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Abstract. Diabetic nephropathy is characterized by excessive

deposition of extracellular matrix proteins in the mesangium

and basement membrane of the glomerulus and in the renal

tubulointerstitium. This review summarizes the main changes

in protein composition of the glomerular mesangium and base-

ment membrane and the evidence that, in the mesangium, these

are initiated by changes in glucose metabolism and the forma-

tion of advanced glycation end products. Both processes gen-

erate reactive oxygen species (ROS). The review includes

discussion of how ROS may activate intracellular signaling

pathways leading to the activation of redox-sensitive transcrip-

tion factors. This in turn leads to change in the expression of

genes encoding extracellular matrix proteins and the protease

systems responsible for their turnover.

Diabetic Nephropathy: The Magnitude of the Problem
Diabetes mellitus has recently assumed epidemic propor-

tions, partly due to the 2 to 5% increase in the incidence of type

1 diabetes in children, but especially due to the global increase

in type 2 diabetes (1). Currently as many as 4% of obese

adolescents in the United States may have silent type 2 diabetes

(2). Secondary microvascular complications, including ne-

phropathy, develop some years after the onset of diabetes.

Genetic background is likely to be important in determining

susceptibility to diabetic nephropathy (DN) (3), but exposure

of tissues to chronic hyperglycaemia is the main initiating

factor (4,5). The prevalence of nephropathy varies according to

geographical location, type of diabetes, and the length of time

since diagnosis. Microalbuminuria is a sign of early DN, while

macroalbuminuria indicates progression (6). While there is a

similar prevalence of microalbuminuria in diabetic patients in

the Unite States and Europe (22 and 25%), the prevalence of

macroalbuminuria is higher in the United States (27% com-

pared with 12%) (7). In a Japanese study, 44% of type 2

diabetic patients developed DN by 30 yr after diagnosis but

only 20% of type 1 patients did so (8). Despite these regional

variations, the prevalence of DN is predicted to increase in the

decades ahead (9,10). DN is a major cause of end-stage renal

disease (11), and new therapeutic approaches are required to

limit its development. Evolution of these will depend on un-

derstanding the molecular mechanisms driving glomeruloscle-

rosis and interstitial fibrosis in DN. This review surveys cur-

rent understanding in this area.

Changes in Renal Extracellular Matrices in DN
Similar ultrastructural changes occur in glomeruli in types 1

and 2 diabetes (12,13). The glomerular basement membrane

increases in thickness, and the extracellular matrix of the

mesangium expands. The basement membrane changes, ac-

companied by glomerular hyperfiltration, and increased glo-

merular hydrostatic pressure lead to microalbuminuria. How-

ever, the mesangial changes appear to be the main cause of

declining renal function in DN (14). As the mesangial matrix

expands, it impinges on glomerular capillaries, reducing the

surface available for filtration and narrowing or occluding

the lumen. Declining glomerular function correlates well

with the extent of these changes in both types of diabetes

(15,16), although there appears to be more heterogeneity in

these structural changes in type 2 (17).

Tubulointerstitial fibrosis occurs in DN, in addition to glo-

merulosclerosis, but it has been much less well studied. How-

ever, decreased creatinine clearance correlates with the inter-

stitial expansion as well as with mesangial expansion (18) and

survival rates diminish if interstitial fibrosis is present (19). In

this respect, diabetic nephropathy is similar to other renal

disorders in which progressive loss of renal function correlates

with advancing interstitial fibrosis (20). Interstitial fibrosis in

DN may be initiated by the same factors as glomerular fibrosis,

as well as being influenced subsequently by factors originating

in the glomerulus (21).

Expansion of the mesangial matrix and thickening of the

glomerular basement membrane (GBM) in DN could be due to

either increased accumulation of proteins that are normally

present in these structures or to deposition of proteins that are

not present in normal tissue or to both. Table 1 summarizes

some of the many reports of matrix proteins that are present in

the mesangium and GBM in DN. It is clear that some mesan-

gial proteins such as collagen I and III are only expressed in the

late stages of glomerulosclerosis. They are associated with the

development of Kimmelstiel-Wilson nodules rather than with

the diffuse expansion of the mesangial matrix, which occurs in

the early and moderately advanced stages of the disease. Other
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proteins such as fibronectin are present in the normal mesan-

gium but increase in the expanding mesangium.

Differences between quantitative electron microscopy-im-

munogold measurements of the levels of matrix proteins in the

mesangium and GBM and data obtained by immunohistochem-

ical and immunofluorescence studies complicates the interpre-

tation of which proteins are responsible for expansion or thick-

ening. Thus an immunogold analysis showed decreased type

VI collagen per unit area of the mesangium and decreased total

type VI per glomerulus mesangial matrix in “fast track” DN

patients with diffuse mesangial expansion compared with con-

trols (30). In contrast, immunohistochemical and immunoflu-

orescence investigations concluded that increased type VI dep-

osition occurs (25,32). Such differences could be due to the

immunogold study focusing on an earlier stage of the disease

and on type 1 patients, whereas the light microscopy studies

were largely concerned with late-stage DN in type 2 diabetic

patients. Nevertheless, the quantitative study provokes the

question as to precisely which matrix proteins are responsible

for diffuse mesangial expansion and whether there may be

subtle differences in the molecular changes in type 1 and 2

diabetes. Only further quantitative investigations on well-de-

fined cohorts of patients will provide definitive answers.

The main components of the normal GBM are type IV

collagen, laminin, entactin, and proteoglycans. GBM type IV

collagen is comprised predominantly of �3, �4, and �5 chains

(39,40). Table 1 summarizes some of the changes that occur

during thickening of the GBM in DN. The loss of heparan

sulfate proteoglycans with disease progression is associated

with proteinuria (44,46), the glycosaminoglycan chains nor-

mally forming an anionic charge barrier to protein diffusion

across the GBM (49).

Genetically determined diabetes mellitus occurs in db/db

mice (a model for type 2), and type 1 diabetes can be induced

in mice and rats with streptozotocin (STZ). These models

develop nephropathy with changes in glomerular extracellular

proteins that appear to be similar to those in human DN. There

is increased glomerular expression and accumulation of type

IV collagen and fibronectin (50–53), while the relative content

of heparan sulfate proteoglycan content is reduced (50). As in

human DN, hyperglycemia is likely to be the main factor

initiating these changes.

Studies using in situ hybridization to detect specific mRNAs

indicate that increased expression of several different genes

encoding matrix proteins is likely to be responsible, in part, for

their accumulation in glomerular matrices in DN in both hu-

Table 1. Glomerular matrix proteins in diabetic nephropathy (DN)

Protein Comment Reference

Mesangium

collagen I Only detected in late glomerulosclerosis.

May bind decorin and TGF-�.

22, 23, 24

collagen III Only detected in late glomerulosclerosis. 25, 26, 27

collagen IV �1(IV), �2(IV) chains expressed in normal mesangium, increased in DN. 28, 29, 30, 31

collagen V Minor component in normal mesangium.

Increased in DN.

25, 32, 33

collagen VI Present in normal mesangium. Same distribution as �1(IV) in normal

mesangium.

Reports of increase in DN not substantiated in type I “fast track” DN,

using quantitative immunogold EM.

30, 32–35

fibronectin Present in normal mesangium.

Increased in DN.

Oncofetal, ED-A, and ED-B isoforms expressed in glomerulosclerosis.

32, 36, 37, 38

laminin Minor component in normal mesangium.

Report of increase in diffuse mesangial expansion not confirmed.

25, 32

SLR proteoglycans Includes decorin, biglycan, lumican, fibromodulin; mRNAs for all

overexpressed in DN, but proteins barely detected, except in advanced

glomerulosclerosis.

23, 24

GBM

collagen IV �3(IV), �4(IV) chains present normally, increased in DN. 28, 31, 39–41

�1(IV), �2(IV), minor components normally decreased in DN.

entactin Present normally.

Increased in DN.

42

laminin Present normally, may be increased in early DN, but generally reported to

decrease.

37, 43–45

heparan sulfate proteoglycan Present normally.

Decreased in DN.

44–48
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mans (24,26,54) and in animal models (51,53). However, glo-

merular matrix proteins also normally undergo metabolic turn-

over, being degraded primarily by matrix metalloproteinases

(MMP) (55). Any decrease in turnover would promote exces-

sive matrix accumulation, and there is evidence that this too

occurs in DN. Glomerular mRNA levels for MMP2 (gelatinase

A) and MMP3 (stromelysin) decrease in human DN (54,56),

while in STZ-induced diabetes in rats, MMP9 (gelatinase B)

mRNA and activity fell and tissue inhibitor of metalloprotein-

ase-1 (TIMP1) mRNA increased (57,58). In this model, MMP3

mRNA levels increased (58). Nevertheless, MMP3 activity and

overall glomerular MMP activity decreased (58,59). Activity

of MMP is controlled at multiple steps, including their level of

synthesis as inactive proenzymes, activation of the proenzymes

and, subsequently, inhibition of active enzymes by binding to

TIMP (60). Plasmin cleaves and activates MMP proenzymes,

while membrane type metalloproteinase-1 (MT1-MMP) is in-

volved specifically in activating MMP2. In vitro evidence

indicates that high-glucose conditions reduce plasmin activity

by upregulating expression of plasminogen activator inhibitor

(PAI-1) in mesangial cells (MC) (61,62) while suppressing

expression of MT1-MMP (63). Thus, overall, turnover of mes-

angial matrix proteins in DN is likely to be compromised by

decreased MMP expression, decreased levels of proenzyme

activation, and increased expression of the MMP inhibitor,

TIMP1.

Mesangial Cell Responses to Hyperglycemic
Conditions In Vitro

Many in vitro investigations have exposed MC to high

concentrations of glucose, or to albumin-Amadori adducts, or

to albumin-advanced glycation end products (AGE) to mimic

the conditions they experience in vivo. The formation of Ama-

dori-protein adducts and AGE-proteins is initiated in vivo by

the non-enzymatic interaction of protein amino-groups with

glucose (64) or with metabolites of glucose such as methylg-

lyoxal (65). Increased levels of glycated proteins occur in the

plasma, renal, and other tissues in diabetes (66–68). MC

respond to culture medium containing high glucose concentra-

tion or glycated-albumin by upregulating the expression of

many of the matrix proteins that accumulate in the mesangium

in DN, and by changes in the expression of MMP and protein-

ase inhibitors. Some examples are shown in Table 2. It is

apparent that both induce similar effects, even though those of

glucose depend on its metabolism, following uptake into the

cell by facilitative glucose transporters (75), while glycated-

proteins interact with cell surface receptors (76,77).

As well as being exposed to circulating glycated-proteins,

mesangial and other cells are likely to be affected by the

function of intracellular proteins being compromised by AGE

formation and by cellular interactions with insoluble glycated

matrix proteins. The latter lead to some of the same effects in

vitro as are induced by high glucose; for example, increased

expression of MMP2 and TIMP1 and decreased expression of

MT1-MMP (78). Glycation of type IV collagen and laminin

affects their structure and assembly into polymers (79–81).

Formation of advanced glycation end products of collagen IV

or glomerular basement membrane also markedly inhibits their

susceptibility to cleavage by MMP3 and MMP9 (82), impeding

their turnover.

Other glomerular cells also respond to high-glucose condi-

tions or to glycated-albumin in vitro. For example, glomerular

visceral epithelial cells exposed to high glucose have been

reported to upregulate expression of transforming growth fac-

tor-� (TGF-�) and fibronectin (83) and TGF-� type II receptor

(84), while glycated-albumin stimulates the production of col-

lagen IV and fibronectin in glomerular endothelial cells (85).

The response of MC to hyperglycemia is clearly complex,

and differential gene screening techniques have proved useful

for understanding more fully the changes in gene expression

that occur after exposure to high glucose. mRNA differential

display indicated that a large number of genes undergo changes

in expression after exposure of human MC to 30 mM D-

glucose (86), and suppression subtraction hybridization (SSH)

subsequently identified 70 known genes that were induced

under these conditions, a further 26 showing similarity to

expressed sequence tags (EST) and 100 cDNAs representing

genes that are downregulated (87,88).

Differential screening of MC exposed to high glucose re-

vealed increased expression of genes that, potentially, play a

Table 2. Mesangial cell protein expression in vitro in response to hyperglycemic stimulia

Stimulus Proteins Expression References

High glucose (11 to 30 mM) Collagens I, III, IV, Fibronectin,

laminin, decorin, versican,

perlecan

Increased 69–71

PAI-1 Increased

t-PA activity decreased

61

TIMP1 Increased 61

MMP2 Increased, but activation reduced 61, 63

MMP7, MMP9, MT1-MMP Decreased 61, 63

Glycated albumin Collagen IV, fibronectin Increased 72–74

MMP9 Decreased 74

a PAI-1, plasminogen activator inhibitor; TIMP1, tissue inhibitor of metalloproteinase–1; MMP, matrix metalloproteinase.
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role in the development of glomerulosclerosis, including con-

nective tissue growth factor (CTGF) (87,89). Its role in pro-

moting the synthesis of mesangial matrix proteins is discussed

below. However, expression screening also indicated that

mRNA for both subunits of the fibronectin receptor (�5,�1

integrin) is increased in high-glucose conditions (N.A. Wahab

and R.M. Mason, unpublished work). Further experiments

demonstrated that TGF-�, acting at least in part through a

CTGF-dependent pathway, increases the number of �5�1 re-

ceptors on the cell surface and their occupation by ligand (90).

This promotes increased deposition of insoluble fibronectin

matrix around the cells, a process that can be inhibited by

anti-�1-neutralizing antibody (90). This mechanism may rep-

resent one mechanism for the development of fibrosis in the

mesangium in DN. It is also conceivable that an increased

number of mesangial cell surface �5�1 integrin sites ligated by

fibronectin may modulate cell behavior by an outside-in sig-

naling mechanism. MC cultured in three-dimensional collagen

gels show fibronectin-dependent activation of phosphsatidyli-

nositol-4-phosphate 5-kinase by outside-in signaling (91). Fi-

bronectin signaling stimulates protein kinase C (PKC) translo-

cation to the cell membrane in CHO cells (92) and induces

hypertrophy of cardiac myocytes, accompanied by increased

transcription of the brain natriuretic peptide gene (93).

Changes in Intermediary Metabolism in Response to
Hyperglycemia

A high plasma glucose concentration leads to elevated in-

tracellular glucose levels in cells such as MC in which uptake

is not regulated by insulin. The increased uptake in MC is

probably achieved by increased expression of GLUT1 in re-

sponse to high glucose. GLUT 1 is a high affinity, low capacity

facilitative glucose transporter which is near saturated at nor-

mal physiologic concentrations of glucose (75). Glucose is

normally metabolized through glycolysis and the tricarboxylic

acid cycle, generating CO2 and the reduced coenzymes NADH

and FADH2. The latter reoxidize by donating electrons to the

respiratory chain (electron transport chain) in the inner mito-

chondrial membrane, where they reduce molecular oxygen to

form water. Passage of electrons through the chain results in a

proton gradient across the membrane which drives oxidative

phosphorylation, producing ATP. High intracellular glucose

levels generate increased production of several glucose metab-

olites which are normally present in only low concentration

and the glucose and three of these products stimulate activity of

four other pathways, and actions downstream of them. Thus (1)

diacylglycerol (DAG), derived from the glycolytic intermedi-

ate dihydroxacetone phosphate (DHAP), activates several iso-

forms of PKC; (2) dicarbonyl metabolites such as glyoxal and

methylglyoxal, derived from glucose and the glycolytic inter-

mediates DHAP and glyceraldehyde-3-phosphate (G3P), initi-

ate AGE formation; (3) fructose-6-phosphate, a glycolytic in-

termediate, when present in raised concentration, enters and

increases flux through the hexosamine biosynthetic pathway,

generating UDP-N-acetylglucosamine. This promotes glyco-

sylation of Sp1 and possibly of other transcription factors,

modulating their activity; (4) glucose itself, which when

present in raised concentration enters the aldose reductase

pathway and is converted to sorbitol. This utilizes the reduced

coenzyme NADPH. The resulting NADP is converted back to

NADPH using the cell’s antioxidant, reduced glutathione, de-

pleting the latter and increasing cell susceptibility to reactive

oxygen species (ROS). The details of activation of these four

pathways in high glucose have been reviewed extensively

recently (94,95). Increased production of NADH and FADH2

and donation of electrons from them to the respiratory chain

increases the proton gradient across the inner mitochondrial

membrane, which inhibits electron transport at complex III of

the chain. Electrons carried by coenzyme Q, which normally

pass to complex III, then generate intracellular ROS by reduc-

ing O2 to superoxide ion O2
� (94). This also inhibits activity of

the glycolytic enzyme glyceraldehyde-3-phosphate dehydroge-

nase (96), potentially raising the level of metabolic intermedi-

ates between glucose and G3P and their entry into the four

pathways. The formation of AGE also generates extracellular

ROS due to the autooxidation of glucose (97). This may lead to

the activation of latent TGF� (L-TGF�) (98). Extracellular

AGE also bind to the cell surface receptor, RAGE, which is

expressed in various renal cell types (76,77). This initiates

intracellular ROS production (99).

Attenuation of DN in Animal Models of Diabetes
Support for the involvement of ROS and AGE in inducing

DN in vivo comes from studies on the effect of various inhib-

itors on animal models. Thus, overexpression of Cu2�/Zn2�

superoxide dismutase in mice protects them from glomerular

injury after induction of diabetes with STZ (100). Inhibitors of

non-enzymatic glycation of proteins attenuate glomerular and

interstitial damage in db/db mice (101–106) and in diabetic

transgenic mice overexpressing RAGE (a receptor for AGE),

which otherwise develop advanced glomerulosclerosis (107).

Likewise, inhibition of PKC� attenuates mesangial expansion

in db/db mice (52) and glomerular dysfunction in the STZ rat

(108). Sorbinil, an inhibitor of the aldose reductase pathway,

reduced GBM width in STZ rats on low-protein diets but not in

those on higher-protein diets (109). However, definitive evi-

dence of the efficacy of antioxidants, or inhibitors of AGE-

formation, PKC activation, or of the aldose reductase path-

ways, in attenuating the development of DN in humans is still

awaited (95).

To date, there are no in vivo studies on the effect of blocking

the hexosamine biosynthetic pathway on glomerular function

in diabetic models. However, inhibition of glutamine:fructose-

6-phosphate-amidotransferase (GFAT), the rate-limiting en-

zyme of the pathway, inhibits high-glucose–induced TGF-�

production (110) and NF-�B-dependent promoter activation

(111), two key events in the response to high glucose (see

below). Overexpression of GFAT activates the PAI-1 promoter

(112), another key event.

Growth Factors and Hormones Affecting Matrix
Protein Expression in DN

In vitro and in vivo studies have shown that several different

growth factors are upregulated in DN, and the signaling path-
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ways these activate ultimately regulate transcription factors

affecting glomerular ECM accumulation. The principle factors

and hormones involved are angiotensin II (AngII), TGF-�,

CTGF, platelet derived growth factor (PDGF), growth hor-

mone (GH), and insulin-like growth factors (IGF).

Angiotensin II. Activation of the renal renin-angiotensin

system (RAS) and its involvement in the pathogenesis of DN

is indicated by several studies that showed that both angioten-

sin-converting enzyme (ACE) inhibitors and angiotensin-re-

ceptor-I antagonists attenuate DN (11,113–114). The entire

RAS is present in the kidney (115). In vitro studies show

increased angiotensin expression in mesangial and tubular cells

in response to glucose (116,117). This response was shown to

be mediated, at least in part, by ROS and subsequent activation

of p38 MAPK in tubular cells (118). AngII, the active octapep-

tide derived from angiotensinogen, also stimulates ROS gen-

eration in vascular smooth muscle cells (119) and MC (120).

The ROS signaling pathway activates NF-�B, which mediates

further angiotensinogen expression, so ROS generation could

be part of a positive feedback loop (121), perpetuating activity

of the RAS in DN. Increased AngII is also generated in

hypertension, a disorder that frequently accompanies diabetes

and accelerates progression of DN (122). Several intrarenal

hemodynamic changes, including glomerular capillary hyper-

tension, occur in early experimental diabetes. This and the

subsequent development of albuminuria and glomerular struc-

tural changes is attenuated by ACE inhibition (123), demon-

strating the importance of hemodynamic factors in the patho-

genesis of DN. It is noteworthy that intraglomerular

hypertension can occur in diabetes even in the absence of

systemic hypertension (124). Although AngII is associated

with both systemic and renal hemodynamic effects, it also has

direct nonhemodynamic effects on glomerular cells, particu-

larly MC. AngII has been shown to increase ECM accumula-

tion by MC, primarily via stimulation of TGF-� expression

(53,115,125–127). The mechanism by which AngII transacti-

vates TGF-� was found to be similar to that for hyperglycemia.

Both transactivate the growth factor gene through two AP-1

regulatory elements (128–130). This activation appears to be

PKC- and p38 MAPK-dependent (129,130).

Transforming Growth Factor-�. Numerous studies indi-

cate that hyperglycemia induces an increase in TGF-� expres-

sion on both the mRNA and protein levels in experimental and

human diabetes (51,127,130–132) as well as in cultured MC

(71,133,134). TGF-� appears to be involved in both the early

and later stages of DN. In STZ-diabetic rats, renal TGF-�

expression increased markedly as early as 24 h after the onset

of hyperglycemia (135). A similar increase was also reported

in the non-obese diabetic (NOD) mouse (136,137) and in the

diabetic BB rat (136). Sustained elevated expression of TGF-�

occurs in STZ-diabetic rats with diabetes of 24-wk duration

(138) and in the kidney of 16-wk-old diabetic db/db mice

(139). All TGF-� isoforms, TGF-�1, �2, and �3, and the

TGF-� type II receptor were reported to be elevated in exper-

imental diabetes (139–141). Increased renal production of

TGF-� in patients with diabetes and DN is also well docu-

mented (127,142,143). In addition, many in vitro studies have

shown that TGF-� expression is increased in various renal cells

cultured under high-glucose conditions or with AGE

(71,73,143–145).

It is now clear that TGF-� is the key cytokine mediating the

production of different ECM proteins in MC, epithelial cells,

renal interstitial cells, and fibroblasts (71,133,144,146–151).

TGF-� also influences matrix-degrading enzymes by inhibit-

ing the synthesis of collagenases and stimulating the produc-

tion of TIMP and PAI-1 (149,150,152–154). TGF-� can also

influence local matrix deposition by upregulating different

ECM receptors (90,150).

Although the main signaling pathway of TGF-� is the Smad

pathway (155) and is activated in the STZ-diabetic mouse

model (156), TGF-� also activates other pathways such as the

MAPK (ERK, SAPK/JNK, and p38 MAPK) (157,158). TGF-�

induces PKA activation in MC by a mechanism involving the

degradation of the inhibitory peptide of PKA (PKI) (159).

Connective Tissue Growth Factor. CTGF is another pro-

sclerotic cytokine and has also been shown to be involved in

both the early and later stages of DN. Its expression is in-

creased in experimental diabetic glomerulosclerosis (160,161).

Elevated CTGF levels in glomeruli of NOD mice appear to

correlate with the duration of diabetes (89). Elevated CTGF

expression was also detected in human DN (89,162,163). In

vitro studies have shown that CTGF is induced in renal cells by

both high glucose and AGE (87,89,160), as well as ROS (164),

which they generate. The induction of CTGF in MC by hyper-

glycemia seems to be partly TGF-�–dependent and partly

PKC-dependent (165,166).

CTGF is one of the TGF-�-inducible immediate early genes

(167) and is induced in cultured MC by TGF-� (168–170).

TGF-� induces CTGF gene expression via Smad binding ele-

ments (SBE) and a unique TGF-� response element in the

CTGF promoter (170–172). The induction of CTGF by TGF-�

seems to be PKC- and MAPK-dependent (170).

Emerging evidence from in vitro studies of renal cells,

including MC, indicates that CTGF is a crucial mediator for

TGF-�-stimulated matrix protein expression. CTGF has been

shown to mediate TGF-�-induced increases in fibronectin

(89,168,173), collagen type I (174–176), and the fibronectin

receptor (�5�1 integrin) (90).

Other ECM proteins that have been reported to be induced

by CTGF in different renal cells include collagens I, III, and

IV, tenascin, and thrombospondin-1 (TSP-1) (87,177,178). In-

duction of FN by CTGF in MC appears to be mediated by the

activation of MAPK and PKB pathways (179). Recent work in

our laboratory has shown that MC exposed to CTGF down-

regulate expression of Smad7 (Wahab and Mason, unpublished

work). Smad7 is an inhibitor of the Smad signaling pathway

(155); we therefore propose that CTGF promotes increased

TGF-� signaling through this pathway due to decreased avail-

ability of Smad7. We hypothesize that this accounts, at least in

part, for CTGF’s profibrotic activity.

Platelet-Derived Growth Factor. Glomerular mRNA

levels for PDGF-B chain are enhanced fivefold in experimental

diabetes (106). PDGF has been reported to mediate both high

glucose– and AGE-dependent induction of type III collagen in
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cultured rat MC. However, its effect seems to be through

augmenting the production of TGF-� (180,181). Anti-PDGF

antibodies also attenuated the increased production of type IV

collagen in MC exposed to AGE, again suggesting that PDGF

acts as an intermediate factor (182).

Growth Hormone and Insulin-Like Growth Factors.

Classically, GH secreted from the pituitary induces the synthe-

sis of IGF in various tissues through activation of the GH

receptor (GHR). Two lines of evidence implicate GH in the

pathogenesis of glomerular fibrosis in experimental diabetes.

One is the renoprotective effect of long-acting somatostatin

analogs and GHR antagonists (183). The other is the failure of

STZ-treated mice, which are either transgenic for a mutated

GH, which is an antagonist of native GH, or in which the

GHR/binding protein gene has been knocked out, to develop

glomerular lesions (184–186). Transgenic mice that overex-

press GH or GH releasing factor develop glomerulosclerosis,

but those expressing an IGF-1 transgene have morphologically

normal, though enlarged, glomeruli (187). Overall the evidence

favors GH having a direct effect in the pathogenesis of glo-

merulosclerosis, independent of IGF. Plasma GH levels are

raised in type I diabetic patients with poor glycemic control,

while the concentration of IGF-I is low and that of IGF binding

protein 1 (IGFBP1), a modulator of its activity, is raised (e.g.,

188). Intraportal insulin deficiency decreases hepatic IGF-I

synthesis and increases production of IGFBP in type I diabetes,

while hypersecretion of GH occurs as a result of lowered

negative feedback of IGF-1 on secretion (189).

How GH induces glomerulosclerosis directly is not known,

but mRNA for GHR has been detected in MC and they respond

to the hormone in vitro by upregulating iNOS transcripts and

nitric oxide production (190). However, iNOS knockout mice

show more advanced mesangial expansion, increased GBM

staining for collagen IV, and tubulointerstitial fibrosis, after

induction of diabetes with STZ than do controls, suggesting a

protective effect for NO in vivo with respect to matrix depo-

sition (191). On binding its cellular receptor, GH activates the

JAK/STAT, MAPK, and P13K signaling pathways (192), so it

may potentially regulate the transcription of a number of genes.

IGF-I may be expressed in the kidney independently of GH.

MC cultured on glycated-albumin increase IGF-I production

(193), and the growth factor directly stimulates synthesis of

laminin, fibronectin, proteoglycan, and type IV collagen in

these cells (194–196). IGF-I and IGF-BP species have also

been reported to increase in the kidney in the early stages of

experimental DN (197–200), while the expression level of

IGF-IR rises in a later phase (201). IGF-I and IGF-II signal

through two specific receptors, IGF-IR and IGFII/mannose-6-

phosphate receptor (IGF-II/man-6-PR) (202,203). IGF-I acti-

vates the phosphatidylinositol-3-kinase (PI3K) and ERK1/2

MAPK pathways (196,204). It has also been shown to stimu-

late NF-�B (205). In the presence of high glucose, IGF in-

creased IGF-I-stimulated insulin receptor substrate-1/2 phos-

phorylation and AP-1 transcriptional activity, while decreasing

IGFBP-2 expression (204). Thus, despite lower circulating

levels of IGF-I in diabetes, locally produced growth factor may

influence MC in vivo. MC from diabetic NOD mice secrete

increased amounts of IGF-I, and this probably contributes to

the increased ECM accumulation, largely through an IGF-I-

mediated reduction in MMP2 activity (206).

ROS and the Activation of Pathways Stimulating
Matrix Accumulation

Although further in vitro and in vivo confirmatory studies

are required, current data strongly suggest that intracellular

ROS, from either AGE-RAGE interaction or glucose metabo-

lism (94,207), have a direct role in overproduction of ECM

proteins and that this can be counteracted by antioxidants

(208). It has been shown that ROS activate the PKC, MAPK,

and JAK-STAT pathways (209–212), which lead to the acti-

vation of redox-sensitive transcription factors including NF-

�B, AP-1 (Fos and Jun proteins), STAT, and Egr-1 (99,213–

215). These enhance the transactivation of genes coding for

cytokines such as TGF-� and CTGF that upregulate ECM

protein expression (164,216–217).

Other Factors Modulating the Activity of TGF-�
Thombospondin-1. TSP-1 is one of five isoforms of

thrombospondin and is synthesized and secreted by a variety of

renal cells, including MC (86,218). Exposure to high glucose

upregulates TSP-1 expression in MC (86), and increased levels

of glycoprotein occur in the glomeruli in diabetic animals (219)

and in DN in man (220). In addition to interacting with many

other matrix proteins (221,222), TSP-1 also modulates their

level of synthesis (223). This appears to be primarily through

its ability to activate latent TGF-� (224). In vitro studies

indicate that TSP-1–dependent TGF-�1 activation is important

in the mesangial cell response to high glucose (225,226).

Interestingly, TSP-1 null mice have a similar phenotype to

TGF-� null mice (227), suggesting an important role for the

TSP-1 activation mechanism in vivo.

Decorin. The expression of decorin (DCN), a small pro-

teoglycan containing a single dermatan/chondroitin sulfate

chain, is markedly upregulated in MC exposed to high glucose

(71,228) and in the glomerulus in DN, although protein accu-

mulation only occurs in the late stage of the disease (24).

Decorin binds to collagen type I (229) and to other extracel-

lular proteins, including activated TGF-�, which it sequesters

in the matrix (230), possibly as a ternary complex with fibrillar

collagen in advancing DN (24). Decorin-TGF-� complexes are

also excreted in the urine in late DN (24). Administration of

DCN inhibits TGF-�–mediated ECM expression in experi-

mental nephritis (230). We recently showed that DCN inhibits

TGF-�–mediated upregulation of PAI-1 in MC through a

mechanism that involves Ca2�-dependent phosphorylation of

Smad2 at a key regulatory site, thus modulating the TGF-�

Smad signaling pathway (231). Despite all these studies the

role of decorin in DN remains unresolved.

Hyperglycemia and the Regulation of Gene Expression
Any hypothesis explaining the overall coordinated program

of changes in gene expression in hyperglycemia that lead to

glomerulosclerosis must take into account the activation mech-

anism of the genes involved. An E-box has been implicated as
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a carbohydrate response element in TGF-� and several other

glucose-regulated promoters (232,233). However, the concept

of a single glucose response element being implicated in the

overall changes in gene expression becomes less attractive

when considering the very large number of genes upregulated

by hyperglycemia. Table 3 summarizes promoter region anal-

yses for a number of these human genes and includes known

hyperglycemia-associated stimuli, the response elements, tran-

scription factors, and signaling pathways activating them.

We propose that ROS are the overall activators of these

signaling pathways (Figure 1). Thus matrix-associated latent

TGF-� is activated by ROS generated via extracellular forma-

tion of AGE and interaction of the active factor with its

receptor activates the Smad signaling pathway. ROS generated

intracellularly from glucose metabolism and AGE-RAGE in-

teraction activates PKC (together with DAG) and MAPK path-

ways. This leads to the rapid activation of cellular “redox-

sensitive” transcription factors such as NF-�B, AP-1 (fos and

jun proteins), Erg-1, and Stat1. These, together with activated

Smads (phosphorylated Smad2 and 3 complexed with Smad4),

coordinate the transcription of a wave of genes, including

angiotensinogen, TSP-1, and CTGF. AngII derived from an-

giotensinogen stimulates further generation of ROS and ex-

pression of TGF-�. Secreted CTGF works in concert with

TGF-� activated by TSP-1 and ROS to transactivate subse-

quent waves of genes, including those encoding structural

proteins whose accumulation leads to glomerulosclerosis in

DN (Figure 1).

It is becoming clear that the coordinated expression of

TGF-� and CTGF is crucial for the induction of ECM proteins

and thus for the development of DN. The expression of some

ECM proteins, such as fibronectin, is CTGF-dependent, and its

promoter region does not contain any Smad binding elements

(SBE) (89). It is also noteworthy that previous experiments

have shown that TGF-� induces fibronectin expression via a

MAPK-dependent pathway and not via a Smad-dependent

pathway (250), although a recent report indicates that a Smad-

dependent pathway may operate in mice (251). In contrast, the

transcription of a number of other matrix proteins, for example

collagen I, PAI-1, and TIMP-1, is TGF-�-dependent, and their

promoter regions contain SBE (Table 3). However, it appears

that increased signaling by TGF-� is also markedly influenced

by CTGF, as we have found that the latter rapidly inhibits the

expression level of Smad7. This inhibitory Smad mediates an

Table 3. Activation of genes encoding matrix proteins in hyperglycemic conditionsa

Matrix Protein
Stimuli of Gene

Transcription
Response Elements/

Binding Site
Transcription Factors Signaling Pathway References

TGF-� HG, AGE, AngII,

ROS, TGF-�

AP-1, SBE, GC-box,

GCE, NF-�B*

Jun D/Fra-2

c-Jun/Fos B?

Smad3, Egr-1

Erks/JNK/Smad 130, 157, 234

CTGF HG, AGE, ROS,

TGF-�

TPRE, SBE

NF-�B*, AP1*,

STAT*

Smad3 and 4 PKC, Erk

Smad

170, 171

Ang HG, ROS CRE, NF-�B*, AP-

1*, STAT*

CREB/ATF-2 PKC, p38

MAPK

118, 235

TSP-1 HG, TGF-�,

CTGF, ROS

CRE, NF-��*, AP-1*,

GCE, GC-box

NIE PKC, PKA

PKG

236–238

FN HG, AGE, TGF-

�, CTGF

CRE, GCE, NF-�B CREB, ATF, Egr-1,

p65

PKC, PKA

Erk, Smad

234, 239, 240

Laminin HG, TGF-�,

AngII

AP-1, CRE*, SBE*,

GCE*

Fra 2/JunD NIE 241

Collagen I HG, TGF-�,

CTGF, ROS

SP1, SBE, AP-1, NF-

�B, CGE*, STAT*

Smad3/Smad4 PKC, PKA,

MAPK, Smad

176, 177, 158,

242–243

Collagen IV HG, TGF-�, ROS SP-1, CTC-box,

CGE*, SBE*

NIE PKA 244

Collagen V HG, TGF-�, ROS AP-1*, CRE*, SBE* NIE NIE

Collagen VI CTGF SP-1*, GCE*, SBE* NIE NIE

Decorin HG, TGF-� CRE-like, SBE* CREB, NIE p38, ERK, MAPK 245

PAI-1 HG, AGE, TGF-� SBE, SP1, AP-1 Smad3/Smad4

Jun/Fos

Smad, MAPK 246, 247

TIMP-1 HG SBE, AP-1 Smad3/Smad4

Fos

Smad

MAPK

248, 249

a Promoter-reporter studies using different promoter regions (see references) and our in silico analysis (�) indicate the presence of
common regulatory elements known to be redox-sensitive, as well as of the Smad-binding element (SBE). NIE, not identified
experimentally; CTGF, connective tissue growth factor; Ang, angiotensin; TSP, thrombospondin; FN, fibronectin; HG, high glucose; AGE,
advanced glycation end products; ROS, reactive oxygen species.
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intracellular negative feedback that limits TGF-� signaling

(Figure 1), apparently by blocking the association of R-Smads

(Smad2 and 3) with the TGF-� receptor complex and, thereby,

their phosphorylation (252). Overexpression of Smad7 has

been shown to block TGF-�–dependent induction of collagen

I in MC (253). Thus CTGF may mediate the induction of ECM

protein expression both directly and indirectly by potentiating

the TGF-�/Smad signaling pathway. A signaling receptor for

CTGF has not yet been characterized, but rapid phosphoryla-

tion of MAPK after exposure to the growth factor indicates that

one must be present in responsive cells (179,254).

The promoters of MMP genes also show remarkable con-

servation of regulatory elements (255), including AP-1, ETS,

and the TGF-� inhibitory element, TIE. The downregulation of

MMP3 (256), collagenase, MMP9, and MMP7 (257) is thought

to be mediated by TIE. There is also evidence for modulation

of MMP7 mRNA stability through ATTTA motifs in the

3'-untranslated region (258). With respect to this we have

shown that high-glucose conditions switch off synthesis of a

protein, HGRG-14, in MC (259). This is achieved by produc-

tion in high glucose of an HGRG-14 mRNA with a long 3'

UTR containing several destabilizing ATTTA motifs, which

has a short half-life and is not translated. In low glucose, an

mRNA with a short 3' UTR and no ATTTA motifs is produced

that has a longer half life and is translated (259).

Concluding Comments
The response of glomerular cells, especially MC, to hyper-

glycemia, is driven primarily by the generation of ROS and

then TGF-� and CTGF. This upregulates the transcription of

many matrix genes and represses that of MMP, events which in

vivo lead to glomerulosclerosis (Figure 1). It is likely that the

response of other renal cells to hyperglycemia has many fea-

tures in common with this pathway, but this has been less well

studied to date. There are clearly many points at which thera-

peutic approaches could be tried to provide renoprotection in

diabetes. These include ACE inhibitors and AT-1 receptor

antagonists, which are already in use clinically, and novel

agents to oppose the actions of ROS, TSP-1, TGF-�, and

CTGF. It is likely that targeting multiple points in altered

metabolism in the diabetic kidney will be more successful in

attenuating the development of DN, due to its complexity,

rather than a single approach.

Figure 1. Model to explain the mechanisms by which hyperglycemia promotes ECM protein accumulation by mesangial cells. Hyperglycemic

conditions generate reactive oxygen species (ROS), which activate a cascade of events. Downstream of these, TGF-� and connective tissue

growth factor (CTGF) work in a coordinated manner to promote increased expression of ECM proteins. See text for details.
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