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Abstract 

 

 Cellulolytic, xylanolytic, chitinolytic and β-1,3-glucanolytic enzyme systems of species 

belonging to the filamentous fungal genus Trichoderma have been investigated in details and are 

well characterised. The ability of Trichoderma strains to produce extracellular proteases has also 

been known for a long time, however, the proteolytic enzyme system is relatively unknown in this 

genus. Fortunately, in the recent years more and more attention is focused on the research in this 

field. The role of Trichoderma proteases in the biological control of plant pathogenic fungi and 

nematodes has been demonstrated, and it is also suspected that they may be important for the 

competitive saprophytic ability of green mould isolates and may represent potential virulence 

factors of Trichoderma strains as emerging fungal pathogens of clinical importance. 

 The aim of this review is to summarize the information available about the extracellular 

proteases of Trichoderma. Numerous studies are available about the extracellular proteolytic 

enzyme profiles of Trichoderma strains and about the effect of abiotic environmental factors on 

protease activities. A number of protease enzymes have been purified to homogeneity and some 

protease encoding genes have been cloned and characterized. These results will be reviewed and 

the role of Trichoderma proteases in biological control as well as their advantages and 

disadvantages in biotechnology will be discussed. 

 

 

Introduction 

 

Proteases are subdivided into two major groups: exopeptidases cleaving the peptide 

bond proximal to the amino or carboxy terminal of the substrate, and endopeptidases cleaving 

peptide bonds distant from the termini [1]. According to the functional group present at the 
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active site, proteases are further classified into four major groups: serine proteases, aspartyl 

proteases, cysteine proteases and metalloproteases. Based on the pH optimal for their 

functioning, proteolytic enzymes can be characterised as alkaline, neutral or acidic proteases. 

Trichoderma species are asexual filamentous fungi with teleomorphs belonging to the 

Hypocreales order of the Ascomycota kingdom. Members of this genus are well-known as 

cellulase producers of biotechnological importance [2] and as antagonists of plant pathogenic 

fungi with biocontrol potential [3]. Proposed mechanisms of biocontrol are including 

mycoparasitism by the action of cell-wall degrading enzymes, production of antibiotics, 

competition for the substrate, rhizosphere competence and induction of the defense responses 

in plants [4]. The possible role of proteases in the antagonism of Trichoderma strains has been 

proposed already in 1969 by Rodriguez-Kabana [5], who suggested that increased proteolytic 

activities of T. viride in mixed-culture soil may have accounted for a decline in the enzymatic 

activities of Sclerotium rolfsii. The presence of a proteolytic system with maximal activity at 

pH 6.0 was later demonstrated in these mixed cultures [6]. Elad et al. [7] proved that the 

hydrolytic enzymes produced by Botrytis cinerea were partially deactivated by protease 

activities of T. harzianum, and demonstrated that the protease-containing culture liquid of 

Trichoderma reduced germination and germ tube length of the pathogen, suggesting the 

involvement of proteases in biocontrol. Besides deactivation of the plant pathogens’ enzymes, 

proteases may be involved in competition for protein substrates as well as in the 

mycoparasitic process by degrading the protein components of the host cell wall. Sivan and 

Chet [8] reported that the treatment of Fusarium hyphae with proteolytic enzymes increased 

their susceptibility to chitinases and β-1,3-glucanases of T. harzianum. The involvement of 

extracellular chitinolytic and β-1,3-glucanolytic enzyme systems of Trichoderma in 

mycoparasitism was investigated in details [9, 10], while the extracellular proteolytic enzyme 

system remained relatively unknown in the case of this genus. Fortunately, in the recent years 
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more and more attention is focused on the investigation of Trichoderma proteases and their 

potential role in biocontrol and other processes. 

 

 

Extracellular protease profiles of Trichoderma strains 

 

A series of data is available about the extracellular proteolytic enzyme profiles of 

Trichoderma strains. Ridout et al. [11] used polyacrylamide gel electrophoresis (PAGE), 

isoelectric focusing (IEF), gel filtration and chromatofocusing for the fractionation of 

extracellular enzymes, including proteases from a mycoparasitic strain of T. harzianum. Using 

activity stains after PAGE in 6% gels, four active bands could be detected at pH 4.0, and one 

of these bands was also active at pH 9.0. Several protease enzymes were detected by activity 

staining of IEF gels at pH 9.0. By the use of gel filtration, two peaks of protease activity were 

found at pH 4.0, corresponding to enzymes with molecular weights of 65 and 23 kDa, while a 

large number of protease enzymes was separated by chromatofocusing in both the range pH 

7−4 and pH 9−6 [11].  

Delgado-Jarana et al. [12] detected several acidic, neutral and basic extracellular 

proteases by IEF in the case of T. harzianum. The acidic proteases were found to be pH-

regulated, and nitrogen sources such as yeast extract, peptone and casein induced their 

production. Alkaline and neutral proteases seemed to be induced only by lactose and chitin, 

carbon starvation, and some organic nitrogen sources such as casein.  

Antal et al. [13] examined and compared the extracellular enzyme profiles of 

mycoparasitic T. aureoviride, T. harzianum and T. viride strains by Sephadex G150 gel 

filtration chromatography. The profiles of trypsin-like and chymotrypsin-like proteases were 

found to be similar between the strains, and chromatographic profiles suggested that both 
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systems consist of more isoenzymes. In the case of a T. viride strain, at least six proteases 

were detected under inductive conditions by gel filtration chromatography [14]. The 

supernatants derived from cultures of a T. harzianum strain induced by heat-inactivated 

Bacillus subtilis cells were fractionated on a Sephadex G-150 column and the detected 

enzyme profiles proved to be complex including at least 3 trypsin-like (approx. 5, 13 and 19 

kDa in size) and 6 chymotrypsin-like proteases (between 12 and 43 kDa) [15]. According to 

this study, Trichoderma strains may be able to degrade bacterial cells, and proteases are 

suggested to play a role in this process.  

Williams et al. [16] demonstrated that growth on mushroom cell walls in vitro resulted 

in rapid production of trypsin- and chymoelastase-like proteases by Trichoderma isolates 

belonging to the groups Th2 and Th4 aggressive to Agaricus bisporus. Several protease 

isoenzymes were detected by IEF both on A. bisporus cell walls and on wheat straw, and 

aggressive isolates produced a dominant protease isoform (pI 6.22) on mushroom cell walls. 

This study suggests that proteases may play an important role both in mycoparasitism and 

extensive saprophytic growth, which seem to be among the main components of 

aggressiveness.  

Supernatants from induced liquid cultures of six clinical T. longibrachiatum isolates 

were screened for proteolytic enzyme activities with 11 different chromogenic p-nitroanilide 

substrates [17]. The production of trypsin-like, chymotrypsin-like and chymoelastase-like 

protease activities was common among the examined strains. Separation of trypsin- and 

chymotrypsin-like activities by column chromatography revealed that both systems are 

complex consisting of several isoenzymes. It was suggested that extracellular proteolytic 

enzymes may represent potential virulence factors of Trichoderma strains as emerging human 

pathogens.  
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In a recent paper [18], nine different protease alleles with a wide range of molecular 

weights were detected by SDS-PAGE in the case of 17 biocontrol strains of Trichoderma. A 

great variability could be detected between the individual strains, and the protease isoenzyme 

profiles along with profiles of other cell wall-degrading isoenzymes proved to be applicable 

for taxonomic investigations.  

Data are available also about the influence of abiotic environmental factors on the 

extracellular proteolytic activities of Trichoderma strains. The effect of low temperature on 

the production and activity of extracellular enzyme systems, including proteases, was 

examined in the case of cold tolerant Trichoderma isolates [19]. Results showed that trypsin- 

and chymotrypsin-like activities were produced at 10 °C and remained highly active even at 5 

°C, and most of the strains could antagonize the phytopathogens R. solani and F. oxysporum 

f. sp. dianthi in dual culture tests at low temperatures. In vitro water activity (aw) and pH-

dependence of the extracellular enzyme activities of five cold tolerant Trichoderma strains 

was also examined [20]. Maximal activities for trypsin-like and chymotrypsin-like proteases 

were measured at aw 0.950, which is lower than the values optimal for mycelial growth. In 

vitro protease activities were detected even at the aw value of 0.860, where mycelial growth 

has already ceased. Both protease systems were active under a wide range of pH, even at 

alkalic values, where mycelial growth was already inhibited (pH 8.0-9.0). Optimal pH values 

were at pH 6.0 for trypsin-like protease and between pH 6.0-7.0 for chymotrypsin-like 

protease activities. The high activity of both proteases measured in the wide pH range 

between 5.0-9.0 suggests the presence of isoenzymes with different pH optima [20]. Similar 

pH profiles were reported for the protease activities of clinical T. longibrachiatum isolates 

[17]. The effect of a 1 mM concentration of 10 metal ions on the in vitro activities of 

extracellular enzymes, including trypsin-like and chymotrypsin-like proteases was examined 

by Kredics et al. [21] in the case of six cold tolerant Trichoderma isolates. Both of the 
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examined protease activities were strongly inhibited by mercury and slightly by aluminium, 

copper and lead. Copper inhibited chymotrypsin-like activities to a larger extent than trypsin-

like proteases. The other examined heavy metals, nickel, cobalt, cadmium, zinc, manganese 

and iron did not influence the in vitro enzyme activities of proteases to the same extent as they 

inhibited mycelial growth [21]. 

These studies indicate that Trichoderma strains possess a complex proteolytic system 

consisting of a large set of enzymes displaying different types of activities, and that the 

proteases of Trichoderma can remain active even under environmental conditions that are 

unfavorable for mycelial growth. 

 

 

Purification and properties of extracellular proteases from Trichoderma 

 

The most important characteristics of proteases purified from Trichoderma strains are 

summarized in Table I. The first report about the purification of a Trichoderma protease has 

been published by Stepanov et al. [22], who prepared and tested new biospecific sorbents 

based on cyclopeptide antibiotics for affinity chromatography of proteolytic enzymes. 

Purification strategies incorporating this method were succesfully applied for the isolation of 

carboxylic proteases from T. viride and T. lignorum [23], as well as of subtilisin-like serine 

proteases from T. lignorum and T. koningii [24]. PRB1, a subtilisin-like alkaline serine 

protease of T. atroviride was purified and biochemically characterized by Geremia et al. [25]. 

Another subtilisin-like serine protease with a temperature optimum of 40 ºC was found in the 

case of T. harzianum [26]. Trypsin-like serine proteases were purified from T. viride [27] and 

T. harzianum (PRA1) [28]. The PRA1 protease of T. harzianum, purified by 

chromatofocusing and gel filtration, was shown to have a nematicidal effect: its preparations 



 9 

significantly reduced the number of hatched eggs of the root-knot nematode Meloidogyne 

incognita [28]. A T. koningii alkaline serine protease with large proportion of carbohydrates 

and a temperature optimum of 50 ºC was purified to apparent homogeneity by ion exchange, 

gel permeation and affinity chromatography [29]. A 18.8 kDa alkaline protease produced by 

T. harzianum was purified by precipitation with ammonium sulphate followed by 

hydrophobic chromatography; the purified enzyme substantially affected the cell wall of the 

phytopathogenic fungus Crinipellis perniciosa, suggesting that it may be actually involved in 

the antagonistic process between the two fungi [30]. 

Acidic aspartyl proteases produced under cellulase-inducing conditions were partially 

or completely purified from T. reesei. Gel filtration and ion exchange chromatography steps 

were used by Haab et al. [31] for the partial purification of a pepstatin insensitive, N-

chlorosuccinimide sensitive aspartyl protease. Pepstatin-sensitive proteases with similar pI 

(4.3 – 4.8) were partially purified by Dunne [32], while Pitts et al. performed the complete 

purification, crystallization and X-ray analysis of trichodermapepsin, a pepstatin sensitive 

aspartyl protease [33, 34]. Another pepsin-like aspartyl protease inhibited by pepstatin and N-

diazo-acetyl-L-phenylalanine was purified by Eneyskaya et al. [35]. A pH-dependent aspartyl 

protease from T. viride was also isolated and characterized [36]. 

 

 

Cloning and characterization of genes coding for Trichoderma proteases 

 

The first report about the cloning of a Trichoderma protease gene has been published 

in 1993 [25]. In the last few years, increased attention has been paid on the investigation of 

the genetic background of the proteolytic system of Trichoderma strains. Table II shows some 

properties of Trichoderma proteases predicted based on the sequences of their cloned genes. 
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The gene coding for a subtilisin-like serine protease of T. atroviride, PRB1, has been 

identified by Geremia et al. [25]. The promoter sequence of prb1 possess potential AreA and 

CreA sites for nitrogen and carbon regulation, respectively, and four putative mycoparasitic 

response elements (MYREs) were also described [37]. Olmedo-Monfil et al. [38] suggested 

that either one or both of MYRE boxes 1 and 2 might be required for the induction of prb1 

during mycoparasitism. The gene was shown to be active when the fungus was grown in 

media containing chitin or R. solani cell walls [25]. High-level expression was detected in 

dual cultures even if contact with R. solani was prevented by using cellophane membranes, 

demonstrating that the induction of prb1 is contact-independent [37]. Results of this study 

showed that a heat and protease resistant, diffusible molecule produced by the host is the 

signal that triggers the expression of the gene. Prb1 was found to be repressed by glucose [25] 

and it is subject to nitrogen catabolite repression [38]. It was demonstrated, that induction of 

transcription of the gene by R. solani cell walls and by osmotic stress requires release from a 

repressed condition which is determined by nitrogen availability, and the response of prb1 to 

nutrient limitation depends on the activation of conserved mitogen activated protein kinase 

(MAPK) pathways [38]. 

The prb1 gene was cloned from T. hamatum as well (Steyaert, J.M. et al., 

unpublished, GenBank Accession Number: AY258899), and tvsp1, the homologue of prb1 in 

T. virens, was also isolated recently [39]. The promoter of the T. virens gene possess potential 

AreA and CreA sites, as well as a PacC site for pH regulation and four MYREs almost 

identical to those described for prb1. Two potential N-glycosilation, and two O-glycosilation 

sites were present in the predicted polypeptide sequence, and multiple phosphorylation sites 

were also suggested. Expression of tvsp1 could be induced by cell walls of plant pathogenic 

fungi in liquid cultures. Northern analysis revealed no transcript from mycelia incubated in 

medium containing either glucose or sucrose as a carbon source [39]. In contrast to prb1, a 
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mitogen-activated protein kinase was found to be a negative element in the expression of 

tvsp1 under nitrogen limitation or simulated mycoparasitism [40].  

Another recent study reports about the cloning of a further serine protease gene, pra1 

from T. harzianum, which is coding for the enzyme PRA1 [28]. Three possible O-

glycosilation sites could be identified in the putative mature protein. Expression of this gene is 

also induced by fungal cell walls, subject to nitrogen and carbon derepression and affected by 

pH in the culture media.  

The gene coding for an aspartyl protease from T. harzianum, papA was isolated and 

characterized by Delgado-Jarana et al. [41]. The promoter sequence contained potential AreA 

and PacC sites, but no potential CreA sites. Expression of the papA gene proved to be pH 

regulated, repressed by ammonium, glucose and glycerol and induced by organic nitrogen 

sources. The deduced amino acid sequence contained no potential post-translational 

modification signals, in contrast to that of a homologous gene isolated from T. asperellum 

[42], where three potential sites for N-glycosilation were found. Dual plate confrontation 

assays with R. solani revealed a fourfold mRNA induction of the T. asperellum papA in 

presence of the pathogen before actual physical contact, suggesting that aspartyl proteases 

may also be involved in mycoparasitism. Furthermore, this gene was induced in response to 

plant roots attachment, indicating its possible role in plant colonization of Trichoderma strains 

as opportunistic plant symbionts. The isolation of papB, a further aspartyl protease gene from 

T. asperellum was also reported in this study [42], however, PAPB is suggested to be an 

intracellular enzyme. The cloning of the gene encoding for the aspartyl protease purified from 

T. reesei by Pitts et al. [33] was also performed [43]. 
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Extracellular proteases of Trichoderma and efficiency of biocontrol 

   

Although Mischke [44] reported that the specific activity of proteases produced by 

Trichoderma strains do not correlate with their known biocontrol ability, other studies 

indicate the opposite. Transformation systems were developed for increasing the copy number 

of the T. atroviride prb1 gene [45, 46]. Transformants exhibited increased control of R. 

solani, suggesting that prb1 is a mycoparasitism-related gene [45]. A transformant containing 

multiple copies of prb1 displayed improved biocontrol activity against Meloidogyne javanica, 

indicating that this protease may be important also for the biological control of nematodes 

[47]. Overexpression of tvsp1 in T. virens also resulted in an increased biocontrol activity 

against R. solani. Results of these studies suggest that the overexpression of protease 

encoding genes is a powerful tool for strain improvement. However, Flores et al. [45] 

reported that transformants with extremely high protease levels were not the best biocontrol 

agents. As the partial or full proteolysis of other proteins important in the mycoparasitic 

process can not be ruled out under conditions of extremely elevated protease production, the 

isolation of mutants with only a moderate increase in extracellular enzyme concentrations was 

suggested as a preferable tool for improving the biocontrol capabilities of mycoparasitic 

Trichoderma strains [48]. Zaldivar et al. [49] isolated a mutant by N-methyl-N-nitro-N-

nitrosoguanidine treatment from T. aureoviride. The mutant displayed enhanced production of 

lytic enzymes including proteases: a banding pattern of protease activities more complex than 

that of the wild type strain could be observed in native PAGE. The method of UV-

mutagenesis with the selection for p-fluorophenyl-alanine resistant or colony morphology 

mutants was used by Szekeres et al. [50] for the isolation of protease overproducing strains 

from T. harzianum. Certain mutants were better producers of extracellular trypsin- and 

chymotrypsin-like proteases with manifold levels of the activities of the wild type strain. The 
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increase in the proteolytic activities of these mutants was low when compared to 

transformants overexpressing the proteinase gene prb1 [45], but they proved to be much 

better antagonists of plant pathogens than the parental strain. Recently it was also 

demonstrated that certain extracellular trypsin-like protease izoenzymes are produced in a 

larger degree in the presence of copper, suggesting that the antagonistic abilities of 

Trichoderma strains could be enhanced by adding certain sublethal amounts of CuSO4 [51]. 

Consequently, an appropriate level of crop protection could be ensured within the frames of 

integrated pest management by the application of reduced amounts of copper-containing 

fungicides in combination with biocontrol Trichoderma strains. 

 

 

Advantages and disadvantages of Trichoderma proteases in biotechnology 

 

 Proteases have a large variety of applications in the detergent, leather, dairy, baking 

and pharmaceutical industries [1], therefore it is very important to screen for potential 

microbial sources of these enzymes. Trichoderma species seem to be promising candidates, 

although only a few reports are available about the possible application of their proteases in 

biotechnology. Robbins et al. [52] patented a meat tenderization technique based on a T. 

reesei aspartyl protease, which has proteolytic properties similar to the animal protease, 

cathepsin D. The enzyme acts selectively upon the myofibrillar proteins of meat producing a 

desirable uniform texture. The insolubilization of a T. koningii alkaline serine protease by 

crosslinking with glutaraldehyde resulted in an enzyme preparation stable over a wide range 

of temperature and pH and resistant to inhibition by detergents, suggesting its applicability in 

the detergent industry [53]. Triveni et al. [54] used proteases of T. koningii produced in solid-

state fermentation of wheat bran for the clarification of xanthan gum. The preparation 
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succesfully lysed Xanthomonas campestris cells present in xanthan fermentation broth. A 

trypsin-like serine protease purified from T. viride has been suggested to represent a 

promising alternative for animal trypsin in the food industry and in medical products [27].  

The presence of extracellular proteases of Trichoderma may be a disadvantage in 

fermentation processes aiming the production of other extracellular enzymes, as they can 

reduce or eliminate the activity of the desired product. Nakayama [55] was the first who 

demonstrated the presence of acidic, neutral and alkaline proteases in a commercial 

Trichoderma cellulase product. An endocellulase component of this product was subjected to 

partial proteolysis with a homologous protease preparation, which resulted in a modified 

cellulase with very similar chromatographic patterns to those of cellulase subfractions without 

proteolytic treatment [56]. Later, truncated forms of endoglucanases [57, 58] and 

cellobiohydrolases [59] have been isolated from T. reesei and it was demonstrated that 

proteolysis at late culture stages may contribute to the multiplicity of cellulolytic enzymes. 

The high levels of protease in the extracellular culture fluid of a proteolytic selectant of T. 

reesei correlated with the appearance of proteolytic cellulase degradation products [31]. A 

study on the mechanisms regulating post-secretory limited proteolysis of cellobiohydrolase 

and α-galactosidase of T. reesei revealed that a purified acidic protease cleaved both enzymes 

into the same proteolytic fragments, that had been isolated from the culture medium, and the 

enzymatic degradation was dependent on the degree of glycosylation of the secreted enzymes 

and pH [35]. When an endochitinase gene of T. harzianum was overexpressed in T. reesei, the 

amounts of the produced enzyme decreased remarkably with the decrease in the culture pH at 

the late stages of cultivation [60]. However, mRNA levels were still high at these time points, 

suggesting that the endochitinase was sensitive to an acidic protease, which occurred 

concominantly with the change in the culture pH. Delgado-Jarana et al. [12] overexpressed a 

homologous β-1,6-glucanase in T. harzianum and found that low pH resulted in the 
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degradation of the product due to the induction of aspartyl proteases other than papA. This 

problem could be overcome by buffering the medium to avoid the production of these pH-

induced enzymes, or by adding their potential substrates, e.g. yeast extract, peptone or casein 

in order to protect the β-1,6-glucanase from proteolysis. Another possibility could be the 

application of Trichoderma strains with low levels of protease production. Low protease 

mutants have been isolated from T. reesei by classical mutagenesis [43, 61] and by gene 

disruption [62]. 

 

 

Conclusions 

 

Studies examining the proteolytic enzyme profiles of Trichoderma strains revealed 

that the protease system of Trichoderma is complex containing a large set of enzymes. The 

proteases of Trichoderma can remain active even under environmental conditions unfavorable 

for mycelial growth, suggesting the possibility of strain improvement for better stress 

tolerance properties. Certain components of the protease system, including carboxylic 

proteases, subtilisin-like, trypsin-like and chymotrypsin-like serine proteases as well as 

aspartyl proteases were purified and characterised, and genes of some serine and aspartyl 

proteases were also isolated. It was demonstrated, that Trichoderma proteases are involved in 

the mycoparasitic action, nematicidal activity and plant colonization. Certain proteases 

appeared to be associated also with the aggressiveness of Trichoderma groups towards the 

commercial mushroom A. bisporus, which seems to be based mainly on competitive 

saprophytic ability. It has also been suggested that proteases may represent potential virulence 

factors of T. longibrachiatum strains as emerging fungal pathogens of clinical importance. In 

conclusion, it seems to be obvious, that Trichoderma strains evolved the ability of 
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extracellular protease production to increase their survival advantage as competitive 

saprophytic and parasitic organisms.  

Only a few Trichoderma proteases have been examined until now for their potential 

applicability for commercial purposes. However, there is an emerging need for microbial 

protease sources in biotechnology, and members of the genus Trichoderma seem to be 

promising candidates. On the other hand, if a Trichoderma-based biotechnology process is 

aimed at the production of other enzymes or proteins, it has to be considered during the 

selection of the producer strain and fermentation conditions that acidic Trichoderma proteases 

may have negative effects on the activity and yield of the desired product. 
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       Table I. 

 
Properties of extracellular proteases purified from Trichoderma strains 

 

Organism Type of 

protease 

Molecular 

weight (kDa) 

Isoelectric 

point 

pH optimum  

(Examined range) 

Inhibitors Reference 

T. viride 

 

T. lignorum 

carboxilic 
protease 
carboxilic 
protease 

32 
 

32 

4.3 
 

4.5 

2.3 
(3.0-6.0) 

2.8 
(3.0-6.0) 

pepstatin  
diazoacetyl-D,L-norvaline methylester 
N-diazoacetyl-N'-2,4-dinitro-
phenylethylenediamine 

[23] 

T. lignorum 

 

T. koningii 

subtilisin-like  
serine protease 
subtilisin-like  
serine protease 

21 
 

21 

6.8 
 

6.7 

10.5 
(4.0-11.0) 

10.5 
(4.0-11.0) 

 
phenyl-methylsulfonyl fluoride 
diphenylcarbamoylchloride 
 

[24] 

T. atroviride subtilisin-like 
serine protease 

31 9.2 
 

8.0-9.5 
(NR) 

phenyl-methylsulfonyl fluoride [25] 

T. harzianum subtilisin-like 
serine protease 

73 5.35 7.5 and 10.0 
(6.0-11.0) 

NR [26] 

T. viride trypsin-like 
serine protease 

25 7.3 7.0-8.0 
(3.0-12.0) 

 

diisopropyl fluorophosphate 
N-tosyl-L-lysine chloromethylketone 
aprotinin  
antipain 

[27] 

T. harzianum trypsin-like 
serine protease 

28 4.8 NR phenyl-methylsulfonyl fluoride [28] 

T. koningii alkaline serine 
proteinase 

85 9.0 10.0 
(4.0-11.0) 

phenyl-methylsulfonyl fluoride 
benzamidine  
N-bromo-succinimide 

[29] 

T. reesei pepsin-like 
aspartyl protease 

42.5 4.3 3.0-4.0 
(NR) 

N-chlorosuccinimide [31] 

T. reesei aspartyl protease 32 NR 2.8 
(2.5-5.5) 

pepstatin 
N-diazo-acetyl-L-phenylalanine 

[35] 

NR: not reported 
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     Table II. 

 
Properties of Trichoderma proteases predicted based on sequences of their cloned genes 

 

Predicted properties of the mature 

protein 

Organism 

 

Type of 

protease 

Gene Length 

of ORF 

(bp) 

Length of 

deduced 

amino acid 

sequence 

Length of 

putative 

signal 

peptide 

Length of 

putative 

propeptide Length Calculated 

molecular 

weight (kDa) 

Calculated 

isoelectric 

point 

Reference 

T. harzianum chymotrypsin-
like serine 
protease 
 

prb1 1227 409 aa 20 aa 100 aa 289 aa 29.0 9.2 [25] 

T. virens subtilisin-like 
serine 
protease 

  tvsp1 1368 409 aa 20 aa 100 aa 289 aa 29.0 8.98 [39] 

T. harzianum trypsin-like 
serine 
protease 

pra1 774 258 aa 20 aa 9 aa 229 aa 25.0 4.91 [28] 

T. harzianum aspartyl 
protease 
 

  papA 1212 404 aa 20 aa 32 aa 352 aa 36.7 4.35 [41] 

T. asperellum aspartyl 
protease 
 

  papA 1297 405 aa 20 aa 31 aa 354 aa NR 5.45 [42] 

NR: not reported
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