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Extracellular cell stress proteins are highly conserved phylogenetically and have

been shown to act as powerful signalling agonists and receptors for selected

ligands in several different settings. They also act as immunostimulatory

‘danger signals’ for the innate and adaptive immune systems. Other studies

have shown that cell stress proteins and the induction of immune reactivity

to self-cell stress proteins can attenuate disease processes. Some proteins

(e.g. Hsp60, Hsp70, gp96) exhibit both inflammatory and anti-inflammatory

properties, depending on the context in which they encounter responding

immune cells. The burgeoning literature reporting the presence of stress pro-

teins in a range of biological fluids in healthy individuals/non-diseased

settings, the association of extracellular stress protein levels with a plethora of

clinical and pathological conditions and the selective expression of a membrane

form of Hsp70 on cancer cells now supports the concept that extracellular cell

stress proteins are involved in maintaining/regulating organismal homeostasis

and in disease processes and phenotype. Cell stress proteins, therefore, form a

biologically complex extracellular cell stress protein network having diverse

biological, homeostatic and immunomodulatory properties, the understanding

of which offers exciting opportunities for delivering novel approaches to

predict, identify, diagnose, manage and treat disease.

This article is part of the theme issue ‘Heat shock proteins as modulators

and therapeutic targets of chronic disease: an integrated perspective’.
1. Background

Chance favours the prepared mind.

—Louis Pasteur (1822–1895)
The presence of additional new ‘puffs’ in the polytene chromosomes of cultured

Drosophila larva which were induced following their incubation at an inadvertently

high temperature and observed by Ferruccio Ritossa (25 February 1936–9 January

2014) in the early 1960s was unexpected and puzzling. He realized the potential

importance of this first evidence that stress can influence gene transcription and

induce the synthesis of new proteins, yet found it surprisingly difficult to publish

this discovery. It was eventually published in Experientia [1,2].

Ritossa’s findings were extended and expanded upon during the next decade,

and by the mid-to-late 1960s, it was clear that exposure of cells containing poly-

tene chromosomes to a variety of environmental stressors resulted in the

transcription of novel genes and, presumably, in the synthesis of specific proteins.

However, it was not until the 1970s when Tissières at the University of Geneva

and other investigators in this area [3,4] applied the newly developed technique

of sodium dodecyl sulfate (SDS)–PAGE to reveal the appearance of new protein

bands having distinct molecular masses in salivary glands after the application of

heat shock. It was also noted that cellular levels of some proteins that were present

before the application of elevated temperature either decreased or disappeared

after treatment. Here was the first evidence for the existence of heat shock proteins

(HSPs) or cell stress proteins, and it was then that these terms were coined.
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However, it is now clear that a range of different stressors,

other than heat, such as viral infection, cytokines, oxidative

stress, ionizing and UV irradiation, glucose deprivation or

exposure to toxins and certain metals, also induce the

expression of such proteins. A more descriptively correct

term for these proteins is therefore ‘cell stress’ proteins [5].

The fact that research on the heat shock response was pre-

dominantly undertaken in Drosophila during the 1960s and

1970s led to the expectation that this response was specific to

insects or even to Drosophila itself. However, observations

that the heat shock response was present in chicken fibroblasts

[6], Escherichia coli [7], yeast [8] and plants [9] indicated that the

heat shock/cell stress response is a universal phenomenon. The

cloning of the Drosophila genes encoding HSPs and the sequen-

cing of many of the relevant genes by the late 1970s/early

1980s revealed the evolutionary relationships between the

response and the proteins involved (e.g. [10]).

The relationships between stress-induced gene transcrip-

tion and the roles of cell stress proteins in protein folding and

the management of the intracellular environment took many

years to be understood and consolidate [3,11,12]. Larry High-

tower [13], a pioneer in studying the physiological role of cell

stress proteins, first suggested that, as many of the stressors

were protein chaotropes (agents able to denature proteins),

then the most obvious function of this stress response was to

manage and deal with improperly folded proteins within the

cell. This hypothesis was tested using a simple experimental

protocol which determined the influence of direct microinjec-

tion of native or denatured proteins into frog oocytes on the

induction of the stress response. Only denatured proteins

induced the response, thereby establishing the link between

protein unfolding within the cell and the induction of the cell

stress response [11].

By the late 1980s, it had been recognized that cellular pro-

teins require help with their folding in some instances, and

that this was facilitated via the actions of families of proteins

termed ‘molecular chaperones’ [12], the accepted definition

of which is ‘a large and diverse group of proteins that

share the property of assisting the non-covalent assembly/

disassembly of other macromolecular structures, but which

are not permanent components of these structures when

these are performing their normal biological functions’ [14].

Molecular chaperones fulfil essential cellular ‘housekeeping’

and cytoprotective functions, and thereby ensure correct func-

tionality. They also enable cells to cope with the plethora

of insults and stresses that exist in the complex and dynamic

intracellular environment (table 1).

Since these early studies, a growing number of proteins that

are involved in protein folding and in the cell stress response

have been identified in all three of life’s Kingdoms. Several

families of the molecular chaperones include large numbers of

proteins. For example, the Hsp40 family contains 50 members.

The fact that the number of human molecular chaperones and

protein-folding catalysts is probably in the region of 150 proteins

underlies the enormous complexity of the cell stress response.

The cell stress protein families can be subdivided into molecular

chaperones, which aid protein folding without changing the

client protein in any way, protein-folding catalysts such as

protein disulfide isomerases, which catalyse SH-:-S-S- intercon-

versions, and peptidyl prolyl isomerases, which catalyse cis :

trans isomerization of prolines and thus induce chemical

changes in their client proteins [19]. The protein-folding cata-

lysts can also be involved in redox interactions, and this
phenomenon of oxidation and reduction both within and out-

side the cell is now recognized as being a major modulator of

biological behaviour (e.g. [20]). To confuse matters further,

molecular chaperones and protein-folding catalysts can either

be proteins whose genes are induced by stress, or be constitu-

tively expressed proteins whose genes fail to be modulated by

stress—only the former are classed as cell stress proteins.

Discontinuous PAGE gels enable accurate molecular

masses to be identified, and informed the nomenclature for

the heat shock (cell stress) proteins (e.g. Hsp60, Hsp70). How-

ever, despite the publication of nomenclature guidelines [17],

the literature remains unclear, especially in the case of the

70 kDa family of molecules. The human HSP70 (gene) family

consists of at least eight members, only three of which show

stress-inducible expression [18]. Of the 13 protein members of

the family, two closely linked genes, referred to as Hsp70-1,

are the major stress-induced members [18]. Although some evi-

dence implicates Hsp70-2 in human cancer, the cytosolic,

stress-induced Hsp70-1 is the predominant form that is overex-

pressed in cancer [18]. It is, therefore, likely that it is this form of

the molecule which is being measured in the studies that have

been reported to date. However, it is important that the identity

of the analyte being reported upon is verified using infor-

mation on the specificity of the antibodies that are being used

in the assays.

As indicated above, it is now apparent that proteins can

have multiple functions, the manifestations of which are

dictated by the context in which they are generated and

encountered. For instance, can proteins such as stress proteins

exhibit distinct profiles of physiological activities when in the

intracellular and extracellular environments? If so, and this

indeed appears to be the case, then this would argue against

the concept of ‘one protein, one function’. Although the con-

cept of ‘one protein, one function’ is not universally accepted,

Campbell & Scanes [21] first proposed the term ‘protein moon-

lighting’ to describe the capacity of certain proteins to exhibit

more than one biological function, specifically the apparent

immunological functions of ‘endocrine peptides’. A number

of prokaryote and eukaryote proteins have been shown to exhi-

bit ‘moonlighting functions’, and this concept has been

expanded upon by a number of proponents [22–25]. The con-

cept of protein moonlighting is discussed in detail by

Constance Jeffery elsewhere in this issue [26].

However, it should be noted that many biologically impor-

tant molecules—if not all of them—express more than one

function, and the implication that a protein has only one

bona fide function and that the other functions are secondary,

if not superfluous, might not necessarily be the case. Another

counterview to moonlighting functions of HSP (stress) in the

immunological context (see below) is that these proteins

might not have evolved a second function at all. Rather, it

was the immune system that evolved to recognize and respond

to these proteins on the basis of changed accessibility, rather

than changes in physiological function.
2. Cell stress proteins are released into the
extracellular environment

The concept that stress proteins can be released from cells in the

absence of necrosis was highlighted by Hightower & Guidon

in 1989. In this study, heat treatment was shown to increase

the profile of proteins that were released from cultured rat



Table 1. Mammalian cell stress response proteins, and their intracellular localization and function. ER, endoplasmic reticulum; TCP-1, tailless complex
polypeptide; Grp, glucose-regulated protein; Hsp, heat shock protein; BiP, immunoglobulin heavy chain binding protein; mtHsp70, mitochondrial Hsp70; HSF1,
heat shock factor 1; Apg-1, protein kinase essential for autophagy. Adapted from [15,16]. Further information on the nomenclature and individual family
members has been published elsewhere [17,18].

major family, and members intracellular localization intracellular function

small Hsps

aB-crystallin

Hsp27

haeme oxygenase, Hsp32

cytoplasm

cytoplasm/nucleus

cytoplasm

cytoskeletal stabilization

actin dynamics

haeme catabolism, antioxidant properties

Hsp60 or chaperonins

Hsp60

TCP-1

mitochondria

cytoplasm

both bind to partially folded polypeptides and assist correct folding

assembly of multimeric complexes

Hsp70

Hsp70 (inducible)

Hsc70 (cognate)

Grp78/BiP

mtHsp70/Grp75

cytoplasm/nucleus

cytoplasm/peroxisome

ER

mitochondria

all bind to extended polypeptides

all prevent aggregation of unfolded peptides

all dissociate some oligomers

ATP binding

ATPase activity

Hsp70 is involved in the regulation of HSF1 activity and the

repression of heat shock protein gene transcription

Hsp90

Hsp90 (a and b)

Grp94/gp96/Hsp100

cytoplasm

ER

all bind to other proteins

all regulate protein activity

all prevent aggregation of re-folded peptide

correct assembly and folding of newly synthesized protein

Hsp90 appears to be involved in maintaining the HSF1 monomeric

state in non-stressful conditions. Represents 1 – 2% of total protein

Hsp110

Hsp110 (human)

Apg-1 (mouse)

Hsp105

nucleolus/cytoplasm

cytoplasm

cytoplasm

thermal tolerance

protein refolding
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embryo cells, from a small profile that included the constitu-

tively expressed member of the 70 kDa family of molecules,

Hsc70, to also include its inducible counterpart, Hsp70 and

Hsp110 [27]. Although protein release occurred in the absence

of any overt level of cellular necrosis (and was therefore likely

to be an ‘active’ physiological process), it was not mediated via

the common secretory pathway, as inhibitors of this pathway

(colchicine, monensin) did not block it [27]. These findings,

aligned with the slightly earlier study from Tytell et al. [28] in

1986, who reported the transfer of glia–axon transfer proteins

(including Hsp70, Hsc70 and Hsp100) from adjacent glial cells

into the squid giant axon. This response was proposed to reflect

a mechanism that enabled glial cells to protect adjacent

neuronal cells that exhibit a deficient ability to generate a

protective response to stress.

These initial findings, and the subsequent studies reporting

the presence of Hsp60 and Hsp70 in the peripheral circulation

of healthy individuals by Pockley et al. in the late 1990s [29,30],

were received with scepticism by the biological and biochemi-

cal communities, as it was unclear how these proteins could be

released from viable cells, given that they do not express

the typical N-terminal signal peptide sequences that enable
secretion. However, this argument is not a strong one, as

‘non-classical’ secretion of proteins lacking such sequences has

been observed for several proteins, including fibroblast

growth factors 1 and 2 (FGF-1,2), interleukin-1 (IL-1) and high

mobility group box 1 (HMGB-1). The mechanisms underlying

non-classical secretion pathways have been reviewed elsewhere

[31]. Cell stress proteins have now been reported to be released

from a wide range of cells including insulin-secreting b cells, rat

cortical astrocytes, a human neuroblastoma cell line, a human

keratinocyte-derived cell line, cultured vascular smooth

muscle cells and a broad profile of tumour cells including

murine and human prostate cancer cells and B cells (reviewed

in [32]), and to exist in the circulation in a number of healthy

and diseased states (see below).

Extracellular Hsp70 exists either as a free protein, as a

protein in association with lipid vesicles such as exosomes

[33,34] and lysosomal endosomes [35] or in the context of

cholesterol-rich microdomains [36]. Vesicular transport [37]

and ubiquitination-triggered transport [38] have also been

proposed. Recent studies have demonstrated that the min-

ority of extracellular Hsp70 is ‘free’ Hsp70, and this is

mostly derived from dying cells [39].
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Exosomes are small membrane vesicles that form within

late endocytic compartments called multi-vesicular bodies

(MVBs). They are distinct to apoptotic vesicles in that they

differ in their mode of production and protein composition

[40]. The fusion of MVBs with the plasma membrane leads to

the release of exosomes into the extracellular space. Various

haematopoietic and non-haematopoietic cell types secrete

exosomes, including reticulocytes, B and T lymphocytes, mast

cells, platelets, macrophages, alveolar lung cells, tumour cells,

intestinal epithelial cells and professional antigen-presenting

cells (APCs) such as dendritic cells (DCs), with the function of

exosomes in different physiological processes depending on

their origin [41]. DC- and tumour-derived exosomes are

enriched in Hsp70, Hsc70 and Hsp90 [42,43], and exosomes

released from reticulocytes also contain Hsp70 [44]. Exosomal

release of stress proteins and the role of exosomal-associated

HSPs in cancer have been reviewed in the literature [45,46]

and by Gabriele Multhoff elsewhere in this issue [47].
 3:20160522
3. Cell stress proteins as immunomodulatory
mediators

Although probably not fully appreciated at the time, the con-

cept that stress proteins can exist in the peripheral circulation

had been established in 1977 in a study that reported the pres-

ence of a protein (early pregnancy factor (EPF)) in the serum of

women in the first trimester of pregnancy [48]. This protein was

demonstrated to have immunosuppressive properties two

years later [49] and was identified as being HSP 10 (Hsp10)

in 1994 [50]. It has also been shown that Hsp10, a 10 kDa mono-

mer that caps the Hsp60 oligomer and facilitates protein

folding [51] is also present at low levels in non-pregnant indi-

viduals [52]. Hsp10 inhibits the secretion of several

inflammatory mediators [53], and its immunosuppressive

properties can attenuate a variety of human inflammatory dis-

eases [54–57]. The finding that circulating levels of Hsp10 in

patients with periodontal disease are lower than those in

matched, disease-free, controls and that levels only return to

normal after effective therapy suggest the control of circulating

Hsp10 levels by localized inflammation [52]. Hsp10 therefore

appears to be a homeostatic controller of inflammation, in

addition to being an integral component of the intracellular

molecular chaperone machinery.

With regard to Hsp60 and Hsp70, the discovery of

these proteins in the peripheral circulation of overtly normal

individuals led to a certain degree of confusion, as these pro-

teins were considered as being pro-inflammatory molecules

when present in the extracellular environment. Indeed, one

of the major issues for investigators studying the immunobi-

ology of extracellular stress proteins is the apparently

contradictory evidence that indicates both pro- and anti-

inflammatory roles for these proteins. The problem is that the

immunological properties of these proteins continue to be dis-

cussed in isolation and it is essential that a more systems

biology approach to extracellular HSPs is adopted in order to

better reflect their physiological context and roles. Although

many studies indicate pro-inflammatory properties for Hsp60

and Hsp70 in their interactions with monocytes, macrophages

and DCs [58–62], it has been speculated that at least some of

these inflammatory effects result from the presence of contami-

nating endotoxin in the recombinant protein preparations,

especially those that have been generated using bacterial
expression systems [63–66]. However, much evidence argues

against this being the universal explanation for these effects,

as has been reviewed elsewhere [25,67]. It is, therefore, essential

to ensure that reagents and experimental design(s) are beyond

question when it comes to undertaking experiments in this

area. The influence of HSPs on immune responses in a

number of contexts has been reviewed elsewhere [15,68,69]

and in this issue.

In contrast with their reported pro-inflammatory proper-

ties, a body of literature indicates that Hsp60 and Hsp70 can

have profound anti-inflammatory effects. Relatively historic

data have reported that the induction of T cell reactivity to

self-Hsp60 and self-Hsp70 promotes the development of Th2

type CD4þ T cells producing the regulatory cytokines IL-4

and IL-10 and downregulates disease in a number of exper-

imental models of inflammatory disease [70–74]. It has also

been shown that DNA vaccines encoding for these pro-

teins inhibit experimental arthritis and diabetes [74,75]. The

recognition of conserved (self ) epitopes on these highly

conserved molecules dominantly downregulates the inflam-

matory capacity of the non-conserved (non-self ) epitopes

[76]. Human Hsp60 can act as a co-stimulator and activator

of CD4þCD25þ regulatory T cell populations by interacting

with Toll-like receptor 2 (TLR2) [77] and the treatment of

such cells with Hsp60 enhances their ability to regulate the

CD8þ T cell populations via direct cell–cell contact and the

secretion of the immunoregulatory cytokines IL-10 and TGF-

b [77]. The anti-inflammatory potential of Hsp60 and Hsp60-

derived peptides has also been demonstrated in studies that

have used these to modulate the rejection of murine skin allo-

grafts [78,79] and autoimmune disease—the latter is discussed

elsewhere [80–82] and by Willem van Eden in this issue [83]. It,

therefore, appears that the net outcome of any immune

response is dependent on the relative strengths of these antag-

onistic events (reviewed in [68]). The interactions of Hsp60

with the innate and adaptive immune systems and their

immunoregulatory consequences have been reviewed and

considered by Quintana & Cohen [84].
4. Extracellular cell stress proteins in health
and disease

The initial identification of Hsp60 and Hsp70 in the peripheral

circulation [29,30] stimulated interest in this area and the devel-

opment of a range of ‘in-house’ and commercial enzyme

immunoassays for measuring stress proteins in extracellular

compartments. Most commercially available enzyme immu-

noassays for cell stress proteins are optimized for free Hsp70

in buffer, but not for Hsp70 in the serum, plasma or other

body fluids, and so it is essential that investigators are aware

of the limitations of the assays they use. It is also a matter of

debate as to whether liposomal cell stress proteins can be

detected using the standard detergents that are typically

included in commercial enzyme immunoassay kits. Notwith-

standing the above, these studies have led to many reports

associating circulating levels of cell stress proteins with healthy

and diseased states (table 2), including cancer (table 3). An

immediate issue relating to these studies is the need to

ensure that the commercial assay kits and the ‘in-house’

assays that have been used have been properly validated for

the analysis of the relevant analytes in the biological fluid

that is under investigation [132]. Such information is not



Table 2. Circulating cell stress proteins in disease.

condition key findings reference

Hsp10 periodontitis lower plasma levels in periodontal disease and treatment increases these. Post-treatment levels

correlate with markers of clinical improvement

[52]

Hsp27 renal disease elevated serum and urine levels in chronic kidney disease [85]

autoimmunity serum levels may be a novel marker for diabetic neuropathy in patients with Type 1 diabetes [86]

chronic heart failure soluble Hsp27 is a novel candidate biomarker for diagnosing CHF with preserved ejection fraction [87]

Hsp60 stress association between elevated levels of Hsp60, low socioeconomic status and social isolation in males

and females, and with psychological distress in women

[88]

cardiovascular

disease

elevated serum levels in patients with renal and peripheral vascular disease and individuals with

borderline hypertension. Serum levels in individuals with hypertension are similar to normotensive

controls

[89 – 92]

elevated levels present in coronary eluates after myocardial infarction [93]

serum levels increase with accumulating features of the metabolic syndrome in

postmenopausal women

[94]

endothelium-dependent vasodilator function is impaired in children with detectable levels of serum

Hsp60. Circulating Hsp60, or factors that stimulate the expression and systemic release of Hsp60,

may contribute to the initiation of arterial disease in early life

[95]

association between higher levels of plasma Hsp60 in subjects with clinically manifest cardiovascular

disease and those with a history of myocardial infarction in diabetes mellitus

[96]

infections plasma Hsp60 levels are elevated in HIV-infected patients. Although levels reduce after anti-retroviral

therapy, they remain higher than uninfected controls. Hsp60 levels correlate with viral load, CD4þ

T cell counts, and circulating soluble CD14 and lipopolysaccharide levels

[97]

periodontitis a larger proportion of patients with periodontal disease exhibit intermediate levels of plasma Hsp60

than controls. Treatment has no influence on levels

[52]

atherogenic dyslipidaemia and elevated circulating Hsp60 levels are linked and associated with

periodontal pathology

[98]

autoimmunity serum Hsp60 levels correlate with time required for remission from flare-ups in patients with

juvenile idiopathic arthritis

[99]

Hsp70 surgery/trauma plasma Hsp70 levels markedly increase in patients undergoing liver resection and are associated with

post-operative infection, hepatic ischaemic time and the degree of post-operative organ

dysfunction

[100]

Hsp70 is released into the circulation following coronary artery bypass grafting [101]

cardiovascular

disease

elevated serum levels in patients with renal and peripheral vascular disease and individuals with

borderline hypertension. By contrast, serum levels in hypertension are similar to normotensive controls

[89 – 91]

low serum levels at baseline predict the development of atherosclerosis in individuals with

established hypertension

[102]

increased serum levels associated with low risk of coronary artery disease [103]

increased circulating levels may be associated with the progression of atrial fibrillation and its

recurrence after catheter ablation

[104]

serum levels correlate with the severity of atherosclerosis in patients with carotid artery disease and

chronic lower limb ischaemia. Putative role for circulating Hsp70 in the development of arterial

calcification

[105]

infections serum levels positively associated with the degree of inflammation in an elderly population living in

a remote area in Cameroon, where infection and parasitosis are endemic

[106]

positive correlations between serum levels and inflammatory markers [107]

serum Hsp70 levels in patients with chronic hepatitis are higher than controls, but lower than in

patients with liver cancer

[108]

(Continued.)
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Table 2. (Continued.)

condition key findings reference

pregnancy serum levels are lower in normal human pregnancy, but elevated in transient hypertension of

pregnancy, in pre-eclampsia and in superimposed pre-eclampsia. Increased serum levels reflect

systemic inflammation, oxidative stress and hepatocellular injury in pre-eclampsia

[109 – 111]

asthma induced sputum and plasma Hsp70 levels could serve as a useful marker for assessing airway

obstruction in patients with asthma

[112]

renal disease elevated urinary Hsp70 levels in stages 4 and 5 chronic kidney disease [85]

diabetes serum levels are increased in Type 1 and Type 2 diabetes [113 – 118]

serum levels are increased and correlate with HbA1c values in women with gestational diabetes

mellitus

autoimmunity plasma Hsp70 levels are high in patients with Type I diabetes [119,120]

BiP periodontitis lower circulating levels of BiP (grp78) in periodontal disease as compared to controls. Treatment has

no influence on levels

[52]

grp94 autoimmunity plasma grp94 (gp96) levels are high in patients with Type I diabetes [119,120]
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always apparent, and differences in the levels of HSPs in the

circulation which are measured by commercial and ‘in-house’

enzyme immunoassays have been reported [133]. Serum and

plasma are complex and ‘matrix’-related effects can influence

measurements in biological samples. Furthermore, a clinical

method comparison study has revealed that commercially

available HSP27 assays are not equally useful for differentiat-

ing patients with non-small cell lung carcinoma (NSCLC)

from healthy controls [134].

Reports on relationships between circulating stress protein

levels and the clinical and physiological status of an individual

(tables 2 and 3) are providing insight into the role of these

proteins in the maintenance of a healthy state and/or the

induction, progression and resolution of diseased states. As

an example, the positive association between plasma Hsp60

levels in patients with cardiovascular disease and those with

a history of myocardial infarction in diabetes mellitus impli-

cates extracellular Hsp60 in the cardiovascular pathology

which is associated with diabetes [96]. Lower levels of serum

Hsp70 in normal human pregnancy could provide insight

into the maintenance of immune tolerance in pregnancy

[109]. Although studies have associated levels of Hsp70 in

infection-related inflammation, the variability of the measured

levels cannot distinguish patients from healthy subjects in this

context [107]. However, the variability in levels, as measured

using current approaches, does not currently allow measure-

ment of these analytes to be used as a robust discriminatory

approach for the identification of disease.

Given that a number of studies have reported relationships

between circulating antibodies and their corresponding anti-

gens in the peripheral circulation and the presence, severity

and progression of disease, one should consider the potential

involvement of circulating immune complexes in this context.

This is a commonly overlooked parameter in studies that

have investigated such relationships, and this might, in some

instances at least, result from potential problems that are

associated with measuring the presence of antibodies in a

sample that includes its cognate antigen. Our own personal

experience is that HSPs and HSP antibodies coexist in the per-

ipheral circulation [29,30,89,90,102]. Although the presence of

circulating anti-cell stress protein antibodies in the peripheral
circulation might impact the measurements that are made,

we have not found this to be the case, in that we have not

observed any direct correlation between measured levels of cir-

culating HSPs and anti-HSP antibody levels, at least using the

assays that were available at the time [29,30,89,90,102,135].

Notwithstanding this, the presence/differential presence of

immune complexes has the potential to influence the inflam-

matory status of an individual in that the interaction of APCs

with soluble immune complexes has been shown to reduce

their production of the Th1-biasing cytokine IL-12 to enhance

their production of the regulatory cytokine IL-10 and, conse-

quently, to induce a Th2-like (immunoregulatory) adaptive

immune T cell response [136]. By contrast, a more recent study

has reported that grp94 in complexes with IgG, which is a sol-

uble diagnostic marker of gastrointestinal tumours, exert

immune-stimulating activity on peripheral blood immune

cells, as demonstrated by the triggering of inflammatory cyto-

kine secretion [137]. It is clear that more studies aimed at

understanding the relationship(s) between circulating cell

stress proteins in their free and lipid-associated forms and

their corresponding antibodies is required.
5. Extracellular cell stress proteins in cancer
The presence of circulating cell stress proteins in cancer, and

relationships with tumour volume and therapeutic response

[128,129] have been reported upon in a number of studies

(table 3). Importantly, Multhoff and co-workers [108] have

demonstrated that serum Hsp70 levels in patients with liver

cancer are significantly higher than those that are measured

in a control group of individuals without liver disease, and

(importantly) are also higher than in individuals with chronic

hepatitis. The same study showed that serum Hsp70 levels in

a subgroup of patients with liver cirrhosis who subsequently

developed liver cancer were higher than those in individuals

with liver cirrhosis alone [108]. Dutta et al. [130] have reported

that serum Hsp70 levels are significantly elevated in patients

with pancreatic cancer, compared with both healthy controls

and individuals with chronic pancreatitis. These findings

demonstrate the capacity of serum Hsp70 levels to distinguish



Table 3. Extracellular cell stress proteins in cancer. LipHsp70, liposomal Hsp70.

tumour key findings reference

Hsp27 ovarian serum Hsp27 levels are increased in epithelial ovarian cancer and correlate with peritoneal

metastases. Serum Hsp27 levels may be used as a potential additional indicator for

peritoneal metastases and the response of patients to treatment

[121]

breast significant differences in the profiles of Annexin Vþ, CD66þ, BCRP1þ and Hsp27þ

microparticles are present in breast cancer patients with lymph node metastases, as assessed

using flow cytometry

[122]

lung serum levels of Hsp27 are significantly elevated in patients with non-small cell lung cancer

diagnosed at an early or at an advanced stage and can distinguish between early and

advanced stage disease

[123]

Hsp70 leukaemia levels of plasma Hsp70 reflect overall tumour load and patients with higher levels of plasma Hsp70

have significantly shorter survival in acute myeloid leukaemia and acute lymphoblastic

leukaemia circulating Hsp70 might, therefore, be a biomarker for poor prognosis?

[124]

plasma Hsp70 levels above the median in chronic myeloid leukaemia are associated with a

higher rate of progression to the accelerated/blast phase, and a tendency towards shorter

survival. Plasma Hsp70 could be a potential marker for predicting disease progression in

patients with chronic phase in chronic myeloid leukaemia

[125]

colorectal serum levels of Hsp70 and mortalin are independent variables, and high serum levels of

mortalin (mitochondrial Hsp70, grp75, HSPA9) are a risk factor for shorter survival patients

with colorectal cancer. The concurrence of high serum Hsp70 and mortalin levels is

associated with rapid disease progression

[126]

serum Hsp70 levels have potential as a stage-independent prognostic marker in colorectal

cancer without distant metastasis

[127]

head and

neck

plasma Hsp70 levels are significantly higher in mice bearing membrane Hsp70-positive FaDu

human squamous cell carcinomas of the head and neck, and these correlate with tumour

volume. Radiation-induced tumour regression is associated with significantly decreased

Hsp70 levels, and these return to those of control animals after complete remission

[128]

serum Hsp70 levels are significantly higher and associated with tumour volume in patients

with squamous cell carcinoma of the head and neck. Following surgery and radiotherapy,

Hsp70 levels fell without tumour relapse in the follow-up period. Hsp70 is, therefore, a

potential tumour biomarker for monitoring the clinical outcome of radiotherapy. High levels

associated with high levels of membrane Hsp70 expression on tumour cells

[129]

liver serum Hsp70 levels in patients with liver cancer are significantly higher than a control group

without liver disease, and individuals with chronic hepatitis. A subgroup of patients with

cirrhosis who subsequently developed liver cancer exhibited higher serum Hsp70 levels than

those patients with cirrhosis that did not progress to cancer

[108]

pancreatic plasma Hsp70 levels are significantly higher in mice bearing membrane Hsp70-positive

spontaneous pancreatic ductal adenocarcinomas, and levels correlated with tumour volume.

Radiation-induced tumour regression was associated with significantly decreased Hsp70

levels, and levels returned to those of controls after complete remission

[128]

serum Hsp70 levels are significantly increased in patients and may be useful as an additional

biomarker for the detection of pancreatic cancer

[130]

lung serum levels of Hsp70 are significantly elevated in patients with non-small cell lung cancer

diagnosed at an early or at an advanced stage when compared with healthy control groups

[123]

LipHsp70 circulating lipHsp70 levels in patients with head and neck, lung, colorectal, pancreatic cancer,

haematological malignancies and especially glioblastoma are significantly higher than those

in healthy human volunteers

[39]

(Continued.)
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Table 3. (Continued.)

tumour key findings reference

membrane

Hsp70

membrane Hsp70 expression correlates with an improved overall survival in patients with colon

and gastric carcinomas, whereas it is negatively associated with survival in patients with

lower rectal and squamous cell carcinoma

[131]

Hsp90 the baseline serum HSP90 levels of melanoma patients are significantly higher than those of

the control subjects, but are not associated with clinical variables or survival

rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

373:20160522

8

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

09
 A

ug
us

t 2
02

2 
between inflammatory events/disease and cancer, and suggest

that circulating Hsp70 might indeed be of value as a biomarker

in cancer.

Hsp90 inhibitors are being evaluated for the treatment of

cancers such as myeloma, breast, prostate and lung cancer,

melanoma, gastrointestinal stromal tumours and acute

myeloid leukaemia. Although the activity of Hsp90 inhibitors

is currently assessed based on Hsp70 induction in peripheral

blood mononuclear cells using western blot analysis, this

approach is laborious, only semi-quantitative and difficult

to implement in the clinic [138]. Serum Hsp70 measurements

are now being used to monitor responses to Hsp90 inhibitors

in the clinical setting, especially when access to tumour tissue

is not possible [138].
6. Therapeutic potential and biological role
of extracellular cell stress proteins

The concept that extracellular cell stress proteins could have

therapeutic potential originally arose from studies into cross-

reactive immunity to human Hsp60 by Irun Cohen’s group

in Israel, which found that T cells cross-reactive with Hsp60-

induced diabetes in mice. Curiously, the administration of

Mycobacterium tuberculosis Hsp65 protein could either induce

diabetes or prevent it [139]. Analysis of the Hsp65 sequence

(epitopes) recognized by T cells identified peptide 437–460

as a major T cell recognition epitope. The same sequence was

identical in mouse Hsp60, apart from K for T at position 455.

Crucially, it was found that immunization of non-obese dia-

betic (NOD) mice with this peptide (termed p277) inhibited

the induction of diabetes [140]. Some 20 years later, the evalu-

ation of this peptide in a phase III clinical trial showed evidence

of clinical benefit [141].

The mitochondrion and bacterial cytosol contains Hsp60

and the co-chaperone, Hsp10, which acts as a ‘lid’ to the

Hsp60 folding chamber. This 10 kDa protein, which normally

forms a heptameric structure, was identified as a circulating

immunosuppressive factor that was required for inhibiting

immunity to the implanted embryo (termed ‘EPF’), in 1977

[48,49]. The potential role of this factor in the maintenance of

pregnancy was confirmed by studies demonstrating that preg-

nant mice treated with anti-EPF antibodies failed to maintain

their pregnancy [142]. It was not until 1994 that EPF was ident-

ified as Hsp10. A number of years later, Hsp10 was shown to

inhibit experimental immunological models such as adjuvant

arthritis (in this case, the protein was M. tuberculosis Hsp10

[143]) and experimental autoimmune encephalomyelitis

(EAE) [144]. Short-term administration of M. tuberculosis
Hsp10 has also been shown to inhibit experimental allergic

asthma in mice [145].
The findings that recombinant Hsp10 inhibited LPS-

induced inflammatory changes in macrophages and in mice

exposed to LPS [53] led the Brisbane-based biopharmaceutical

company, CBio Ltd, to attempt the commercialization of

human Hsp10 as a therapeutic, and several small-scale clinical

trials of a modified human Hsp10 (termed XToll) in a small

number of conditions were undertaken. In a randomized,

double-blind study of 23 rheumatoid arthritis patients, the

intravenous administration of Hsp10 (5, 7.5 and 10 mg twice

a week) induced either clinical benefit or disease remission in

a significant number of individuals, with only one serious

adverse event being reported [54]. Another small randomized,

double-blind study demonstrated that the administration of

XToll (Hsp10, 5, 7.5 and 10 mg) to 24 patients with plaque

psoriasis over a 12-week dosing regimen of two doses per

week reduced disease parameters [56]. Experimental findings

that Hsp10 inhibited allergic encephalomyelitis prompted a

double-blind randomized, placebo-controlled, phase II trial

in 50 patients with multiple sclerosis. Although the Hsp10

was well tolerated, apart from showing a decreased circulating

leucocyte cytokine synthetic capacity, the changes in clinical

parameters were not significant [57]. Large peptides are not

natural candidates for drug therapy and it is known that

XToll, which is a modified Hsp10, induces antibodies in

patients [56]. The two alternatives for this cell stress protein

as a therapeutic are either to: (i) couple it with an Fc receptor

of with polyethylene glycol; or (ii) generate active peptide frag-

ments. The anti-arthritic actions of synthetic M. tuberculosis
Hsp10 were found to reside in the N-terminus [146]. It is,

therefore, possible that smaller fragments of Hsp10 may

retain activity and could be the basis for developing

non-peptidic isosteres of the Hsp10 peptide.

Another stress protein, which was originally considered

as being an autoantigen that drove the progression of

autoimmune disease, has subsequently been characterized

as being a potent immunomodulatory molecule with clinical

potential. Glucose-regulated protein 78 (grp78, binding

immunoglobulin protein, BiP) [147] is essential for the assem-

bly of immunoglobulin molecules [148], and is required for

the translocation of nascent polypeptides across the endo-

plasmic reticulum membrane and protecting cells against

ER stress [149]. It can also be expressed on the cell surface

and acts as regulator of coagulation [150] and cell prolifer-

ation [151,152]. It has also been shown to be a potent

immunoregulator [147].

BiP is present in the circulation of healthy individuals and

at lower levels in patients with rheumatoid arthritis [147]. It is

also found in synovial and oviductal fluid [153,154]. In contrast

with the stress proteins that have been considered above, the

secretion of BiP is likely to be via a classic route as it possesses

the C-terminus ER retention signal (lysine, aspartic acid,
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glutamic acid, leucine (KDEL) amino acid sequence), which is

common to proteins that reside in the ER. The multiple activi-

ties of BiP and its potential as a therapeutic agent for the

management of inflammatory disease have been eloquently

and comprehensively studied elsewhere [155]. With respect

to therapeutic potential, a phase I/IIA clinical trial in 24

patients with rheumatoid arthritis who received a 1 h infusion

of BiP (1, 5 or 15 mg) and who were followed up for 12 weeks

has reported evidence of remission in patients receiving 5 and

15 mg doses [156].

Returning to the 70 kDa family, the constitutive member

Hsc70 appears to play a role in, arguably, the most important

biological process for the survival of species, namely repro-

duction. Proteomic analysis of porcine oviductal fluid has

revealed that epithelial cells in the oviductal lumen secrete

several molecules in response to the presence of spermatozoa,

most notable of which are HSPs (stress) [157]. HSPs have also

been identified in soluble fractions of pig and cow oviductal

apical plasma membranes (sAPM) and in the human apical

epithelium [158–160]. These are potentially important find-

ings, as the oviduct and oviductal sperm storage play key

roles in reproduction by providing a secure reservoir in

which spermatozoa can attain full fertilizing properties.

Hsc70 appears to interact with components of the sperm

cell surface membrane [158,159], and exposure to Hsc70 pro-

longs the survival of boar, bull and ram sperm [158,161].

Studies have now shown that a recombinant form of Hsc70

(HSPA8) rapidly promotes the viability of uncapacitated

spermatozoa, the ability of spermatozoa to bind to oviductal

epithelial cells, enhances the performance of in vitro fertiliza-

tion procedures, and decreases sperm mitochondrial activity

[162]. The repair of membrane damage is mediated via

increase in sperm membrane fluidity. The ability of HSPA8

to influence membrane stability and fluidity, alongside its

conserved nature among mammalian species, supports the

idea that this protein protects sperm survival through mem-

brane repair mechanisms [162]. Ongoing studies are

elucidating the mechanisms that are involved in these protec-

tive effects and their potential impact on reproductive success

and potential.
7. Therapeutic potential and biological role of a
typically intracellular cell stress protein

Although this article has focused on those proteins that are

known to be secreted by cells and therefore to be present

under normal circumstances in biological fluids, several cell

stress proteins that are not as well established as being in the

extracellular environment under normal conditions have also

been shown to have contrasting effects. A good example

of such proteins is glucose-regulated protein 94 (gp96,

HSPC4). Gp96 is a 94–96 kDa member of the Hsp90 family

of molecular chaperones/stress proteins which resides within

the lumen of the endoplasmic reticulum. In addition to being

an intracellular chaperone [163,164], the administration of

tumour-derived gp96 has been shown to induce tumour-

specific cytolytic T cells and a protective tumour-specific

immunity, the specificity of which is defined by peptides that

are associated with the administered gp96 [165–167]. By con-

trast, no protective effect is observed when high doses (2 �
10 mg intradermally) of tumour-derived gp96 are administered

to mice [166]. Furthermore, appropriate doses of gp96 purified
from normal liver can suppress the onset of diabetes in NOD

mice and myelin basic protein- or proteolipid protein–induced

autoimmune encephalomyelitis (EAE) in SJL mice [168], as

well as prolonging the survival of murine skin allografts

[169] and rat cardiac allografts [170]. The mechanisms that

underlie these effects were originally proposed to involve the

induction, activation and/or recruitment of as yet unidentified

immunoregulatory T cell populations [168,169]. In our hands,

gp96 could not be shown to be an activator of DCs, but did

appear to activate CD3þ T cells in vitro [171], and lead to a

state of peripheral T cell hyporesponsiveness following

in vivo administration to rats bearing cardiac transplants

[170]. More recent work provides a better insight into the

mechanisms via which gp96 elicits dichotomous immune

responses by providing evidence that low and high doses of

gp96 preferentially engage conventional and plasmacy-

toid dendritic cells (pDCs), respectively, via CD91. Global

DNMT-dependent epigenetic modifications modify protein

expression within these APCs leading to an upregulation of

neuropilin1 by pDCs which enables long-term inter-

actions with Treg cells, thereby enhancing suppression of Th1

anti-tumour immunity [172].

The administration of autologous tumour-derived peptides

bound to gp96 (HSPPC-96) induces individual tumour-

specific immunity in patients with high-grade glioma [173]

and has been shown to be safe for the treatment of patients

with recurrent glioblastoma multiforme (GBM) in an open-

label, single-arm, phase II study of 41 adult patients with

surgically resectable recurrent GBM who were treated after

gross total resection [174]. In the case of patients with newly

diagnosed GBM, the addition of HSPPC-96 (ProphageTM) to

standard radiotherapy and temozolomide chemotherapy in a

phase II, single-arm multi-centre trial involving 46 patients

has been shown to have the potential to improve survival

[175]. That the expression of PD-L1 on circulating myeloid

cells impacts on systemic immunity suggests that the inhibition

of such immunological ‘checkpoint’ pathways could further

enhance the efficacy of this approach [175].
8. Membrane Hsp70: a ‘third’ form of the
70 kDa cell stress protein with diagnostic,
therapeutic and imaging potential

Gabriele Multhoff discovered the selective expression

of a membrane form of Hsp70, the major stress-inducible

member of the 70 kDa HSP family, on the plasma membrane

of tumour cells (but not normal tissue) using a unique

monoclonal antibody (mAb, cmHsp70.1) [176–178]. The

expression of membrane Hsp70 has now been detected on a

broad panel of cancer cell lines, and the density of membrane

Hsp70 expression on cancer cells is increased by treatments

such as radio(chemo)therapy [179]. An ongoing screening pro-

gramme of over 1300 patients with various solid tumours in the

Multhoff laboratory is revealing that more than 50% of all

patients bear a membrane Hsp70–positive tumour. Membrane

Hsp70 is also highly expressed on metastatic disease [180], and

its expression is associated with an unfavourable prognosis

and a reduced overall survival in patients with rectal carci-

noma and squamous cell carcinoma [131]. Membrane Hsp70

expression is therefore a universal, selective tumour-specific

marker of ‘aggressive’ disease.
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Tumour cells that express Hsp70 on their plasma membrane

secrete exosomes that express Hsp70 on the surface of their

plasma membranes [33]. Given that the protein composition in

the exosomal lumen reflects that of the cytosol of the respective

cell, it would be expected that exosomes derived from normal

cells contain low levels of Hsp70, whereas exosomes from

tumour cells having a high cytosolic Hsp70 contain high levels

of Hsp70 in their lumen and also present it on their lipid surface

[181]. This concept has been confirmed, at least in part, by studies

that have reported serum Hsp70 levels to be associated with a

high membrane Hsp70 expression on tumours in patients with

squamous cell carcinoma of the head and neck [129].

Aligned with these studies has been the development

of an enzyme immunoassay that detects liposomal Hsp70

(lipHsp70) in serum and plasma [39]. This assay was conceived

and developed based on the evidence that Hsp70 membrane-

positive tumour cells actively release Hsp70 in exosome-like

lipid vesicles and that most commercial Hsp70 enzyme-

linked immunosorbent assays (ELISAs) are not validated for

the detection of liposomal Hsp70 in serum. The assay exhibits

a high level of precision, and a greater recovery of ‘spiked’

Hsp70 than its commercially available counterparts. The

lipHsp70 ELISA is equally suitable for serum and plasma

and the measured Hsp70 concentrations are not influenced

by food intake, repeated freezing and thawing of the sample

or moderate haemolysis. A comparison of the Hsp70 levels in

patients with head and neck, lung, colorectal, pancreatic

cancer, GBM or haematological malignancies and healthy

human volunteers has revealed significantly higher levels in

patients bearing tumours, and especially in those bearing

aggressive tumours (e.g. GBM). The lipHsp70 ELISA, there-

fore, provides a highly sensitive and robust method for

measuring liposomal and free Hsp70 in the circulation and

could provide a clinically approach for detecting tumours

and monitoring therapeutic responses and clinical outcome.

From a functional perspective, Hsp70-positive tumour-

derived exosomes stimulate migratory and cytolytic activity

of natural killer (NK) cells [33,182] and activate macrophages

[183]. In a different context, tumour-derived exosomes expres-

sing surface Hsp72 can restrain tumour immune surveillance
by promoting the suppressive functions of myeloid-derived

suppressor cells and plasma-derived exosomes expressing

Hsp70 have powerful cardioprotective effects in models of car-

diac ischaemia–reperfusion injury via a mechanism involving

a membrane Hsp70/TLR4 communication axis [184].

The significant diagnostic, therapeutic and imaging poten-

tial of membrane Hsp70-based ‘theranostics’1 is considered

by Gabriele Multhoff elsewhere in this issue [47].
9. Conclusion
Levels of HSP (cell stress) in biological fluids have been associ-

ated with a plethora of clinical conditions. These proteins

could, therefore, act as indicators, drivers and/or moderators

of disease processes and have potential utility as biomarkers

of disease. Many, if not all, of the stress proteins that are

released from cells under normal physiological conditions pos-

sess a range of biological functions, the nature of which

depends on the context in which they are encountered. These

proteins and networks have the potential to deliver a wealth

of valuable, clinically relevant diagnostic and therapeutic

approaches. The current challenge is to more fully understand

these networks and establish their clinical potential.
That which drugs fail to cure, the scalpel can cure. That which the
scalpel fails to cure, heat can cure. If the heat cannot cure, it must
be determined to be incurable

—Hippocrates
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Endnote
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