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Abstract

There is a family of currently untreatable serious human diseases that arise from the inappropriate misfolding
and aggregation of extracellular proteins. At present our understanding of mechanisms that operate to
maintain proteostasis in extracellular body fluids is limited but has significantly advanced with the discovery
of a small but growing family of constitutively secreted extracellular chaperones (ECs). The available evidence
strongly suggests that these chaperones act as both sensors and disposal-mediators of misfolded proteins in
extracellular fluids, thereby normally protecting us from disease pathologies. It is critically important to
further increase our understanding of the mechanisms that operate to effect extracellular proteostasis, as this
will be essential knowledge upon which to base the development of effective therapies for some of the world's
most debilitating, costly and intractable diseases.
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Summary  

• Processes acting to sense and control protein misfolding in extracellular fluids 

have previously been poorly studied. 

• Recent work has identified a small but growing family of secreted chaperones that 

are abundant in extracellular fluids. 

• These extracellular chaperones (ECs) stabilize misfolded proteins and are 

implicated in mediating their systemic clearance via receptor-mediated 

endocytosis. 

• This action operates to normally protect the human body from disease pathologies 

arising from the inappropriate misfolding and aggregation of extracellular 

proteins. 

• A better understanding of the processes that maintain extracellular proteostasis 

will open up new therapeutic opportunities for currently untreatable diseases. 

 

Future issues to be resolved for the topic 

• What are the specific receptors involved in clearing EC-misfolded protein 

complexes from extracellular fluids? 

• Which protease systems act to help clear extracellular protein deposits and do 

these synergise with ECs to safely accomplish this task? 

• Is it possible to treat disease pathologies arising from inappropriate extracellular 

protein misfolding by pharmacologically manipulating the in vivo expression 

levels of ECs (or their chaperone activities)? 

 

Mini-glossary  

• Extracellular chaperones: secreted proteins generally having a sHSP-like 

chaperone action (i.e. ATP-independent ability to stabilize misfolded proteins, 

preventing their aggregation and precipitation). 

• Proteostasis: all those processes that act to maintain the steady state levels, 

distribution and native fold of the proteome. 

 

Important acronyms  

EC  extracellular chaperone 

α2M  α2-macroglobulin 

HSP  heat shock protein 

sHSP  small heat shock protein 

Aβ  amyloid beta peptide 

AD  Alzheimer’s disease 

TTR  transthyretin 

LRP  low density lipoprotein receptor-related protein 

Apo  apolipoprotein  

TLR  toll-like receptor 

 

 

 

 



Abstract  

There is a family of currently untreatable serious human diseases that arise from the 

inappropriate misfolding and aggregation of extracellular proteins. At present our 

understanding of mechanisms that operate to maintain proteostasis in extracellular body 

fluids is limited but has significantly advanced with the discovery of a small but growing 

family of constitutively secreted extracellular chaperones (ECs). The available evidence 

strongly suggests that these chaperones act as both sensors and disposal-mediators of 

misfolded proteins in extracellular fluids, thereby normally protecting us from disease 

pathologies. It is critically important to further increase our understanding of the 

mechanisms that operate to effect extracellular proteostasis, as this will be essential 

knowledge upon which to base the development of effective therapies for some of the 

world’s most debilitating, costly and intractable diseases. 
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1.0 Introduction  
 

The term proteostasis refers to the maintenance of the proteome as a set of individual 

proteins in a conformation, concentration and location that is required for their correct 

function (1). Proteostasis is critical for the maintenance of organismal viability and 

operates in both the intracellular and extracellular environments. By far the better 

characterized systems relate to the intracellular environment, which has been the focus of 

decades of research, leading to the identification of many important components and 

processes (see 2.0 below).  

 

The pathologies of many serious human diseases (the so-called Protein Deposition 

Diseases) are associated with the aggregation and deposition of misfolded proteins (Table 

1). Generally speaking, protein aggregates form when protein concentration exceeds 

solubility (2). Despite this, many proteins normally function at the upper edge of their 

solubilities (3). This means that any small changes in protein concentration or solubility 

(due to mutations or a change in the environment) may tip the delicate balance leading to 

aggregation and deposition. Chaperones have emerged as ubiquitous and critical players 

in proteostasis systems, where they perform a variety of roles including inhibiting protein 

aggregation, maintaining the solubility of and refolding misfolded proteins, and protein 

trafficking. As is true for proteostasis in general, knowledge of extracellular chaperones 

(ECs) has lagged well behind that of their intracellular counterparts. Nevertheless, in 

recent years it has become clear that there is a growing family of abundant proteins in the 

extracellular fluids of metazoans that share functional characteristics with the 

intracellular small heat shock proteins (sHSPs). These abundant ECs are able to bind to, 

and keep soluble, proteins that are misfolded as a result of mutations or stresses and 

inhibit their aggregation. Furthermore, the ECs are strongly implicated in clearing these 

aggregating proteins from extracellular spaces and facilitating their degradation, thereby 

playing a pivotal role in maintaining extracellular proteostasis.  

 

This review will provide a critical overview of the current understanding of the processes 

that operate in extracellular proteostasis with a particular focus on emerging knowledge 

of the ECs. A brief outline of intracellular proteostasis systems follows (2.0) because this 

provides background for the ensuing consideration of corresponding processes in the 

extracellular context. 

 

2.0  Intracellular proteostasis  
 

In order to produce properly functioning proteins the processes of transcription, RNA 

processing and transport, translation, protein folding, protein transport and ultimately 

protein degradation must be tightly regulated (1). Arguably the most important elements 

of the proteostasis machinery are the chaperones which have been defined by some as 

proteins that interact with other proteins to stabilize them or to help them acquire their 

native conformation (4). These broad functional characteristics mean that chaperones 

play a role in many cellular functions including protein folding, assembly of complexes, 

protein trafficking, protein degradation, and controlling protein aggregation and 

disaggregation. There are over a hundred chaperone genes in mammalian genomes, 

therefore no single chaperone performs all the roles identified above. Several families of 

chaperones reside inside mammalian cells and have previously been categorized on the 



basis of their molecular weights, including the sHSPs, and the HSP40, HSP60, HSP70, 

HSP90, and HSP100 families. The various chaperones have differing actions and distinct 

functional roles in protein quality control. For example, HSP70 is known to play a role 

early in the protein folding process, interacting with ribosomes, growing peptide chains 

and newly synthesized polypeptides (5). In contrast, HSP60 and HSP90 members act 

further downstream to provide an enclosed environment with hydrophobic surfaces to 

assist in the folding of specific protein clients (5, 6). Once folded, a range of 

physiological stresses can cause a protein to partially unfold or misfold. Chaperones such 

as HSP100 and the sHSPs can recognize misfolded proteins and, in co-operation with 

folding chaperones such as HSP70, allow them to refold (7).  

 

When maintenance of correct protein folding is no longer possible, cells contain a 

number of systems to remove damaged or misfolded proteins. The ubiquitin-proteasome 

system recognizes, labels and degrades stubbornly misfolded proteins. There are many 

hundreds of ubiquitin ligases (8) that through a series of highly regulated events 

covalently attach polyubiquitin chains to misfolded proteins; ubiquitinated proteins are 

subsequently transferred to the proteasome as substrates for degradation (9). In addition, 

damaged cytosolic proteins can be degraded by lysosomes via three distinct mechanisms, 

macroautophagy, microautophagy and chaperone-mediated autophagy (10). Chaperones 

are involved in controlling the movement of intractably misfolded proteins towards 

degradation machinery. For example HSP70 can, depending on the co-factors involved, 

promote folding (5), degradation through the ubiquitin-proteasome system (11), 

chaperone-mediated autophagy (12) or even actively partition misfolded proteins into 

inclusions such as the aggresome (13).  

 

Most of the current information on the function of chaperones relates to those found 

inside cells. However, chaperones are also found in other compartments, both within and 

outside cells. De novo folding of proteins destined for secretion occurs in the 

endoplasmic reticulum (ER), where a network of chaperones and other protein quality 

control mechanisms act to ensure that proteins are correctly folded before they are 

released from the cell. Synthesis of proteins destined for secretion begins on ER-

associated ribosomes. The microenvironment to which polypeptides are exposed in the 

ER is similar to that of the extracellular space; both environments contain a relatively 

high concentration of calcium ions and are oxidizing (14). Consequently, there are 

specialized chaperones and enzymes that assist in the maturation of secreted proteins. 

The ER contains members of the classical chaperone families HSP70 (BiP), HSP40, 

HSP90 and a member of the HSP100 family. Notably, there is an absence of HSP60 

family members in the ER which means that secreted proteins rely for folding exclusively 

on binding and release from folding chaperones such as BiP and the HSP90 family 

member GRP94. In the case of glycoproteins, further maturation of protein folding is 

achieved with assistance from lectin chaperones such as calnexin and calreticulin. These 

lectin chaperones work downstream of classic chaperones such as BiP through a cycle of 

binding and release which controls de-glucosylation and re-glucosylation via specific 

glucosyltransferase enzymes. The addition of glucose to the folding protein signals 

another round of binding and release, and only when the protein is fully folded will it exit 

this cycle and be released to the secretory pathway (15). Oxidoreductases of the protein 

disulfide isomerase (PDI) family also contribute to protein folding within the ER. PDIs 



catalyze the oxidation reaction required to form disulfide bonds by acting as electron 

acceptors (14); PDIs can also isomerize disulfide bonds, rearranging inappropriate 

disulfide linkages to attain native structures. 

 

The ER quality control network strives to ensure that only fully folded native proteins are 

secreted and is able to retain most misfolded proteins within the ER (16). One mechanism 

of retention is thought to involve chaperones that contain C-terminal ER retention 

sequences, such as BiP (17), physically directing bound misfolded proteins back to the 

ER. However, only structures that are recognized by ER chaperones are able to be held 

back. As a result, some proteins with “native-like” folds (e.g. some mutated forms of 

transthyretin) are able to evade the quality control system and exit to the extracellular 

space (18). Once in the extracellular space, the proteome is out of reach of the well-

described intracellular proteostasis systems and must be “maintained” by other 

mechanisms. 

 

 

3.0  Extracellular proteostasis  
 

Once in the extracellular space, secreted proteins will be bathed in large volumes of 

extracellular fluids (approximately 5 liters of blood and 10 liters of interstitial and other 

fluids in an average human). As flagged above, this environment is oxidizing and in the 

case of blood plasma especially, is subjected to ongoing shear stress during its enforced 

circulation around the body. These stresses will ensure that with time, dependent on the 

stability of individual proteins, extracellular proteins will misfold and need replacement. 

Studies from 30-40 years ago showed that misfolded forms of plasma proteins were more 

rapidly degraded than their natively folded precursors (19), hinting that a system operated 

in vivo to recognize and dispose of “damaged” extracellular proteins. Knowing what we 

do now about intracellular proteostasis, it would in fact be absolutely remarkable if there 

were not corresponding systems to deal with the potentially pathological consequences of 

extracellular protein misfolding. The known list of serious human diseases arising from 

excessive inappropriate extracellular protein misfolding and aggregation (Table 1) draws 

a line under this imperative. Importantly, however, owing to the major physical 

differences between the intracellular and extracellular environments, exactly the same 

systems cannot operate in both locations. For example, the concentration of nucleotide 

phosphates such as ATP, used by intracellular chaperones to energize protein refolding, is 

several orders of magnitude lower in extracellular fluids than inside cells (20). Thus, 

chaperone-mediated protein refolding appears a much more difficult proposition in the 

extracellular context. Similarly, although very low levels of proteasome (which also 

requires ATP) and even normally intracellular chaperones have been found in 

extracellular fluids, their concentrations are orders of magnitude lower than inside cells 

(21-23) indicating that they are unlikely to have the capacity to play any substantive role 

in protecting the organism from the challenges posed by misfolding extracellular proteins 

present at much higher levels.  

 

Then what mechanisms do operate extracellularly to protect metazoans from “aged”, 

misfolded and aggregating proteins? Theoretical options include refolding (unlikely in 

light of the above), extracellular proteolysis, and physical clearance from extracellular 



fluids for subsequent intracellular degradation (Figure 1). There is some evidence that the 

plasmin/plasminogen system may have the ability to proteolyse pre-formed extracellular 

protein deposits (24-26), although a lot more work is required here to better understand 

how major a role this might play in vivo. In addition, misfolded or aggregated proteins 

may themselves be recognized by specific receptors on the surfaces of some cells, 

however, in many cases this has been demonstrated to have subsequent pro-inflammatory 

effects (see 5.2). A body of work in recent years has identified a series of ECs that, in 

most cases, share functional similarities with the sHSPs in that they lack ATPase activity 

and cannot refold proteins (see 4.0). They are able to stabilize misfolded proteins, 

however, and keep them soluble, which not only inhibits their aggregation and toxicity 

but also facilitates their efficient delivery to receptors which may be the key to safely 

clearing these potentially dangerous species from extracellular spaces (see 5.0 & 5.3). 

 

4.0  ECs  

 

4.1 Clusterin 

Clusterin was originally named for its propensity to cause cell clustering in vitro (27), 

however, owing to its multifunctional nature it is also known by many alternative names 

including apolipoprotein J (ApoJ), SP-40,40, sulfated glycoprotein 2 and complement 

lysis inhibitor. The clusterin gene encodes a precursor polypeptide that is extensively 

glycosylated and internally cleaved to form the α and β subunits, which are linked by five 

disulphide bridges in the mature protein (28). The structure of clusterin is yet to be fully 

resolved, however, by sequence analysis it is predicted that clusterin contains three 

amphipathic α-helices and two coiled-coil α-helices (29, 30). It has also been proposed 

that the binding site on clusterin for a diverse range of hydrophobic ligands is a molten-

globule-like pocket formed by intrinsically disordered regions and amphipathic α-helices 

(31). The gamut of functions (other than chaperone) proposed for clusterin includes, but 

is not limited to, regulation of complement (32) and apoptosis (33, 34), protease 

inhibition (35), and lipid transport (30). This diversity of putative functions most likely 

reflects the ability of clusterin to bind to an extremely broad range of structurally diverse 

ligands. The concentrations of clusterin in blood plasma and cerebrospinal fluid (CSF) 

are 35-105 µg/ml and 1.2-3.6 µg/ml, respectively (36, 37). However, clusterin expression 

is up-regulated in response to many different stresses including tissue injury (38), aging 

(39), and in diseases including Alzheimer’s disease (AD) (40, 41), atherosclerosis (42), 

diabetes (42) and cancer (43). While the clusterin gene is known to encode a secretory 

signal, in some instances is appears that clusterin is retained within cells. It has been 

suggested that this is the result of the translation of a form of clusterin lacking the 

secretory signal (44). Conversely, it has been shown that full-length clusterin can be 

retrotranslocated into the cytosol in response to ER stress (45). Another form of clusterin 

directed to the nucleus is reportedly the result of alternative splicing of the clusterin gene 

(46, 47). The mechanisms by which different isoforms of clusterin may be generated is 

still highly controversial and further studies are necessary to clarify this. 

 

Clusterin is a potent sHSP-like chaperone that has been shown to inhibit stress-induced 

amorphous protein aggregation and the fibrillar aggregation of many amyloidogenic 

proteins and peptides (48-56). The structural elements responsible for the chaperone 

activity of clusterin are not yet known, however, its ability to bind to misfolded proteins 



is thought to be related to its surface hydrophobicity which is enhanced by acidic pH 

(49). The chaperone activity of clusterin is ATP-independent and in the case of 

amorphously aggregating clients, results in the formation of soluble, high molecular mass 

complexes ≥ 40 000 kDa (57). Immunodepletion of clusterin from human blood plasma 

renders plasma proteins susceptible to stress-induced precipitation (49). The near 

ubiquitous expression of clusterin, and its constitutive presence in many biological fluids, 

suggests that it performs a fundamentally important protective role in vivo. Supporting 

this, clusterin knockout mice have increased tissue damage after heat-shock (58), myosin-

induced auto-immune myocarditis (59) or post-ischemic brain injury (60). Moreover, it 

has been demonstrated that ageing clusterin knockout mice develop glomerular 

neuropathy, directly implicating clusterin in the clearance of pathological protein deposits 

(61). Additionally, clusterin is found colocalized with misfolded protein deposits in many 

diseases (Table 1).  

 

Two recent independent genome-wide association studies identified polymorphisms in 

clusterin as a strong genetic risk factor for AD (62, 63). Clusterin has been shown to 

influence amyloid formation by binding to prefibrillar aggregates rather than binding to 

the monomeric protein/peptide or mature amyloid fibrils (50-52). Depending on the ratio 

of clusterin to the fibril forming client, clusterin may either prevent further growth or 

promote elongation (51), and may either prevent or exacerbate the cytotoxicity of 

amyloidogenic peptides in vitro (51, 56, 64, 65) (see also 5.1). It has been shown that 

clusterin markedly enhances the clearance of Aβ1-42 at the blood-brain barrier (66), 

presumably via the receptor known as meglain/LRP-2 (67). However, in a mouse model 

of AD, clusterin knockout has been shown to reduce fibrillar Aβ amyloid deposition and 

neurotoxicity (68). A similar result was shown for ApoE knockout mice, however, double 

knockout of clusterin and ApoE resulted in early disease onset and a marked increase in 

Aβ peptide levels and amyloid formation (69). Thus, while the available data shows that 

clusterin can influence amyloid fibril formation and facilitate the clearance of Aβ, the 

role of clusterin in AD remains unresolved.  

 

4.2 Haptoglobin 

 

Haptoglobin is well known for its role as a haemoglobin-binding protein and also as an 

acute phase reactant. In humans there are three major haptoglobin phenotypes (Hp1-1, 

Hp1-2 and Hp2-2) depending on the presence of two principal alleles Hp1 and Hp2, 

which encode the α
1
 and α

2 
subunits, respectively. The simplest form of haptoglobin is 

type Hp1-1, which consists of a disulfide-linked α
1
β dimer (70). An additional cysteine 

residue in the α
2 

chain allows for the formation of large complex disulfide-linked 

polymers in Hp2-1 and Hp2-2 which can form species up to 900 kDa in mass (71, 72). 

Homology with complement receptor 1 has been used to predict structural elements 

including the location of complement control protein domains, a CD163-binding region 

and the hemoglobin-binding site (73). Additionally, it has been proposed that a large 

hydrophobic region adjacent to the hemoglobin-binding site is responsible for the 

chaperone activity of haptoglobin (73, 74). 

 

Haptoglobin is found in most extracellular fluids, with concentrations of 0.3-2.0 mg/ml 

(75) and 0.5-2 µg/ml (76) in human plasma and CSF, respectively. The hepatic 



expression of haptoglobin is strongly upregulated by inflammatory mediators such as IL-

6, oncostatin M, and leukemia inhibitory factor (77). Sequestration of hemoglobin by 

haptoglobin is an important protective mechanism that reduces the amount of free 

hemoglobin and iron available to catalyze oxidative reactions (78). Other proposed roles 

for haptoglobin include, but are not limited to, regulation of cathepsin B activity (79), 

angiogenesis (80) and the immune system (81). In support of the latter, haptoglobin 

knockout mice have lower counts of mature T and B cells and display reduced adaptive 

immune responses (82). Haptoglobin phenotype has been implicated in several diseases 

including atherosclerosis where it is appears that the Hp2-2 phenotype is associated with 

increased risk and poor prognosis (reviewed in (83)). Unfortunately, studies have not yet 

examined the relationship between haptoglobin phenotype and the many protein 

deposition diseases.  

 

Like clusterin, all three haptoglobin phenotypes have been shown to inhibit stress-

induced amorphous protein aggregation of a wide range of client proteins in vitro (84, 

85), and immunodepletion of haptoglobin from human blood plasma has been shown to 

render plasma proteins susceptible to precipitation (85).  Complexation with hemoglobin 

reduces but does not abolish the chaperone activity of haptoglobin, which supports that 

the binding sites on haptoglobin for hemoglobin and misfolded client proteins are discrete 

(74, 86). By size exclusion chromatography it appears that complexes formed between 

haptoglobin and misfolded proteins are comparable in mass to those involving clusterin 

(≥ 40 000 kDa; (85)), however, little else is known about their physical characteristics. In 

contrast to clusterin, decreased pH reduces both the hydrophobicity and chaperone 

activity of hapoglobin (85). Hp2-1 has been shown to inhibit amyloid formation by a 

number of amyloidogenic proteins/peptides, however, this is currently limited to a single 

study and the effect of other haptoglobin phenotypes has not yet been investigated (86). 

Nevertheless, it appears that at substoichiometric levels Hp2-1 inhibits amyloid formation 

by forming stable complexes with client protein and preventing their elongation (86).  

 

4.3 α2-Macroglobulin (α2M) 

α2M is a multifunctional protein that is best known for its role as a broad spectrum 

protease inhibitor. X-ray crystallography data and homology modeling against 

complement component C3 have been used to predict that α2M is formed by numerous 

macroglobulin domains, an alpha helical TED (thiol ester-containing) domain, and a 

CUB (complement protein subcomponents C1r/C1s, urchin embryonic growth factor and 

bone morphogenetic protein 1) (87). The quaternary structure of α2M involves four 

identical 180 kDa chains, which covalently pair by disulfide bonds and then non-

covalently associate to form a 720 kDa tetramer (88). The ability of α2M to act as a 

protease inhibitor is due to “bait regions” which are not present in the related complement 

proteins. Upon cleavage of one or more of the bait regions by a protease, native α2M 

transitions to a more compact “activated” conformation, which migrates further than 

native α2M during native gel electrophoresis (89). During this transition, each disulfide-

bonded dimer can covalently trap a protease within a steric “cage”, tethered via an 

intramolecular thiol ester bond (90). Small nucleophiles including methylamine or 

ammonium ions can also activate α2M by directly attacking the thiol ester bond (89). The 

activation of α2M exposes a cryptic receptor recognition site for low-density lipoprotein 

receptor-related protein (LRP; also known as the α2M receptor)(90). In addition to acting 



as a protease inhibitor, it has been demonstrated that binding to α2M can enhance antigen 

presentation (91) and α2M is widely reported to act as a carrier of cytokines, growth 

factors and hormones, particularly in its activated form (92, 93). 

 

α2M is expressed by many tissues and is highly abundant in extracellular fluids. The 

concentrations of α2M in human plasma and CSF are 1.5–2 mg/ml and 1.0–3.6 mg/ml, 

respectively (90, 94). In humans, plasma levels of α2M are known to decline with age 

(95). While α2M expression is upregulated during the acute phase in rats (96), plasma 

concentrations of α2M do not increase during the acute phase in humans (97). Consistent 

with it interacting with misfolded proteins in vivo, α2M is found colocalized with 

misfolded protein deposits in many diseases (Table 1). In particular, α2M is topical in the 

field of AD owing to its ability to bind to and facilitate the clearance of Aβ via LRP (98-

100). Several independent studies have reported that polymorphism in α2M is a genetic 

risk factor for AD (101-105), however, several other studies have failed to show this 

association (106, 107). There is also vigorous debate about whether mutations in LRP are 

linked with AD (106, 108, 109). 

 

Similar to clusterin and haptoglobin, α2M has been shown to have a “holdase”-type 

chaperone activity which inhibits amorphous and fibrillar protein aggregation in vitro 

(86, 110). At present the structural elements responsible for the chaperone activity of 

α2M are not known. Investigation of the chaperone activity of α2M against stress-induced 

amorphous protein aggregation is currently limited to a single study which suggested that 

this activity was abolished by protease activation, however, α2M retained the ability to 

trap proteases after binding to misfolded proteins and α2M-protease-misfolded protein 

complexes were recognized by LRP (111). α2M has been shown to inhibit amyloid 

formation by a large number of substrates (86) and to protect cells against Aβ toxicity in 

vitro (112, 113). As for the other ECs, α2M appears to suppress amyloid formation by 

interacting with prefibrillar species that occur early in the aggregation process (86). A 

recent study showed that mildly acidic pH or 0.5 mM sodium dodecyl sulphate (which 

induce dissociation α2M tetramers into dimers), increased the binding of α2M to β2-

microglobulin (114). This report proposed that dimeric α2M may be more chaperone-

active than the tetramer, however, currently it is unknown whether α2M dimers are 

generated in humans in vivo.  

 

4.4 Caseins 

The caseins are a heterogeneous mixture of four (unrelated) phosphoproteins that include 

αS1-, αS2-, β- and κ-casein, and are the primary components of milk micelles.  All of the 

caseins lack a well-defined tertiary structure, existing as ‘natively unfolded’ proteins that 

self-associate into casein micelles, which serves as the transport vesicle for calcium to 

mammalian neonates. Both αS- (made up of αS1- and αS2- subunits) and β-casein act as 

chaperones to inhibit the stress-induced amorphous aggregation of client proteins (115), 

as well the fibrillar aggregation of Aβ (116).  Their chaperone activity is pH (117) and 

phosphorylation (118) dependent with activity being highest at the pH range typical of 

milk (i.e. 6.8 - 7.0). As for clusterin, the caseins act as ‘holdase’ chaperones by forming 

high molecular mass complexes with client proteins but do not have refolding activity 

(117, 119). Evidence of the physiological relevance of this chaperone action comes from 

findings reporting the presence of calcified amyloid-like deposits (known as corpora 



amylacea) in bovine, rat and canine mammary tissue (120-123). Moreover, when isolated 

from the other casein proteins, αS2- and κ-casein readily aggregate into amyloid fibrils 

under conditions of physiological pH and temperature (124-126). Thus, the ability of αS1- 

and β-casein to function as chaperones and associate with other proteins (including the 

other caseins) is essential for the formation and stability of casein micelles and may also 

play a role in the prevention of mammary corpora amylacea. 

 

 

4.5 Other ECs 

 

In addition to clusterin, α2M, haptoglobin and caseins, several other secreted proteins 

have been reported to have chaperone activity (summarized below). In several cases, 

analysis of the chaperone activity of these proteins is limited to a single study, thus, 

further characterization of their interactions with misfolded proteins is needed before they 

can be recognized as genuine ECs.  

 

The ε4 allele of apolipoprotein E (ApoE) is a firmly established genetic risk factor for 

late-onset AD (127). It has been demonstrated that ApoE binds to Aβ and fragments of 

amyloidogenic gelsolin and prion protein (128, 129). Binding to ApoE reportedly 

increases the β-sheet content of these peptides (129), and promotes amyloid formation 

(130). However, similar to clusterin, it appears that depending on the conditions tested, 

ApoE can also inhibit amyloid formation by influencing either the nucleation or 

elongation phases (131, 132). In mice, ApoE genotype differentially regulates the 

clearance of Aβ from the brain; complexes formed between ApoE ε2 or ApoE ε3 and Aβ 

are cleared faster than those formed between ApoE ε4 and Aβ (133, 134). Although not 

proven, this may be the critical activity that promotes AD in carriers of the ApoE4 

genotype. ApoE is found colocalized with misfolded proteins in a large number of 

diseases including with Aβ in AD (135) and Down’s Syndrome (135), with prion protein 

in spongiform encephalopathies (135), with human islet amyloid peptide in diabetes 

(136), with drusen in macular degeneration (137), and in atherosclerotic plaques (138). In 

addition to clusterin (ApoJ) and ApoE, a third apolipoprotein, ApoAI, has been reported 

to influence Aβ aggregation and toxicity in vitro (139).  

 

Albumin is by far the most abundant plasma protein, and is known to be an important 

carrier of many different molecules including Aβ (140). Several studies have reported 

that albumin inhibits stress-induced amorphous protein aggregation and amyloid 

formation in vitro (141-144). Compared to most recognized chaperones, on a molar basis 

albumin is considerably less efficient at preventing protein aggregation (57, 145, 146), 

however, given its abundance this activity may be physiologically relevant. A recent 

report suggested that the “chaperone” activity of albumin involves the formation of high 

molecular mass complexes, however, the data showed that proportionally only a very 

small amount of protein formed high molecular mass species when stressed in the 

presence of albumin (143). Further work is needed in order to determine whether albumin 

can preferential bind to misfolded proteins, or whether the chaperone-like activity of 

albumin at high concentrations is the result of weak non-specific interactions.  

 



The “secreted protein acidic and rich in cysteine” (SPARC) is a multifunctional protein 

that promotes extracellular matrix remodelling by inhibiting collagen fibrillogenesis 

(147), and acts as an intracellular chaperone for procollagen (148). Aging SPARC 

knockout mice develop cataract and abnormal collagen deposition, supporting that the 

ability of SPARC to act as a collagen chaperone is important in vivo (149, 150). In 

human patients with cataract SPARC is upregulated (151), possibly in response to stress 

(152). SPARC has been demonstrated to, at substoichiometric concentrations, prevent the 

aggregation of heat denatured alcohol dehydrogenase (153). Little is known about the 

mechanism of this activity and whether it applies to misfolded proteins more broadly, 

thus further studies are warranted.   

 

Serum amyloid P (SAP: a member of the pentraxin family) is known to bind to a diverse 

array of ligands (154-156), however, no clear biological function for this protein has yet 

been established. It has been reported that SAP has ATP-independent refolding 

chaperone activity, however, this was achieved using a very high molar excess of SAP 

and even then the recovery of heat-denatured lactate dehydrogenase activity was only 

25% (157). Nevertheless, SAP is universally found colocalized with amyloid deposits in 

disease (158), which supports that it preferentially binds to amyloidogenic proteins in 

vivo. In vitro, SAP has been shown to inhibit amyloid fibril formation and increase the 

solubility of Aβ (159), however, the association of SAP with amyloid also protects the 

fibrils from proteolytic degradation (160). Knockout of SAP expression has been shown 

to delay amyloid deposition in a mouse model of reactive amyloidosis, suggesting that it 

plays a pro-amyloidogenic role (161).  

 

Fibrinogen, a major blood protein that plays an important role in clotting, was reported as 

inhibiting stress-induced amorphous protein aggregation and amyloid formation (162). A 

later report from the same group, however, suggested that the chaperone activity is 

mediated exclusively by the αEC domain which is only present in a minor isoform of 

fibrinogen known as fibrinogen-420 (163). When present at equimolar concentrations 

fibrinogen-420 reduced the heat-induced precipitation of citrate synthase by around 50% 

(163). In comparison, purified αEC was a more potent chaperone, however, while free 

αEC can be liberated from fibrinogen-420 as a result of proteolysis, its concentration in 

vivo is likely to be only a small fraction of that of fibrinogen-420 which is normally 

around 35 µg/ml in human plasma (164). 

 

Two secreted lipocalin-type proteins, α1-acid glycoprotein and lipocalin-type 

prostaglandin D synthase (L-PGDS)/β-trace are both reported to have chaperone-like 

activity (165, 166). For L-PGDS/β-trace this has only been addressed by a single study, 

which found that (i) L-PGDS/β-trace binds to monomeric and fibrillar Aβ and is found 

colocalized with Aβ plaques in vivo, (ii) L-PGDS/β-trace inhibits Aβ fibril formation, 

and  (iii) Aβ deposition is enhanced in L-PGDS/β-trace deficient mice and decreased in 

L-PGDS/β-trace overexpressing mice compared to wild-type control mice (165). For α1-

acid glycoprotein, again the available data is limited to a single study which reported that 

α1-acid glycoprotein inhibited the in vitro aggregation of a range of proteins (166). The 

same researcher also reported in a similar one-off study that α1-antitrypsin has chaperone-

like activity (167). These latter two studies, however, lacked suitable non-chaperone 

control proteins with which to compare the effects of α1-acid glycoprotein and α1-



antitrypsin on protein aggregation. Moreover, preferential binding of α1-acid glycoprotein 

and α1-antitrypsin to misfolded proteins has not been demonstrated.  

 

 

5.0  Physiological roles of ECs  

 

ECs are proposed to patrol extracellular spaces for misfolded and aggregated proteins. 

This function has implications for the clearance of aged or damaged proteins and, 

importantly, the protection of cells and tissues from the toxic or physically disruptive 

effects of protein aggregates. Cellular contact with misfolded or aggregated proteins can 

result in direct toxic effects (see 5.1), inflammatory signaling (see 5.2) or indeed 

endocytosis and degradation (see 5.3). The outcome depends on the cell types and 

specific receptors involved, and on the actions of the ECs.  

 

5.1  Direct effects on ECs on the toxicity of protein aggregates  

 

Although all aggregate species on the amyloid forming pathway may be toxic, it has 

become apparent that smaller soluble aggregates, commonly known as oligomers, are the 

most toxic species. These oligomers, even those generated from proteins not associated 

with disease, have been shown to be more toxic than both the precursor protein/peptide 

from which they are made and the fibrils generated from them (168). The mechanism(s) 

of oligomer toxicity remain unclear, however, common structural epitopes and exposed 

hydrophobicity have been correlated with aggregate toxicity in vitro (169, 170). Very 

hydrophobic protein aggregates may interact with cell surface receptors leading to 

changes in intracellular signal transduction cascades, potentially leading to cell death 

(171) or, alternatively, insert into and then interfere directly with membrane integrity 

resulting in toxicity (172). In the context of amyloid formation, ECs interact most 

strongly with oligomers formed early in the aggregation pathway (50, 51, 86), probably 

via the exposed hydrophobic residues thought to responsible for cellular toxicity. Indeed, 

it is likely that this is a common mechanism by which a range of ECs, such as clusterin, 

α2M, haptoglobin and ApoE protect cells from misfolded or aggregated proteins (51, 173, 

174). Recent insights into the mechanism of these interactions have come from studies 

exploiting advanced microscopy techniques. Single molecule fluorescence analyses were 

used to show for the first time that clusterin forms stable, soluble complexes with a broad 

range of Aβ oligomers (ranging from dimers to 50-mers) and by doing so can inhibit 

fibrillogenesis and enhance the concentration of soluble Aβ species following 

disaggregation of pre-formed fibrils (50). Furthermore, atomic force and confocal 

microscopy was used to show that clusterin and α2M physically associate with HypF-N 

protein oligomers to induce them to form larger assemblies; this inhibited binding of the 

oligomers to cell membranes and consequently their cytotoxicity (173).  

 

However, it is important to note that the effects of ECs on the toxicity of protein 

oligomers are context-dependent. For example, clusterin and α2M were shown to enhance 

the cytotoxicity of Aβ to PC12 cells and LAN5 cells, respectively (56, 175). In contrast, 

other work has shown that clusterin and α2M can protect cells from Aβ toxicity in 

primary rat mixed neuronal cultures (64, 100). Furthermore, when Aβ was aggregated in 

the presence of clusterin at a ratio of clusterin:Aβ of 1:10, it was less toxic than Aβ alone 



to SH-SY5Y cells. However, when this same experiment was performed using a ratio of 

clusterin:Aβ of 1:500, the species formed were more toxic (51). These apparently 

opposing outcomes probably arise as a result of stoichiometry-dependent differential 

effects of ECs on oligomer structure. When present at relatively high ratios of 

chaperone:client, the ECs may be able to effectively mask most of the hydrophobicity 

exposed on the oligomers (thereby reducing their toxicity). In contrast, when present at 

lower ratios of chaperone:client, the ECs may structurally stabilize the oligomers, leading 

to the generation of more oligomers, but be present at insufficient levels to shield all the 

hydrophobic regions exposed on the oligomers.  

 

5.2  Anti-inflammatory effects of ECs There are many reports describing the effects of 

clusterin, haptoglobin and α2M on the immune system (59, 176-180). Some of these, such 

as the ability of α2M to enhance antigen presentation (91) and haptoglobin-facilitated 

clearance of hemoglobin (180), clearly fall outside of the scope of this review and as 

such, will not be discussed here. With direct relevance to their function as ECs, a large 

number of recent studies have now shown that amyloidogenic peptides and aggregates of 

misfolded proteins are potently immunostimulatory (reviewed in (181)). Moreover, it has 

been suggested that hydrophobicity is universally recognized as a damage-associated 

pattern by the innate immune system (182). The rationale for this hypothesis comes in 

part from the fact that innate immune systems receptors such as toll-like receptors (TLRs) 

and scavenger receptors are highly promiscuous and bind to a very large number of 

ligands. These ligands are structurally diverse, however, most share the trait of normally 

being either hydrophobic or prone to exposing large areas of hydrophobicity when they 

are damaged or modified (e.g. bacterial lipopolysacharride (183)). Furthermore, it has 

recently been shown that when exposed to gold nanoparticles the expression of pro-

inflammatory cytokines by splenocytes correlates with the surface hydrophobicity of 

these particles (184).	
   

 

Protein misfolding is accompanied by chronic inflammatory pathology in many diseases 

including AD, prion disease, arthritis, macular degeneration and atherosclerosis. Reports 

describing the in vitro activation of microglia and astrocytes via stimulation of scavenger 

receptors and TLRs by amyloidogenic peptides are too numerous to address individually 

here, therefore, just a few examples will be discussed (reviewed in (181)). Fibrillar Aβ 

reportedly interacts with an ensemble of innate immune receptors including SR-AI, 

CD36, CD14, TLR-2, TLR-4 and formyl peptide receptor 2 (185-187), the net effect 

being upregulation of pro-inflammatory genes such as iNOS, COX2 and TNFα, and the 

initiation of respiratory burst (187, 188). A role for amyloids in platelet activation has 

also been suggested and CD36 and von Willebrand factor receptor glycoprotein Ibα were 

implicated in this process (189). Direct comparison of Aβ oligomers and Aβ fibrils 

suggests that small oligomers of Aβ are more potent stimulators of microglia and 

astrocytes (187, 190, 191), and supports the hypothesis that the hydrophobicity of the 

agonist is important. The ability of misfolded proteins to stimulate pro-inflammatory 

responses does not appear to be limited to amyloid, for example amorphous aggregates 

formed by the denaturation of large globular proteins have been shown to stimulate nitric 

oxide and superoxide production in macrophages (192). This activity was attributed to 

interaction of the aggregates with β1β2 integrins, MAC-1 and receptor for advanced 

glycation end products (RAGE) (192, 193).  



 

Taken together the findings of the aforementioned studies strongly support that misfolded 

proteins are inherently immunostimulatory and this may be an important mechanism by 

which they contribute to the pathology of disease. Considering that inflammation is a 

state in which numerous stresses including heat and the concentration of free radicals are 

increased, it is possible that misfolded proteins and inflammation together generate a self-

perpetuating cycle. Although the anti-inflammatory actions of the ECs may involve 

several mechanisms, close examination of their biological activities supports that at least 

some of their immunomodulatory effects are linked to their inherent property to bind and 

mask areas of exposed hydrophobicity on molecules. For example, the binding of α2M to 

cytokines, which is currently considered a major mechanism by which it exerts 

immunomodulatory effects, is driven by hydrophobic interactions in many cases (92, 93, 

194). Similarly, hydrophobic interactions are central to the interactions of clusterin with 

the complement system (32). Thus, it is tempting to speculate that an additional, yet to be 

characterized immunomodulatory activity of ECs, may be the direct result of their ability 

to mask regions of exposed hydrophobicity on misfolded proteins and other ligands, 

thereby reducing their ability to participate in pro-inflammatory signaling.  

 

5.3  EC-mediated clearance of protein aggregates 

In addition to directly shielding cells from hydrophobic protein aggregates, ECs may also 

protect cells by playing an important role in physically clearing misfolded proteins from 

extracellular fluids. Although receptors that can recognize and directly bind to misfolded 

or aggregated proteins have been identified, continued aggregation will result in the 

formation of insoluble deposits which have restricted access to cell surface receptors and 

that may persist in the body for extended periods. Additionally, there is evidence that the 

recognition of misfolded proteins by receptors may in fact contribute to their pathological 

effects (see above). The formation of complexes between ECs and misfolded proteins 

inhibits further aggregation of the latter, maintains them in solution and enhances the 

efficiency with which they are delivered to cell surface receptors for clearance. For 

example, SH-SY5Y cells expressing the α2M receptor (LRP) are more resistant to Aβ  

toxicity in the presence of α2M than cells that do not (175). In this context, the protection 

afforded by LRP expression could be inhibited with receptor-associated protein (a ligand 

that inhibits binding of species to LRP), further supporting the notion that internalization 

of α2M-Aβ complexes is cytoprotective. Along similar lines, in the presence of α2M, Aβ 

was cytotoxic to LRP-negative LAN5 cells but not when the LAN5 cells were transfected 

with LRP (175). When Aβ is added into AD patient CSF, it is more toxic to SH-SY5Y 

cells than Aβ added into control CSF; adding ECs (clusterin, α2M and haptoglobin) 

suppresses this toxicity and this effect coincides with a more efficient cellular uptake of 

Aβ (112). Furthermore, it has been demonstrated that clusterin-Aβ complexes bind to the 

receptor megalin on the surface of mouse teratocarcinoma F9 cells, and are subsequently 

internalized, via receptor mediated endocytosis, transported to lysosomes and degraded 

(195). Likewise, complexes formed between protease-activated α2M and Aβ bind LRP 

and are internalized in U87 cells and subsequently degraded (99).  Importantly, in vivo 

studies also strongly support that clusterin and α2M facilitate the clearance of Aβ via 

interactions with lipoprotein receptors (66, 196). In a rat model, complexes formed 

between clusterin and misfolded client proteins are quickly and specifically taken up by 

liver hepatocytes and degraded within lysosomes (197). This uptake can be delayed by in 



vivo injection of fucoidin, an inhibitor of scavenger receptors, implicating these in 

receptor-mediated endocytosis of the chaperone-client complexes. This may reflect a 

process in which protein aggregates are maintained in solution in complex with ECs until 

cell surface pattern recognition receptors bind to hydrophobic or misfolded protein 

epitopes exposed on the complexes and mediate their cellular uptake. Scavenger 

receptors also reportedly facilitate the uptake of methylamine-activated α2M by liver 

endothelial and kupffer cells (198), however, previous studies have not addressed 

whether this is also a pathway by which α2M facilitates the clearance of misfolded client 

proteins. It is well known that human macrophages use the CD163 receptor to bind and 

internalize haptoglobin-hemoglobin complexes for subsequent degradation (199); 

however, the identity of receptor(s) that may function in clearing haptoglobin-misfolded 

protein complexes is not yet known. Taken together, the available evidence suggests that 

ECs protect cells from toxic and pro-inflammatory protein aggregates both by masking 

regions of exposed hydrophobicity on them and by promoting their receptor-mediated 

cellular uptake and degradation (Figure 2).  An intriguing question which requires further 

investigation is whether extracellular proteolysis systems (e.g. plasminogen/plasmin) 

might synergize with ECs to digest and clear insoluble extracellular protein deposits. 

Although much remains to be done to identify all the relevant cell surface receptors 

involved in the systemic clearance of EC-misfolded protein complexes, scavenger and 

lipoprotein receptors are strongly implicated in clearing complexes incorporating 

clusterin and α2M. 
 

 

6.0 Therapeutic opportunities 

 

Available treatments for extracellular protein deposition diseases are currently limited to 

reducing their symptoms. Without effective prophylactics or cures, the already heavy 

burden of diseases such as AD, macular degeneration and arthritis will continue to grow 

within our aging society. Thus, there is an urgent need to better understand the 

fundamental biological systems that normally protect the body from accumulating 

misfolded proteins in extracellular spaces. Many amyloidoses result from the 

accumulation of a single protein. To stem the production of this protein would provide a 

first line of defense against its accumulation. In cases where the disease-relevant protein 

is primarily synthesized by the liver, organ transplantation is a drastic but effective means 

by which to control the disease. Currently, liver transplant is most common for the 

treatment of transthyretin (TTR) related familial amyloidosis (200), and has been 

successfully used to treat other forms of amyloidosis including those resulting from 

mutation in fibrinogen α-chain or lysozyme (201, 202). Nevertheless, surgery of this kind 

carries serious risk and unless taken as a preemptive measure, damage to other organs 

may already be severe at the time of transplantation. Moreover, the disease will continue 

to progress if the amyloidogenic protein is expressed by other tissues. Suppression of the 

expression of amyloid forming proteins using antisense oligonucleotides or small 

interfering RNA are promising new therapeutic strategies (203, 204). Treatment of this 

kind, however, is suitable only if knockout of the target does not negatively impact upon 

overall organismal health, such as is the case for TTR (205), but not other examples such 

as the amyloid precursor protein (APP) (206). Rather than target the expression of APP, 

an alternative strategy to prevent/treat AD is to reduce the expression of the enzymes 



responsible for the production of Aβ1-42 (207), since is well known that Aβ1-42 has a 

higher tendency to aggregate compared to Aβ1-40 peptide.  

 

A variety of small molecules are known to inhibit the aggregation/fibrillogenesis of 

disease-relevant proteins in vitro (reviewed in (208)). Unfortunately, clinical use of these 

compounds is not possible due to their lack of specificity, the high concentrations 

required to elicit an effect and their low tolerability in vivo. Therefore, current research is 

focused on identifying molecules that specifically target amyloidogenic proteins and 

disrupt their aggregation. A successful example of this is the drug Tafamadis, which has 

recently been approved by the European Medicines Agency (209). Tafamadis inhibits 

amyloid formation by stabilizing the tetrameric form of TTR, the dissociation of which 

into monomers is the rate-limiting step in TTR amyloid formation (210). Promising novel 

peptide-based strategies are also currently under development, including “β-sheet 

breakers”, which have been shown to reduce amyloid deposition in mouse models of AD 

(211). A major limitation of anti-aggregation strategies is the lack of knowledge 

surrounding precisely which of the aggregated species are responsible for disease 

(reviewed in (212)). This limitation may be overcome by the development of therapeutics 

that not only influence the aggregation of misfolded proteins, but also efficiently target 

them for disposal. Importantly, a recent study comparing AD patients with normal 

controls showed that the levels of Aβ (1-40 and 1-42) production were the same in both 

groups but that the clearance of Aβ was significantly decreased in AD patients, strongly 

implicating impaired Aβ clearance in AD pathogenesis (213). Immunotherapy has been 

investigated as a means to increase the clearance of disease-relevant proteins/peptides. 

Active immunization using Aβ1-42 peptide and passive immunization using antibodies 

raised against Aβ1-42 have both been demonstrated to reduce Aβ deposition and cognitive 

decline in mice (214, 215). An early clinical trial using full length Aβ1-42 as the 

immunogen in humans was halted due to the incidence of meningoencephalitis in a small 

proportion of the patients (216), nevertheless, long-term follow up of the patients from 

this trial showed significantly less cognitive decline and brain volume loss in those 

patients who had generated an antibody response during the trial compared to controls 

(217). The results of a more recent clinical trial suggest that side effects such as 

meningoencephalitis may be avoided by using a shorter fragment of Aβ1-42 as the 

immunogen, rather than the full length peptide (218). 

 

The discovery of ECs is an important landmark in our developing understanding of the 

mechanisms comprising extracellular proteostasis. Further characterization of the 

activities of the ECs, in particular their ability to facilitate the clearance of misfolded 

extracellular proteins (see section 5.3), will open up new avenues for the development of 

novel therapies. Exogenous administration of the normally intracellular sHsp αB-

crystallin is protective in animal models of acute ischemic and autoimmune disease (219-

222). The effect of αB-crystallin is potently anti-inflammatory and it has been suggested 

that this is directly related to its ability to sequester misfolded proteins (223). Considering 

that the activity of the ECs is similar to that of αB-crystallin, it is tempting to speculate 

that increasing their extracellular concentrations may have a similar therapeutic effect. 

Given that they are normally secreted it may be possible to increase the concentrations of 

ECs by administration directly in to the blood stream, however entry to the nervous 

system would be problematic due to the blood brain barrier. Alternatively, increases in 



EC concentration could be achieved by targeting regulatory elements in the promoters 

responsible for their expression (224-227). However, the overexpression of clusterin been 

implicated in cancer pathogenesis and protection from chemotherapy drugs (43), thus, the 

possible side effects of the upregulation of ECs needs to be carefully evaluated. As 

outlined above (see section 5.1 and 5.2) there is strong evidence indicating that ECs 

reduce the toxicity of misfolded proteins, depending on the ratio of EC to amyloid 

forming protein, and the presence (or not) of specific receptors to promote clearance of 

complexes formed between the two molecules (51). Therefore, when targeting EC 

expression as a therapeutic strategy, it is important to consider the pathways by which 

chaperone-misfolded client protein complexes are cleared. For instance, in AD, 

downregulation of LRP at the blood brain barrier is coupled with increased expression of 

several LRP ligands (228-231), suggesting that accumulation of Aβ may in part be the 

result of overwhelming of LRP. In this scenario, increasing the concentration of α2M may 

not have any therapeutic benefit unless the expression of LRP is also increased. A final 

intriguing possibility yet to be explored is to pharmacologically manipulate the in vivo 

chaperone activity of endogenous ECs. 

  

7.0 Conclusions  

Proteostasis is critical to maintain organismal viability, and logically must operate in all 

body spaces. Knowledge of those processes that achieve this in extracellular body spaces 

are only now being identified but are likely to depend heavily upon the involvement of 

recently discovered, constitutively secreted ECs. The available evidence strongly 

suggests that these chaperones act as both sensors and disposal-mediators of misfolded 

proteins in extracellular fluids. Their actions are likely to normally defend the human 

body from a range of serious diseases arising from inappropriate extracellular protein 

aggregation and deposition. It is therefore critically important to advance knowledge of 

ECs and how they integrate with various molecular and cellular mechanisms to effect 

extracellular proteostasis. This is essential if we are to one day identify effective therapies 

for what are currently some of the world’s most debilitating, costly and intractable 

diseases. 
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Table 1. Some examples of extracellular protein deposition disease, the protein/peptide 

implicated in their pathology and the ECs found co-localized with these deposits.  

 

Disease 
Aggregating 

protein/peptide 
Co-localized chaperones 

Alzheimer’s disease Aβ 
Clusterin (232) 
α2M (175) 

Haptoglobin (233) 

Spongiform 

encephalopathies 
Prion Protein 

Clusterin (234) 

α2M (235) 

 

Macular Degeneration 

Major contribution by 

vitronectin and 

complement 

components. 

Clusterin (236) 

Atherosclerosis ApoB-100 
Clusterin (237) 

α2M (238) 
Familial British 

dementia 
ABri Clusterin (239) 

Familial Danish 

Dementia 
ADan Clusterin (240) 

Down’s syndrome Aβ Clusterin (241) 

Type II Diabetes 
Human Islet Amyloid 

Peptide 
Clusterin (242) 

Hemodialysis-related 

amyloidosis 
β2-Microglobulin α2M (243) 

Amyloidotic 

cardiomyopathy 

 
Transthyretin  Clusterin (244) 

Systemic Amyloidosis 
Immunoglobulin light 

chain 
Clusterin (245) 

Corneal Dystrophies Keratoepithelin Clusterin (246) 

Glomerulonephritis 

 
IgA Haptoglobin (247) 

Corpora amylacea 

β-lactoglobulin, α-

lactalbumin and other 

undetermined proteins 
αS2-casein and β-casein (248) 

 

 

  



Figure 1. Major elements of extracellular proteostasis. Proteins have undergone 

rigorous quality control before they are secreted, generally in a natively folded state. 

Once in the extracellular environment, they encounter a variety of stresses which can 

cause them to partially unfold and populate misfolded states. Misfolded proteins can 

aggregate into soluble oligomers and subsequently into insoluble fibrillar or amorphous 

aggregates. Extracellular chaperones (ECs) are known to form stable complexes with 

misfolded protein species, including misfolded monomers and oligomers. These 

complexes maintain misfolded proteins in solution and facilitate their clearance from 

extracellular fluids via receptor mediated endocytosis (RME) and degradation in 

lysosomes. In some cases misfolded, modified or aggregated proteins can also be cleared 

via RME without the involvement of ECs; large insoluble aggregates must be 

phagocytosed. Furthermore, extracellular proteases such as plasmin may be activated by 

protein aggregates and subsequently degrade them.  

 

Figure 2.  Model for the effects of ECs on toxicity and inflammation driven by 

misfolded extracellular proteins. Misfolded proteins and aggregates can be toxic to 

cells by a variety of mechanisms including disruption of membrane integrity, inducing 

changes in intracellular signal transduction cascades, and indirectly by eliciting pro-

inflammatory signaling in immune cells Extracellular chaperones (ECs) are likely to be 

cytoprotective because of their ability to shield hydrophobic residues on the surfaces of 

these species that can mediate interactions with cell membranes and receptors. The 

actions of the ECs also inhibit the formation of larger aggregates and facilitate their 

efficient clearance, further reducing potential pathology.  
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