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ABSTRACT 

We want to show extra-dimensions corrections for Fermionic Casimir Effect. Firstly, we determined quantization 
fermion field in Three dimensional Box. Then we calculated the Casimir energy for massless fermionic field confined 
inside a three-dimensional rectangular box with one compact extra-dimension. We use the MIT bag model boundary 
condition for the confinement and M4 × S1 as the background spacetime. We use the direct mode summation method 
along with the Abel-Plana formula to compute the Casimir energy. We show analytically the extra-dimension cor- 
rections to the Fermionic Casimir effect to forward a new method of exploring the existence of the extra dimensions of 
the universe. 
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1. Introduction 

Casimir effects, first discovered in 1948 [1], are mani- 
festation of the zero-point energies of the quantum fields 
and have played an important role on a variety of fields 
of physics. It discovered by Hendrick Casimir. He showed 
that zero-point fluctuations in electromagnetic fields gave 
rise to an attractive force between parallel, perfectly con- 
ducting plates. Since spacetimes with extra dimensions 
are fundamental in most of theories of high energy phys- 
ics, there have been intensive activities in investigating 
the Casimir effect in spacetime with extra dimensions. 
The case of a scalar field and electromagnetic field with 
various boundary conditions has been studied at either 
zero or finite temperature, for different extra-dimensional 
spacetimes such as Kaluza-Klein spacetime and Randall- 
Sundrum spacetime [2-3]. For fermionic field, there has 
been calculated Casimir energy in three-dimensional box 
[4]. There also has been calculated Casimir energy be- 
tween parallel plates with compact dimensions [5]. Then, 
in this paper we investigate the extra-dimension correc- 
tion to fermionic Casimir energy in three-dimensional box 
to explore the existence of extra-dimensions of our uni- 
verse. 

This article is organized as follows: In Section 2 we 
present the solution to the Dirac equation in 5D subject 
to the MIT bag model boundary condition in all the sur- 

faces. Then we compute the Casimir energy by perform- 
ing a direct sum over all modes of the field using the 
Abel-Plana summation formula. As we shall show, there 
will be no need for any analytic continuation techniques 
in this case. There will be influenced from extra dimen- 
sion on the nature of Casimir energy between the con-
figuration boundary that confine the field in the space- 
times with extra dimensions. 

2. The Dirac Field 5D Confined in 
Three-Dimensional Cube 

We consider a quantum fermionic field  on (3 + 1 + 
1)-dimensional spacetimes with 
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where R is the size of extra dimension. The field Ψ sat- 
isfy 5D Dirac equation 

              (3)     

using the chiral representation of Dirac matrices  
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with i  [6]. The positive energy solution of the 5D 
Dirac equation can be written respectively as 
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Then we have 
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The MIT bag model boundary condition is usually said 
to imply that there is no flux of fermions through the 
boundary. The prevalent form of the MIT bag model 
boundary condition is as follows: 

   
Boundary

0ˆi .1 xn            (8) 

This boundary condition for our special case becomes 
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where
 1 2 3  

denote the lengths of the sides of the 
box. Subtituting Equations (6) and (7) into Equation (9) 
we obtain, for example, the following two equation for 

1 1 2x a  surface:  

   

    

1 1

1 1

1 1 i1

1 2 2 3 31 1 1 1

i1

1 e

i
1

e

i

i

k
n

k x
n

xn R

m E

k kk n R

m E m E m E

m E

 


    











 
 

 
  




 
 

  



 



σ k

 (10) 

for 1 1 2x a ,
 
we get 
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and for 1 1 2x a 


, we get 
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Comparing (11) with (12), we find that in order to 

have nontrivial solutions for  1
n

1 1 1cotk k a m
0m 

1 ,n  , one requires k1 
to satisfy a transcendental equation  

                (13) 

by setting
  

for massless Dirac field, the
 
quantiza- 

tion condition Equation (13) yields 
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3. Casimir Fermionic Energy in 
Three-Dimensional Cube at M4 × S1 

From this point, we concentrate on the massless case  

with 1 2 3a a a a  

 

, for simplicity. By using the se- 
cond quantized form of Dirac field, the vacuum expecta- 
tion value of the free Hamiltonian can be expressed in 
the form 
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where summation index runs over the spin states and 
subscripts FV stands for free vacuum. In the presence of 
the boundaries, all of components of the momentum are 
subjected to quantization condition Equation (14). There- 
fore the integrals turn into summations: 
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where EBV denotes the vacuum energy in the presence of 
the boundaries. Obviously, in both situations the vacuum 
energy is divergent. However, the Casimir energy, which 
is the difference between these two quantities, is usually 

expected to be finite. One usually needs to utilize a regu- 
lation prescription to give a physical meaning to such a 
difference. In this paper we choose a modified form of 
the Abel-Plana formula, which is useful for the summa-  
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tion over half-integer numbers 
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where F(z) is assumed to be an analytic function in the 
right half-plane. The first term is the main term of turning 
a sum into an integral. The second term is called branch- 

cut term. Since we have a four sum over for Equation 
(16), we need to apply the Abel-Plana formula four times. 
The details are given in the Appendix. The final result is 
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2 2 2πL R with . It is extremely important to note that 

the only divergent quantity in Equation (18) is the first 
term, which is precisely the free vacuum energy FV  
and is supposed to be subtracted from 

E

BV  in order to 
obtain the Casimir energy. Second, fourth, and fifth term 
related to extra dimension corrections. 

E
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As a check on our procedure we have computed the 
Casimir energy for a fermionic field between two parallel 
plates in M S , separated by a distance a, and ex- 
tradimensional size R, we obtain 
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Figure 1. Fermionic Casimir energy with and without a compact dimension as a function of the plates separation. 
 

Figure 1 depicts the dependence of the Fermionic
 
Ca- 

simir energy in a Three-dimensional box on a radius of 
extra dimension and the size of the box. It is showed that 

corrections’ factors increase proportional to the size of 
extra dimensions. For extra dimension correction, we 
deduce from Equation (20) that 
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If there are no extra dimension, then the term αm2 

vanishes. Then casimir energy will become as be shown 
by [4]. 

4. Conclusion 

In this paper, we have investigated the extra dimensional 
corrections for Casimir energy in a three-dimensional 
box in M S  due to the vacuum fluctuations of mass- 
less fermionic field with MIT bag boundary conditions. 
The Casimir energy is computed using generalized Abel- 
Plana summation formula. The most important result we 
obtain in this letter is that Fermionic Casimir energy de- 
pends on the size of extra dimensions. 
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Appendix: Abel-Plana Formula in 
Calculating the Casimir Energy 

In this appendix we present the details of the calculations 
leading to our main expression for the casimir energy of 
a massless fermionic field confined inside cube with one 
extra dimension via MIT bag model boundary condition. 
In order to apply the Abel-Plana formula to four sum in 
Equation (16), we first define 
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The branch-cut term can be calculated using the follow- 
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By using Equations (17) and (A2), Equation (16) turns 
into 
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The first term is infinite and we have to use the Abel-Plana formula again for the first term. We obtain 
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Again the first term is infinite and we must apply the Abel-Plana formula to obtain 
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Note that all of branch cut terms is finite. On other 

hand the free vacuum energy is 

 

Making appropriate changes of variables, we obtain 
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Therefore when we compute the Casimir energy these 
two terms precisely cancel each other. That is, 
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here we explain the details of the calculation of the last 
term and then outline the calculation for remaining terms. 
We expand the denominator as follows: 
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The last term turn into 
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by using the identity 
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then we have 
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In order to compute the second term of Equation (A8) we first interchange the order of integrations to obtain 
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where  3 1 2n m 22 2 2Y k  . Now using Equations (A9) and (A11) we obtain 
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Going through this same procedure, we can compute the first branch-cut term in Equation (A8) as follows: 
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Finally, we arrive at 
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