) ≤
1

X⋆
(1 + o(1))er/2

√

nπ

2r
= (1 + o(1))

√

π

2r
er/2

√
n

nδ
= O(1/

√
nδ),

since r is bounded by assumption. Summing over
√
n+ 1 terms of the same size and using (42), we find

E[τ3 | X0 ≤ nx⋆ +
√
n] = O(

√
n/

√
nδ) = O(1/δ).

In all three cases the expected travel time is O(c/δ), which satisfies the stated estimates - for the case

δ → δ∞ > 0, note that c/δ =
√
n.

Next we consider the case X0 = 1.

From (31), and since q−(j) ≤ q+(j) ≤ q⋆+(j) and q+(i) ≥ i for i, j < X⋆,

S⋆
+(j) ≤

j
∑

i=1

ν(i, j − 1)
h+(i)

2

h+(j)2
1

i
.

Let sij denote the above summands. Then,

E[τ⋆ | X0 = 1, Xτ⋆ = X⋆] =

X⋆−1
∑

j=1

S⋆
+(j) ≤

X⋆−1
∑

j=1

j
∑

i=1

sij .

If i ≤ j < X⋆ then ν(i, j− 1) ≤ r and h+(i)/h+(j) ≤ 1, which we use below. In order to obtain good enough

estimates, we need to be a bit more precise. We treat the cases δ → 0 and δ → δ∞ > 0 separately.

Case 1: δ → 0. Let c =
√
nδ, so c → ∞ and c = o(

√
n). We treat the sum in three parts:
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i) 1 ≤ i ≤ j ≤ 1/δ,

ii) 1 ≤ i ≤ 1/δ < j ≤ X⋆ − 1 and

iii) 1/δ < i ≤ j < X⋆.

Part i). From (40), h+(i) ≤ δi, and since the denominator ∼ 1/(1− 1/r),

h+(j) =

∑X0−1
k=0 ν(k)

∑X⋆−1
k=0 ν(k)

≥ (1− r−j)/(1− 1/r)

(1 + o(1)/(1− 1/r)
= (1− o(1))(1 − r−j).

Since δ → 0, (1 + δ)−j = ((1 + δ)1/δ)−δj → e−δj uniformly over δj ≤ 1. Since e−x ≤ 1 − (1 − 1/e)x for

x ∈ [0, 1], if δj ≤ 1 then

h+(j) ≥ (1 − o(1))(1 − e−δj) ≥ (1 − o(1))(1− 1/e)δj (43)

which is at least δj/2 for large n, since 1− 1/e > 1/2. Thus, sij ≤ r(i2/(j/2)2)(1/i) = 4ri/j2, so

⌊1/δ⌋
∑

j=1

j
∑

i=1

sij ≤
⌊1/δ⌋
∑

j=1

4r

j2

j
∑

i=1

i ≤
⌊1/δ⌋
∑

j=1

2r ≤ 2r/δ.

Part ii). Since q−(k)/q+(k) ≥ 1/r, ν(0, i) ≥ r−i = (1 + δ)−i ≥ e−δi for each i. Since q−(k) ≤ q+(k) for

k < X⋆ and i ≤ ⌊1/δ⌋, ν(i, j − 1) ≤ ν(⌊1/δ⌋, j − 1), so

ν(i, j − 1) =
ν(0, j − 1)

ν(0, i)
≤ eδiν(0, j − 1).

Thus if i ≤ 1/δ < j < X⋆ then

ν(i, j − 1) =
ν(0, j − 1)

ν(0, i)
≤ e1ν(0, j − 1).

Since j > ⌊1/δ⌋ and j 7→ h+(j) is non-decreasing, using (43), h+(j) ≥ (1 − o(1))(1 − 1/e)δ⌊1/δ⌋ is at least

1/2 for large n, since δ → 0 implies δ⌊1/δ⌋ → 1. Using again h+(i) ≤ δi and combining,

X⋆−1
∑

j=⌊1/δ⌋+1

⌊1/δ⌋
∑

i=1

sij ≤
X⋆−1
∑

j=⌊1/δ⌋+1

e1ν(0, j − 1)

⌊1/δ⌋
∑

i=1

(δi)2

1/4

1

i
.

We easily estimate
⌊1/δ⌋
∑

i=1

(δi)2

1/4

1

i
≤ 4δ2

⌊1/δ⌋
∑

i=1

i ≤ 4δ2
(1/δ)2

2
= 2.

Using (22),
X⋆−1
∑

j=⌊1/δ⌋+1

e1ν(0, j − 1) ≤ (1 + o(1))/δ.

Combining the two, the sum is at most (2 + o(1))/δ.

Part iii). This part is the easiest; we simply use ν(i, j − 1) ≤ r, h+(i)/h+(j) ≤ 1 and 1/q+(i) ≤ 1/i and

treating the sum as a right-endpoint Riemann sum,

X⋆−1
∑

j=⌊1/δ⌋+1

j
∑

i=⌊1/δ⌋+1

1

i
≤

X⋆−1
∑

j=⌊1/δ⌋+1

r(log(j)− log(1/δ)).
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We can combine the logs as log(δj), which is increasing in j. Treating the sum as a left-endpoint Riemann

sum of the function log(x) with interval widths δ and noting δX⋆ ≤ nδ2 = c2, the sum is at most

1

δ
(δX⋆(log(δX⋆)− 1)− δ(1/δ)(log(δ(1/δ))− 1) ≤ 1

δ
(c2(log(c2)− 1) + 1).

Combining all three parts, we find

E[τ⋆ | X0 = 1, Xτ⋆ = X⋆] ≤
1

δ
(c2 log(c2)− c2 +O(1)) ≤ 1

δ
2c2 log(c)

for large n, since c → ∞.

Case 2: δ → δ∞ > 0. Since 1/δ = O(1) in this case, the whole sum can be treated as in part iii) above.

Since sij ≤ r/i,
X⋆−1
∑

j=1

j
∑

i=1

sij ≤
X⋆−1
∑

j=1

(1 + log j).

Treating the sum as a left-endpoint Riemann sum, it is at most

X⋆ log(X⋆)− 1 log(1) ≤ nδ log(nδ) = O(n log(n)).

�

8.3.4. Fall time Here we show that the time to hit zero after the last visit to X⋆ is small compared to the

sojourn time. The following is an equivalent formulation of Lemma 9.

Lemma 15. E[τ | X0 = X⋆, Xτ⋆ = 0] = o(Eo
⋆).

Proof. Let L0
⋆ denote the above expectation. With S0

−(j) as in (33),

L0
⋆ =

X⋆
∑

j=1

S0
−(j).

Since we condition on Xτ⋆ = 0, the initial jump off X⋆ is to X⋆ − 1 with rate q+(X⋆) + q−(X⋆) that we

denote q0−(X⋆), after which we use the rates q0± given by (25). Thus SX⋆ = 1/q0−(X⋆). For j ≤ X⋆ − 1,

q0+(j) ≤ q+(j) and q0−(j) ≥ q−(j), so q0+(j)/q
0
−(j) ≤ q+(j)/q−(j) ≤ r. Moreover, q0−(i) ≥ q−(i) = i, so

S0
−(j) ≤ r

X⋆−1
∑

i=j

ν0(i− 1, j)
1

i
.

Let sij denote the summands. Summing over j and exchanging the order of summation,

L0
⋆ =

1

q0−(X⋆)
+ r

X⋆−1
∑

i=1

i
∑

j=1

sij .

The first term is at most 1/X⋆ which is clearly o(Eo
⋆). To estimate the sum we need more information about

ν0, so we first estimate the ratios

q0+(j)

q0−(j)
=

q+(j)

q−(j)

h−(j + 1)/h−(j)

h−(j − 1)/h−(j)
(44)
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of the conditioned rates given by (25). To do so we use the formulas (26) and (27). Since ν(j−1, k) ≤ ν(j, k)

for j < X⋆, from (27),

h−(j − 1)

h−(j)
≥ 1 +

1
∑X⋆−1

k=j ν(j, k)
(45)

which simplifies some calculations. Define σj = (X⋆ − j)/
√
n and similarly for σk, and let Σ = n1/8 ∧ √

c.

Estimation for σj ≤ Σ. By Lemma 13, uniformly over 0 ≤ σk ≤ σj ≤ n1/8,

ν(j, k) = ν(j,X⋆)/ν(k,X⋆) ∼ e(−σ2
j+σ2

k)r/2,

and so
X⋆−1
∑

k=j

ν(j, k) ∼
√
n

∫ σj

0

e−(σj−σk)(σj+σk)r/2dσk.

Changing variables to u = σj − σk, σj + σk = 2σj − u and the integral becomes

∫ σj

0

e−u(2σj−u)r/2du ≤
∫ σj

0

e−uσjr/2du ≤ 2

σjr
.

Letting bj = (1− ǫn)σjr/
√
n with ǫn → 0 sufficiently slowly and using (26) and (45) it follows that

h−(j − 1)

h−(j)
≥ 1 + bj/2 and

h−(j + 1)

h−(j)
≤ 1− bj/2.

Since σj ≤ n1/8, bj = o(1) so h−(j + 1)/h−(j − 1) ≤ 1− bj + o(bj). On the other hand

q+(j)

q−(j)
= r(1 − j/n) = (1 + r(x⋆ − j/n))

= 1 + rσj/
√
n+O(1/n) = 1 + (1 + o(1))bj +O(1/n). (46)

Using (44) and the above estimates,

q0+(j)

q0−(j)
≤ (1 + (1 + o(1))bj +O(1/n))(1 − bj +O(b2j )) = 1− b2j + o(b2j ) +O(1/n). (47)

Estimation for σj ≥ Σ. Recall the upper bound from Lemma 4:

ν(j, k) ≤ exp(−n(V ((k + 1)/n)− V ((j + 1)/n)).

Using the fact that V is non-decreasing and V ′ is non-increasing on [0, x⋆],

n(V ((k + 1)/n)− V ((j + 1)/n)) ≥ ((k − j) ∧
√
n)V ′((j + 1 +

√
n)/n).

With this bound,

X⋆−1
∑

k=j

ν(j, k) ≤ 1

1− e−V ′((j+1+
√
n)/n)

+ (X⋆ − j)e−
√
nV ′(j+1+

√
n/n), (48)
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the first at most
√
n terms forming a partial geometric series, and the last at most X⋆ − j terms each

contributing at most a constant. Since V ′(x) = log(r(1 − x)) and r(1 − x) = 1 + r(x⋆ − x),

eV
′((j+1+

√
n)/n) = 1 + r(x⋆ − (j + 1 +

√
n)/n)

= 1 + r
(

(X⋆ − j)/n− 1/
√
n+O(1/n))

≥ 1 + r(σj − 2)/
√
n

for large n. This easily gives the bound
√
n/(r(σj − 2)) on the first term on the RHS of (48). To bound

the second term note that σj ≤ √
n and r ≥ 1, and that 1 + x ≥ ex/2 for x ∈ [0, 1], so 1 + r(σj − 2)/

√
n ≥

e(σj−2)/2
√
n. Using this on the second term on the RHS of (48) and combining the two estimates, for large n

X⋆−1
∑

k=j

ν(j, k) ≤
√
n

r(σj − 2)
+
√
nσje

−(σj−2)/2.

Since xe−x/2 → 0 faster than 1/x as x → ∞, using bj = (1 − ǫn)rσj/
√
n with ǫn → 0 slowly enough, since

Σ → ∞ it follows that uniformly over σj ≥ Σ,

X⋆−1
∑

k=j

ν(j, k) ≤ 1/bj,

and so
h−(j + 1)

h−(j − 1)
≤ 1− bj

1 + bj
.

Since σj ≥ Σ → ∞, bj = ω(1/n), and using (46), q+(j)/q−(j) = 1+ (1+ o(1))bj . Using (44), uniformly over

j ≤ X⋆ − Σ
√
n,

q0+(j)

q0−(j)
≤ (1 + (1 + o(1))bj)

1− bj
1 + bj

= 1− bj + o(bj). (49)

Case 1: δ → 0. Since ν0(i, i − 1) → 1 uniformly over i, we can work with ν0(i, j) instead of ν0(i − 1, j).

Again, we break the sum into parts; the decomposition is similar to the one in the second half of the proof

of Lemma 14, except that the third part has been further subdivided into three parts, for a total of five:

i) 1 ≤ j ≤ i ≤ 1/δ,

ii) 1 ≤ j ≤ 1/δ < i ≤ X⋆ − Σ
√
n,

iii) 1/δ < j ≤ i ≤ X⋆ − Σ
√
n,

iv) 1/δ < j ≤ X⋆ − Σ
√
n < i ≤ X⋆ − 1, and

v) X⋆ − Σ
√
n < j ≤ i ≤ X⋆ − 1.

Note that σi ≥ Σ in parts i-iii and σj ≥ Σ in parts i-iv.

Part i). Note that if j = o(X⋆), which is the case if j ≤ 1/δ, then σj ∼
√
nx⋆ and bj ∼ δ, so

ν0(i, j) ≤ (1− δ + o(δ))i−j ≤ e−(1+o(1))δ(i−j),
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and treating as a partial geometric sum,

i
∑

j=1

ν0(i, j) ≤ 1− e−(1+o(1))δi

1− e−(1+o(1))δ
≤ (1 + o(1))δi

δ
= (1 + o(1))i.

Thus
⌊1/δ⌋
∑

i=1

i
∑

j=1

sij ≤
⌊1/δ⌋
∑

i=1

1

i
(1 + o(1))i ≤ (1 + o(1))/δ.

Part ii). If i > 1/δ then from the above,

⌊1/δ⌋
∑

j=1

ν0(i, j) ≤ 1

1− e−(1+o(1))δ
≤ (1 + o(1))/δ.

Noting that X⋆ ≤ nδ =
√
nc and 1/δ =

√
n/c,

X⋆−Σ
√
n

∑

i=⌊1/δ⌋+1

⌊1/δ⌋
∑

j=1

sij ≤
1 + o(1)

δ
(log(

√
nc)− log(

√
n/c)) =

2 + o(1)

δ
log(c).

Part iii). Since i ≥ j, bj = (1− ǫn)r(X⋆ − j)/n ≤ (1− ǫn)r(X⋆ − i)/n = bi, ν
0(i, j) ≤ e−(1−o(1))bi(i−j) and

∑

j≤i

ν0(i, j) ≤ 1/(1− e−(1−o(1))bi) ∼ 1/bi = n/(X⋆ − i)

uniformly over i, since bi ≤ δ and δ → 0. This gives

⌊X⋆−Σ
√
n⌋

∑

i=⌊1/δ⌋+1

i
∑

j=⌊1/δ⌋+1

sij ≤
⌊X⋆−Σ

√
n⌋

∑

i=⌊1/δ⌋+1

n

i(X⋆ − i)
≤ n

X⋆

⌊X⋆−Σ
√
n⌋

∑

i=⌊1/δ⌋+1

(1

i
+

1

X⋆ − i

)

.

Treating the sums as Riemann sums and noting n/X⋆ ≤ n/(nδ−1) ∼ 1/δ, δX⋆ ≤ nδ2 = c2 and X⋆/(Σ
√
n) ≤

√
nδ/Σ = o(

√
c), this is at most

1 + o(1)

δ

(

log(X⋆)− log(1/δ) + log(X⋆)− log(Σ
√
n)
)

≤ 1 + o(1)

δ
(c2 + o(

√
c)).

Part iv). Writing as a product and using (47) on the first term, then proceeding as in part iii) on the sum,

for i ≥ X⋆ − Σ
√
n ≥ j,

∑

j≤X⋆−Σ
√
n

ν0(i, j) = ν0(i,X⋆ − Σ
√
n)

∑

j≤X⋆−Σ
√
n

ν0(X⋆ − Σ
√
n, j)

≤ en
5/8O(1/n)/(1− e−(1−o(1))Σ/

√
n) = (1 + o(1))

√
n/Σ.

Since Σ = o(c) = o(X⋆/
√
n), 1/i ∼ 1/X⋆ and

X⋆−1
∑

i=X⋆−Σ
√
n+1

X⋆−Σ
√
n

∑

j=⌊1/δ⌋+1

sij ≤ (1 + o(1))

√
n

Σ

X⋆−1
∑

i=X⋆−Σ
√
n+1

1

i

≤ (1 + o(1))

√
n

Σ

Σ
√
n

X⋆
∼ n

X⋆
≤ 1/δ.
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Part v). Using (47) as in part iv), ν0(i, j) ≤ eΣ
√
nO(1/n) = 1 + o(1). Again, 1/i ∼ 1/X⋆. Since there are at

most Σ2n terms in the sum and Σ ≤ √
c, it is bounded by

(1 + o(1))
Σ2n

X⋆
= (1 + o(1))

c

δ
.

In all five parts, the sum is O(c2/δ); referring to (41), this is o(Eo
⋆).

Case 2: δ → δ∞ > 0. Since by (49), q−+(j)/q
0
−(j) ≤ 1 for j ≤ X⋆ − Σ

√
n and by (47), q0+(j)/q

0
−(j) ≤

1 + O(1/n) ≤ eO(1/n) for X⋆ − Σ
√
n ≤ j < X⋆, and since Σ ≤ n1/8, ν0(i, j) ≤ en

5/8O(1/n) = 1 + o(1) for

j ≤ i < X⋆. Thus,
X⋆−1
∑

i=1

i
∑

j=1

sij ≤ (1 + o(1)

X⋆−1
∑

i=1

1

i
i ∼ X⋆,

and X⋆ ≤ nδ = o(Eo
⋆), again by (41). �

8.3.5. Exponential limit Here we prove Lemma 10. By the strong Markov property, this is equivalent to

showing that τo⋆ /E
o
⋆ converges in distribution to exponential with mean 1, assuming X0 = X⋆. Let Φ denote

the natural coupling, so that for each j ∈ {0, . . . , N}, ((Φ(j, t))t≥0 is a copy of the logistic process with initial

value j, and by Lemma 1, Φ(i, t) ≤ Φ(j, t) for all t if i ≤ j, and let

τ⋆(j) = inf{t > 0: Φ(j, t) ∈ {0, X⋆}} and τo⋆ (j) = sup{t > 0: Φ(j, t) = X⋆}.

We give a sufficient condition for (τo⋆ − τ⋆)/E
o
⋆ to have an exponential limit.

Lemma 16. Let E
o

⋆ = E[τo⋆ (n)] and assume that

1. P(τo⋆ (j) = τo⋆ (n) | Φ(j, τ⋆(j)) = X⋆) = 1− o(1) uniformly over j ∈ {1, . . . , n} and

2. uniformly over j ∈ {1, . . . , n} and t > 0,

P(τo⋆ (n) > tE
o

⋆ | Φ(j, τ⋆(j)) = X⋆) ≥ P(τo⋆ (n) > tE
o

⋆)− o(1).

Then for each t > 0, P(τo⋆ (X⋆) > tEo
⋆) → e−t.

Proof. By definition, Φ(X⋆, τ
o
⋆ (X⋆)) = X⋆, so using assumption 1, it is enough to show that P(τo⋆ (n) >

tEo
⋆) → e−t for t > 0. By definition of τo⋆ (n), E

o

⋆ = E[τo⋆ | X0 = n], so using the Markov property

and then Lemma 8 we find that E
o

⋆ = Eo
⋆ + E[τ⋆ | X0 = n] ∼ Eo

⋆ . Thus it is enough to show that

pn(t) := P(τo⋆ (n) > tE
o

⋆) → e−t for t > 0.

Using the natural coupling of Section 3, if j ≤ n then for any t > 0, Φ(j, t) ≤ Φ(n, t) which implies

τo⋆ (j) ≤ τo⋆ (n). Conditioning on the value of Φ(n, t) and using the Markov property, it follows that

pn(t+ s) = pn(t)
∑

j

P(τo⋆ (j) > sE
o

⋆)P(Φ(n, tE
o

⋆) = j) ≤ pn(t)pn(s),
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i.e., t 7→ pn(t) is submultiplicative for each n. Given t, s > 0, conditioning on Φ(n, tE
o

⋆), using the Markov

property, then using assumption 1 then assumption 2, then the law of total probability,

P(τo⋆ (n) > (t+ s)E
o

⋆ | τo⋆ (n) > tE
o

⋆) =
∑

j

P(τo⋆ (j) > sE
o

⋆) | Φ(j, τ⋆(j)) = X⋆)P(Φ(n, tE
o

⋆) = j)

≥
∑

j

P(τo⋆ (n) > sE
o

⋆) | Φ(j, τ⋆(j)) = X⋆)P(Φ(n, tE
o

⋆) = j)− o(1)

≥
∑

j

P(τo⋆ (n) > sE
o

⋆))P(Φ(n, tE
o

⋆) = j)− o(1)

= pn(s)− o(1)

uniformly over t and s. Since the above LHS is just pn(t+ s)/pn(t), we obtain pn(t+ s) ≥ pn(t)pn(s)− o(1).

Combining with pn(t + s) ≤ pn(t)pn(s) it follows easily that for rational t, pn(t) = pn(1)
t + o(1), and since

t 7→ pn(t) is non-increasing, the same holds for real t > 0 by rational approximation. Thus it remains only

to show that pn(1) → 1/e as n → ∞.

Let T (n) = τo⋆ (n)/E
o

⋆, so that E[T (n)] = 1 for each n. By Markov’s inequality, pn(2) ≤ 1/2, and

pn(2j) ≤ pn(2)
j = 2−j for integer j ≥ 1, so

E[T (n)1(T (n) > 2k) ] ≤
∑

j≥k

2P(T o
⋆ > 2j) ≤ 2−(k−2),

which → 0 as k → ∞ uniformly in n. Since P(T (n) > t) = P(T (n) > 1)t + o(1) for each t, an easy

approximation argument using the monotonicity of t 7→ P(T (n) > t) then shows that

E[T (n) ] =

∫ ∞

0

P(T (n) > 1)tdt+ o(1).

Since E[T (n) ] = 1 for all n, it follows that P(T (n) > 1) → 1/e as n → ∞, as desired. �

It remains to show assumptions 1 and 2 of Lemma 16 are satisfied. Let τc(j) = inf{t : Φ(j, t) = Φ(n, t)}
denote the coupling time of the two trajectories, which is a.s. finite since both eventually hit 0. We begin

by extracting a further sufficient condition, which we then prove.

Lemma 17. Let τ⋆c (j) = inf{t ≥ τc(j) : Φ(j, t) = X⋆}. Suppose that

min
j∈{1,...,n}

P(τ⋆c (j) < ∞ | Φ(j, τ⋆(j)) = X⋆) → 1. (50)

Then assumptions 1 and 2 of Lemma 16 are satisfied.

Proof. Assumption 1. Since Φ(j, t) = Φ(n, t) for all t ≥ τc(j) (see Lemma 1), the event τo⋆ (j) = τo⋆ (n) is

equivalent to the event that Φ(j, t) = Φ(n, t) = X⋆ for some t > 0, which in turn is equivalent to the event

τ⋆c (j) < ∞, and assumption 1 follows directly from (50).
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Assumption 2. First note that, since P(Φ(X⋆, τ⋆(X⋆)) = X⋆) = 1, it follows from the above that

P(τo⋆ (X⋆) = τo⋆ (n)) = 1− o(1). (51)

Next, using the strong Markov property, τo⋆ (n) conditioned on τ⋆c (j) < ∞ is equal in distribution to τ⋆c (j)

conditioned on τ⋆c (j) < ∞, plus an independent copy of τo⋆ (X⋆). In particular, τo⋆ (n), conditioned on

τ⋆c (j) < ∞, dominates τo⋆ (X⋆) (with no conditioning). Since τ⋆c (j) < ∞ implies Φ(j, τ⋆(j)) = X⋆, using (50),

then the above observation, then (51), it follows that uniformly over j,

P(τo⋆ (n) > tE
o

⋆ | Φ(j, τ⋆(j)) = X⋆) = P(τo⋆ (n) > tE
o

⋆ | τ⋆c (j) < ∞)P(τ⋆c (j) < ∞ | Φ(j, τ⋆(j)) = X⋆)

= P(τo⋆ (n) > tE
o

⋆ | τ⋆c (j) < ∞)(1 − o(1))

≥ P(τo⋆ (X⋆) > tE
o

⋆)(1− o(1))

= (P(τo⋆ (n) > tE
o

⋆)− o(1))(1 − o(1))

= P(τo⋆ (n) > tE
o

⋆)− o(1).

�

Finally we prove the hypothesis of Lemma 17. To do so we show that within a short time after the paths

started from j and from n reach X⋆, they meet (if they have not met already), and then with probability

1− o(1) their common trajectory hits X⋆ at least once more before going to 0.

Lemma 18. As n → ∞,

min
j∈{1,...,n}

P(τ⋆c (j) < ∞ | Φ(j, τ⋆(j)) = X⋆) → 1. (52)

Proof. Let Xj, Xn denote the processes (Φ(j, t))t≥0, (Φ(n, t))t≥0. As we will see, when Xj, Xn > (1 +

ǫ)X⋆/2, the drift tends to push them together. Let

τb(j) = inf{t > τ⋆(j) ∨ τ⋆(n) : max(|Xj
t − nx⋆|, |Xn

t − nx⋆|) ≥ nx⋆/4}.

If τc(j) < τ⋆(j) ∨ τ⋆(n) then Xj
t = Xn

t = X⋆ with t = τ⋆(j) ∨ τ⋆(n) which implies τ⋆c (j) < ∞. On the other

hand, if τ⋆(j) ∨ τ⋆(n) < τc(j) < τb(j) then Xj
τc(j)

= Xn
τc(j)

≥ 3X⋆/4. Using the strong Markov property and

the fact that Xj and Xn remain together once they meet, on the latter event it follows from Lemma 5 that

τ⋆c (j) < ∞ with probability 1− o(1) uniformly over j. Thus it is enough to show that

max
j

P(τb(j) ∧ τc(j) < τb(j) | Φ(j, τ⋆(j)) = X⋆) → 1. (53)

We begin with a lower bound on τb(j), that ensures both Xj, Xn remain fairly close to X⋆ for a while after

they hit it. Then, we estimate the drift and diffusivity of Xj −Xn assuming both are at least 3X⋆/4, and

with the help of the lower bound, deduce (53).
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Lower bound on τb(j). Let W = X − nx⋆. Then

µ(W ) = µ(X) = X(r(1 −X/n)− 1) = rX(x⋆ −X/n) = −rXW/n and

σ2(W ) = σ2(X) = X(r(1−X/n) + 1) ≤ (1 + r)X.

Since W jumps by ±1, if |W | ≥ 1 then µ(|W |) = sgn(W )µ(W ) and σ2(|W |) = σ2(W ). Suppose nx⋆/8 ≤
|W | ≤ nx⋆/4, noting that 1 ≤ nx⋆/8 for large n. Since 3nx⋆/4 ≤ X ≤ 5nx⋆/4,

σ2(|W |) = O(nx⋆) = O(nδ),

µ(|W |) ≤ −(3rx⋆/4)(nx⋆/8) = −3nδ2/32r and

|µ(|W |)| ≤ (5rx⋆/4)nx⋆/4 = O(nδ2).

We shall use Lemma 19 (apologies for overloading notation). In the notation of Lemma 19, let X =

|W | − nx⋆/8, x = nx⋆/8 = nδ/8r, µ⋆ = 3nδ2/32r = 3c2/32r, σ2
⋆ = Cnδ and Cµ⋆ = Cnδ2 for some C > 0

and C∆ = 1/2. Since ∆∞(X) = 1, ∆∞(X)µ⋆/σ
2
⋆ = 3δ/32Cr is at most 1/2 is C > 0 is chosen large enough.

Then, Γ = exp(Ω(c2)) and x/16Cµ⋆ = Ω(1/δ), so

P( sup
t≤(1/δ) exp(Ω(c2))

|Wt| > nx⋆/4 | |W0| ≤ nx⋆/8) = o(1).

Applying this bound to Xj, Xn from time τ⋆(j), respectively τ⋆(n), we find that

P(τb(j) ≤ (1/δ) exp(Ω(c2)) | Φ(j, τ⋆(j)) = X⋆) = o(1) (54)

uniformly over j ∈ {1, . . . , n}.

Upper bound on τb(j) ∧ τc(j).

Let F (x) = x(r(1 − x)− 1) = rx(x⋆ − x) and G(x) = x(r(1 − x) + 1) ≥ x, so that

µ(X) = nF (X/n) and σ2(X) = nG(X/n) ≥ X.

We have F ′(x) = r(x⋆ − 2x), so if 3x⋆/4 ≤ x ≤ 5x⋆/4 then

F ′(x) ∈ [F ′(5x⋆/4), F
′(3x⋆/4)] = [−3rx⋆/2,−rx⋆/2] = [−3δ/2,−δ/2].

If Xj, Xn ≥ 3nx⋆/4 and Xj 6= Xn, then letting U = Xj −Xn, by the mean value theorem,

µ(U)/(U) = n(F (Xj/n)− F (Xn/n))/(Xj −Xn) ∈ [−3δ/2,−δ/2]

and since Xj and Xn evolve independently until they collide,

σ2(U) = n(G(Xj/n) +G(Xn/n)) ≥ 3nx⋆/2 ≥ nδ/r.

Since U jumps by ±1 and takes values in Z, if U 6= 0 then µ(|U |) = sgn(U)µ(U) and σ2(|U |) = σ2(U), so

letting V = |U |, the above implies that conditional on Φ(j, τ⋆(j)) = X⋆,

µt(V ) ∈ [−(3δ/2)Vt,−(δ/2)Vt] and σ2
t (V ) ≥ nδ/r
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for all τ⋆(j)∨ τ⋆(n) ≤ t < τc(j)∧ τb(j). If this interval is empty, then τc(j) ∧ τb(j) < τ⋆(j)∨ τ⋆(n) ≤ τb(j) so

there is nothing to show. Otherwise, since on this time interval, sgn(Ut) is fixed, then given sgn(Uτ⋆(j)), on

the same time interval V is a Markov chain with state space a subset of Z. Let u = ⌊√n⌋, t0 = τ⋆(j) and

t1 = τb(j) ∧ inf{t > t0 : Vt = u} and define recursively

ti = τb(j) ∧ inf{t > ti−1 : Vt ∈ {0, u, 2u} \ Vti−1
}.

Let ρi = ti − ti−1 for i = 1, . . . , N = min{i : Vti = 0 or ti = τb(j)} = min{i : ti = τc(j) ∧ τb(j)}. By the a

priori bound, we may assume |Vt0 | ≤ nx⋆/2 = nδ/2r. Then, ξt = eδ(t0+t∧ρ1)/2Vt0+t∧ρ1
is a supermartingale

with ξ0 ≤ nδ/2r, so

P(ρ1 > t) ≤ P(ξt > eδt/2u) ≤ e−2δt nδ/2r√
n− 1

∼ e−2δtc/2r.

The above probability is O(1/c) = o(1) if t = (1/δ) log c. Using a similar estimate with ξ0 = 2u,

P(ρi > t | Vρi−1
= 2u) ≤ e−2δt 2u

u
≤ 2e−2δt,

and integrating over t, E[ρi | Vρi−1
= 2u] ≤ 1/δ. To estimate ρ2, we note that for α > 0

µt(αV
2) = 2αVtµ(Vt) + α2σ2

t (V )

≥ −3αδV 2
t + α2nδ/r

so for t1 ≤ t < t2, since Vt ≤ 2u ≤ 2
√
n, choosing α = 13r we have µt(αV

2) ≥ αnδ. Thus V 2
t1+t∧ρ2

−nδ(t∧ρ2)
is a submartingale. Since Vt1 = u and Vt2 ≤ 2u, using optional stopping,

E[ρ2] ≤
1

nδ
(E[V 2

t2 − V 2
t1 ]) ≤

1

nδ
(4u2 − u2) ≤ 3n

nδ
=

3

δ
.

By the Markov property, the same estimate holds for E[ρi | Vti−1
= u]. Using simply that µt(V ) ≤ 0 and

optional stopping, P(Vti = 2u | Vti−1
= u) ≤ 1/2. Summarizing, on the time interval [τ⋆(j) ∨ τ⋆(n), τc(j) ∧

τb(j)], V hits u, then goes to 2u and back to u at most geometric(1/2) number of times before either Vti = 0

or ti = τb(j). As shown above, ρ1, the time to first hit u, is at most (1/δ) log c with probability 1− o(1), and

the expected time to go from u to either 0, or to 2u and back to u is at most (4/δ). Using Wald’s lemma

and E[geometric(1/2) = 2],
N−1
∑

i=2

ρi ≤ 8/δ.

Using Markov’s inequality, the sum is at most (1/δ) log c with probability 1 − o(1), so combining with the

estimate on ρ1, we find that uniformly over j ∈ {1, . . . , n},

P(τb(j) ∧ τc(j)− τ⋆(j) ∨ τ⋆(n) > (2/δ) log c | Φ(j, τ⋆(j)) = X⋆) = o(1).

From Lemma 14, if δ → 0 then E[τ⋆(j)],E[τ⋆(n)] = O(c2 log(c)/δ) uniformly over j ∈ {1, . . . , n}, so using

Markov’s inequality, with probability 1 − o(1) uniformly in j, τ⋆(j) ∨ τ⋆(n) = o(eǫc
2

/δ) for any fixed ǫ > 0.

Summing the two and combining with (54), we obtain (53). �



Logistic process 47

Appendix: Stochastic Calculus

We recall a useful probability estimate and diffusion limit result, stated in the context of semimartingales.

We give here a very brief list of definitions, enough for the acquainted reader to understand the context

for this paper – for an overview of the theory see [13]. Recall that a semimartingale (abbreviate s-m) is an

optional process X that can be written

X = X0 +M +A,

where M is a local martingale and A has finite variation. It is special if A can be taken to be predictable,

in which case we write

X = X0 +Xm +Xp,

where Xm is the martingale part and Xp is the (predictable) compensator. A sufficient condition for X to

be special is if it has bounded jumps, i.e., if the process of jumps ∆Xt = Xt −Xt− satisfies |∆X | ≤ γ for

some non-random γ < ∞. If so, let ∆∞(X) denote the least such γ. In this case, a fortiori Xm is locally

square-integrable, i.e., the predictable quadratic variation 〈X〉 exists.

A process is quasi-left continuous (qlc) if ∆XT = 0 a.s. on {T < ∞} for any predictable time T . Feller

processes, which include continuous time Markov chains, are quasi-left continuous. As noted in [12], if X

is special and Xm is locally square-integrable then X is quasi-left continuous iff both 〈Xm〉 and Xp are

continuous. This motivates the following definition (not found in other references):

Definition 1. Let X be a special s-m with Xm locally square-integrable. Then X is quasi-absolutely

continuous or qac if both Xp and 〈Xm〉 are absolutely continuous. In this case define the drift µ(X)

and diffusivity σ2(X) by

µt(X) =
d

dt
Xp

t , σ2
t (X) =

d

dt
〈Xm〉t. (55)

Any right-continuous continuous-time Markov chain X on a finite state space S ⊂ R has finite variation

so is a s-m. Index the possible transitions by i ∈ {1, . . . ,m} for some m, with qi : S → R+ the rates and

∆i : S → S − S the jumps. Writing X as a sum of jumps and using the standard linear and quadratic

martingales for Poisson processes, it is easy to show that X is qac and has

µt(X) =

m
∑

i=1

qi(Xt)∆i(Xt) and σ2
t (X) =

m
∑

i=1

qi(Xt)(∆i(Xt))
2. (56)

Our first result gives a strong (exponential in µ/σ2) lower bound on the escape time from a barrier with

negative drift. It is proved in [4].

Lemma 19. (Drift barrier.) Fix x > 0 and let X be a qac s-m on R with jump size ∆∞(X) ≤ x/2. Suppose

there are positive reals µ⋆, σ
2
⋆ , Cµ⋆ , C∆ with max{∆∞(X)µ⋆/σ

2
⋆, 1/2} ≤ C∆ so that if 0 < Xt < x then

µt(X) ≤ −µ⋆, |µt(X)| ≤ Cµ⋆ and σ2
t (X) ≤ σ2

⋆.
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Let Γ = exp(µ⋆x/(32C∆σ
2
⋆)). Then we have

P

(

sup
t≤⌊Γ⌋x/16Cµ⋆

Xt ≥ x | X0 ≤ x/2

)

≤ 4/Γ. (57)

The next result gives a diffusion limit, assuming the drift and diffusivity converge while the jump size

tends to 0. It follows from Theorem 4.1 in [9, Chapter 7], and from the Lipschitz existence and uniqueness

condition for SDEs, if (i) in the proof of the former result we let τRn be the exit time of Xn from (1/R,R)

instead of (−R,R), as described below, and (ii) we allow that the limiting diffusion Y may be defined only

on the interval [0, ζ) where ζ := limR→∞ τR, with τR as defined below.

Lemma 20. (Diffusion limit.) Let Xn be a sequence of qac semimartingales with drift and diffusivity given

by functions µn, σ
2
n, and suppose a : (0,∞) → R+ and b : (0,∞) → R are such that

√
a and b are Lipschitz

on compact subsets of (0,∞). Suppose the largest jump in Xn tends to 0 as n → ∞. Also assume that for

each R > 0, as n → ∞
sup
|x|≤R

|µn(x)− b(x)|, |σ2
n(x)− a(x)| → 0.

Suppose Xn(0) → x ∈ R and let τRn = inf{t : Xn(t) /∈ (1/R,R) or Xn(t−) /∈ (1/R,R)}. Then for all but

countably many R, Xn(·∧τRn ) converges in distribution to X(·∧τR), where X solves the initial value problem

x0 = x and dx = b(x)dt+
√

a(x)dB

and τR = inf{t : X(t) /∈ (1/R,R)}.
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