
REVIEW
published: 18 March 2019

doi: 10.3389/fimmu.2019.00440

Frontiers in Immunology | www.frontiersin.org 1 March 2019 | Volume 10 | Article 440

Edited by:

Gestur Vidarsson,

Sanquin Research, Netherlands

Reviewed by:

Hillary Anne Vanderven,

James Cook University, Australia

Guido Ferrari,

Duke University, United States

*Correspondence:

Galit Alter

gatler@mgh.harvard.edu

Specialty section:

This article was submitted to

Viral Immunology,

a section of the journal

Frontiers in Immunology

Received: 13 December 2018

Accepted: 19 February 2019

Published: 18 March 2019

Citation:

Boudreau CM and Alter G (2019)

Extra-Neutralizing FcR-Mediated

Antibody Functions for a Universal

Influenza Vaccine.

Front. Immunol. 10:440.

doi: 10.3389/fimmu.2019.00440

Extra-Neutralizing FcR-Mediated
Antibody Functions for a Universal
Influenza Vaccine
Carolyn M. Boudreau 1,2 and Galit Alter 1*

1 Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, United States, 2Harvard Ph.D. Program in Virology, Division of

Medical Sciences, Harvard University, Boston, MA, United States

While neutralizing antibody titers measured by hemagglutination inhibition have been

proposed as a correlate of protection following influenza vaccination, neutralization alone

is a modest predictor of protection against seasonal influenza. Instead, emerging data

point to a critical role for additional extra-neutralizing functions of antibodies in protection

from infection. Specifically, beyond binding and neutralization, antibodies mediate a

variety of additional immune functions via their ability to recruit and deploy innate

immune effector function. Along these lines, antibody-dependent cellular cytotoxicity,

antibody-mediated macrophage phagocytosis and activation, antibody-driven neutrophil

activation, antibody-dependent complement deposition, and non-classical Fc-receptor

antibody trafficking have all been implicated in protection from influenza infection.

However, the precise mechanism(s) by which the immune system actively tunes antibody

functionality to drive protective immunity has been poorly characterized. Here we

review the data related to Fc-effector functional protection from influenza and discuss

prospects to leverage this humoral immune activity for the development of a universal

influenza vaccine.
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INTRODUCTION

Influenza viruses are enveloped negative-strand RNA viruses with segmented genomes that can
infect a variety of birds and mammals, including humans (1). Seasonal influenza affects 10–20% of
the world’s population per year (2), which is estimated to cost $4.6 billion yearly for hospitalizations,
doctor’s visits, and medications in the United States alone (3). Additionally, influenza causes U.S.
employees to miss approximately 17 million workdays due to flu, at an estimated cost of $7 billion
a year in sick days and lost productivity (3). Increased infection and mortality occurred during four
pandemics in the 20th and 21st centuries, in 1918, 1957, 1968, and 2009 (4), and could occur again if
a new strain, such as avian influenzas H5N1 or H7N9, begins to circulate in the human population.

To address this looming threat, the National Institute of Allergy and Infectious Diseases
(NIAID) has named the development of a universal influenza vaccine, defined as one that provides
protection against symptomatic disease from ≥75% of influenza A strains, as one of its research
priorities (5). A key component of the strategic plan is the initial characterization of the correlates
of immunity against influenza infection and disease (6). While neutralization has been widely
considered the major protective correlate of immunity, hemagglutinination-inhibiting neutralizing
antibodies alone have been only modestly linked to protection from seasonal influenza infection,
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suggesting the involvement of extra-neutralizing antibody
functions (7–10). Moreover, currently licensed seasonal influenza
vaccines provide only moderate (10–60%) protection against
specific strains of seasonal influenza, and little to no protection
from emerging pandemic influenza (11). This low efficacy is
caused by subtype and strain variability of the two major viral
antigens, hemagglutinin (HA) and neuraminidase (NA), as well
as by antigenic drift (12). All the available seasonal influenza
vaccines, including the inactivated influenza vaccine (IIV),
adjuvanted IIV (FluAd), and live attenuated influenza vaccine
(LIAV), are given yearly due to limited response durability
and the need to induce de novo immunity to novel circulating
strains. The development of yearly influenza vaccines relies on
predictions published by the World Health Organization to
determine the strain composition for a given year (13). Due to the
long lead times in producing adequate quantities of the vaccine,
the strains must be selected roughly 6 months in advance of
vaccine administration (13), leading to population vulnerability
should a new strain enter circulation. When these predictions
did not match seasonal circulating strains, the effectiveness was
very low (11).

Beyond efforts to match sequences to ensure seasonal
immunity, the current surrogate of protection used to evaluate
influenza vaccines is the hemagglutination inhibition (HAI) assay
(14). HAI was identified as a predictor of protection from
infection in the initial study of egg-grown inactivated vaccine
efficacy conducted in 1943 by Salk et al. (15). HAI measures the
ability of an antibody or serum sample to prevent HA binding to
red blood cells, and is considered a proxy for neutralization by
receptor blockade (14). HAI, however, does not fully explain or
predict protection in humans (7–9). Indeed, individuals lacking
detectable HAI titers were found to be resistant to influenza
infection. Additionally, infection risk was clearly linked to age
independently of HAI titer (7). While HAI is considered a
classical surrogate of protection from influenza infection, it alone
is not sufficient to fully explain protection (10).

Humoral immune responses to influenza are largely directed
toward the hemagglutinin molecule (HA). HA, the primary viral
glycoprotein, exists as a trimer made of monomers composed
of two subunits, HA1, roughly corresponding to the “head” and
HA2, or “stem” (16) (Figure 1). Heterosubtypic or cross-reactive,
antibodies to the HA head region are relatively rare due to
heavy glycosylation and low sequence conservation in this region
(17, 18). Although highly variable, cross-reactive neutralizing
antibodies have been discovered against the HA head. However,
these antibodies bind primarily to specific conserved epitopes,
including the receptor binding domain (18). In contrast, while
several protective antibodies have been identified against the HA
stem, as it is more conserved, this region of the HA is poorly
immunogenic (17).

Heterosubtypic protective antibodies against influenza
primarily target either the receptor binding site on the HA head
or the more conserved HA stem (19). However, the stem region
is infrequently targeted compared to easily inducible strain-
specific HA head responses (20). Regardless of target, antibodies
against HA can mediate protection by neutralization or extra-
neutralizing functions, and both modalities may be exploited

FIGURE 1 | Schematic structure of influenza virion. Surface proteins

hemagglutinin (HA) and neuraminidase (NA) are present on the surface at an

approximate 3:1 ratio. The M2 ion channel also spans the envelope. M1 matrix

protein forms the inner capsid, which surrounds the segmented RNA genome

coated in nucleoprotein (NP).

by a single antibody specificity. Antibodies that target the head
largely provide protection by preventing the virus from entering
the target cell, and are thus referred to as neutralizing antibodies
(19). Non-neutralizing functional protective influenza-specific
antibodies have been documented against both the HA head and
stem (21, 22); however, their mechanisms of action are more
complex and varied (23). Although protective non-neutralizing
antibodies have been documented across the HA molecule,
these types of protective antibodies more dominantly target the
stem region of HA and can exhibit wide reactivity, capturing
most influenza A viruses (20). Because the neutralizing capacity
of antibodies is dose-dependent (21), in this review the term
non-neutralizing will be used to describe antibodies that
cannot efficiently neutralize virus at the concentration currently
being studied.

While the mechanism of protection mediated by neutralizing
antibodies is simple to comprehend, the extra-neutralizing
mechanisms of action of antibodies are less well-understood.
Emerging evidence has suggested that mechanisms including the
ability of antibodies to leverage the innate immune system may
contribute to protection against influenza (21–31). Critically,
antibodies possess two functional domains: the Fab, which
recognizes the antigenic epitope, and the Fc, which interacts with
Fc receptors (FcR) or complement to drive antibody-mediated
effector functions (Figure 2). Passive transfer studies using both
native IgG1 and FcR-binding ablated monoclonal antibodies
(mAbs) clearly illustrated the importance of Fc-mediated
functions in protection from infection (21, 22). Moreover,
follow-up studies using FcR and complement knockout mice
further clarified the critical nature of specific Fc-effector
functions in protection (21–23, 25–31). Antibody mediated
macrophage phagocytosis (28, 32), neutrophil production of
reactive oxygen species (28), cellular cytotoxicity (29), and
complement deposition (26, 27, 32, 33) have all been implicated
as protective functions leveraged by antibodies to drive
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FIGURE 2 | Antibody structure highlighting functions of both the Fab and Fc regions. Antibody image shows heavy chain in dark blue, light chain in light blue, and

glycan in magenta. Antibody structure: PDB 1IGY.

protection from infection and/or viral clearance. Strikingly,
even broadly neutralizing HA-stem targeting and pan-strain
HA-head targeting mAbs require FcRs to confer protection
(22). In this review, we explore the various mechanisms
beyond neutralization that are exploited by antibodies to confer
protection from influenza and promote viral clearance.

FCR-MEDIATED FUNCTIONS IN
INFLUENZA INFECTION AND
VACCINATION

Antibody-Dependent Cellular Cytotoxicity
(ADCC) by Natural Killer (NK) Cells
Antibody-dependent cellular cytotoxicity (ADCC) is largely
mediated by the interaction of pathogen or cell-surface bound
antibodies with Fc gamma receptor IIIa (FcγRIIIa) on NK cells in
humans (Figure 3D) and FcγRIV on monocytes, macrophages,
and neutrophils in mice (34, 35). FcγRIIIa is found on the
surface of human NK cells, monocytes, and macrophages (36).
Engagement of FcγRIIIa by antibody causes the release of
cytotoxic granules from NK cells, uptake by macrophages,
apoptosis of infected targets, and secretion of antiviral cytokines
and chemokines (37–40).

It was first reported in 1977 that human peripheral blood
leukocytes engaged in influenza-specific ADCC, and that this
effect correlated with antibody-mediated virus neutralization (41,
42). In vitro ADCC activity was linked to protection conferred
by antibodies in a mouse model of influenza infection (21, 43).
Mice that received an FcR-binding competent antibody capable
of inducing ADCC in vitro (measured by CD107a expression)
exhibited increased survival and decreased morbidity compared
to mice that received either an antibody unable to bind to
FcRs or a less potent ADCC-inducing antibody (21). Similarly,
macaque models of repeated influenza infection confirmed the
rapid development of ADCC following infection in animals
previously exposed to influenza. This highlighted the presence
of antibodies in the bronchoalveolar lavage (BAL) capable of
inducing activation of NK cells, which were associated with

increased viral clearance and decreased duration of disease (44).
Analogously, in human studies, ADCC titers were associated
with a reduction in disease burden in a seasonal influenza
experimental infection study (45). Additionally, older adults, who
had previously seen 2009 pandemic influenza-like viruses in the
past, and who retained long-lived ADCC, but not neutralizing,
antibody titers, were protected during the 2009 H1N1 pandemic
(46). This provided further evidence that ADCC-mediating
antibodies are associated with protection.

However, despite our emerging appreciation for the potential
role of ADCC in protection from infection and disease, the
seasonal influenza vaccine poorly induced broadly reactive
ADCC-inducing antibodies in healthy children and adults (45,
47–49). Conversely, the presence of cross-reactive HA-specific
antibodies that can activate NK cells in older adults suggests
that these functional antibodies accumulate over the course of
many years of repeated natural infection with influenza (48, 50).
Despite the delay in their evolution, the data clearly suggest
that these functional cross-reactive antibodies emerged naturally
over time. Moreover, some healthy American adults possessed
ADCC activity against avian H7N9 and H5N1 viruses that do not
circulate in North America but could cause pandemic outbreaks.
This indicated the natural evolution of cross-reactive functional
antibodies targeting diverse HA antigens in the absence of
exposure and/or other conserved viral proteins such as NP
and M2 (31, 51). Furthermore, broadly cross-reactive ADCC-
inducing antibodies were reported in individuals who lack
broadly neutralizing influenza-specific antibodies (46, 50–52),
suggesting that these functions emerge separately andmay evolve
under distinct stimuli. Collectively, the data clearly demonstrate
that broadly protective ADCC inducing antibodies are associated
with protection and evolve naturally over time.

HA head-specificmAbs induced less ADCC than stalk-specific
antibodies in an in vitro NK cell activation assay (21). This
difference in function has been suggested to be related to the
inability of the head-specific mAbs to efficiently multimerize
when bound to antigen on the cell surface and interact with
low-affinity FcRs to induce functional responses (21). A recent
study suggested an alternative explanation in experiments using
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FIGURE 3 | Known FcR-dependent innate immune effector functions acting in

influenza infection. (A) Clearance of virions and infected cells by macrophage

phagocytosis. (B) Clearance of virions and infected cells by neutrophil

phagocytosis, and the release of cytokines and reactive oxygen species. (C)

Clearance of infected lung epithelial cells and activation of the adaptive

immune system by antibody interaction with C1Q. (D) Clearance of infected

lung epithelial cells by ADCC. (E) Neutralization of virus by FcRn-bound

HA-specific antibodies.

FLAG-tagged HA to direct FLAG-specific antibody to certain
regions of the HA molecule. The data from this study suggested
that two points of contact were required between infected and
effector cells for efficient ADCC activity (53). These direct
contacts are (1) between the mAb Fc and FcR and (2) between the
cell surface sialic acid and viral HA (53). However, the co-ligation
of FcR and viral protein has not been borne out by studies in other
infection or disease contexts, or in polyclonal pools of antibodies
directed against native HA.

An additional layer of complexity in dissecting non-
neutralizing antibody mediated mechanisms of protection in
vivo is the comparison of polyclonal vs. monoclonal mediated
antibody functions. Emerging data suggest that the level of
in vitro ADCC is influenced by the ratio of ADCC-inducing
to ADCC-inhibiting antibodies (22, 54). ADCC-inhibiting
antibodies, which can be neutralizing, were shown to compete
for binding sites on HA on the surface of viral particles and
infected cells (22, 54). While the delivery of single protective
ADCC-inducing mAbs demonstrated striking protection from
infection in vivo (21, 22), polyclonal pools of antibodies
exhibited a much more complex balance of epitopes targeted

and functional competition that collectively may contribute to
differential protection from infection during seasonal exposure.
While it is clear that functional antibodies play a vital role in
protection against influenza infection, experimental approaches
able to comprehensively dissect the nature of polyclonal antibody
interactions are urgently needed to further define the nature of
protective antibody activity and guide vaccine design.

Antibody-Dependent Macrophage
Phagocytosis and Activation
ADCC-inducing antibodies, as well as the direct cytopathic
effects of the virus, drive infected cell apoptosis (55). These
infected apoptosing cells are then cleared through phagocytosis
to maintain tissue homeostasis (56). Post-infection, macrophages
are rapidly recruited to the lung and are present in BAL, airway,
and alveoli to support the rapid clearance of infected and/or
dying cells (57). While the supernatant of influenza-infected
cells can stimulate monocyte phagocytosis independently of
antibody involvement (57), antibodies contribute to accelerated
clearance of viral particles and infected cells through interactions
with FcγRIa and FcγRIIa on immune cells (58). Antibody
mediated viral phagocytosis, resulting in viral degradation, was
linked to decreased spread and severity of infection (58). While
this mechanism was not directly associated with prevention of
infection, it was linked to reduced severity of symptoms and viral
shedding, and thus attenuating disease in humans.

Antibody-dependent cellular phagocytosis (ADCP)
activity (Figure 3A) in healthy human serum, mediated by
monocytes/macrophages, was shown to correlate with HAI titer
both for circulating and non-circulating strains of influenza
(58). Interestingly, ADCP activity was still detectable in diluted
serum samples, even at dilutions where neutralization was no
long detectable (58). This indicated that phagocytic antibodies
may mediate viral clearance even at very low levels, and thus
could still provide protection or lessen the severity of disease.
Along these lines, non-neutralizing protective mAbs in mice
required alveolar macrophages to provide protection. This
protection was partially dependent on the induction of a
robust inflammatory response in the lung as shown by tissue
histology and increased cytokine/chemokine production, and
was partially through direct phagocytosis (30). Additionally,
broadly neutralizing HA-specific mAbs also exhibited enhanced
protection in the presence of alveolar macrophages (30). This
macrophage-mediated protection was dependent on interactions
of the antibody with FcRs on the macrophage surface, as
evidenced by experiments using FcR-binding null antibodies
that failed to provide protection from infection (30). Together,
these studies indicate that FcR-mediated macrophage activation
reduces disease burden and protects mice from lethal influenza,
and that healthy human serum has influenza-specific antibodies
capable of inducing this function.

Antibody-Dependent Neutrophil
Phagocytosis and Activation
Neutrophils are among the first cell populations recruited to the
site of infection and/or inflammation, and have been implicated
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in the protective response to influenza (59). Neutrophils are
involved in the phagocytic clearance of both virions and infected
cells, release immunostimulatory cytokines and chemokines
to recruit additional immune cells, and form neutrophil
extracellular traps (NETs) to capture and inactivate the virus (60).
During influenza infection, neutrophils generate the chemokine
CXCL12, required for efficient recruitment of cytotoxic CD8+

T cells to the lung (61). However, beyond this indirect anti-
viral role, human neutrophils express high levels of FcγRIa/b/c,
FcγRIIa, and FcγRIIIb after activation, enabling them to respond
rapidly and efficiently to antibody coated targets (36). In addition,
neutrophils constitutively express the FcαRI, an activating
receptor that binds IgA and activates cytotoxic and phagocytic
responses via a shared FcR γ-chain (62).

Like macrophages, neutrophils are intimately involved in
the phagocytic clearance of infected and apoptotic cells in
the lung during influenza infection (Figure 3B) (57). Impaired
neutrophil phagocytosis through depletion of neutrophils was
linked to decreased survival in a mouse model of influenza
infection (57, 63). Following phagocytosis, neutrophils form
phagolysosomes containing reactive oxygen species (ROS) to
eliminate the virus (60). Both HA head- and stalk-specific mAbs
induced the production of ROS by neutrophils in vitro in an FcR
dependent manner, shown following Fc-blockade resulting in
reduced ROS production (28). Influenza-specific class-switched
IgA antibodies were also implicated in neutrophil activation and
ROS production (28). Despite the ability of some antibodies
to recruit neutrophil activity in vitro, the critical nature of
neutrophils in protection from infection remains controversial.
Some animal studies using neutrophil depletions finding no
significant roles for these cells in protectionmediated by passively
transferred non-neutralizing mAbs (30), arguing that alveolar
macrophages may play a more dominant role in protection. In
other studies, neutrophil recruitment and function was linked to
protection from infection and reduction in disease (63, 64). Thus,
additional studies will be required to ultimately define the role of
neutrophils in influenza infection.

Antibody-Dependent Complement
Activation
The complement system can recognize and eliminate viruses
directly or can contribute to viral clearance via antibodymediated
activation (Figure 3C) (33). The requirement for complement in
protection from lethal influenza infection in mice was established
in 1978 and has been more recently replicated on novel influenza
strains (26, 65). Influenza virions were shown to be susceptible
to both classical and alternative complement mediated lysis in
vitro only when opsonized by antibodies (27). However, the
level of susceptibility varied by strain. Further supporting the
involvement of antibody-mediated complement elimination in
the influenza immune response, synergy between the classical
and alternative complement pathways was shown to provide
protection against pandemic H1N1 strains in mice and the
cooperativity of both pathways is associated with enhanced viral
clearance (27). In these experiments, C3 knockoutmice (deficient
in all complement pathways because C3 is the central point

of the cascade), C4 knockout mice (deficient in classical and
lectin pathways), and complement factor B (FB) knockout mice
(deficient in alternative pathway) were infected with influenza
and disease progression was compared. While both C4- and FB-
deficient mice showed increasedmortality, neither pathway alone
nor the additive mortality approached the level of mortality in
C3 knockout mice, who have both pathways of complement
ablated. This indicated that the two complement pathways work
synergistically to clear infection (27).

Beyond antibody driven virion elimination, the complement
protein C3 was also shown to promote higher titers of influenza-
specific IgG antibodies. C3 also improved CD4+ and CD8+ T
cell responses in the mouse models of influenza infection (33).
Vaccination was administered to C3 knockout mice, resulting in
dampened antibody titers leading to increased mortality when
compared to wild type mice. The role of complement in driving
immunity was proposed to be effectuated by the formation of
pro-inflammatory complement degradation products C5a and
C3a, which can serve a dual role of directly recruiting T cells
and enhancing T cell priming by recruiting and stimulating
antigen-presenting cells to the site of infection (33).

In human serum, neutralization and complement-dependent
lysis activities by mAbs have not always correlated, although
neutralizing antibodies can induce complement-dependent lysis
(66). Both IgG1 and IgM antibodies have been implicated in the
activation of the complement system in influenza infection (27).
Complement-stimulating antibodies correlated with protection
from infection in children in a serosurveillance study of
seasonal influenza (50), which was potentially attributable to
their generally higher cross-reactivity compared to neutralizing
antibodies (31). Importantly, if complement-inducing antibodies
do in fact generally possess higher cross-reactivity when
compared to neutralizing antibodies, complement lysis of
virus is an attractive strategy for limiting initial infection
with influenza by otherwise non-protective non-neutralizing
antibodies, broadening the epitopes that can be targeted
by vaccination.

Additional Functions Via Non-classical FcR
The neonatal Fc receptor, FcRn, is involved in transcytosing IgG
across the placenta during fetal development, across the vascular
endothelium to increase extravascular antibody levels, and across
the mucosal epithelium to provide humoral defense within the
mucosa (67). Additionally, FcRn has a non-canonical role in
antiviral immunity against influenza. FcRn was implicated in
facilitating antibody-mediated neutralization of influenza virions
by HA head-specific antibodies that bind to the virus at acid pH
(Figure 3E) (68). These unusual head-specific antibodies were
then shown to neutralize the virus by preventing trafficking of
the viral ribonucleoproteins into the nucleus for replication (68).

Systems level analyses aimed at defining biomarkers of
productive immunity to flu vaccination identified pre-existing
antibody titers as a negative predictor of response to vaccination
(69), thought to act by capturing, destroying, and preventing
response to vaccine antigens (historically called original antigenic
sin) (70). However, recent studies suggested that pre-existing
antibodies shape the immune response to influenza vaccination
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in ways that could be utilized to improve protection. Individuals
with the most influenza-specific antibody affinity maturation had
significant changes in antibody glycosylation, namely increased
sialic acid (71). A mechanism was proposed in which pre-
existing cross-reactive influenza antibodies, which opsonize
incoming vaccine antigen, drove the delivery of immune
complexes to germinal centers of lymph nodes by subcapsular
sinus macrophages or non-cognate B cells, preferentially when
antibodies were sialylated (72, 73). This delivery relied on
interaction of immune complexes with the non-canonical IgG Fc-
receptor CD23 to capture antigen and move it to germinal center
(71). This delivery of antigen to lymph nodes was speculated to
increase and extend the contact between B cells and antigens
of interest to drive affinity maturation, which can increase
both the affinity and potential evolution of neutralization (74,
75). Identified broadly cross-reactive neutralizing mAbs specific
to influenza HA were shown to be highly affinity matured,
indicating that this pathwaymay be essential for the development
of broad humoral immunity (76).

In addition to trapping and delivery, these sialylated Fcs
were also shown to increase B cell inhibitory FcR, FcγRIIb,
expression, resulting in elevated thresholds required to activate B
cells during development in the germinal center (77). With these
elevated activation thresholds, B cells that require higher affinity
interactions or an ability to capture more antigen to become
fully activated within the germinal center may then experience
more aggressive somatic hypermutation and consequent affinity
maturation. Sialylated immune complexes bind to non-cognate
B cells at high levels in the presence of CD23 (77) to increase
affinity maturation. This may offer a novel approach for the
design of next generation vaccines able to leverage the potent
immunomodulatory activity of the Fc-domain of antibodies.

Together, these data suggest that the quality of the antibody
response may not only influence direct antiviral activity, but
may also be critical in influencing the response to vaccination.
Seasonal influenza infection in humans has been shown to
induce moderate antibody cross-reactivity (78), and these pre-
existing cross-reactive antibodies may be molding the affinity
maturation of new antibodies following vaccination through
mechanisms that increase somatic hypermutation, including
increased antigen retention within germinal centers (71).
Harnessing, increasing, and improving this pathway presents a
novel method of improving the breadth and binding affinity of
antibodies following influenza vaccination.

CONTROL OF FCR-MEDIATED
FUNCTIONS BY ANTIBODY PROPERTIES

Subclass and Isotype Variation
The functional potency of an antibody is significantly affected by
the antibody’s subclass, which determines the binding affinity of
the antibody for FcRs (79). Antibody function is determined at
the time of B cell programming via class switch recombination
(IgA, IgM, IgG, IgD, or IgE; Figure 4). Because each isotype
can interact with a distinct family of FcRs present on innate
immune cells within disparate compartments, each isotype has

the capacity to drive unique antibody effector functions. Beyond
the isotypes, there is additional capacity to select for subclasses
of particular antibody isotypes. In humans, four IgG subclasses
can be additionally selected during an immune response, each
of which have further differential affinities for individual FcRs
(36). IgG1 antibodies are the most prevalent at approximately
65% of total serum IgG, with the other three subclasses in
decreasing fractions in numerical order (80). Because individual
subclasses have different affinities for FcRs (36), subclasses
drive different antibody effector functions. IgG1 and IgG3 are
considered to be the most functional subclasses due to their
enhanced ability to bind to FcRs, while IgG2 and IgG4 have
lower affinities for FcRs (81, 82). However, IgG3 has a shorter
half-life, related to decreased binding affinity to FcRn and due
to a proteolytically vulnerable hinge, although multiple allotypes
of IgG3 with longer half-lives have been reported among non-
Caucasian populations (83).

The relative magnitude and distribution of IgG subclass
responses vary between acute influenza infection and
vaccination. Vaccination increased IgG3 production when
compared to acute infection in adults and children who were
previously exposed to natural influenza but not previously
vaccinated (84). IgG3 levels following seasonal influenza
vaccination correlated with cytokine production by peripheral
blood mononuclear cells (PBMCs) stimulated ex vivo with
infectious influenza virus, suggesting that enhanced IgG3
responses were a marker of a more effective response to
vaccination (80). While IgG3 is widely considered to be the most
functional subclass due to its affinity for FcRs, the specific effects
of IgG3 in protection from influenza remain largely unclear.

While IgG is present at higher levels in the blood, IgA
antibodies are produced at considerable levels in mucosal tissues
(85). Secreted IgA represents ∼70% of the body’s total Ig
production and, in mucosa, is primarily dimeric, with only small
fractions of monomer, trimer, and tetrameric IgA in the mucosa.
In serum, IgA is primarily monomeric (86). Mucosal IgA can
prevent influenza infection in the nasal and upper respiratory
mucosa with higher heterologous neutralization than IgG with
the same Fab (85, 87–89). The protective activity of IgAs was
linked to both direct viral neutralization as well as viral capture
and cross-linking to the mucosal surface, preventing cell entry in
the absence of classical neutralization (85). However, beyond its
direct antiviral effects, IgA may also recruit the indirect activity
of the innate immune system, via the Fc-receptor for IgA, FcαRI,
which is constitutively expressed on neutrophils and increases
in expression as neutrophils mature (62). Stimulation of this
receptor by influenza-specific IgA was linked to increased ROS
production (28), although the precise effect of this activation
during influenza infection is unclear.

Antibody Fc Glycosylation
Beyond isotype and subclass selection, the humoral immune
response additionally modifies antibodies via post-translational
changes in Fc-glycosylation to further tune antibody affinity for
FcRs, and thus to modulate antibody effector function (90). Each
IgG molecule contains two N-glycosylation sites, at asparagine
297 (N297) on each heavy chain (Figure 4). The core Fc glycan
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FIGURE 4 | Structures of antibody isotypes and subclasses. Fc domains are in color while Fab domains are in gray. Stars indicate N-linked Fc glycans. IgA isotypes

are shown as both monomers (predominant in serum) and dimers (predominant at mucosal surfaces).

structure is biantennary, with a structure consisting of two-
branched linked N-acetylglucosamine (GlcNAc), a mannose,
followed by 2 branchedmannoses, each followed by an additional
GlcNAc on each mannose (Figure 5). Three additional sugars
can then be added at variable levels, including a core fucose
on the first GlcNAc, galactoses that can be added to each
terminal GlcNAc, sialic acids that can subsequently be added
to the each galactose, and finally the addition of a bisecting
GlcNAc to the core mannose (Figure 5) (91). Given the variable
addition of each of the 4 additional sugars, a total of 36
distinct glycan structures can be added to any given IgG (92).
Importantly, while glycans do not interact directly with FcRs,
they influence the flexibility and structure of the antibody Fc,
thereby changing interactions with FcRs (93). Complete removal
of the Fc glycan ablates low affinity FcR binding, with only
high affinity FcγRI retaining measurable binding ability (94).
Additionally, IgA and IgM antibodies are also Fc-glycosylated
(Figure 4), although it is unclear how this glycosylation changes
affinity for FcRs.

Across diseases, dramatic shifts have been identified in IgG
glycosylation, such as a significant increase in agalactosylated
antibodies in chronic inflammatory diseases such as autoimmune
flares and HIV infection (95, 96). In the monoclonal therapeutics
community, the systematic removal of specific components
of the Fc N-glycan have highlighted the critical role of
individual sugars in shaping antibody effector function (97).
Specifically, the presence of sialylation drives anti-inflammatory
activity in vivo (98, 99). The removal of fucose either
directly or indirectly, through the upregulation of the bisecting
GlcNAc, results in increased antibody affinity for FcγRIIIa
and consequently enhanced ADCC (90, 100). Conversely,
agalactosylated antibodies decrease ADCC and drive pro-
inflammatory responses (90).

Beyond our emerging appreciation for a role of sialylated
antibodies in vaccine induced affinity maturation (71, 101)
described above, influenza vaccination is known to alter
Fc glycosylation (102, 103). Soon after immunization,

influenza-specific antibodies rose rapidly, and had increased
galactosylation, increased sialylation, and reduced bisection
compared to pre-existing influenza-specific antibodies
(102, 103). However, these glycan shifts normalized after a
month, suggesting that these transient changes in influenza-
specific antibody glycan profiles may reflect differences in
glycosylation by plasmablasts, not plasma cells. Even in the
absence of vaccination, HA-specific antibodies exhibited unique
glycan profiles compared to HIV-specific antibodies from the
same individuals. Specifically, HA-specific antibodies were more
highly galactosylated and sialylated and contained reduced
b-GlcNAc (102), highlighting the unique glycan profiles that
are naturally selected on influenza-specific antibodies. Whether
individuals who control the virus more effectively tune antibody
glycosylation in a specific or selective manner is unclear, but
represents a simple strategy to modulate antibody function.

OPTIMIZING ANTIBODY RESPONSES
THROUGH VACCINATION

Adjuvants
One of the greatest hurdles of influenza vaccination is
overcoming response anergy caused by previous exposures to
influenza in the aging immune system. An attractive strategy
to overcome this anergy and generate protective humoral
immunity, particularly for novel strains or universal vaccine
formulations, is the use of adjuvants to enhance and tune the
response to vaccination. There are currently four adjuvants
licensed for use in influenza vaccines in the United States
and/or in Europe: aluminum salts (alum), MF59, AS03, and
virosomes (104). In addition to adsorbing antigens and creating
multivalent lattices of antigens, alum activates the inflammasome
promoting more effective responses upon antigen-presenting cell
delivery (105). Alum induces primarily a Th2-driven response
(104). However, Th1 responses are likely to be more critical
in the clearance of intracellular pathogens, including influenza
(105). Oil-in-water emulsions, such as MF59 and AS03, are
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FIGURE 5 | Structure of antibody glycan. Antibody image shows heavy chain in dark blue, light chain in light blue, and glycan in magenta. In glycan schematic, solid

lines indicate core glycan consisting of two-branched linked N-acetylglucosamine (GlcNAc; blue rectangle), a mannose (green circle), followed by 2 branched

mannoses, each followed by an additional GlcNAc on each mannose. Dotted lines indicate additional sugars that can be added at variable levels, including a core

fucose on the first GlcNAc (red triangle), galactoses (yellow circle) to each terminal GlcNAc, sialic acids (pink diamond) to the each galactose, and a bisecting GlcNAc

to the core mannose. Antibody structure: PDB 1IGY.

predicted to work through a more balanced Th1/Th2 response,
enhancing both T cell and antibody responses via delivery to
antigen presenting cells as well as through the recruitment
of specific innate immune cells to the site of injection (106).
Specifically, in an adjuvanted HIV vaccine trial in macaques,
MF59 increased recruitment of neutrophils, monocytes, and
MDCs to the site of injection and recruitment of neutrophils
to the draining lymph node (107). In the context of influenza
vaccination, MF59 increased the heterosubtypic, or broadly
reactive, antibody response and increased neutralizing antibody
responses to influenza (108, 109). Unfortunately, MF59 also
shifted the response even further toward the immunodominant
HA head and away from the HA stem (110). Yet, MF59
increased the affinity of antibodies developed following both
seasonal and novel pandemic influenza vaccines, suggesting that
if skewed selectively to particular target antigenic sites, this
adjuvant could drive enhanced affinity maturation to the correct
sites of vulnerability (110). Virosomes or phospholipid vesicles,
have also been studied in the context of influenza HA and NA
vaccines, showing similar profiles to MF59 (104). The effects of
these adjuvants on FcR-mediated antibody functionality are only
beginning to be studied (107).

Other adjuvants are currently under investigation to
specifically and selectively enhance influenza specific immunity.
For example, liposomes provide unique scaffolds for antigen
delivery (105), and were shown to increase the humoral and
Th1 response, boosting neutralization, in mice following
influenza vaccination (104). Additionally, virus-like particles, or
nanoparticles, which deliver antigens in a multivalent manner,
similar to their native conformation, increased heterosubtypic
IgG2a neutralizing antibody titers in mice, the mouse analog

of IgG3, the most functional antibody subclass in humans
(111). Presentation of antigens in the form of a viral particle
may play an essential role in driving functional antibody
responses (112–114). Another type of adjuvant, ISCOMS
(antigen, cholesterol, phospholipid and saponin-defined
immunomodulatory complexes), created a balanced, protective
immune response based on strong MHC class I presentation in
trials with a pandemic influenza antigen (104). However, tests of
ISCOMS with cancer antigens showed that this adjuvant shifted
the response away from antibodies, toward CD4+ and CD8+
T cells, with limited changes seen to antibody responses (115).
Finally, Toll-like receptor (TLR) agonists, involved in early
pathogen sensing, are known to tune the inflammatory response
to tailor immunity in a pathogen specific manner (104). Several
TLR agonists were shown to increase influenza-specific antibody
titers following vaccination, however their effects on antibody-
mediated functions beyond neutralization are unexplored
(104, 116). Thus, while previous studies with these adjuvants
have primarily focused on neutralizing antibody responses,
additional insights on the specific effects of adjuvants on shaping
protective FcR activity will provide additional avenues to tune
and direct protective immunity against influenza infection.

Antigen Design and Glycosylation
In addition to efforts to promote more effective immune
stimulation through adjuvants, intense investigation has focused
on the development and design of unique antigens able to
selectively direct the immune response away from strain-specific
immunodominant sites to those that are more conserved (17).
These include the design of computationally enhanced globally
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relevant HA sequences, the design of mini-antigens and chimeric
antigens, and glycan-enhanced antigens.

Computationally optimized broadly reactive antigens
(COBRAs), designed based on computational modeling of
influenza strains to create mosaic antigens aimed at focusing
the immune response on the evolution of heterosubtypic
responses, had some success in eliciting broadly reactive HAI
titers that target both seasonal and pandemic strains of influenza
(117–120). In a recent study, COBRA H3s did not increase the
breadth of HAI reactivity by vaccine-induced antibodies across
a panel of strains. However, these COBRA H3s did increase
the phylogenetic diversity of neutralized strains (120), meaning
that the COBRA-induced responses altered which strains were
recognized and neutralized without increasing the total number
of strains recognized (120). These data suggest that COBRA
antigens can increase heterosubtypic responses to conserved
epitopes on the immunodominant head, but are unable to create
broadly reactive responses to the conserved HA stem.

Given the complexity of altering immunodominance using
whole HA molecules, additional efforts have aimed to direct
immunity against minimal antigenic regions associated with
broadly protective responses including the stem (121, 122) and
the receptor binding site (123). Although broadly protective
non-neutralizing responses can target the stem region of HA,
these responses are typically subdominant (124). HA stem-only
antigens or antigens with conserved stem domains but altered
HA heads have been developed (17). For example, a “headless”
HA vaccine tested in mice created a broadly protective non-
neutralizing immune response (125). Furthermore, chimeric HA
vaccines, which were used to immunize animals with “exotic”
chimeric molecules that coupled unusual heads to a single
stem region, have shown promise. Specifically, using heads that
have not circulated in the population, coupled to conserved
stems, this vaccine strategy drove robust focused stem-specific
protective immune responses and higher cross-reactive HA-
specific antibody titers, and are now in clinical trials (126, 127).

Seasonal influenza vaccines have been produced in eggs since
the introduction of yearly vaccination, and the manufacturing
techniques have remained largely unchanged for decades
(128). Emerging data and technical advances are increasing
the attractiveness of cell culture-based production strategies,
rather than egg-based production. Beyond issues related to
speed and cost of vaccine production across these platforms,
qualitative differences in antigens from egg-based vaccines
compared to circulating viruses may necessitate this shift.
HA is highly N-glycosylated in a host-cell dependent manner
(129–131). The glycosylation of egg-grown vaccine virus is
different than that of naturally infecting virus (132). Emerging
data points to the importance of glycosylation not only in
shaping antigen-exposure on the surface of the HA molecule,
such as masking of specific epitopes (131, 133), but also
in contributing to the antigenicity of mAb binding epitopes
(134–136). Differential HA glycosylation between egg- and cell
culture-grown virus impacted innate immune interactions with
the virus in the lung, including neutralization by surfactant
protein D (SP-D) (137) and binding to mannose-specific lectins
(138). Moreover, altered glycosylation was shown to change

both cellular and humoral response kinetics in vitro and
in vivo (131, 139). Vaccination of mice with de-glycosylated
HA led to decreased CD4+ T cell activation and cytokine
production, resulting in reduced HA-specific antibody titers and
HAI titers (131, 139). Studies of the antibody response using
differentially glycosylated (not de-glycosylated) HAs showed
that glycosylation alters the binding and neutralization of
monoclonal antibodies, but lacked further detail about the effects
of glycosylation on polyclonal antibody pools or on Fc-mediated
function (131, 139, 140).

Epidemiological studies in recent years investigating poor
vaccine protective efficacy have shown that antigen glycosylation
had a direct impact. In the 2016–2017 flu season, the
circulating H3N2 virus had a new glycosylation site compared
to previous seasons. However, the egg-adapted version of
the viral strain used to produce the vaccine lacked this
site through an amino acid mismatch in an antigenic site,
resulting in decreased vaccine effectiveness (134). Given that
glycosylation can strongly impact epitope antigenicity, a vital
mismatch at a site of neutralization sensitivity resulted in
the induction of non-protective immunity and rendered
the circulating virus invisible to vaccine induced immune
responses. Shaping glycosylation to produce representative
antigens is critical to achieving protective immune responses
to vaccination.

Additional Antigenic Targets
While the majority of the humoral immune response is directed
toward the immunodominant HA molecule, antibodies also
emerge against other targets including neuraminidase (NA),
nucleoprotein (NP), and Matrix-2 (M2) (Figure 1). Antibodies
targeting NA, while not neutralizing, can prevent viral exit
from infected cells to block subsequent rounds of infection
(12), and have been associated with seasonal protection (12,
141–143). However, NA-specific antibodies have also been
shown to drive ADCC (51, 144), suggesting that this less
immunodominant target is vulnerable to multiple modes of
antibody mediated targeting.

The highly conserved internal viral proteins NP and M2
have been shown to induce an immune response that is
also broadly reactive (145). NP-specific antibodies, which are
always non-neutralizing (146), mediated viral clearance through
FcRs and protection in mouse models of influenza infection
(143, 147). Similarly, non-neutralizing M2-specific antibodies
mediated ADCC and ADCP to clear infected cells and promoted
rapid viral clearance (141, 142). Thus, while current vaccination
strategies largely focus on the development of broadly reactive
immunity against HA, additional largely non-neutralizing
conserved antigens exist within influenza that may represent next
generation targets for protective universal immunity.

CONCLUSION

More than 4 decades of research has clearly illustrated the
importance of both direct neutralization and non-neutralizing
functional antibodies in protection against influenza infection
and disease. Because neutralizing and non-neutralizing antibody
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activities are not induced in a mutually exclusive manner,
vaccine strategies able to leverage both functions of antibodies
are likely to confer the greatest level of protection. However,
the precise innate immune effector functions to precise
sites of viral vulnerability on HA or other target antigens
remain to be determined. With emerging novel vaccine design
strategies, coupled to emerging immune modulatory adjuvants,
opportunities to drive universal protection are on the horizon.
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