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Abstract

The expression of heat shock proteins (hsp) is a basic and well conserved cellular response to an 

array of stresses. These proteins are involved in the repair of cellular damage induced by the 

stress, which is necessary for the salutary resolution from the insult. Moreover, they confer 

protection from subsequent insults, which has been coined stress tolerance. Since these proteins 

are expressed in subcellular compartments, it was thought that their function during stress 

conditions was circumscribed to the intracellular environment. However, it is now well established 

that hsp can also be present outside cells where they appear to display a function different than the 

well understood chaperone role. Extracellular hsp act as alert stress signals priming other cells, 

particularly of the immune system, to avoid the propagation of the insult and favor resolution. 

Since the majority of hsp do not possess a secretory peptide signal, they are likely be exported by 

a non-classical secretory pathway. Different mechanisms have been proposed to explain the export 

of hsp, including translocation across the plasma membrane and release associated with lipid 

vesicles, as well as the passive release after cell death by necrosis. Extracellular hsp appear in 

various flavors, including membrane-bound and membrane-free forms. All of these variants of 

extracellular hsp suggest that their interactions with cells may be quite diverse, both in target cell 

types and the activation signaling pathways. This review addresses some of our current knowledge 

about the release and relevance of extracellular hsp.

Keywords

ectosomes; exosomes; immune cell activation; non-classical secretory pathway; stress; vesicles; 
cellular communication

1CORRESPONDING AUTHOR: Antonio De Maio, Ph.D., University of California San Diego, 9500 Gilman Drive, #0739, La Jolla, 
CA 92093-0739, ademaio@ucsd.edu, Tel: (858) 822-6502, Fax: (858) 822-2981. 

HHS Public Access
Author manuscript
Shock. Author manuscript; available in PMC 2015 March 06.

Published in final edited form as:
Shock. 2013 October ; 40(4): 239–246. doi:10.1097/SHK.0b013e3182a185ab.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



HISTORIC BACKGROUND

When cells are challenged by adverse environmental conditions, they respond by the 

expression of a family of polypeptides called heat shock or stress proteins (hsp). These 

proteins are involved in the repair of cellular damage induced by the stress, which is 

necessary for insult resolution. Moreover, hsp confer protection from subsequent insults, 

which has been coined stress tolerance (1). Thus, the expression of hsp is a universal 

response to stress, which is fundamental to assure survival. The cellular response to stress 

was discovered over 50 years ago by the Italian scientist Ferruccio Ritossa. By serendipity, 

he found that Drosophila cells exposed to temperatures higher than their normal growing 

conditions responded with an increase in chromosomal activity. Ritossa was puzzled by the 

observation, and, as a good scientist, he repeated the “accident” several times, included the 

appropriate controls, and was able to validate his initial unintended observation. Thus, the 

“heat shock” response was born. In spite of the excitement and tremendous importance of 

his finding, Ritossa had difficulties publishing his study, which was considered “a finding 

that lacks biological relevance” by the editor of a prestigious scientific journal (2). His 

findings were ultimately published in the journal Experientia (3), which does not exist 

anymore. Currently, we all recognize the tremendous importance and impact of the heat 

shock response discovery, which plays a major role in current biology (4). Today, we know 

that these proteins are expressed in response to a large variety of environmental, 

physiological, and clinical stresses, in addition to temperature increases (1). The 

transcriptional activity that Ritossa observed was correlated with the expression of hsp by 

Tissieres et al., twelve years after the initial observation (5). Several years after, a 

Drosophila gene encoding for an inducible heat shock protein was cloned (6–8).

Subsequent studies revealed that polypeptides similar to the inducible hsp were present in 

cells during normal physiological conditions, participating in several basic cellular 

processes, including protein folding, assembly of macromolecule complexes, and signal 

transduction (1, 9). Overall hsp, constitutive and stress-inducible, are classified according to 

their molecular mass into discrete families. As in many other fields, a variety of names have 

been given to the hsp family members, creating a vast confusion in the field. Therefore, a 

consensus nomenclature has been proposed (10). Each sub-group is composed of very 

similar proteins that differ in their sub-cellular localization, expression pattern, and minor 

amino acid sequence (Table 1). Hsp are better known as molecular chaperones due to their 

well recognized ability to fold polypeptides.

HSP CAN ALSO BE FOUND OUTSIDE CELLS

The main function of hsp, such as the folding of newly synthesized polypeptides, is carried 

out in the cytosol. However, these proteins have also been found outside cells, which has 

become a very puzzling observation. Two major questions have emerged from this unusual 

observation: How do these proteins get there, and what is their function? The first 

publication regarding the presence of hsp outside cells was by Tytell et al. (11), who 

reported a “heat-shock-like protein” as a glia-axon transfer protein of the squid giant axon. 

Almost simultaneously, Hightower and Guidon (12) described the presence of Hsp70 

(HSPA1) in the extracellular medium, released by a process that could not be blocked by 
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inhibitors of classical secretory pathways and was independent of the possible release after 

cell death. They also found that extracellular Hsp70 was associated with fatty acids. These 

publications were against the traditional thinking since the common knowledge at the time 

indicated that hsp were exclusively intracellular components. Therefore, Hightower and 

Guidon’s findings were considered as potential artifacts, similarly to Ritossa’s discovery, 

and disregarded for many years. It was not until the year 2000 that the interest in 

extracellular hsp was regained. Srivastava’s group showed that extracellular Hsp70, 

assumed to be released after tissue necrosis, modulated the immune system (13). Similarly, 

Asea and Calderwood showed that recombinant Hsp70 could activate macrophages as 

measured by an increase in the level of intracellular calcium and the release of cytokines 

(14). The potential immune regulatory role of Hsp70 was challenged due to the possibility 

that the effect was due to bacterial lipopolysaccharide contamination (15) or by other 

bacterial products (16). Several subsequent studies have demonstrated that, indeed, Hsp70 is 

capable of activating cells of the immune system (17–19).

After finding extracellular Hsp70 to be an immunomodulator, other hsp were also detected 

outside cells. Grp78 (HSPA5), which is an endoplasmic reticulum (ER) resident 

homologous to Hsp70, has been found outside cells (20, 21). Grp75 (HSPA9), also known 

as mortalin, is a mitochondrial chaperone protein that belongs to the Hsp70 family. This 

protein is released in the extracellular medium upon complement treatment of cells (22). 

Intracellular Hsp90, which is presented in two isoforms: α (HSPC2) and β (HSPC3), differs 

in its expression pattern, with Hsp90β being abundant during normal physiological 

conditions and Hsp90α expressed during stress (23). Initially, Hsp90α was detected outside 

human hybridoma SH-76 cells as a growth stimulating factor (24). Hsp90α was also 

identified as a secreted oxidative stress-induced factor (25). Hsp90β also has been reported 

secreted by osteosarcoma cells (26). A homologous form of cytosolic Hsp90 is the ER 

resident Grp94 (HSPC4), which has also been found in the extracellular space (27, 28). The 

release of Grp94 can be explained since this protein is an ER resident that can be transported 

through the Golgi complex. As for Hsp70, extracellular Hsp90 was considered to be a 

product of cell death. However, further studies have shown that the protein could be secreted 

by an active mechanism (29, 30). Another hsp, Hsp60 (HSPD1), which is located into the 

mitochondria and cytosol, has been found in plasma after some disease conditions (31, 32). 

In addition, circulating anti-Hsp60 antibodies has been detected in a variety of pathological 

conditions (33). Small hsp are also secreted by cells and modulate the immune system (34). 

In particular, Hsp27 (HSPB1) has been noticed in serum of patients during pathological 

conditions (35, 36). One of the members of the large hsp family, Grp170 (HSPH4), has also 

been detected outside cells (37).

THE EXPORT OF HSP

Since the detection of hsp outside cells or in plasma, a discussion has been generated 

regarding whether or not the protein is released secondary to cell death or exported by an 

active mechanism that is non-dependent on cell lysis. The initial studies of Srivastava’s 

group (13) proposed that the release of Hsp70 was the product of cellular necrosis. On the 

other hand, Hightower and Guidon (12) demonstrated that the release of Hsp70 was not due 

to cell death, which was later confirmed by Hunter-Lavin et al. (38). Therefore, the question 
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is whether both pathways are possible. The major argument against the secretion of hsp, 

particularly Hsp70, by an active mechanism is the fact that this protein does not contain a 

consensus peptide signal for secretion via the classic ER-Golgi pathway. Moreover, typical 

inhibitors of the ER-Golgi pathway, such as brefaldin A, did not block the release of Hsp70 

from healthy cells (12). These observations suggest that Hsp70 may be exported via an 

alternative mechanism, which has been named the non-classical or unconventional secretory 

pathway (39). Several other proteins, such as interleukin-1α and β, high-mobility group box 

1, galectin-1 and 3, and fibroblast growth factor-1 have also been suggested as released by 

this alternative pathway. However, a unifying mechanism for the release of proteins by the 

non-classical secretory pathway has not yet emerged (39). Different scenarios have been 

proposed for the active export of Hsp70 from the cytosol into the extracellular milieu. One 

suggested mechanism is export via the lysosome-endosome pathway, in which Hsp70 is 

translocated into the lysosome lumen via ATP-binding cassette (ABC) transport-like system 

and further transported outside cells via the endocytic process (40). Other studies have 

suggested that Hsp70 is released via secretory-like granules (41). However, the most 

accepted mechanism for the release of Hsp70, as well as other hsp, is via extracellular 

vesicles (ECV) (42). These vesicles are derived from the plasma membrane by various 

processes including membrane blebbing, which is known as ectocytosis and the derived 

vesicles coined ectosomes. Alternatively, ECV could be produced by endocytosis, which 

causes the formation of multiple vesicle bodies that are released into the extracellular 

medium, producing vesicles with the same topology as the plasma membrane and are named 

exosomes (42, 43). Regardless of the origin of the vesicles, there is compelling evidence that 

hsp can be detected within these vesicles (Table 2). The main difference between these 

studies is the location of hsp within the vesicles, which has been proposed to be in the lumen 

or the membrane of the ECV. The presence of hsp in the lumen of ECV likely results from 

the protein being trapped into the intracellular space of the vesicle during its formation since 

these proteins are very abundant in the cytosol (42). The argument against this idea is that 

proteins in the vesicle lumen may not be able to interact directly with target cells. Thus, it 

should be assumed that ECV may burst, releasing the cargo and allowing the hsp, now free 

in solution, to interact with cells. Alternatively, it is possible that ECV fuse with the 

membranes of cells, releasing the lumen content into the cytosol. A different idea is that hsp 

are associated with the membranes of ECV, which has been shown for several hsps 

including Hsp70 (18, 44, 45) and Hsp60 (46, 47). The presence of hsp on the membrane 

(surface) of ECV is important since it explains the specific interaction with target cells, 

probable by a process mediated by surface receptors. Moreover, the possibility that multiple 

copies of the hsp are present within a single ECV suggests that its biological activity may be 

enhanced dramatically. In fact, the concentration of Hsp70 within ECV has been calculated 

in the mM range, which is a concentration that is unlikely to be reached by soluble proteins 

(42). In support of this idea, it has been shown that the specific activity of Hsp70 associated 

with ECV is over 250 fold more elevated in the process of activating macrophages than the 

protein in solution, free of membranes (18). Hsp90, which also lacks a secretory signal that 

justifies the transport via the ER-Golgi compartment, has been proposed as being exported 

via exosomes (48–50) or by direct translocation across the plasma membrane (30).
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We have hypothesized that the interaction of Hsp70 with membranes is the first step in the 

active secretion of this protein (42). The presence of Hsp70 on the surface of cells has been 

well documented by several groups (42, 51). Indeed, the presence of other hsp on the cell 

surface has been widely shown by many investigators under different physiological and 

pathological conditions (42). The constitutive member of the cytosolic Hsp70 family, Hsc70 

(HSPA8), was observed on the bile duct membrane (52). Grp78, also known as BIP, has 

been detected on the cell surface (53). The mitochondria Hsp60 has been reported on the 

surface of human T cell-lines (54), endothelial cells (55, 56), as well as in the liver and 

spleen of mice (57). Hsp90 was initially detected on the cell surface of tumor cells (58) and 

subsequently in multipotential mesenchymal precursor cells (59), human neuroblastoma 

cells (60, 61), human monocytes, (62). Grp94 was observed on the plasma membrane of 

sarcoma cells (63). The initial observation for the interaction of Hsp70 with lipids came 

from Hightower and Guidon’s work that found extracellular Hsp70 associated with fatty 

acids (12). Arispe and De Maio (64) showed that the addition of pure Hsc70 (HSPA8) to an 

artificial lipid bilayer resulted in the detection of cationic conductance activity, which was 

very stable and regulated by nucleotides. These observations were extended to Hsp70 (18). 

Further studies have demonstrated that both Hsc70 and Hsp70 display a high specificity for 

phosphatidylserine as compared with many other lipids (65, 66). In addition, Hsp70 

appeared to interact with phospholipid bis(monoacylglycero)phosphate (67), which is also 

negatively charged, suggesting that the interaction with lipids is electrostatic. A domain 

containing a stretch of positively-charged amino acids at the C-terminus of Hsc70 was found 

to mediate the interaction of this protein with endosomes, which was confirmed by site 

directed mutagenesis (68).

Although the evidence for the active secretion of hsp from “healthy” cells is notable, it 

cannot be discarded that, under other circumstances, hsp are released into the extracellular 

medium or plasma after cell necrosis. Indeed, the concentration of Hsp70 released after 

necrosis can be potentially very high. Basu et al. have proposed that 1 g of necrotic tissue 

could release up to 200 μg of Hsp70 in the extracellular medium (13). In this regard, 

expression of Hsp70 has been observed after ischemia/reperfusion injury (I/R), which 

resulted in a necrotic focus (69). Assuming that the average amount of Hsp70 is in the order 

of 107 molecules per stressed cell (70), and there is an average of 3 × 108 hepatocytes per rat 

liver (71), a 1/30 hepatic ischemia/reperfusion injury could potentially result in the release 

of 1014 molecules of Hsp70, which is approximately 120 μg. If the total blood volume of a 

rat is approximately 8 ml, the circulating concentration of Hsp70 could be as high as 15 

μg/ml, in theory. This massive amount of Hsp70 in circulation could have detrimental 

consequences. For example, Hsp70 has been shown to induce cell death (65, 66), which has 

long been recognized as a secondary effect of Hsp70 over-expression in cells (72).

The arguments presented above suggest that Hsp70 could be released by two possible 

mechanisms: passive (necrosis) or active (secretion). For active secretion, Hsp70 is likely 

associated with membranes within ECV (membrane-bound), whereas for the passive process 

Hsp70 is likely to be in solution or soluble (membrane-free). These possibilities were 

investigated in various in vivo models. Male rats that underwent regional hepatic I/R by total 

blockage of the blood supply to the median liver lobe (30 min), whereas blood flow was 

De Maio and Vazquez Page 5

Shock. Author manuscript; available in PMC 2015 March 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



preserved in the rest of the liver (69), displayed a level of Hsp70 in plasma in the order of 

60.3 ng/ml, which was more elevated than in sham-operated rats (0.02 ng/ml) and non-

manipulated control animals (non-detectable). The plasma levels correlated with induction 

of Hsp70 in the ischemic liver (detected by Western blotting). In contrast, no extracellular 

Hsp70 was detected in urine samples taken after I/R. The presence of Hsp70 in plasma was 

also investigated after total body thermal stress or heat shock (HS) at 42°C for 10 min as 

previously described (73). The level of Hsp70 in the plasma samples of thermally stressed 

animals was 99.4 ng/ml as opposed to non-stressed controls (0.04 ng/ml, p=0.0002 Student 

t-Test). Hsp70 was also detected in bronchoalveolar lavage fluid after HS (2.52 ng/ml), 

which was significantly higher than in non-stressed rodents (0.99 ng/ml, p=0.004 Student t-

Test). After both conditions, I/R or HS, ECV were isolated from plasma by differential 

centrifugation and the content of Hsp70 compared with supernatant of the sample 

corresponding to the membrane-free fraction. ECV derived from thermally stressed rats 

contained Hsp70 (30.9 ng/ml), whereas no detectable Hsp70 was found in samples from 

non-stressed rats (p=0.01). The content of Hsp70 in the ECV fraction corresponded to 20% 

of the total concentration in the sample (Table 3). In contrast, all Hsp70 detected in plasma 

samples after I/R was in the membrane-free fraction (Table 3). These observations suggest 

that extracellular Hsp70 could be released by both, cell necrosis (I/R) and active secretion, 

the latter via ECV.

Clinical relevance of extracellular hsp

The number of clinical conditions presenting Hsp70 in plasma samples is increasing, 

including the top killers in the Western world: cancer, cardiovascular disease, diabetes, and 

trauma (42). Major attention has been directed at the effect of extracellular hsp on the 

immune system in which they act as signaling molecules. Indeed, Hsp70 has been shown to 

induce the activation of macrophages, monocytes, dendritic cells, and natural killer cells 

(42). Extracellular Hsp70 has also been reported to increase microbicidal capacity and 

chemotaxis of neutrophils (74, 75), phagocytosis (76), and modulate the response of 

monocytes to endotoxin (77). Moreover, extracellular Hsp70 has been associated with both 

immunostimulatory and immunosuppressive activities (78). However, the mechanisms 

involved in the modulation of the response of cells of the immune system are still unknown. 

Extracellular hsp have also been shown to modulate the activity of cells from other 

biological systems. Thus, extracellular Hsp70 has been reported to affect cardiomyocyte 

contractile dysfunction (79) and increase the growth of tumor cells and resistance to 

apoptosis (80). Glial cells have also been reported to release Hsp70, conferring protection to 

neighboring neurons (81). Extracellular hsp have been observed to interact with amyloid β 

peptides, which are involved in the pathology of Alzheimer’s disease (82, 83). Moreover, 

Hsp70 and Hsp90 inhibited amyloid β aggregation in vitro conditions (84). Extracellular 

Hsp70 has been revealed to protect Schwann from hydrogen peroxide induced apoptosis 

(85). Exogenous α-crystallin, a small hsp, has been shown to induce neuroprotection during 

acute inflammation in mice (86). Extracellular Hsp25 (HSPB1) also resulted in reduced 

cardiotoxicity induced by doxorubicin (87). Extracellular Hsp90 has been reported to 

activate cancer cell motility (88), migration, and metastasis (60, 89). It has also been 

associated with neuronal motility (90) and wound healing (91, 92). Extracellular Hsp90 has 

been shown to transport antigens from the outside to the cytosol, resulting in cross-
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presentation (93). In addition, extracellular Hsp60 has been demonstrated to modulate the 

immune system (19, 94). Other studies have proposed that Hsp60 induced apoptosis cardiac 

myocytes (95). Grp170 has also been demonstrated to modulate the innate immune system 

(37).

The presence of Hsp70 in plasma has been identified as a risk predictor for acute coronary 

syndrome (96). Moreover, Hsp70 has been detected in circulation after pregnancy (97), 

hypertension (98), acute infection (99), brain and spinal cord ischemia (100) and extenuating 

exercise (101–103). The presence of Hsp70 in circulation has also been correlated with 

improved survival of critically ill patients (104–106). Circulating levels of Hsp60 (107) or 

Hsp70 (108, 109) or their antibodies have been proposed as a risk factor for coronary heart 

disease. In addition, extracellular levels of Hsp70 have been correlated with severity and 

survival after chronic heart failure (110). Hsp60 has also been detected in saliva and serum 

of type 2 diabetic patients (111), whereas Hsp70 has been found during diabetic ketoacidosis 

(112). Both Hsp70 and Hsp60 have been detected in circulation after soft tissue trauma 

(113). The levels of Hsp27 were increased in serum of patients with chronic pancreatitis and 

pancreatic carcinoma (35, 36).

CONCLUDING REMARKS

The presence of hsp in the extracellular medium has been a very controversial topic, 

probably due to the reduced understanding of the mechanism for the release of these 

proteins that lack a consensus secretory peptide signal. However, evidence accumulated 

during the last several years has demonstrated that the presence of extracellular hsp is not an 

artifact, but rather a novel biological event. Therefore, the role of extracellular hsp appears 

to be at the level of signaling or cellular communication rather than at the traditional 

chaperone activity. Indeed, there is no evidence that extracellular hsp could carry out their 

chaperone activity outside cells. Moreover, the requirement of co-chaperones and other 

factors for their intracellular function are unlikely to be necessary for their extracellular role 

as signaling molecules. Certainty, it is possible that we will encounter multiple roles for 

extracellular hsp, which will likely depend on the cellular milieu or type of target cell. A 

particularly interesting finding is the modulation of the immune system, which has been 

envisioned as a priming event or a novel form of cellular communication in the case of 

stress conditions. Indeed, the modulation of the immune system associated with ECV 

bearing hsp has been coined the Stress Observation System (SOS), which has the primary 

function of activating the immune system to avoid the propagation of the insults (42). 

Another variant to add flavor to the role of extracellular hsp is the observation that they 

could be derived from both healthy and necrotic cells. Moreover, extracellular hsp can be 

detected in two “flavors:” membrane-bound or membrane-free, depending on their origin. It 

is likely that these two variants of extracellular hsp could play alternative roles in the 

modulation of the immune system or other systems. Finally, the detection of extracellular 

hsp, which is a very improbable observation that is against the conventional wisdom, is 

changing the biology of the stress response just as it was challenged 50 years ago by 

Ritossa‘s discovery.
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TABLE 1

Classification of hsp

Family Name Common Name New Name

Hsp100 Hsp105 HSPH1

Hsp110 HSPH2

Grp170 HSPH4

Hsp90 Hsp90α HSPC2

Hsp90β HSPC3

Grp94 HSPC4

Hsp70 Hsp70 (Hsp72) HSPA1

Hsc70 (Hsp73) HSPA8

Grp78 (BIP) HSPA5

Utp70 (Grp75) HSPA9

Hsp40 Hsp40 (Dnaj) DNAJB1

Small Hsp αCrystallin HSPB4

Hsp25 HSPB1

Hsp27 HSPB2

Hsp20 HSPB6

Hsp22 HSPB8

Chaperonins GroEL (Hsp60) HSPD1

GroES HSPE1
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TABLE 2

Detection of hsp in ECV

Hsp Cells Reference

Hsp70 Dendritic Cells Thery, et al. 1999 (44)

Hsp70 Colo357/CX2
Pancreas carcinoma
Colon carcinoma

Gastpar, et al. 2005 (46)

Hsp70 PBMC Lancaster and Febbraio 2005 (112)

Hsp70 Human hepatoblastoma Vega, et al. 2008 (19)

HSP70 EL4 thymolymphoma
Mammary carcinoma
Colon carcinoma

Chalmin, et al. 2010 (47)

Hsp70 Mycobacteria-infected (M. smegmatis and M. avium) RAW 264.7 Anand, et al. 1999 (113)

Hsc70/Hsp70 Reticulocytes Mathew, et al. 1995 (114)

Hsp70, Hsc70, Hsp27, Hsp90 B cells Clayton, et al. 2005 (50)

Hsp70, Hsp90, Grp78 Rat hepatocytes Conde-Vancells, et al. 2008 (115)

Hsp90 Dendritic cells Chaput, et al. 2006 (116)

Hsp90 Human glioblastoma
Human fibroblastoma
Human mammary gland adenocarcinoma

McGready, et al. 2010 (52)

Hsp90, Hsc70 Mesothelioma Hegmans, et al. 2004 (117)

Hsp60 Cardiac myocytes Gupta and Knowlton 2007 (48)

Hsp60 Bronchial carcinoma
Lung adenocarcinoma
Erythro-leukemia

Merendino, et al. 2010 (49)
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TABLE 3

Levels of membrane bound and free Hsp70 after I/R and thermal stress.

System Stress Membrane Bound (%) Membrane Free (%)

HepG2 Heat shock 100 0

Liver I/R 0 100

Whole body Heat shock 20 80
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