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Abstract: We study models of “(extra)ordinary gauge mediation,” which consist of tak-

ing ordinary gauge mediation and extending the messenger superpotential to include all

renormalizable couplings consistent with SM gauge invariance and an R-symmetry. We

classify all such models and find that their phenomenology can differ significantly from

that of ordinary gauge mediation. Some highlights include: arbitrary modifications of the

squark/slepton mass relations, small µ and Higgsino NLSP’s, and the possibility of having

fewer than one effective messenger. We also show how these models lead naturally to ex-

tremely simple examples of direct gauge mediation, where SUSY and R-symmetry breaking

occur not in a hidden sector, but due to the dynamics of the messenger sector itself.
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1. Introduction

1.1 Motivation

The LHC is coming, and the question on everyone’s mind is: what will we see? One

reasonable guess is supersymmetry, probably still the most compelling candidate for physics

beyond the standard model. The minimal incarnation of SUSY is the MSSM, but this is

only an incomplete phenomenological framework. (For a nice review of the MSSM, see

e.g. [1].) Soft SUSY breaking in the MSSM introduces ∼ 100 new couplings in addition

to those of the standard model, and in their most generic form, these new couplings give

rise to serious flavor and CP problems. Thus, even if we discover the MSSM at the LHC,

we will still have the main theoretical challenge ahead of us: explaining the origin of the

MSSM parameters with an underlying model of SUSY breaking that is consistent with

flavor and CP.

Gauge mediation [2 – 11] (see also [12 – 15] for reviews, and many relevant references) is

a particularly attractive way of generating soft SUSY breaking in the MSSM. Not only does

it solve the flavor and CP problems, but it is also calculable, predictive, and phenomeno-

logically distinctive. Over the years, a great deal of work has been devoted to building

complete models of gauge mediation, spurred by theoretical progress in constructing calcu-

lable examples [16, 17] of dynamical SUSY breaking [18]. As a result, there are now many

viable models of gauge mediation, complete with detailed hidden sectors where SUSY is

broken dynamically through strong gauge dynamics.

The study of the low-energy phenomenology of gauge mediation has proceeded in con-

junction with these model-building efforts. Since the details of the hidden sector are often

phenomenologically irrelevant,1 people here have mostly relied on a simplified, incomplete

framework known as “ordinary gauge mediation” (OGM), where the hidden sector is pa-

rameterized by a singlet field X which is a spurion for SUSY breaking,

〈X〉 = X + θ2F, (1.1)

(We will use X to denote both the superfield and the vev of its lowest component.) OGM

also includes N vector-like pairs of messenger fields φi, φ̃i, transforming in the 5 ⊕ 5

representations under SU(5) ⊃ GSM.2 The messengers interact with X via Yukawa-like

couplings

W = λijXφiφ̃j (1.2)

where the sum on i, j = 1, . . . , N is implicit. (Gauge indices are suppressed here

and throughout.) Through (1.2) and the gauge interactions, the messengers communicate

SUSY breaking from the hidden sector to the MSSM. The result is an MSSM spectrum

with many distinctive features, some of which we will review later in this introduction.

1This is not always the case, as was recently pointed out in [19].
2This is the simplest matter content consistent with gauge coupling unification. Other representations

are also possible, including those that do not come in complete GUT multiplets [20], but we will not consider

these here.

– 2 –
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Given that much of the classic low-energy phenomenology of gauge mediation has been

derived using the framework of OGM, it is important to ask (especially in the LHC era): is

OGM truly representative of gauge mediation in general, or is it only one of many possible

gauge mediation phenomenologies? In particular, how do things change if we deform or

extend OGM in various directions?

In this paper, we would like to address these questions by studying a large family of

extensions of OGM, obtained by generalizing (1.2) to include all renormalizable, gauge

invariant couplings between the messengers and any number of singlet fields. Since these

models extend OGM into a wider parameter space, yet they are no less “ordinary” by any

sensible measure (i.e. they are renormalizable and are not forbidden by any symmetries

or experimental constraints), we will refer to them as models of “(extra)ordinary gauge

mediation” (EOGM). In the following sections, we will present an in-depth study of the

phenomenology of EOGM, and we will see that it can differ in interesting ways from that

of OGM.

1.2 The phenomenology of (extra)ordinary gauge mediation

Now let us describe our EOGM models and their phenomenology in more detail. We

start with the most general renormalizable, gauge invariant superpotential describing the

couplings between the messengers and any number of singlets Xk:

W = (λ
(k)
ij Xk +Mij)φiφ̃j = (λ

(k)
2ijXk +M2ij)ℓiℓ̃j + (λ

(k)
3ijXk +M3ij)qiq̃j (1.3)

where in the second equation of (1.3), we have decomposed φi, φ̃i into their SU(2) doublet

and SU(3) triplet components, ℓi, ℓ̃i and qi, q̃i, respectively. We emphasize that dou-

blet/triplet splitting in (1.3) is similar in spirit to the doublet/triplet splitting that already

happens in SUSY GUT embeddings of the MSSM (indeed they may very well have the

same origin), so there is really no reason not to consider the most general form of (1.3).

In fact, this model can be reduced to a model with only one singlet, through the

following trivial observation. Through a unitary transformation, we can always rotate the

singlet fields so that only one of them, call it X, acquires a SUSY-breaking F-component

vev as in (1.1). Then the remaining singlets only have scalar component vevs, 〈Xk〉 = Xk,

and since we are only interested in the tree-level messenger mass matrix, we are free to

substitute these into the superpotential (1.3). This reduces it to the form

W = (λijX +mij)φiφ̃j = (λ2ijX +m2ij)ℓiℓ̃j + (λ3ijX +m3ij)qiq̃j (1.4)

In other words, we have shown that the most general EOGM model is simply OGM

plus arbitrary supersymmetric mass terms for the messengers.

Surprisingly, while there are many examples in the literature of OGM deformed by mass

terms (including many of the original models of gauge mediation [4 – 8], some more modern

models [21 – 25] , and most recently many of the models based on [26]), the phenomenology

– 3 –
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of these models has not been explored in any systematic way.3 In this paper, we will take

the first steps in this direction.

To simplify our analysis, and because it has some distinctive and desirable conse-

quences, we will limit our study to models possessing a non-trivial U(1)R symmetry, which

is only broken spontaneously by the vev of X (1.1).4 We will show that in a general EOGM

model with an R-symmetry, the soft masses at the messenger scale are given by a simple

generalization of the usual OGM formulae

Mr =
αr

4π
ΛG, m2

ef
= 2

3∑

r=1

C ef
r
(αr

4π

)2
Λ2

GN
−1
eff,r (1.5)

Here ΛG ∼ F/X sets the overall scale of the soft masses, Neff,2 andNeff,3 can be thought

of as “effective” doublet and triplet messenger numbers, and N−1
eff,1 ≡ 3

5N
−1
eff,2 + 2

5N
−1
eff,3.

5 In

general, Neff,2 and Neff,3 depend on all the doublet and triplet parameters of the model,

respectively:

Neff,r ≡ Neff(X,mr, λr) (r = 2, 3) (1.6)

and they take values between 0 and N inclusive. (The full formula for Neff can be

found in section 2.) Note that the special case of OGM corresponds to Neff,2 = Neff,3 = N

— the messenger numbers in this case are equal and are independent of all the couplings.

The effective messenger numbers play an important role in determining the low-energy

phenomenology of EOGM. In particular, (1.6) implies that doublet/triplet splitting can

lead to different effective messenger numbers for doublets and triplets (unlike in OGM),

and this in turn can have a large, qualitative effect on the spectrum. Some specific ways

in which EOGM can deviate from OGM include:

1. Modified relations between squark and slepton masses. Typically, in gauge mediation,

the squark mass-squareds are always much larger than the slepton mass-squareds,

since α3 ≫ α2, α1. However, by making Neff,3 ≫ Neff,2, the sfermion masses can be

squashed together, as can be seen from (1.5).

2. The possibility for small µ and Higgsino NLSPs in a large portion of parameter space.

A more subtle consequence of having different doublet and triplet messenger numbers

is that this can lead to small µ through a cancellation in the running of m2
Hu

[27, 28].

Aside from its possible implications for the little hierarchy problem, small µ in gauge

mediation is interesting because it implies that the NLSP is a Higgsino-like neutralino.

3Perhaps one reason for this is that generic multi-messenger models are problematic, as they generally

have tachyonic one-loop slepton masses coming from contractions of the hypercharge D-terms. (We thank

M. Dine for pointing out this effect to us.) We will discuss this problem — and how we get around it — in

more detail in section 2.
4These models always possess a trivial R-symmetry under which R(X) = 0 and R(φi) = R(eφi) = 1.

The U(1)R we are imposing on (1.4) is in addition to this, and it results in various selection rules on the

couplings mij , λij .
5The rest of the notation is as in [12]. In particular, r = 1, 2, 3 labels the SM gauge groups U(1), SU(2)

and SU(3), respectively; ef labels an MSSM sfermion field; and C ef
r is the quadratic Casimir of ef in the

gauge group r.

– 4 –
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This novel scenario has not been studied much in the past (see however [25, 29 – 32]),

presumably because in OGM the NLSP is always either the bino or the stau.

3. Effective messenger number less than one. In the space of EOGM models, one can

achieve Neff < 1, which is obviously never possible in OGM where Neff = N . This is

interesting, as it allows the gauginos to be lighter than in any OGM scenario. Lighter

gluinos, in particular, could significantly enhance sparticle production at the LHC,

relative to standard OGM rates.

4. Gauge coupling unification. We will see that in these models, the R-symmetry allows

for gauge coupling unification to be maintained without tuning of parameters, even

with different effective numbers of doublet and triplet messengers. This is a crucial

difference between these models and those of [27, 28], where additional doublet and/or

triplet fields were put in by hand to ensure unification.

Finally, let us mention one aspect of the spectrum that does not change between OGM

and EOGM models (with an R-symmetry). According to (1.5), the gaugino masses always

obey the GUT relations in these models, M1 : M2 : M3 = α1 : α2 : α3, regardless of

the amount of doublet/triplet splitting. As we will see in the next section, this is a direct

consequence of imposing a non-trivial R-symmetry on the superpotential (1.4) under which

R(X) 6= 0. In more general models without such an R-symmetry, even the gaugino mass

relations can be modified arbitrarily through doublet/triplet splitting.

1.3 Minimal completions of gauge mediation

In addition to exploring the phenomenology of gauge mediation, there is another, more

formal motivation for studying models of the form (1.4): the goal of finding simple examples

of “direct gauge mediation,” i.e. models in which the messengers are also part of the SUSY

breaking sector. Indeed, our EOGM models can be trivially completed into generalized

O’Raifeartaigh models of the kind discussed recently in [33], simply by adding δW = FX

to (1.4):

W = λijXφiφ̃j +mijφiφ̃j + FX (1.7)

As we will see, the R-symmetry guarantees that the tree-level scalar potential has a

pseudo-moduli space of SUSY-breaking local minima, located at φ = φ̃ = 0 and |X| in some

window. At one-loop, a Coleman-Weinberg potential is generated on the pseudo-moduli

space, and the minima of this potential (if they exist) are SUSY-breaking vacua of the

theory.

In order for these models to be phenomenologically viable, the R-symmetry must be

spontaneously broken in the vacuum (otherwise the gauginos cannot obtain soft masses).

We will see that such R-symmetry breaking minima of the CW potential can exist in

the parameter space of these models, because there are typically fields with R-charge

R 6= 0, 2 [33]. Therefore, these models can serve as extremely compact examples of

direct gauge mediation, which are complete in the sense that the sources of SUSY and

R-symmetry breaking are included. Note that these models are not examples of dynamical

– 5 –
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SUSY breaking, nor do they explain the origin of µ and Bµ. However, they do provide a

minimal framework in which these issues can be further explored.

1.4 Outline

The outline of our paper is as follows. In section 2 we will discuss some general aspects

of EOGM, including: formulae for Neff(X,m, λ) and the MSSM soft masses; a discussion

of doublet/triplet splitting and its effects; and the issue of gauge coupling unification. In

section 3 we will introduce a classification of EOGM models. We will see that the models

fall into three distinct categories which have qualitatively different phenomenology. In

section 4 we will analyze in detail the phenomenology of some simple examples of EOGM

models and show how some of the general features discussed in section 2 can be realized.

Finally, section 5 contains an analysis of the minimal completions (1.7).

In appendix A, we prove some useful results about the mass matrix of the messengers,

which have implications for the MSSM soft SUSY-breaking terms. Appendix B has a dis-

cussion of our treatment of the MSSM RGEs, a careful understanding of which is important

for obtaining accurate low-energy MSSM spectra. In appendix C, there are some useful

formulae for the neutralino and chargino mass matrices in the small µ limit, as well as a

very preliminary discussion of the collider phenomenology of Higgsino NLSPs.

2. General aspects of (extra)ordinary gauge mediation

2.1 The models

In this section, we would like to study general aspects of the phenomenology of EOGM

models. As discussed in the introduction, the models consist of a singlet X and N mes-

sengers φi, φ̃i transforming in the 5 ⊕ 5 representation of SU(5) ⊃ GSM. Through some

unspecified dynamics in the hidden sector, X acquires a SUSY- and R-symmetry-breaking

vev, 〈X〉 = X + θ2F . The couplings between X and the messengers are described by the

most general superpotential consistent with renormalizability, SM gauge invariance, and a

non-trivial R-symmetry:

W = Mij(X)φiφ̃j = (λijX +mij)φiφ̃j (2.1)

where Mij(X) = λijX + mij is the messenger mass matrix, and the R-symmetry

means that the couplings in this mass matrix must obey a set of selection rules.6 Let us

now describe these selection rules in more detail. For the time being, we will assume for

simplicity that the couplings in (2.1) respect the full SU(5) invariance; in section 2.3 and

beyond, we will consider the effect of doublet/triplet splitting in detail.

Suppose that (2.1) respects a non-trivial R-symmetry under which the fields transform

with R-charges R(X) 6= 0, R(φi), R(φ̃i). (This will be the case for all the models studied

6Note that although we are imposing this R-symmetry on the messenger superpotential, it could actually

be an accidental symmetry of the underlying, strongly-coupled gauge theory which presumably dynamically

generates all the mass scales in (1.4) (and in which X and/or the messengers could be composite fields).

This is precisely what happens, for instance, in massive SQCD in the free-magnetic phase [26].

– 6 –
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in this paper.) Then the selection rules take the form

λij 6= 0 only if R(φi) +R(φ̃j) = 2 −R(X) (2.2)

mij 6= 0 only if R(φi) +R(φ̃j) = 2

since W must always have definite R-charge R(W ) = 2,

These selection rules, and the R-symmetry more generally, have many important con-

sequences which we will explore in the following subsections, starting with the spectrum of

MSSM soft masses. Most of these consequences stem from a non-trivial identity satisfied

by the messenger mass matrix,

detM = XnG(m,λ), n =
1

R(X)

N∑

i=1

(2 −R(φi) −R(φ̃i)), (2.3)

where G(m,λ) is some function of the couplings. This identity follows directly from

the selection rules (2.2); for a straightforward proof, see appendix A. Note that in this

identity, n must be an integer satisfying 0 ≤ n ≤ N , since det(λX + m) is a degree N

polynomial in X.

Although we have allowed R(X) to take any non-zero value in the discussion of the R-

symmetry so far, it turns out that not all of these R-symmetries are distinct. In fact, if the

model is invariant under an R-symmetry with R(X) 6= 0, then it must be invariant under a

continuous family of equivalent R-symmetries parametrized by arbitrary R(X) ∈ R. These

are obtained by mixing the R-symmetry with the trivial U(1)R that is always respected

by (2.1), under which R(X) = 0, R(φi) = R(φ̃i) = 1. (As a consistency check, note that the

formula for n in (2.3) remains invariant under this mixing of R-symmetries.) In particular,

we can always use this to set

R(X) = 2 (2.4)

without loss of generality. Henceforth, we will assume this implicitly in the paper.

This will turn out to be a convenient choice in section 5, where we analyze the “complete”

models obtained by perturbing (2.1) by the SUSY-breaking linear term δW = FX.

2.2 MSSM soft masses

It is straightforward to derive formulae for the running gaugino and sfermion soft masses

at the messenger scale, by generalizing the wavefunction renormalization technique of [34].

For the gaugino masses we find (using the determinant identity (2.3))

Mr =
αr

4π
ΛG, ΛG = F ∂X log detM =

nF

X
(2.5)

while the sfermion masses are given by

m2
ef
= 2

3∑

r=1

C ef
r
(αr

4π

)2
Λ2

S , Λ2
S =

1

2
|F |2 ∂2

∂X∂X∗

N∑

i=1

(
log |Mi|2

)2
(2.6)

where Mi denote the eigenvalues of M. (The rest of the notation is described in the

introduction.) In these formulas, the gauge couplings αr are all evaluated at the messenger

– 7 –
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scale. In order to find the physical spectrum, one must of course run everything down to

the weak scale. Our procedure for this is described in appendix B.

The soft masses (2.5) and (2.6) are generalizations of well-known OGM formulae. (See

e.g. [12], whose conventions we largely adhere to in this paper.) By analogy with OGM, it

is useful to define the “effective messenger number” to be

Neff(X,m, λ) ≡ Λ2
G

Λ2
S

=

[
1

2n2
|X|2 ∂2

∂X∂X∗

N∑

i=1

(
log

|Mi|2
µ2

)2
]−1

(2.7)

In OGM, Neff = N , but more generally it is a continuous function of the couplings

taking values between 0 and N inclusive.

A fact that will be useful in later sections is that Neff simplifies somewhat in the

asymptotic limits X → 0, ∞. In appendix A, we derive formulas for Neff in these limits.

Here let us simply highlight two features of these formulas that we will need later. First

of all, the asymptotic values of Neff are independent of all the parameters,

lim
X→0,∞

Neff(X,m, λ) = const. (2.8)

Second, the asymptotic values of Neff satisfy the inequalities

n2

n2 − (N − rm − 1)(2n −N + rm)
≤ Neff(X → 0) ≤ N − rm (2.9)

and
n2

rλ + (rλ − n)2
≤ Neff(X → ∞) ≤ n2

rλ + (rλ−n)2

(N−rλ)

(2.10)

where we have introduced the notation

rλ ≡ rankλ, rm ≡ rankm (2.11)

This notation will also prove to be useful below.7

Finally, let us conclude this subsection by pointing out two effects that we have ignored

in writing down our formulae (2.5), (2.6) for the MSSM soft masses. The first is the effect

of multiple messenger scales. These can modify the formulae for the soft masses through

RG evolution, but in general this is a small effect. Below, in our more quantitative analysis

of specific examples, we will fully account for the multiple messenger thresholds. The

second effect we are ignoring is the contribution to ΛG, ΛS from higher-order corrections in

F/M2
mess, where Mmess is the (lightest) messenger scale. These cannot be extracted from

wavefunction renormalization, but instead require a full Feynman diagram calculation. In

the following we will assume implicitly that F ≪ M2
mess, in which case these corrections

are negligible.

7Note that when rλ = N , the upper bound on Neff (X → ∞) in (2.10) no longer makes sense. However,

as we will discuss more fully in section 3.2 below, in this case one always has Neff (X → ∞) = N .
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2.3 Doublet/triplet splitting and the MSSM soft masses

So far, we have assumed for simplicity that the couplings in the superpotential (2.1) respect

the full SU(5) gauge symmetry. However, the most general superpotential need only respect

the SM gauge symmetry; thus we are led to consider

W = (λ2ijX +m2ij)ℓiℓ̃j + (λ3ijX +m3ij)qiq̃j (2.12)

where ℓ, ℓ̃ and q, q̃ denote SU(2) doublets and SU(3) triplets, respectively. In this

subsection, we would like to describe the effect of doublet/triplet splitting on the MSSM

soft masses. Throughout, we will assume that the doublet and triplet messengers have the

same R-charge assignments. As a result, the doublet and triplet messenger mass matrices

will always have the same structure and will both obey (2.3) with the same n and the same

function G.

As discussed in the introduction, doublet/triplet splitting has little effect on the MSSM

soft masses in OGM. Thus, even allowing for arbitrary doublet/triplet splitting, OGM leads

to very distinctive relations among the gaugino and the sfermion masses. In EOGM, the

relations amongst the gaugino masses are still preserved,

M1 : M2 : M3 = α1 : α2 : α3 (2.13)

even with an arbitrary amount of doublet/triplet splitting. This follows from (2.5),

according to which ΛG is independent of the couplings and only depends on the integer

n (which is the same between the doublets and triplets). Let us emphasize that this is a

direct consequence of imposing on the model (2.1) a non-trivial R-symmetry under which

R(X) 6= 0; if we abandon this symmetry, then the GUT relations for the gaugino masses

need no longer hold.8

Next let us consider the sfermion masses. Here we have, instead of (2.6):

m2
ef
= 2

3∑

r=1

C ef
r
(αr

4π

)2
Λ2

Sr (2.14)

with

Λ2
S2 = Λ2

GNeff(X,m2, λ2)
−1, Λ2

S3 = Λ2
GNeff(X,m3, λ3)

−1 (2.15)

and Λ2
S1 = 2

5Λ2
S3+ 3

5Λ2
S2. Thus, the mass relations amongst the sfermions can be arbitrarily

modified through doublet/triplet splitting. In particular, by taking Neff,3 ≫ Neff,2, the

squark and slepton masses can be brought closer together than in OGM (where typically

met/meeR
∼ 7–10). This could be helpful for solving the “little hierarchy problem” of OGM,

where – independent of the LEP bound on the Higgs mass — the squarks must be at least

700 GeV given the experimental lower bound of ∼ 100 GeV on the selectron mass.

8M. Dine has pointed out to us that in EOGM models which do not have an R-symmetry, doublet/triplet

splitting can in general lead to dangerous O(1) CP-violating phases in the gaugino masses. Thus, avoiding

these phases could be viewed as another motivation for imposing a non-trivial R-symmetry on the space of

EOGM models.
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Note that in writing down (2.14), we have not included the dangerous contributions

to the sfermion masses coming from contractions of the messenger hypercharge D-terms

D = g′(φ†Yφφ − φ̃TYφφ̃
∗) [4]. If present, these contributions cause either the right or

the left-handed sleptons to become tachyonic, because they are not positive definite, and

they appear already at one-loop in the gauge interactions. They are absent in OGM, but

unfortunately not in a generic EOGM model with arbitrary doublet/triplet splitting. In

order to forbid these D-term contributions, we will impose on all the models we study in

this paper the “messenger parity” symmetry proposed in [24]

φ→ U∗φ̃∗, φ̃→ Ũφ∗, V → −V (2.16)

where V stands for the SM gauge superfields, and U and Ũ are some N ×N unitary

matrices. This is a symmetry of the messenger Lagrangian provided that

M† = U †MŨ , (λF )† = U †(λF )Ũ (2.17)

and it forces the dangerous hypercharge D-term contributions to the sfermion masses to

vanish, since they are odd under it. Of course, this parity is explicitly broken by the MSSM

matter fields, so there will still be hypercharge D-term contributions from loops involving

both MSSM and messenger fields. However, these only enter in at three-loops and higher,

so they will be negligible compared to the two-loop mass-squareds shown above.

2.4 Doublet/triplet splitting and small µ

In this subsection, we would like to analyze a more subtle effect of doublet/triplet splitting

on the MSSM spectrum, namely the possibility of having small µ through a cancellation

in the running of m2
Hu

. This “focussing” effect was first pointed out in [27, 28].

To begin, let us recall that electroweak symmetry-breaking in the MSSM specifies µ

(up to a sign) in terms of the soft masses at the electroweak scale. At large tanβ, the

relation is approximately

µ2 ≈ −1

2
m2

Z −m2
Hu

(met) (2.18)

where the value of m2
Hu

at Q = met is approximately given by its gauge mediation

value (2.14) plus the dominant contribution to the one-loop running coming from stop

loops:

m2
Hu

(met) ≈ m2
Hu

− 3

4π2
y2

tm
2
et
log

Mmess,3

met

(2.19)

From (2.18)–(2.19), we see that µ will be small if a cancellation can be arranged between

the two terms on the r.h.s. above [27, 28]. According to the general formulae (2.14),

m2
Hu

∝ 3

4

α2(Mmess,2)
2

Neff,2
, m2

et
∝ 4

3

α3(Mmess,3)
2

Neff,3
(2.20)
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Figure 1: A plot of the range of Neff,3/Neff,2 where at least a one part in ten cancellation occurs

in the running of m2
Hu

. The range is plotted vs. the triplet messenger scale Mmess,3; the doublet

scale Mmess,2 was fixed to be 500 TeV.

so a cancellation can occur if Neff,3 ≫ Neff,2, i.e. if the colored and uncolored sparticle

masses are squashed together.9

We can elaborate upon this point more quantitatively. If we define the degree of

cancellation,

η = −
m2

Hu
(met)

m2
Hu

≈ 4y2
t

3π2

α3(Mmess,3)
2

α2(Mmess,2)2
Neff,2

Neff,3
log

Mmess,3

met

− 1 (2.21)

and require 0 ≤ η ≤ 0.1 (the lower bound is the requirement of electroweak symmetry

breaking), we obtain a range in Neff,3/Neff,2 for a given set of triplet and doublet messenger

scales Mmess,3, Mmess,2. To illustrate this, we have plotted in figure 1 an example of this

range as a function of Mmess,3, for Mmess,2 = 500 TeV (and yt ≈ 1, met ≈ 1 TeV). From this

plot, we can glean a few general facts about what it takes to achieve a cancellation in the

running of m2
Hu

.

First, we see that Neff,3/Neff,2 cannot be too large, otherwise m2
Hu

(met) is positive and

electroweak symmetry breaking does not even occur. Second, we see that generally one

needs at least three times more effective triplet messengers than doublet messengers in

order to get a significant cancellation. A corollary of this is that in OGM one never gets

a cancellation in the running of m2
Hu

, since there Neff,3 = Neff,2 = N . Indeed, in OGM

9In [27, 28], different numbers of OGM doublet and triplet messengers were put in by hand, and additional

heavy doublets and/or triplets were included in an ad hoc fashion just for the sake of gauge coupling

unification. As we will show below, our models are more natural, in that the R-symmetry guarantees the

presence of heavy messengers at the correct scales for unification, even when Neff,3 6= Neff,2 and there is a

large amount of doublet/triplet splitting.
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one typically has |µ| & 1 TeV (given the LEP bound on the Higgs mass), and there is an

absolute lower bound of ∼ 350 GeV on |µ|. By contrast, in EOGM with sufficiently many

messengers it is possible to get |µ| arbitrarily small even while keeping fixed met & 1TeV

to satisfy the LEP bound on the Higgs mass.

Small µ is very interesting because, among other reasons, it implies a Higgsino-like neu-

tralino NLSP. (Formulae for the Higgsino fractions of the lightest neutralinos and charginos

in the small µ limit can be found in appendix C.) Although the possibility of Higgsino NL-

SPs in gauge mediation has been considered before, for instance in [25, 29 – 32], this scenario

has not been given much attention, essentially because of the theoretical bias from OGM

where the NLSP is always either the bino or the right-handed stau. Needless to say, the

collider phenomenology of Higgsino NLSPs can be quite different from that of bino or

stau-like NLSPs. For instance, a Higgsino NLSP will have a suppressed branching fraction

to γ + G̃ and enhanced branching fractions to h+ G̃ and Z + G̃. Consequently, the classic

γγ + /ET channel might no longer be the preferred discovery mode for gauge mediation, if

the Higgsino is the NLSP.

In our examples below, we will see that in models with sufficiently many messengers,

Higgsino NLSPs can occur in a wide range of the EOGM parameter space. Therefore,

we would argue that this scenario deserves more study. Some preliminary remarks on the

phenomenology of Higgsino NLSPs are contained in appendix C. A detailed analysis would

take us too far afield in this paper, so we will leave this work for a future publication [35].

2.5 Small µ and the little hierarchy problem

Another reason small µ is interesting is because of its implications for naturalness and

the “little hierarchy problem.” The little hierarchy problem is usually cast in terms of the

amount of cancellation or fine-tuning required in (2.18) between the supersymmetric µ

parameter and the soft SUSY-breaking m2
Hu

parameter, in order to achieve the observed

value of m2
Z . The amount of fine tuning with respect to a coupling λ is often quantified in

terms of the Barbieri-Giudice measure [36],

∆λ(m2
Z) =

∣∣∣∣
∂ logm2

Z

∂ log λ

∣∣∣∣ (2.22)

That is, ∆−1
λ corresponds to the percent fine-tuning in the parameter λ required to achieve

the observed value of m2
Z . For instance, the fine tuning associated with the µ parameter is

∆µ2(m2
Z) =

∣∣∣∣
∂ logm2

Z

∂ log µ2

∣∣∣∣ =
2µ2

m2
Z

(2.23)

As mentioned in the previous subsection, in OGM one typically has |µ| & 1 TeV because

of the LEP bound on the Higgs mass. Thus OGM — like much of the MSSM parameter

space — has a little hierarchy problem in that it is fine-tuned to at least the percent level

with respect to µ. (For a recent, more detailed discussion of the fine-tuning problem in

OGM, see e.g. [37].)

Now let us contrast this with the situation in EOGM. We have seen in the previous

subsection that, by having different effective doublet and triplet messenger numbers, it

– 12 –
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is possible in EOGM to have µ ∼ 100 GeV even with TeV scale stop masses. Thus, the

fine-tuning with respect to µ in EOGM can be improved to O(10%) or better, and this

puts us one step closer to solving the little hierarchy problem.

Of course, the route to small µ in EOGM is through a partial cancellation between the

gauge mediation contribution to m2
Hu

at the messenger scale, and the radiative corrections

to m2
Hu

coming from RG evolution down to the weak scale. Thus one might wonder

whether the reduction in fine-tuning with respect to µ is merely being compensated for by

an increased fine-tuning with respect to other parameters responsible for the cancellation.

In fact, the situation can be better than it seems, because the cancellation depends on

Neff,3/Neff,2, and if these are taking their asymptotic values at X → 0 or X → ∞, then

they are actually insensitive to the couplings, as noted in (2.8).

To make this a bit more precise, let us estimate the fine tuning with respect to the

other parameters of the model using (2.18)–(2.21) and the Barbieri-Giudice measure. This

gives

∆λ(m2
Z) ≈

∣∣∣∣∣
2λ

m2
Z

∂m2
Hu

(met)

∂λ

∣∣∣∣∣ (2.24)

≈
∣∣∣∣∣
2λ

m2
Z

∂λ

[(
nF

X

)2(3

2

(α2

4π

)2
N−1

eff,2 −
3

4π2
y2

t ×
8

3

(α3

4π

)2
N−1

eff,3 log
Mmess,3

met

)]∣∣∣∣∣

If we assume that Neff,2 and Neff,3 are given by their asymptotic values as in (2.8), then

they are essentially constants. Then the fine-tuning (2.24) will be negligible with respect to

most of the parameters of the model; the only ones that matter are Mmess,3, yt, α2 and α3,

and F/X. The Barbieri-Giudice measure for these are either the same or smaller than in

a theory without focussing. Therefore, we conclude that the overall amount of fine tuning

is reduced in these models, due to the insensitivity of the asymptotic values of Neff (and

hence the amount of cancellation) to the model parameters.

2.6 Gauge coupling unification

We have seen how doublet/triplet splitting in EOGM can have interesting effects on the

MSSM spectrum. However, all these results would be significantly less interesting if they

required an amount of doublet/triplet splitting that ruined the successful unification of the

gauge couplings seen in the MSSM. In this subsection, we would like to analyze this issue

in detail. We will see that because of the R-symmetry, the sensitivity of the running of

the gauge couplings to doublet/triplet splitting is significantly reduced, meaning that it is

possible to achieve all the effects described in the previous subsections without sacrificing

unification.

To begin, let us consider the one-loop RG evolution of the gauge couplings up to the

GUT scale mGUT. After passing through all the individual doublet and triplet messenger

thresholds, one finds that the value of the gauge couplings at mGUT depends only on the

“average” doublet and triplet messenger scales,

M2,3 ≡ (detM2,3)
1/N (2.25)
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More precisely, one finds

α−1
r (mGUT) = α−1

r (mZ) +
br
2π

log
mGUT

mZ
− N

2π
log

mGUT

Mr

(2.26)

for r = 1, 2, 3. Here br = (−33
5 ,−1, 3) denotes the MSSM one-loop β functions, and

M1 ≡ (M2)
3/5(M3)

2/5. Note that the first two terms in (2.26) correspond to the value

of the MSSM gauge couplings at the GUT scale. As is well-known, these unify to a high

degree of precision (more on this in the next paragraph), with a common value at the GUT

scale given by

α−1
r (mZ) +

br
2π

log
mGUT

mZ
≈ α−1

GUT,MSSM ≈ 24.3 (2.27)

Combining (2.26) and (2.27), we conclude that when M2 = M3, unification occurs

precisely as in the MSSM. Furthermore, the determinant identity (2.3) tells us that M2,3 =

(XnG(m2,3, λ2,3))
1/N , and as we will see in the next section, the function G is generally

independent of some subset of the couplings. Therefore, with this subset of couplings, we

can still achieve an arbitrary amount of doublet/triplet splitting, while preserving the same

precision of unification seen in the MSSM.

For the sake of completeness, let us also work out how much splitting between M2,

M3 can be tolerated without spoiling unification. A commonly used measure of unification

(see e.g. [38, 39]) is the quantity

B ≡ α−1
2 (mZ) − α−1

3 (mZ)

α−1
1 (mZ) − α−1

2 (mZ)
(2.28)

By assuming unification and running the gauge couplings down from the GUT scale,

one obtains a prediction for B that can be compared with experiment. The one-loop

MSSM prediction is B = b3−b2
b2−b1

= 5
7 , and this agrees with experiment to approximately 5%

accuracy, where the bulk of the uncertainty comes from the unknown GUT and MSSM

thresholds. In our models, it follows from setting α1(mGUT) = α2(mGUT) = α3(mGUT)

in (2.26) that

B =
(b3 − b2) log

(
mGUT

mZ

)
+N

(
logM3 − logM2

)

(b2 − b1) log
(

mGUT
mZ

)
− 2

5N
(
logM3 − logM2

) (2.29)

Setting N = 0 or M3 = M2 in (2.29) gives the one-loop MSSM value. If we are to

deviate no more than 5% from this, then we require

N

∣∣∣∣log
M3

M2

∣∣∣∣ . 5 (2.30)

where we have used log(mGUT/mZ) ≈ 33. According to this inequality, the amount of

splitting in the average messenger scales that we are allowed to tolerate depends sensitively

on the messenger number N . For N = 1 we can split the average messenger scales by as

much as a factor of 100. But for N = 5 we can only tolerate a factor of a few. However,

let us reiterate that it is possible to have an arbitrary amount of doublet/triplet splitting

yet still keep M3 ≈ M2, because of the determinant identity (2.3).
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Finally, let us see what the requirement of perturbativity up to the GUT scale looks

like in these models. Taking M2 ≈ M3 ≡ M as required by (2.30), and demanding that

α−1
r (mGUT) > 0, we find from (2.26)–(2.27) the following condition on N and the average

messenger scale:

N

(
log

mGUT

M

)
. 150 (2.31)

In other words, we find the same condition as in OGM, but with the messenger scale

given by M. At M = 103, 105, 107, 109 TeV, this condition allows for N = 6, 8, 10, 15

messengers, respectively.

3. Classification of models

Having deduced some general results about EOGM models, next we would like to identify

three distinct categories of models and apply these results to each category.

3.1 Type I: theories with detm 6= 0

In these theories, it is most convenient to use a bi-unitary transformation to go to a

basis where m is diagonal. In this basis, the fields must come in pairs with R-charges

R(φi) +R(φ̃i) = 2. According to (2.3), this means

n = 0 and det(λX +m) = detm (3.1)

Note that (3.1) necessarily implies that detλ = 0, otherwise the expansion of det(λX+

m) in powers of X would include the term XNdetλ.10

Since these models have detm 6= 0 and detλ = 0, the messengers are all stable in a

neighborhood of X = 0, but some of them can become tachyonic at large X. Thus, these

models have a stable messenger sector only for

|X| < Xmax (3.2)

for some Xmax which (if it is not infinite) depends on F and the other parameters of the

model. Beyond this region of stability, the model will generally have runaway behavior, as

seen in the examples of [33], and studied more generally in [40].

Because n = 0, these models are somewhat pathological phenomenologically: according

to (2.5), the gaugino masses all vanish to leading order in F . In general, this leads to a large

hierarchy between the gaugino and squark masses (even when higher order corrections in

F/M2
mess are taken into account), which in turn exacerbates the fine-tuning problems of

gauge mediation.

The type I category comprises the bulk (if not all) of the O’Raifeartaigh-based model-

building literature. This includes some of the early attempts [4 – 8] at model building with

10Another, perhaps more direct way to prove these statements is the following: in the basis where m is

diagonal, let us order the φi fields in increasing R-charge, R(φ1) ≤ R(φ2) ≤ . . . ≤ R(φN). Then λ must be

strictly upper triangular, since if λij 6= 0, the selection rule 0 = R(φi)+R(eφj) = R(φi)−R(φj)+2 requires

i < j. This in turn implies all the statements above, namely that det λ = 0, λX + m is an upper triangular

matrix with only m on the diagonal, and the determinant of this matrix is independent of λ.
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(simple variations on) the original O’Raifeartaigh model [41], as well as the more modern

models of [21, 22] where many aspects of the n = 0 theories (including the vanishing of

the gaugino masses) were worked out in detail. More recently, there have been many mod-

els [42 – 51] based on massive SQCD in the free-magnetic phase [26]; these also fall in the

type I category, because the O’Raifeartaigh model of [26] is essentially a type I model. It

is important to note that in many of the models listed above, the R-symmetry is not spon-

taneously broken by the interactions of the O’Raifeartaigh model itself. As a result, these

models generally include additional interactions to break the R-symmetry either explicitly

or spontaneously. Sometimes (e.g. when the R-symmetry is broken explicitly) these inter-

actions can give rise to leading-order gaugino masses, thus avoiding the gaugino/squark

mass hierarchy and its associated fine-tuning problems.

This is all we would like to say about the type I models, since these have been fairly

well-explored in the literature. We would like to emphasize that the vanishing of the

gaugino masses is not a feature of spontaneous R-symmetry breaking in general, but only

of this particular, special category of models where n = 0. In the vast majority of EOGM

models, n 6= 0 and the gaugino masses are nonzero at leading order in F , even with a

spontaneously broken R-symmetry. We will focus on such models in the remainder of the

paper.

3.2 Type II: theories with detλ 6= 0

Here it is most convenient to diagonalize λ by a bi-unitary transformation. Then the fields

must come in pairs with R(φi) +R(φ̃i) = 0, and so

n = N and det(λX +m) = XNdetλ (3.3)

according to (2.3).11 Note that the type II models include OGM as a special case (m = 0),

as well as all continuous deformations of OGM consistent with the symmetries.

It is simple to sketch the messenger spectrum for the type II models, using the fact

that detλ 6= 0 and detm = 0. At large X, detλ 6= 0 implies that all the messengers have

O(λX) masses; thus

Neff(X → ∞) = N (3.4)

i.e. the theory reduces to N -messenger ordinary gauge mediation at large X. As X ap-

proaches the origin, detm = 0 means that some messengers have O(m) masses while others

are much lighter, with masses that go to zero as some power of X. Eventually these light

messengers must become tachyonic, and from this we learn that the type II models have a

stable messenger spectrum for

|X| > Xmin (3.5)

for some Xmin.

Note that these models do not suffer from the same problems as the type I models, since

n = N 6= 0 means that the gaugino masses are nonzero at leading order in F/M2
mess. Thus,

11As in the type I models, we can see these statements more directly by ordering the φi fields in decreasing

R-charge, R(φ1) ≥ R(φ2) ≥ . . . ≥ R(φN). Then m must be strictly upper triangular, since 2 = R(φi) +

R(eφj) = R(φi) − R(φj) requires i < j.
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these models preserve the attractive feature of OGM whereby the gaugino and sfermion

masses are generated at the same scale parametrically.

Another nice feature of this class of models has to do with unification. According

to (3.3), det(λX + m) is completely independent of m. Then according to (2.30), this

means that m2,3 can be split an arbitrary amount without any effect on unification. From

the low-energy perspective, this would look like an amazing coincidence. For instance, if

we take λ2 = λ3 = λ and look in the regime m3 ≪ λX ≪ m2, the doublet and triplet

messenger spectra are completely different (following the sketch above). Nevertheless, the

R-symmetry causes the messenger masses to be arranged in such a way that the gauge

couplings still unify just as in the MSSM.

3.3 Type III: theories with detλ = detm = 0

These models have

0 < n < N and det(λX +m) = XnG(m,λ) (3.6)

according to (2.3). By dimensional analysis, G(m,λ) must depend on both m and λ. Since

n 6= 0, the gaugino masses are nonvanishing at leading order in F/M2
mess, as in the type II

models.

Since detm = detλ = 0, the messenger spectrum in type III models combines features

of the type I and type II models. In particular, there will be light messengers at both large

and small X in these models. Thus these models generally have a stable messenger sector

only for X in a window,

Xmin < |X| < Xmax (3.7)

where again, Xmin and Xmax depend on the parameters of the model.

Type III models yield a variety of interesting theories which (to our knowledge) have

never been discussed in the literature. One novel feature of these models is that it is fairly

common to have Neff < 1. For instance, we can see from the upper bound in (2.10) that

this will happen at large X provided that n is sufficiently small (e.g. n = 1). This is a

somewhat exotic scenario, and it allows us to achieve sfermion/gaugino mass ratios not

ordinarily seen in gauge mediation. For instance, if we keep the sfermion masses fixed

at some scale (say, to push the Higgs mass above the LEP bound), then taking Neff < 1

makes the gauginos lighter than in OGM. Having extra-light gauginos in the spectrum

(and the gluino in particular) could be interesting, as it could enhance sparticle production

rates at the LHC relative to OGM scenarios. In section 4.2, we will analyze in detail the

phenomenology of specific examples of type III models which have Neff < 1.

4. Examples

4.1 Example 1: a family of type II models

In this section, we will consider some specific examples of EOGM models. These will serve

to illustrate the general features discussed in the previous sections.
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Let us start with a simple family of type II models:

M = λX +m =




λ1X m1

. . .
. . .
. . . mN−1

λNX




(4.1)

This family of models is the most general if we assign the following R-charges to the

fields: R(φi) = −2i, R(φ̃i) = 2i. The form of these models is motivated by the following

considerations. In order to get the maximum effect from doublet/triplet splitting, we

would like for the range of Neff to be as large as possible. As discussed around (3.4), in

the type II models Neff(X → ∞) = N , so to maximize the spread in Neff we would like for

Neff(X → 0) = 1. It turns out that (4.1) is the unique family of type II models which has

Neff(X → 0) = 1.12

A simple choice for the λ’s and m’s that also satisfies the requirement of messenger

parity is to make them maximally uniform:

λi = λ, mi = m (4.2)

By a rephasing of all the fields, we can always take λ, m, X and F to be real in this

family of examples. (As an aside, this shows that these particular EOGM models have no

dangerous CP-violating phases.) In this case, messenger parity acts according to (2.16)

with U = Ũ given by the permutation matrix Uij = δi,N−j+1, or equivalently φi ↔ φ̃∗N−i+1.

The choice (4.2) leads to a nice simplification: by dimensional analysis, and because

X always appears with a λ, Neff(X,m, λ) must be a function only of the dimensionless

quantity

x =
λX

m
(4.3)

Shown in figure 2 are plots of Neff(x) for N = 2, 3, 4, 5. (As discussed in section 3.2,

the type II models have a stable messenger sector only for |X| > Xmin for some Xmin. In

the following we will always be implicitly taking this bound into account.) We see that, by

construction, Neff(x) interpolates between 1 and N .

Now we would like to include doublet/triplet splitting and see how it affects the phe-

nomenology. Since unification depends only on λ2, λ3 (see section 3.2), we will set

λ2 = λ3 = 1 (4.4)

for simplicity. Note that when all the λ’s are the same, the actual value of λ is irrelevant

for the current discussion, since it always enters in the combinations λX and λF .

12Proof: from the lower bound in (2.9), we see that Neff(X → 0) = 1 requires rm = N − 1. As discussed

below (3.3), the matrix m must be strictly upper triangular in a basis where λ is diagonal and the R-charges

are ordered R(φi) ≥ R(φi+1). In order for m to have rank N − 1, it must have mi,i+1 6= 0; then this fixes

the R-charges of the fields uniquely (up to an overall phase rotation) to be R(φi) = −2i, R(eφi) = 2i, which

in turn forces all the other entries of m to be zero.
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Figure 2: A plot of the effective messenger number Neff(x) vs. x = λX/m.

We have generated MSSM spectra for a N = 5 model with m2 = 2X and m3 = 1
3X.

This implies Neff,2 ≈ 1 and Neff,3 ≈ 4.5, as shown in figure 2. To fix the remaining

parameters (X and F ), we set ΛG = Nf/X = 200 TeV and scanned over the mass of the

lightest messenger. This choice of ΛG leads to stop masses aroundmet ≈ 1.5 TeV and a Higgs

mass around mh0 ≈ 115 GeV, which is consistent with the LEP bound, mh0 > 114.4 GeV.

Finally we have taken tanβ = 20 and µ > 0 as a representative choice of these parameters.

The spectra are shown plotted vs. the mass of the lightest messenger in figure 3. For

comparison, the spectra for an OGM model with N = 1 and N = 5 messengers (and all

the other parameters the same) are also shown in figure 3.

The spectra shown in figure 3 nicely illustrate some of the general points made in

sections 2.3 and 2.4 about the effects of doublet/triplet splitting. For example, in the first

row of figure 3 we see that in the EOGM model the squark and slepton masses are squashed

in comparison to the N = 1 and N = 5 OGM models. In fact, since ΛG was chosen to

be the same in the three spectra, we see that the masses of colored (uncolored) sfermions

are as in the N = 5 (N = 1) OGM model, in accord with the values of Neff,3 and Neff,2

respectively. By contrast, note that the values of M1, M2 and meg ≈ M3 are the same

between all three models, since the R-symmetry implies that GUT relations (2.13) always

hold for the gaugino soft masses.

The second row of figure 3 contains plots of µ and the masses of the lightest charginos,

neutralinos, and stau; while the third row contains plots of the Higgsino components of the

lightest neutralino and charginos. (For the standard definition of the Higgsino components

see appendix C.) These plots further illustrate the consequences of doublet/triplet splitting,

specifically the dramatic effects of “focussing” and small µ discussed in section 2.4. To see

this, consider first the N = 1 and N = 5 OGM spectra in figure 3. These exhibit some well-

known features of OGM: µ is always large, and either the bino (N = 1) or the stau (N = 5)

is always the NLSP. Now contrast this with the EOGM spectrum shown in figure 3: because

of the cancellation in the running of m2
Hu

coming from Neff,3 ≫ Neff,2, this spectrum has
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Figure 3: A plot of some of the MSSM soft parameters and sparticle masses at the scale Q = mZ ,

as a function of the messenger scale M (which we take to be the mass of the lightest messenger).

The left (middle) column is OGM with N = 1 (N = 5). The right column is a model of the

form (4.1)(4.2) with N = 5, m2/X = 2, and m3/X = 1/3. In all cases, ΛG =200TeV.

µ . M1 and a Higgsino NLSP at low messenger scales.

This point is further illustrated in figure 4, which contains contour plots of µ and the

Higgsino component of the lightest neutralino vs. m2 > X and m3 < X, for N = 3, 4,

5, 6. In these plots, we are holding fixed ΛG and the mass of the lightest messenger; the

parameters are chosen so that mh0 ≈ 115 GeV. For N ≥ 4, we see that a sizable region of

parameter space has µ < 200 GeV as well as an NLSP neutralino that is more than 80%

Higgsino.

Finally, let us see how gauge coupling unification works in this example, following

the general discussion in section 2.6. Keep in mind that throughout this subsection, we

have split the doublets and triplets in accordance with the determinant identity (2.3), so

that unification proceeds with the same precision as in the MSSM. In figure 5, we show

explicitly how the gauge couplings run in a model with N = 3, m2 = 2X, m3 = 1
3X,

ΛG = 200TeV, and lightest messenger mass Mmess = 200 TeV. For this model point,

Neff,2 ≈ 1 and Neff,3 ≈ 3, so the lightest doublet and all three triplets contribute to the

MSSM spectrum, while the two heavy doublets essentially serve only to preserve gauge
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Figure 4: Contour plots of µ and N2
13 +N2

14 in {m2/X,m3/X} space for N = 3, 4, 5, 6, Mmess =

200 TeV, 250 TeV, 300 TeV, 350 TeV, and ΛG = 200 TeV. This value of ΛG corresponds to

M1 = 260 GeV and M2 = 520 GeV.

coupling unification. The solid lines in figure 5 indicate the running of the gauge couplings

up to the GUT scale; in the magnified region around the GUT scale (inset), one can clearly

see that the gauge couplings unify to a high degree of precision. Note that the running

of the gauge couplings is very sensitive to the location of the messenger scales, so the R-

symmetry is crucial for maintaining unification without tuning. This point is illustrated

by the dashed lines in figure 5, which indicate the running of the gauge couplings for the

same model point but with the two heavy doublet masses artificially raised by a factor of

10. In this case, unification is already off by a significant amount, as is clearly indicated in

the inset. (Shown in the inset is also a band obtained by varying the input value of α3 at

Mz by 5%, which is meant to be a rough indication of the uncertainty on α3 from unknown

MSSM threshold corrections and experimental error.)

4.2 Example 2: a family of type III models

Next, let us consider a simple family of type III models which have n = 1 and consequently

Neff < 1 at large X. These models are constructed by combining a single OGM messenger

with an N − 1 messenger type I model:

W = λ′Xφ1φ̃1 +m

N∑

i=2

φiφ̃i + λX

N−1∑

i=2

φiφ̃i+1 (4.5)

This structure can easily be enforced by proper R-charge assignments. These models

have n = 1 because the OGM messenger contributes R(φi) +R(φ̃i) = 0 to the formula for

n in (2.3), while the N − 1 type I messengers each contribute R(φi) + R(φ̃i) = 2. For the
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Figure 5: The gauge couplings vs. RG scale Q in an N = 3 EOGM model with m2 = 2X ,

m3 = 1
3X . The vertical lines indicate the triplet (dot-dashed) and doublet (thin dashed) messenger

masses. For comparison, the running of the gauge couplings is also shown (thick dashed) when the

two heavy doublets are made 10 times heavier (thick solid). The inset is a magnification of the

region Q ∼ mGUT . Shown in the inset is also a range for α3 corresponding to varying α3(Mz) by

±5%.

choice of couplings in (4.5) (which can be taken to be real without loss of generality, as in

example 1), they also have a messenger parity defined by (2.16) with Ũ = U and

U11 = 1, Ui1 = U1i = 0, Uij = δi−2,N−j , (i ≥ 2, j ≥ 2). (4.6)

Since the type I piece and the OGM piece are not directly coupled through the mass matrix,

this messenger parity does not interchange OGM messengers with type I messengers. It is

straightforward to verify (using e.g. (2.9)–(2.10)) that

Neff(X → 0) = 1, Neff(X → ∞) =
1

N − 1 + (N − 2)2
(4.7)

Shown in figure 6 is N−1
eff vs. X for these models with N = 3, 4, 5.

As discussed in section 3.3, the phenomenology of these models with Neff ≪ 1 can

be quite interesting even without doublet/triplet splitting, because when Neff ≪ 1 the

gauginos are lighter than usual. Shown in the first column of figure 7 is a sample spectrum

with Neff ≈ 1/3, corresponding to an N = 3 model with λ′ = λ = 1, m = X/5, ΛG =

90 GeV, tan β = 20 and µ > 0. One sees from this that the gluino mass is around 700 GeV,

even though the stops are still heavy at 1.5 TeV.

Lighter gauginos (and in particular the gluino) could mean an enhanced rate of sparticle

production at the LHC, relative to more commonly studied OGM scenarios. Indeed, in

collider studies of gauge mediation, it is often assumed that direct gluino production is

highly suppressed relative to direct chargino and neutralino production, because the gluino
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Figure 6: N−1
eff vs. X for the model (4.5) for N = 3, 4, 5. For simplicity, the other parameters m,

λ, λ′ were all set to one.

mass is generally 1TeV or more. However, we have seen here that in EOGM models it

is possible to have meg ∼ 700 GeV. (The gluino mass could be lowered even further if

we gave up the R-symmetry and the GUT relations.) Even between meg ∼ 700 GeV and

meg ∼ 1TeV, the difference in the direct gluino production rate at the LHC can be an order

of magnitude or more, given the rapid fall off of the parton luminosity functions.

By including doublet/triplet splitting, it is possible to combine the features of type

II and type III models discussed so far, i.e. to have a Higgsino NLSP and a light gluino.

One reason such a scenario could be interesting is if it led to significantly enhanced Higgs

production rates at the LHC. Note that maintaining unification is more complicated for

type III models — there is not a clean separation in parameter space between the couplings

that enter into detM and couplings that do not. In this example, detM depends on both

m and λ′, but not λ. So if we want the same unification as in the MSSM, we can split only

λ between the doublets and the triplets.

Shown in the second column of figure 7 is an example of a spectrum with both a

Higgsino NLSP and light gluino. The model point corresponds to N = 5, λ2 = 1, λ3 = 1/5,

and all the other parameters the same as in the previous example. Note that N = 5 is

the minimum number of messengers required to obtain both a light gluino and a Higgsino

NLSP. The reason is that one needs Neff,3/Neff,2 & 3 for small µ and Higgsino NLSPs (see

figure 1), and Neff,3 . 1/3 for light gluinos (as in the previous example). Together, this

implies Neff,2 . 1/10. As can be seen from (4.7), this is possible for N & 5.

We should point out that it is rather more difficult to get both a Higgsino NLSP and a

light gluino, compared to just one or the other. One reason is simply that if meg ∼ 700 GeV,

then the GUT relations force M1 ∼ 100 GeV, which means there is only a very narrow

window between |µ| = 0 and |µ| ∼ 100 GeV where the NLSP has a significant Higgsino

component. Another reason is that the combination of features requires some fine-tuning
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Figure 7: Example spectra with and without doublet/triplet splitting for the type III model (4.5).

The left column has N = 3, λ′ = 1, λ = 1, m = X/5, ΛG = 90TeV, tanβ = 20 and µ > 0. It

shows that a 700GeV gluino is possible in gauge mediation even keeping the stops heavy for the

LEP Higgs mass bound. The right plot has the same parameters, except N = 5, λ2 = 1, λ3 = 1/5.

Here we see that a light gluino and a Higgsino NLSP are simultaneously possible, at low messenger

scales.

with respect to the superpotential parameters. To see this, note that in order to have

both a Higgsino NLSP and a light gluino, we need λ2X/m to take an asymptotic value

for Neff,2 ≈ 1/10, but we need λ3X/m to take an intermediate value for Neff,3 ≈ 1/3 (see

figure 6). According to the discussion in section 2.5, this means that the cancellation in the

running of the Higgs mass parameter (2.21) (which is controlled by Neff,3/Neff,2) depends

sensitively on the superpotential parameters, unlike the case when X is asymptotic for

both the doublets and the triplets.

5. Minimal completions of gauge mediation

5.1 Vacuum structure

So far, we have treated X as a spurion field whose vev and F-component are set by some

– 24 –



J
H
E
P
0
7
(
2
0
0
8
)
0
5
4

undetermined hidden sector. Thus, our approach up till this point has been analogous to

most phenomenological studies of gauge mediation, where the details of the SUSY-breaking

sector are not specified in order to be as model-independent as possible. Now, in the last

section of the paper, we would like to go one step further and see what happens if we

require 〈X〉 to be set by the renormalizable, perturbative dynamics of the EOGM model

itself. We will see that these dynamics can result in a viable SUSY and R-symmetry

breaking vacuum. Since the messengers play a vital role in the SUSY breaking, this means

that the models studied in this paper can be viewed as minimal examples of direct gauge

mediation.

Now let us describe our models in more detail. Given that we have imposed R(X) = 2

on our EOGM models, if we do not enlarge the matter content of the theory, then the only

term we can add to the EOGM superpotential (2.1) that is renormalizable and consistent

with the symmetries is

δW = FX (5.1)

In other words, the minimal completions of our EOGM models are just generalized

O’Raifeartaigh models:

W = λijXφiφ̃j +mijφiφ̃j + FX (5.2)

In general, because of the R-symmetry there is a SUSY-breaking pseudo-moduli space (i.e.

a space of local minima of the tree-level scalar potential) at

φ = φ̃ = 0, Xmin ≤ |X| ≤ Xmax (5.3)

for some Xmin and Xmax (which could be zero and infinity, respectively). In order for these

models to be viable, the one-loop Coleman-Weinberg potential must have a local minimum

on this pseudo-moduli space. Moreover, we need this minimum to occur at 〈X〉 6= 0, in

order to break the R-symmetry and give the MSSM gauginos nonzero soft masses.

We should note that, even though we are referring to these models as generalized

O’Raifeartaigh models, they generally have SUSY vacua or runaway behavior in addition

to the pseudo-moduli space (5.3). (The R-symmetry, while necessary for SUSY-breaking,

is not always sufficient [52].) Thus, the vacuum on the pseudo-moduli space (5.3) (if it

exists) is only meta-stable, and it is important to make sure that it is sufficiently long-

lived. Although we will not undertake a detailed analysis here, on general grounds we

expect that the lifetime of the meta-stable vacuum is controlled by the small parameter

λ. This is because, using the F-terms of (5.2) and the determinant identity (2.3), one

can show that the SUSY vacuum or runaway direction in these models can only exist at

φφ̃ ∼ 1/λ and X = 0 (or X → ∞ in the case of runaway). So the parameter λ controls the

separation in field space between the SUSY vacuum/runaway direction and the putative

meta-stable vacuum at φ, φ̃ = 0, X 6= 0. By making λ small, we should be able to make

the latter parametrically long-lived.

5.2 More on R-symmetry breaking

It remains to determine whether, in a given model, there is a local minimum of the Coleman-

Weinberg potential with X 6= 0. In [33], it was argued that this can only happen when
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there exists a field with R-charge R 6= 0, 2. However, for technical reasons, the argument

was limited to models with detm 6= 0. Since we are interested in models with detm = 0 in

this paper, this argument cannot be directly applied. Nevertheless, the R-charge condition

of [33] still seems to be true, even for models with detm = 0. That is, regardless of whether

m is degenerate or not, models where all the fields have R = 0 or 2 never seem to have

R-symmetry breaking vacua at X 6= 0, while models with exotic R-charges do. In this

subsection we would like to provide some heuristic arguments for why this should be the

case.

To begin, recall that in this paper, we have been mostly interested in the regime√
F ≪ m, where the approximate formulas for the soft masses (2.5)–(2.6) make sense. In

this regime, the Coleman-Weinberg potential simplifies – it reduces to derivatives of the

effective Kähler potential (see e.g. appendix A of [26] for a detailed discussion of this),

VCW ≈ F 2 (Keff,XX∗)−1 ∼ F 2∂2
XX∗TrM†M logM†M/µ2 (5.4)

where for the sake of this heuristic discussion we are ignoring irrelevant constants and

overall normalizations. Now, it is straightforward to apply this formula to our EOGM

models and obtain a sketch of the CW potential at large and small X. At large X, we

know on general grounds that

VCW ∼ F 2 logX (X → ∞) (5.5)

i.e. the potential grows monotonically like a logarithm. On the other hand, as we will now

show, the behavior of (5.4) at small X (by which we mean
√
F ≪ X ≪ m) depends on the

R-charge assignments of the fields.

First, let us consider a model where all the R-charges are 0 or 2. At X ≪ m, the fields

are either heavy, with O(m) masses, or light, with O(X) masses. Fields whose masses go

like higher powers of X are forbidden by the R-charge assignments, as this would require

a term ∼ Xmφφ̃ with m > 1 in the effective superpotential for the light field. Now,

the contribution to the effective potential V
(heavy)
CW from the heavy messengers must be

analytic in X, X∗; therefore, the leading dependence on X in V
(heavy)
CW is O(|X|2). On

the other hand, it is straightforward to see from (5.4) that the light messengers contribute

∼ F 2 log |X| to the potential. Thus the dominant contribution at small X to the potential

comes from the light messengers, and moreover, we see that it is monotonically increasing.

Given the behavior (5.5) at large X, the simplest possibility is that the entire potential

grows monotonically with X and has no minimum at X 6= 0.

Next, let us consider a model with exotic R-charged fields. Here there can be ultra-

light messengers with O(Xm) masses with m ≥ 2. According to (5.4), these will contribute

the following to the CW potential at small X,

V
(ultra−light)
CW ∼ F 2|X|2m−2 log |X| (5.6)

The crucial observation is that this contribution to the potential decreases at small X

and eventually turns around at intermediate X. Therefore, the presence of a term like (5.6)

in the potential can lead to a minimum away from the origin.
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Note that the existence of such a minimum is still not guaranteed – the contributions

from heavier messengers of the kind discussed above can overwhelm the effect of (5.6). We

will see this happen, for instance, in some of the complete type II models to be discussed

in the next subsection.

5.3 Type II completions

In this subsection and the next, we would like to study concrete examples of complete

type II and type III models. We will see that the phenomenology of these models is more

constrained than in the previous sections, since the vev of X can no longer be chosen

arbitrarily.

Consider first the type II (detλ 6= 0) models. As discussed in section 3.2, these models

have a locally stable pseudo-moduli space at φ = φ̃ = 0, as long as |X| > Xmin for some

Xmin. When |X| < Xmin, the potential either runs off to infinity or to a SUSY vacuum at

X = 0, φ, φ̃ 6= 0. As discussed above, as long as λ ≪ 1, these features are well-separated

from the pseudo-moduli space, and the SUSY-breaking meta-stable vacuum (if it exists)

will be long-lived.

One nice feature of the type II completions is that as long as any mij 6= 0 (respecting

an R-symmetry), there must be a field with R 6= 0, 2 in the theory.13 According to the

discussion in the previous subsection, this means that the CW potential of all these models

should have a SUSY and R-symmetry breaking minimum at X 6= 0, at least in some regime

of parameters. Since the type II models with m 6= 0 comprise all the renormalizable, R-

symmetric deformations of OGM, we have essentially shown that any such deformation of

OGM — which by itself is an incomplete model — will lead to a complete model of gauge

mediated SUSY breaking!

Now let us see how all this works in detail in a series of examples, presented in order of

their complexity. The simplest example of a complete EOGM model is the N = 2 version

of the models studied in section 4.1:

W = λX(φ1φ̃1 + φ2φ̃2) +mφ1φ̃2 + FX (5.7)

Notice that δW = mφ1φ̃2 is the only renormalizable deformation of N = 2 OGM consis-

tent with any R-symmetry (up to permutations). In this model, the boson and fermion

messenger masses can be calculated explicitly; substituting into the approximate CW po-

tential (5.4), one finds (to leading order in F 2)

VCW =
5λ2F 2

32π2
V2(x) (5.8)

V2(x) = − 2

4x2 + 1
+ 4 log x+

2x2 + 1

(4x2 + 1)3/2
log

2x2 + 1 +
√

4x2 + 1

2x2 + 1 −
√

4x2 + 1

where x ≡ λX/m. The function V2(x) is plotted in figure 8; one finds by inspection that

it is minimized at x = 0.2494.

13To see this, let us again go to a basis where λij is diagonal. Then R(φi) + R(eφi) = 0, and any mij 6= 0

implies 2 = R(φi) + R(eφj), so either φi, eφi, φj or eφj must have R 6= 0, 2.
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Figure 8: The CW potential for an N = 2 type II model (in arbitrary units), in the small F limit.

An analogous calculation of VN (x) for N = 3, 4, 5 reveals that x is minimized at

(0.38, 0.45, 0.5), respectively, and there is no minimum for N ≥ 6.14 Therefore, the N ≤ 5

models are extremely simple, complete models of direct gauge mediation.

Consider now the effect of doublet/triplet splitting in m2, m3, keeping λ2 = λ3 =

λ for unification. Because of the structure of this model, the CW potential for X is

straightforward to compute, and it is a simple sum of contributions from the doublet and

triplet sectors:

VCW =
λ2F 2

32π2

(
2VN (x2) + 3VN (x2ρ

−1)
)

(5.9)

where we have defined x2 = λX/m2 and ρ = m3/m2. As described above, the first (second)

term in (5.9) has a minimum around x2 ∼ 1 (x2 ∼ ρ). Thus when ρ≫ 1, the second term

in the potential is very flat compared to the first, and VCW is minimized around x2 ∼ 1.

Meanwhile, for ρ ≪ 1, the opposite is true, and the minimum of VCW is at x2 ∼ ρ. The

upshot is that the minimum of the potential always tracks the smaller of the two mass

parameters, i.e. 〈X〉 ∼ min(m2, m3).

Notice that in these examples, the vacuum always ends up at x < 1 (or x2, x3 < 1

when there is doublet/triplet splitting). This seems to be a general feature of these models,

and there is a simple intuitive reason for it. Namely, when x & 1, the one-loop potential is

basically that of N OGM messengers, i.e. it has no features and grows monotonically as a

logarithm. Thus the minimum of the potential, if it exists, must occur at x < 1.

By construction (see the discussion below (4.1)), the examples considered so far have

Neff ≈ 1 when x < 1. In order to build models with Neff > 1, we need to take rm < N − 1,

i.e. there must be some number of OGM messengers. If for some reason we want to

maximize Neff(x→ 0), then there should be as many OGM messengers as possible.

14This is an artifact of choosing mi = m, λi = λ. Choosing these couplings to be different for the different

messengers can lead to a CW potential with an R-symmetry breaking minimum.
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Thus we are led to a model that is the sum of a two messenger type II model and

N − 2 OGM messengers:

W = λX(φ1φ̃1 + φ2φ̃2) +mφ1φ̃2 + λ′X
N∑

i=3

φiφ̃i + FX (5.10)

This form of the superpotential could be enforced the R-symmetry, or by a Z2 ×
Z2 symmetry that acts separately on the OGM and the type II messengers. Note that

this model has a messenger parity symmetry which is simply the product of the separate

messenger parities of the type II and the N − 2 OGM models. In this model, the lower

bound in (2.9) implies that

Neff &
N2

N + 2
(5.11)

when x . 1. So a minimum of the CW potential, if it exists, is guaranteed to have Neff > 1.

In these models, the CW potential takes the form (again at small F )

VCW =
5F 2

32π2

(
λ2V2(x) + 2(N − 2)λ′2 log x

)
(5.12)

so the condition for the existence of a minimum is

λ′ ≪ λ (5.13)

Otherwise, the contribution from the type II messengers (which has a minimum at x ≈ 0.25)

will be overwhelmed by the monotonically growing contribution from the OGM messengers.

Finally, in order for doublet/triplet splitting to lead to Neff,3 6= Neff,2, we need to con-

struct a model that interpolates between (5.10) and the higher N generalizations of (5.7),

while remaining consistent with messenger parity. We can achieve this with the following

model:

W = λX(φ−1φ̃−1 + φ1φ̃1) +mφ−1φ̃1 + λ′X

N
2∑

i=2

(φiφ̃i + φ−iφ̃−i) (5.14)

+δm

N
2
−1∑

i=1

(φiφ̃i+1 + φ−iφ̃−i−1) + FX

where to maintain messenger parity, we have coupled the two-messenger type II model in

a symmetric way to two (N − 2)/2-messenger models. When δm → 0, this model reduces

to (5.10), and when δm → m this model becomes the higher N generalization of (5.7)

(albeit with split λ, λ′). Note that this particular interpolating model only works if the

total number of messengers is even. By having different δm for the doublets and triplets,

we can make Neff,3 ≫ Neff,2 and obtain all the exotic phenomenology (Higgsino NLSP,

small µ, etc.) discussed in the previous sections, all within the context of a complete

model. To illustrate this, we have generated in figure 9 contour plots of µ and the Higgsino

component of the lightest neutralino, for models of the form (5.14) withN = 4, 6; λ′ = λ/10

(to satisfy (5.13)); and δm2 = m2/10, δm3 = 0 so that Neff,3 is given by (5.11) and
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Figure 9: Contour plots for µ in {m2/X,m3/X} space for N = 4, 6, Mmess = 200 TeV, 400 TeV,

and ΛG = 200 TeV, 300 TeV. Here λ′ = λ/10, δm2 = m2/10, and δm3 = 0. The solid line denotes

the values of 〈X〉 corresponding to the complete model.

Neff,2 ≈ 1. These contour plots are scanned over m2/X and m3/X, again treating X

as a free parameter. The special case where X is determined by the Coleman-Weinberg

potential is indicated by the solid line in figure 9.

Let us conclude this subsection with a short summary of our results so far. First,

we have argued that the type II EOGM models lead naturally to extremely compact,

complete models of direct gauge-mediated SUSY-breaking. We have also seen that the

simplest models have Neff ≈ 1 and are largely insensitive to doublet/triplet splitting. So

in a sense, these features could be viewed as generic predictions of these minimal models.

Finally, we constructed complete models with Neff > 1 and Neff,3 ≫ Neff,2, using the more

complicated setups (5.10) and (5.14). The latter models are rather contrived,15 and they

are only intended to be existence proofs, showing that the exotic phenomenology discussed

in previous sections is possible within the space of these minimal completions of gauge

mediation.

5.4 Type III completions

We would also like to explore completions of type III models. As we have discussed,

the most interesting effects of type III models occur when n = 1, since this allows for

15In particular, why should δm2 6= 0 while δm3 = 0? Note that this question is similar to the standard

Higgs doublet/triplet splitting problem, with the role of doublets and triplets reversed. There have been

many ideas on how to solve the Higgs doublet/triplet splitting problem (for a nice overview, see [53]), and

perhaps some of these ideas can be applied here.
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Figure 10: A plot of the CW potential for the complete N = 4 type III model discussed in the

text, with λ′ = 0.15, λ = 1, m = 0.1M , and F = 10−4M2.

the smallest possible Neff . Thus, we will focus on completions of n = 1 models in this

subsection. One can show that theories with n = 1 always contain a supersymmetric

vacuum at X = 0, φ, φ̃ 6= 0. As in the previous subsections, we will always assume that

this SUSY vacuum is sufficiently far away from the SUSY-breaking pseudo-moduli space,

so that the meta-stable vacuum (if it exists) is long-lived.

It is straightforward to take the models (4.5) discussed in section 4.2 and use them to

build complete n = 1 models with exotic phenomenology. Recall that these models were

combinations of type I models and OGM messengers. In this section, we will focus on a

model of the form (4.5) with N = 4 messengers,

λX +m =




λ′X 0 0 0

0 m λX 0

0 0 M λX

0 0 0 m


 (5.15)

which respects the same messenger parity of (4.5) even with m 6= M . The CW potential

for this model splits into a potential for the OGM messenger and a potential for the type

I model; at small F this is given by

VCW =
5λ′2F 2

16π2
logX + V

(typeI)
CW (5.16)

The type I model is precisely the one discussed in [33]; thus, we know that it has a minimum

at X 6= 0 when m≪M . In order for the OGM messenger not to destabilize this vacuum,

we must also require λ′ ≪ λ. An example of a potential with an R-symmetry breaking

minimum is shown in figure 10; here we have chosen λ′ = 0.15, λ = 1, m = 0.1M , and

F = 10−4M2.

With doublet/triplet splitting, it is possible to obtain complete models whose spectra

contain light gluinos, as well as small µ and Higgsino NLSPs. As discussed in section 4.2,

we can split λ (but not λ′,m or M) between the doublets and triplets without affecting
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Figure 11: A sample spectrum for the complete type III model with doublet/triplet splitting

discussed in the text. The parameters are as in the previous figure, but with λ2 = 1.75 and

ΛG = 115TeV.

unification. An example spectrum with split λ’s is shown in figure 11; here the scale is

set with ΛG = 115 TeV, and the parameters are the same as those in figure 10, except

λ2 = 1.75. Note that for this choice of parameters, Neff,3 = 0.6 and Neff,2 = 0.2. Figure

11 shows that it is possible to get gluino masses lighter than 1 TeV, as well as Higgsino

NLSPs at low messenger scales, in a complete type III model.
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A. The messenger mass matrix

A.1 Determinant identity

Here we will prove that the R-symmetry selection rules (2.2) imply the identity (2.3):

detM = XnG(m,λ), where n =
1

R(X)

N∑

i=1

(
2 −R(φi) −R(φ̃j)

)
, (A.1)

To begin, recall the definition of the determinant

detM =
∑

σ∈SN

sgn(σ)M1,σ(1)M2,σ(2) . . .MN,σ(N) (A.2)

where SN is the degree N permutation group. Now consider any nonvanishing term in the

sum (A.2), and define

Ti,σ ≡ R(φi) +R(φ̃σ(i)) (A.3)

From the R-symmetry, Mi,σ(i) vanishes unless Ti,σ = 2 − R(X) or 2. Furthermore, if

Ti,σ = 2 −R(X) (Ti,σ = 2) then Mi,σ(i) is proportional to X (a constant). Therefore, the

nonvanishing term in question is a monomial in X, of degree

n =

N∑

i=1

(2 − Ti,σ)

R(X)
=

1

R(X)

N∑

i=1

(
2 −R(φi) −R(φ̃σ(i))

)
=

1

R(X)

N∑

i=1

(
2 −R(φi) −R(φ̃i)

)

(A.4)

Note that the dependence on the permutation σ has dropped out in the last equation

because of the sum over N . Therefore, every non-vanishing contribution to the determinant

is proportional to Xn with the same power n, and this completes the proof of (2.3).

A.2 Messenger spectrum and the asymptotic behavior of Neff

We would like to get some idea of how Neff depends on the parameters of the model. But

first, we need to get a rough picture of the messenger spectrum. For this purpose, the

notation introduced in (2.11) will be useful:

rλ ≡ rankλ, rm ≡ rankm (A.5)

Note that rλ + rm ≥ N necessarily, otherwise λX +m would be degenerate.

At large X, rλ messengers have O(X) masses. The remaining N−rλ messenger masses

must scale with a smaller power of X,

Mi ∼
mni+1

Xni
(A.6)
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where ni ≥ 0 and, according to the determinant identity (2.3),

N−rλ∑

i=1

ni = rλ − n (A.7)

On the other hand, at small X, rm of the messengers have O(m) masses. According

to (2.3), the remaining N − rm messengers have

Mi ∼
Xn′

i+1

mn′
i

(A.8)

masses, with n′i ≥ 0 and
N−rm∑

i=1

n′i = n− (N − rm) (A.9)

(By successively integrating out messengers, it is straightforward to prove that all the ni

and n′i must be integers.) Together, these identities imply

N − rm ≤ n ≤ rλ (A.10)

As a check, note that this inequality is consistent with the inequality rλ + rm ≥ N

deduced above.

Based on this picture of the messenger spectrum, it is trivial to derive using (2.7) the

asymptotic behavior of Neff as X → 0 and as X → ∞:

Neff(X → 0) =
n2

∑N−rm

i=1 (n′i + 1)2
, Neff(X → ∞) =

n2

rλ +
∑N−rλ

i=1 n2
i

(A.11)

Note that in both the X → 0 and X → ∞ limits, Neff is invariant under any continuous

deformations of m and λ which preserve the R-charge assignments.

Finally, combining (A.7), (A.9) and (A.11), together with the classic RMS-AM inequal-

ity 〈x2〉 ≥ 〈x〉2, it is straightforward to show that the asymptotic values of Neff satisfy the

bounds (2.9)–(2.10) quoted in the text.

B. Renormalization methodology

In this section, we describe how the low-energy spectra exhibited in sections 3-5 were

computed, in particular the threshold corrections and β functions that were used to run

the soft masses from the messenger scale down to the weak scale. The formulae for all

the corrections we used are presented in [54] and [55]. Typically, 10% accuracy in the

low-energy soft parameters would be sufficient for the level of phenomenological detail that

concerns this paper; however, we required much better than this since one of the most

significant effects in the low-energy spectrum was a large cancellation in the running of

m2
Hu

between the messenger and the weak scale. We have therefore included radiative

contributions in [54] or [55] that correct m2
Hu

at the percent level.
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We begin by detailing the renormalization group equation (RGE) effects. The most

straightforward of these are the two-loop β functions, which we have only included for

gaugino masses, α3, yt, and m2
Hu

itself. All other β functions are evaluated at 1-loop.

In addition, there are new RGE effects from the messengers. Below the scale of the scale

Mmess of the lightest messenger, the RGE’s are the familiar ones of the MSSM and have

been worked out explicitly many places. However, above Mmess, the RGE’s are modified.

In the class of models considered in this article, there typically appear messengers at

several different mass scales. Above the scale of the heaviest messenger, the lagrangian

is supersymmetric, and all soft SUSY breaking terms vanish. In simple gauge mediation

models where all of the messengers have the same mass, the soft terms are generated only in

the low energy theory (MSSM) where the messengers have been integrated out, and so the

messengers do not contribute to the running. With multiple messenger thresholds, however,

the soft SUSY breaking terms begin to run as soon as the heaviest messenger is integrated

out. In between messenger thresholds, the RGE’s are those of the MSSM plus a contribution

from the messengers. The contribution to the running of a scalar (mass)2’s for a general

(softly broken) supersymmetric theory has been worked out in [54]. Contributions from

the MSSM enter already at one-loop and so are naively much larger than the contribution

from the messengers. However, by dimensional analysis they are proportional to MSSM

(mass)2, which are themselves suppressed by (α/4π)2, and therefore effectively give only a

three-loop contribution to the running. Thus, the leading contribution is at order O(α2)

and comes from the messenger sector (eq. (2.20) in [54] ):

dm2
ef

d logQ
≈

3∑

a=1

8
g4
a

(4π)4
Ca

ef
Str(S(r)M2) (B.1)

Here, M2 denotes the messenger mass matrix (bosons and fermions), and tr(tAr t
B
r ) =

S(r)δAB defines the Dynkin index of the representation r.16 (B.1) has no effect above the

scale of the heaviest messenger, where the supertrace theorem clearly holds, StrM2 = 0;

or below the scale of the lightest messenger, where the supertrace is empty. In between the

heaviest and the lightest messenger scale, however, (B.1) has an effect, and it is typically

quite significant. We therefore include this contribution to the MSSM β functions in

between messenger scales. Since we include all running between messenger scales, the

threshold corrections to sfermion and gaugino masses from each messenger is evaluated

with the renormalization scale equal to the messenger’s own mass.

There are also many threshold corrections from the MSSM that are important to

include. In particular, m2
Hu

(met) is extremely sensitive to the top Yukawa coupling and,

to a lesser extent, α3. MSSM threshold corrections at the weak scale can change yt (α3)

by around 10% (20%), which in turn corrects m2
Hu

(met) by around 50% when there is no

focussing, and over 100% when there is. We include corrections to α3 from stop and gluino

16More precisely, Sa(r) is the Dynkin index for a single messenger φr for the gauge group Gi; when the

doublets and triplets are split, S1(2) = 1
2
( 3
5
) and S1(3) = 1

2
( 2
5
) are the dynkin indices for the U(1) gauge

group, for a complete doublet field and triplet field respectively.
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yt yb yτ α3 α2 α1 m2
Hu

mh0

N = 5 EOGM β(2) -0.027% 0.82% -0.26% -0.39% 0.056% 0.052% -46.% -0.033%

∆MSSM 8.4% 9.1% -0.28% 17.% 2.7% 1.9% 270 % 0.37%

βmess 0.020% 0.23% -0.060% 0.0026% 0.018% 0.016% -14.% -0.041%

N = 5 OGM β(2) -0.044% 0.39% -0.060% -0.38% 0.015% 0.011% -14.41% -0.043%

∆MSSM 8.20% 11.38% -1.71% 16.82% 2.99% 1.60% 83.77% 0.65%

N = 1 OGM β(2) -0.036% 0.18% 0.0064% -0.37% 0.018% 0.0032% -8.18% -0.029%

∆MSSM 8.83% 11.23% -0.78% 18.37% 3.18% 2.20% 88.31% -0.069%

Table 1: The size of the correction to running parameters at 1 TeV. β(2) indicates the correction

from 2-loop running, ∆MSSM indicates the threshold corrections from the MSSM, and βmess indicates

the correction from running between messengers.

loops:

∆α3 =
α3(MZ)

2π


1

2
− 2

3
ln

(
mt

MZ

)
− 2 ln

(
meg

MZ

)
− 1

6

∑

eq

2∑

i=1

ln

(
meqi

MZ

)
 (B.2)

The running top Yukawa gets threshold corrections from squarks and gluino loops, as well

as from neutralinos, charginos, and Higgses. We include all threshold corrections at 1-loop

to yt (eqs. D.16 and D.18 in [55] ).

In addition, we include less significant threshold corrections to the standard model

quarks and gauge couplings. In particular, we include all 1-loop threshold corrections to

α1 and α2; these can be important, because they feed into the definition of the running

Higgs vev v2 = 2m2
Z/4π(α1 + α2), which in turn feeds into the definition of the running

top mass.

To determine the low-energy MSSM spectrum, we employ an iterative procedure (as in

standard programs, such as SOFTSUSY 2.0 [56]) whereby an initial guess at the messenger

scale is RG evolved down to the weak scale, the MSSM threshold corrections are computed,

these are used to update the high-scale boundary conditions, and this process is repeated

until it converges to within a 2% change in µ2. Typically, this occurs within a few iterations.

We have checked that in the case of OGM with N = 1 or N = 5 messengers, our codes

matches the results of SOFTSUSY 2.0 around the electroweak scale to 3% or better for all

parameters and to 1% or better for m2
Hu

.

Table 1 summarizes the effect of these corrections on the soft masses for an EOGM

point with small µ. Specifically, we have taken the type II model of section 4.1 with

m2 = 3,m3 = 1/2, λ = 1,X = 1,Mmess = 200 TeV and ΛG = 160 TeV. For comparison,

the size of the effects are shown for N = 1, 5 OGM models with the same Mmess and ΛG.

The number in the table is
Xapprox−X

X where X denotes the parameter with all corrections

and Xapprox omits the indicated correction. All the running parameters are evaluated at

1 TeV. β(2) denotes the two-loop running, and ∆MSSM denotes threshold corrections from

the MSSM. For EOGM, we also show the effect (βmess) of running between messenger

masses.
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C. Phenomenology of a Higgsino-like NLSP

C.1 Masses and mixings

Because EOGM allows for a small µ parameter, the Higgsinos can be lighter than the

gauginos, and so the NSLP can be Higgsino-like. To see this, recall the mass matrix for

the neutralinos and charginos:

M eN =




M1 0 −cβsWmZ sβsWmZ

0 M2 cβcWmZ −sβcWmZ

−cβsWmZ cβcWmZ 0 −µ
sβsWmZ −sβcWmZ −µ 0




M eC =

(
0 XT

X 0

)
X =

(
M2

√
2sβmW

√
2cβmWµ

)
(C.1)

In the limit µ ∼ mZ ≪M1, M2, the masses are given by:

m2
eN±

= µ2 ± µm2
Z(M1c

2
W +M2s

2
W )(1 ∓ sin 2β)

M1M2
+ . . .

m2
eN3

= M2
1 + 2m2

Zs
2
W +

2µm2
Zs

2
W sin 2β

M1
+ . . .

m2
eN4

= M2
2 + 2m2

Zc
2
W +

2µm2
Zc

2
W sin 2β

M2
+ . . . (C.2)

and

m2
eC1

= µ2 − 2µm2
W sin 2β

M2
+ . . . (C.3)

m2
eC2

= M2
2 + 2m2

W +
2µm2

W sin 2β

M2
+ . . .

The mass matrices (C.1) are diagonalized by a bi-unitary transformation Ñi = Nijψ
0
j ,

C̃+
i = Vijψ

+
j , C̃−

i = Uijψ
−
j . In the small µ limit, the bino, wino and Higgsino components

of the lightest neutralinos and charginos are given by the formulae:

{N2
±1, N

2
±2, N

2
±3 +N2

±4} =
{
m2

Zs
2
W (1 ∓ sin 2β)

2M2
1

,
m2

Zc
2
W (1 ∓ sin 2β)

2M2
2

, 1 − 1

2
m2

Z

M2
1 c

2
W +M2

2 s
2
W

M2
1M

2
2

(1 ∓ sin 2β)

}
+ . . .

{
U2

11, U
2
12

}
=

{
2m2

W c2β
M2

2

, 1 −
2m2

W c2β
M2

2

}

{
V 2

11, V
2
12

}
=

{
2m2

W s2β
M2

2

, 1 −
2m2

W s2β
M2

2

}
(C.4)

Thus, in the small µ limit, the lightest neutralinos and charginos are almost completely

Higgsino.
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C.2 Decay rates

OGM has the well-known collider signature γγ + /E from promptly decaying binos. The

rates for this are typically enormous (there will be thousands of such events at the LHC

after only 100 pb−1 of data), and the SM backgrounds are virtually non-existent [57 – 60].

As such, γγ + /ET offers an excellent channel for early discovery of gauge mediation at the

LHC.

In EOGM, a Higgsino NLSP can lead to a completely different collider signature.

Because the Higgsino is the superpartner of the Higgs, which in turn mixes with the

longitudinal mode of the Z, the branching ratio of the NLSP to these modes is larger than

in OGM. The relative decay rates of NLSP to Goldstino + boson are given by

Γ(χ0
1 → G̃Z0)

Γ(χ0
1 → G̃γ)

=
κZ

κγ

(
1 − m2

Z

m2
χ0

1

)4

Γ(χ0
1 → G̃h0)

Γ(χ0
1 → G̃γ)

=
κh

κγ

(
1 − m2

h

m2
χ0

1

)4

(C.5)

κγ =
m4

Zs
2
W c2W

4M4
1M

4
2

(1 − sin 2β)2(M2
1 cW +M2

2 sW )2 + . . .

κZ =
1

8
(1 − sin 2β) +

m2
Z cos 2β2

8M1M2µ
(M1cW +M2sW ) + . . .

κh =
1

4
(1 − sin 2α) − m2

Z cos 2α cos 2β

4M1M2µ
(M1cW +M2sW ) + . . . , (C.6)

where tan 2α = (m2
A +m2

Z)/(m2
A −m2

Z) tan 2β.

Thus, if there is an appreciable separation of scales µ,mZ < M1,2, then κZ,h ≫ κγ and

the decays to Zs and Higgses will dominate over the decays to photons. Note that because

of the β4 phase space factor, the decay rate to Z’s will generally be slightly larger than the

decay rate to Higgs.

C.3 Sparticle production at colliders

Finally, let us discuss briefly some differences between the production of bino vs. Higgsino

NLSPs at hadron colliders. These will only be very preliminary remarks; a more detailed

analysis will be contained in [35].

Assuming gluino and squark masses above ∼ 1TeV, the primary sparticle production

modes at the LHC will be charginos and neutralinos produced from s-channel weak bosons.

In this scenario, an increased Higgsino component can significantly alter the dominant

production modes and cross sections.

First, let us consider the dominant production modes for bino vs. Higgsino NLSPs.

Because the proton PDF’s fall off so quickly with energy, the dominant production chan-

nels will generally be through the lightest modes. When µ ≫ M1, M2, the two lightest

neutralinos and charginos are all gaugino-like, so we are only concerned with couplings of

s-channel weak gauge bosons to gauginos. Hence, the relevant couplings are

qq → Z → C̃+
1 C̃

−
1 , qq′ →W± → C̃±

1 Ñ2. (C.7)
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Direct production of Ñ1 is suppressed because it is bino-like, and binos are neutral

under electroweak.

Now let us contrast this with the situation for Higgsino NLSPs. When µ ≪ M1, M2,

the two lightest neutralinos and charginos are all Higgsino-like and are all nearly degenerate

around µ. Consequently, we care about the couplings of s-channel weak gauge bosons to

Higgsinos, and the relevant channels are:

qq → Z → C̃+
1 C̃

−
1 , qq → Z → Ñ1Ñ2, qq′ →W± → C̃±

1 Ñ1,2. (C.8)

The first two channels are completely analogous to the two production channels for bino

NLSP. The third channel, however, is an extra production mode, which is made possible

because the two lightest neutralinos are nearly degenerate Higgsinos.

Finally, let us point out another difference between Higgsino and bino NLSPs which is

apparent from (C.7), (C.8). Assuming the GUT relations amongst the gaugino masses, the

dominant channels for bino NLSPs involve wino-like particles whose masses are ≈ 2mNLSP.

On the other hand, for Higgsino NLSPs the dominant channels involve Higgsino-like particle

whose masses ≈ mNLSP. Thus (at fixed NLSP mass) the sparticle production cross sections

for Higgsino NLSPs are enhanced relative to those for bino NLSPs because the produced

sparticles are lighter.
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