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Abstract

Extracellular vesicles (EVs) are cell-secreted vesicles that range from 30–2000 nm in size. These 

vesicles are secreted by both normal and neoplastic cells. Physiologically, EVs serve multiple 

critical biologic functions, including cellular remodeling, intracellular communication, modulation 

of the tumor microenvironment and regulation of immune function. Because EVs contain genetic 

and proteomic contents that reflect the cell of origin, it is possible to detect tumor-specific material 

in EVs secreted by cancer cells. Importantly, EVs secreted by cancer cells transgress anatomic 

compartments and can be detected in the blood, cerebrospinal fluid, and other biofluids of cancer 

patients. In this context, there is a growing interest in analyzing EVs from the biofluid of cancer 

patients as a means of disease diagnosis and therapeutic monitoring. In this article, we review the 

development of EVs as a diagnostic platform for the most common form of brain cancer, 

glioblastoma, discuss potential clinical translational opportunities and identify the central 

challenges associated with future clinical applications.
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Glioblastoma is the most common form of primary brain neoplasm. Despite aggressive 

surgical resection, chemotherapy and radiation therapy, the median survival for glioblastoma 

patients is approximately 14 months [1,2]. Optimal management of glioblastoma patients is 

limited by a lack of effective strategies for monitoring response to therapy [3]. In the current 

clinical practice, therapeutic responses are monitored through serial neurologic examinations 

and MRI studies. However, both forms of assessment are crude measures of the underlying 

disease status.
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Monitoring the clinical status of the patient will detect disease progression only after 

sufficient tumor burden has accumulated to alter the neurologic examination. This level of 

disease burden occurs long after the tumor cells have acquired resistance to therapy. While 

MRI potentially shortens this delay, the resolution limit of MRI renders this modality 

insensitive. Current MRI has a resolution limit of approximately 2–3 mm [4]. Considering 

that the size of a tumor cell is on the order of 10 µm, tumor cells will undergo more than 20 

rounds of exponential growth before detection is feasible by MRI. Moreover, modalities 

used to treat glioblastoma (radiation and chemotherapy) often induce changes in the brain 

that mimic those of tumor progression on MRI [5]. While advanced MR modalities have 

been developed to better detect tumor progression (reviewed in [6,7]), the time required for 

the scheduling, acquisition and interpretation of these studies further delay timely 

intervention. Though brain biopsy and histologic analysis can definitively evaluate disease 

progression, serial brain biopsy is both invasive and impractical given cumulative surgical 

risk [8].

The delay in the detection of therapeutic failure is particularly problematic since the 

standard chemotherapy used to treat glioblastoma, temozolomide, is a mutagenic agent [9]. 

Temozolomide induces tumor kill by alkylating the O6 position of the guanine nucleoside, 

resulting in stalled replication fork that ultimately triggers cell death [10,11]. However, in 

cells that have acquired resistance to temozolomide, the O6 methylated guanine can mispair 

with the thymine nucleoside, resulting in G:C → A:T transitions [12]. This mutagenesis is 

expected to promote the emergence of more aggressive clones [13], thereby limiting the 

efficacy of subsequent therapeutic regimens [14]. Thus, temozolomide treatment should be 

terminated as soon as resistance against this agent can be detected.

In these contexts, there is a critical need in the development of diagnostic tools that would 

afford timely assessment of disease burden and therapeutic response in glioblastoma 

patients. There is a growing interest in extracellular vesicles (EVs) as a biomarker platform 

in this development. Recent studies have demonstrated that glioblastoma cells secrete EVs 

that harbor tumor-specific mRNAs, miRNAs, and proteins (Figure 1) [15–18]. These EVs 

transgress multiple anatomic compartments and can be detected in the blood [18] and CSF 

[15] of glioblastoma patients. Pilot studies suggest that the analysis of EVs derived from the 

biofluid of glioblastoma patients may serve as a ‘liquid biopsy’ platform [19].

Extracellular vesicles: overview of their biology, nomenclature & isolation

Biology

EVs play a key role in several biological processes. For the secreting cells, EVs facilitate 

cellular membrane remodeling, recycling and the removal of cellular components [20–24]. 

For instance, during reticulocyte maturation, the cell transforms from a spherical volume 

into a biconcave structure, a process that requires the removal of large amount of membrane 

and proteins from the cell surface. This removal is mediated through shedding of cellular 

membranes and components through EV secretion [23]. Similarly, EV secretion is the major 

mechanism by which eggs avoid polyspermy during fertilization. Mammalian fertilization is 

mediated through interaction between Izumo1, a sperm protein, and Juno, an egg surface 
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receptor. Rapid shedding of Juno through EV secretion occurs rapidly after fertilization as to 

ensure that each egg fuses with a single sperm [21].

For the cells in the immediate vicinity of the EV-secreting cells, EVs mediate intercellular 

communication and transport membrane bound receptors, nucleic acids and other proteins to 

target cells [25–27]. For instance, oligodendrocytes and astrocytes secrete EVs that deliver 

specific proteins, mRNA and miRNA to surrounding neurons to provide trophic support. 

Similarly, neurons secrete EVs that are taken up by astrocytes and oligodendrocytes [25], 

thereby reciprocally influencing the functions of these cells.

In terms of microenvironment modulation, secreted EVs facilitate remodeling of the 

extracellular matrix [22,28–31]. Tumor microvesicles showed an enrichment of matrix 

degrading metalloproteases (MMP2, MMP9, MTI-MMP and urokinase-type plasminogen 

activator) [28–31]. These secreted EVs play critical roles in modulating the migration and 

invasion of cancer cells [32,33]. Moreover, EVs released by metastatic cells interact with 

bone marrow-derived cells to promote a pro-vasculogenic and pro-metastatic phenotype and 

to facilitate the establishment of the pre-metastatic niche [34].

Finally, EVs can play an important role in immunomodulation [22]. Depending on the 

cellular context, EVs can induce both immunostimulatory and immuno-suppressive effects 

[35–37]. Dendritic cells release EVs that augment immunologic responses by activating T 

cells [35] or transferring MHC molecules to other dendritic cells [36]. On the other hand, 

EVs isolated from tumor cells have been shown to induce the expansion of human T-

regulatory cells and suppress the immune responses [37].

Nomenclature

EVs have been categorized into exosomes, microvesicles, apoptotic bodies, retroviral 

particles and other entities based on the mechanism of biogenesis, and an in-depth review of 

this topic can be found elsewhere [20]. In brief, exosomes refer to vesicles of 30–100 nm in 

size and arise from the endosomal network, a membranous compartment responsible for 

sorting various forms of intraluminal vesicles. Microvesicles refer to larger sized vesicles 

(50–2000 nm) that arise as a result of direct budding from the plasma membrane. 

Retrovirus-like particles are 90–100 nm vesicles that also arise from direct budding of the 

plasma membrane. In contrast to microvesicles, however, the mechanism of formation is 

driven by retroviral proteins, such as Gag [38]. Finally, apoptotic bodies refer to membrane-

enclosed vesicles that are formed during apoptosis. These vesicles range between 50 and 

4000 nm in size.

As above discussed, the terms ‘exosomes’, ‘microvesicles’, ‘apoptotic bodies’ and 

‘retroviral particles’ each hold a unique significance based on their respective mechanisms 

of biogenesis. Unfortunately, surface markers that uniquely distinguish one EV sub-

population from another have not yet been established. As such, it is the currently not 

possible to discriminate the mechanism of biogenesis when analyzing EVs derived from 

clinical specimens.
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In this context, alternate nomenclatures have been loosely applied when discussing EVs 

isolated from clinical specimens. One nomenclature convention adopted was to name the 

vesicles based on the source of isolation. Terms such as oncosomes, prostatsomes and 

epididimosomes were coined [20]. EVs have also been classified based on size. In general, 

the term exosome refers to EVs <100 nm in size, whereas the term microvesicles refers to 

exosomes 100 nm–2 µm in size [20]. It is important to note that though there is some 

consensus in the literature regarding the size-based definitions, precise cut-offs are arbitrary 

and vary depending on the author. For the purposes of this review, we will refer to vesicles 

isolated from clinical specimens as EVs, while reserving the terms exosome and 

microvesicle for vesicles derived from model systems where biogenic mechanisms can be 

clearly defined.

Isolation & characterization

EVs have been isolated from blood, urine, CSF, lymphatics, tears, saliva and nasal 

secretions, ascites and semen. As indicated above, multiple methods have been used to 

isolate EVs. Some groups use differential centrifugation or density gradients to remove 

larger cellular debris and isolate EVs [15,39,40]. Other reported methods include chemical 

precipitation, the use of serial filters [41], EV-binding resins, immuno-isolation with 

magnetic beads [42,43], and microfluidic separations [17]. It is important to note that the 

biologic properties and contents of the EVs are greatly influenced by the method of isolation 

[44,45]. In this context, it is important to specify the method by which EVs are isolated in 

scientific communications.

Due to their small size, the analysis of EVs presents significant technical challenges. Large 

EVs (>300 nm) can be analyzed by flow cytometry [46]. Newer generation of cytometry 

instruments, including the Apogee (Apogee Flow Systems), Gallios (Beckman Coulter) and 

BD-Influx (Becton Dickinson) may be used to sort EVs down to 200 nm in size [47]. 

Current efforts are directed towards the development of cytometric instruments that can 

afford sorting of smaller particles.

Currently, EVs smaller than 200 nm are not amenable to flow cytometric analysis. The most 

frequently used descriptive analytic for these particles involve direct visualization using 

electron microscopy [15,48]. Nanoparticle tracking analysis is another method for 

quantifying the distribution of EVs and calculating particle size [49,50]. Nanoparticle 

tracking analysis uses a digital camera to capture the movement of EVs over a series of 

frames. The rate of the particle movement is then used to calculate particle size. Resistive 

pulse sensing is another method for quantifying EV size. Two cells are separated by a 

membrane containing a single pore. As EVs pass through the pore, a transient change in 

ionic current flow is detected and used to calculate the volume of the EV [51]. Other 

analytic techniques based on surface markers such as diagnostic MR, ELISA and western 

blotting have also been reported [20].

EV as a biomarker platform for glioblastoma

High-throughput genomic technologies have revolutionized our understanding of 

glioblastoma and identified novel biomarkers, with potential clinical application. In pre-
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clinical models, EVs isolated from glioblastoma cell lines contain tumor-specific mRNA 

and miRNAs [15,16,18]. Importantly, these markers can also be detected in EVs derived 

from the biofluid of glioblastoma patients. As such, the disappearance of these biomarkers 

from the patient’s biofluid may serve as proxy for therapeutic response. By the same 

rationale, re-emergence of these biomarkers may indicate disease recurrence. In the ensuing 

section, four studies describing the applications of this strategy will be reviewed.

EGFRvIII

The EGFRvIII mutation is found in 20–30% of all glioblastomas [52,53]. The EGFRvIII 

truncation mutant arises from the deletion of wild-type EGFR exons 2 through 7 [53]. 

EGFRvIII mutants express a constitutively active receptor that plays a significant role in 

glioblastoma pathogenesis and development [54]. Importantly, the EGFRvIII mutation is not 

found in normal tissue, thereby rendering EGFRvIII ideal as a tumor biomarker.

In a study by Skog et al., the EGFRvIII status of EVs derived from the sera of 30 

glioblastoma patients were examined by qRT-PCR. EGFRvIII was found in the EV derived 

from five patients harboring EGFRvIII-expressing glioblastoma. Interestingly, two patients 

with biopsy specimen scoring negative for EGFRvIII harbored EGFRvIII in their sera EVs, 

suggesting the initial biopsy may have targeted a non-representative area in a histologically 

heterogeneous tumor. However, PCR contamination leading to a false-positive signal cannot 

be excluded given the study design. Of the patients who scored positive for EGFRvIII in 

sera EVs, longitudinal sera collection was performed in five of these patients. In all cases, 

EGFRvIII was undetectable after resection [18].

IDH1R132H

Mutations in isocitrate dehydrogenase 1(IDH1), a citric acid cycle enzyme, are found in 

approximately 10% of all glioblastomas and 80% of secondary glioblastomas [55]. The 

native function of the protein catalyzes the oxidative decarboxylation of isocitrate to α-

ketoglutarate [56]. The majority of IDH1 mutated tumors exhibit an arginine to histidine 

mutation (R132H) [55]. The resultant enzyme is deficient in its native function but harbor a 

new catalytic activity – the production of 2-hydroxyl-glutarate. The production of 2-

hydroxylglutarate is associated with an altered chromatin state [57], which is thought to 

contribute to glioblastoma pathogenesis. However, the molecular mechanisms underlying 

this pathogenesis remain poorly understood. Despite a lack of clarity in these mechanisms, 

IDH1 mutation status has come to serve as a means of differentiating secondary 

glioblastomas (i.e., tumors that arise from lower grade gliomas) from primary glioblastomas 

that arise de novo.

A study by Chen et al. explored the hypothesis that mutant transcripts of IDH1 may be 

detected in EVs isolated from patient CSF [16]. The authors utilized highly sensitive digital 

PCR platform, with primers designed to specifically detect the mutated IDH1 sequence. 

Parallel experiments were performed to assess the IDH1 status of glioblastoma specimens 

with matched CSF collected from the same patient. While the authors were not able to detect 

mutant IDH1 transcript in the sera of patients afflicted with IDH1 mutated tumors, the 

detection of mutant IDH1 RNA transcript was achieved in five of eight CSFs derived from 
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patients with IDH1 mutated tumors. Importantly, the absolute quantity of mutant IDH1 

transcripts directly correlated with the tumor volume, suggesting the feasibility of using EV-

based platform to assess glioblastoma disease burden.

miR-21

miRNAs are small RNA molecules that help regulate gene expression by silencing mRNA 

transcripts with partially complementary sequences. Given the inherent stability of miRNAs 

relative to mRNAs and their presence in EVs, EV miRNAs represent particularly attractive 

biomarker platform for ‘liquid biopsies’. miR-21 is a miRNA that is highly over-expressed 

in glioblastoma cells [58]. The expression of miR-21 in glioblastoma mediates several 

essential oncogenic functions, including suppression of apoptosis, growth proliferation and 

tolerance of DNA damages [59]. Akers et al. showed that miR-21 levels in EVs isolated 

from the CSF of glioblastoma patients were 10-fold higher than those isolated from controls. 

Importantly, using CSF-derived EV miR-21 levels, the authors were able to prospectively 

distinguish CSF derived from glioblastoma and non-oncologic patients. Furthermore, 

miR-21 levels in CSF EVs decreased by an order of magnitude after surgical resection of the 

glioblastoma in patients with available longitudinal follow-up [15].

Combined proteomic platform

Shao et al. developed a micro-fluidic chip technology that used magnetic nanoparticles to 

label EVs followed by analysis with a micro-nuclear MR system [17]. This technology 

allowed the detection of EV proteins with a sensitivity exceeding other protein detection 

methods (including western blotting and ELISA) by several orders of magnitude. The 

authors used this µNMR technology to measure EGFR, EGFRvIII, podoplanin and IDH1 

R132H molecules in EV isolates from the sera of 24 glioblastoma patients and eight healthy 

volunteers. In this study, patients with higher levels of tumor-related molecules (such as 

EGFR, EGFRvIII and podoplanin) in their EVs were more likely to fail standard 

temozolomide/radiation treatment (p < 0.005).

Expert commentary

Significant strides have been made in the understanding of EVs and the role they play in 

cellular physiology and intercellular communications. The critical observation that 

glioblastoma cells secrete EV-containing genetic materials that mirror the intracellular 

tumor milieu has laid the foundation for EVs as a platform for ‘liquid biopsy’. With the 

uncovering of the genomic landscape of glioblastomas and the development of highly 

sensitive detection technologies, such as digital PCR, maturation in the clinical application 

of this platform is expected. Early reports suggest the EV platform for ‘liquid biopsy’ is 

promising. However, there are major challenges that require creative and thoughtful 

solutions before clinical translation. These issues are outlined below.

Since non-neoplastic cells secrete EVs and these cells outnumber neoplastic cells by several 

orders of magnitude in a patient, tumor-specific EVs remain a rarity in clinical samples. This 

rarity limits the sensitivity of EVs as a biomarker platform. While one method for bypassing 

this limitation is to analyze large volumes of the biofluid, such an approach may not be 
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practical. As such, there is a critical need to identify reagents that enrich the yield of 

glioblastoma-specific EVs from smaller samples. To this end, two major advances are 

needed. First, surface markers that enhance the isolation in glioblastoma-specific EVs will 

need to be identified. Second, affordable technologies for the reliable and efficient sorting of 

EVs of all size ranges will need to be developed. If such technologies become widespread, 

they may also enhance communication and cooperation within the EV field by facilitating 

the development of standardized inter-institutional protocols.

It is also conceivable that certain genetic materials, such as miRNA, may be preferentially 

concentrated in glioblastoma EVs. If so, the analysis of these enriched genetic materials may 

further enhance the inherent sensitivity of the assay. Since the mechanisms responsible for 

transporting genetic materials from the cellular context into the EVs remain poorly 

understood, selection of the optimal assay for EV analysis will likely require empiric 

determination.

Quantitative analysis of the genetic contents of EVs is another issue that requires thoughtful 

consideration. Quantitative assessment of mRNA or miRNA expression in the cellular 

context typically involves normalization of the query gene to housekeeping genes, such as 

glyceraldehyde-3-phosphate dehydrogenase or 18S. These housekeeping genes are 

expressed at high levels, exhibit little cell-to-cell variation and serve as a proxy for the total 

number of cells analyzed. Unfortunately, the quantities of various housekeeping genes are 

rare and highly variable among EVs [15]. As such, random biases would be introduced if the 

query transcript level is normalized to an arbitrarily selected gene, such as glyceraldehyde-3-

phosphate dehydrogenase. In this context, we favor PCR quantitation of the genetic material 

in absolute terms [15]. However, the question remains: should this absolute quantity be 

normalized to the total volume of the input biofluid, to the total protein content of the EVs, 

to the total number of EVs or to highly abundant transcripts in the EVs. Much work remains 

to be done to address this important question.

Another important issue that is at the core of any biofluid-based ‘liquid biopsy’ involves the 

dynamic nature of the biofluid. Like one’s blood pressure, samples of biofluid taken at any 

one moment may not be identical to those taken at another moment. The contents of the 

biofluid (CSF, blood or otherwise) are subject to changes related to natural circadian 

rhythm, food intake, medications, exercise and a plethora of other physiologic and iatrogenic 

factors. To further confound the matter, the method by which the biofluid is collected 

significantly impact the quality and quantity of EVs collected. Agitation of the collected 

fluid and the time interval between collection and processing of the samples are also equally 

important factors [47]. Given the inherent biologic complexity of the various biofluids, 

careful consideration should be given to the optimal method of collection – which will likely 

differ depending on the intended assay and biomarker.

While the initial studies of EV as a biomarker platform for glioblastomas show promise, 

validation through larger sample sets and prospective clinical trials are the necessary next 

steps. Given the rarity of glioblastomas, such efforts require multi-institutional 

collaborations and infrastructures. A pilot effort toward this end has been initiated by the 

Accelerated Brain Cancer Cure Foundation, an effort that involved 18 academic 
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neurosurgical centers across the U.S. Undoubtedly, the optimal technical platform for EV 

analysis will continue to evolve during the course of this prospective study. As such, future 

clinical trials should be designed with an adaptive intent, with the possibility of comparing 

evolving methods of EV isolation and analysis. The trial design should also afford 

opportunities for comparing EV-based platforms to other established and emerging 

biomarker platforms such as circulating tumor cells [60] or cell-free DNA [61].

In conclusion, the concept of EV-based ‘liquid biopsy’ for monitoring disease status is 

promising. The preliminary reports exploring this concept with application to glioblastoma 

patients are compelling. Successful implementation of this platform can fundamentally alter 

the paradigm of care for glioblastoma patients and make meaningful gains in terms of 

improvement in clinical outcomes. Ultimately, thoughtful clinical trial design and 

technology advancements will be needed to harness the potential of EVs for this clinical 

translation.

Five-year view

Over the course of the next 5 years, priorities in EV research, as it pertains to biomarker 

development, should be placed on optimizing methods of isolation with the recognition that 

chemical and biologic content of clinical biofluids necessarily differ from those of cell 

culture supernatants. Optimal methods of isolation likely will require glioblastoma-specific 

EV markers as a function of the source of the biofluid. Given the spectrum of genetic 

materials present in biofluid EVs, the analytic of maximal utility remains a central question. 

Moreover, normalization and quantitation of genetic materials isolated from biofluid EV is 

an unresolved question. The solution to these challenging questions will likely involve 

empiric determination rather than theoretical considerations. Spontaneous fluctuation in the 

contents of patient biofluid as well as perturbation imposed by iatrogenic or iatrogenic poses 

another major challenge as they inevitably introduce ‘noise’ to the biomarker analytic. As 

such, efforts to mitigate these dynamic ‘noises’ will be needed, including defining strict 

collection protocol. With maturation of EV biomarker analytics in the upcoming years, there 

will be increasing need for clinical validation and comparison to other biomarker platforms, 

including circulating tumor cells. Thoughtful consideration in clinical trial design and multi-

institutional collaboration are warranted in this regard. The challenges facing EV biomarker 

development are daunting but not insurmountable. Collegial and deliberate collaborative 

endeavors are undoubtedly required to address these central challenges.
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Key issues

• Diagnosis and therapeutic monitoring remains a major challenge for neuro-

oncologic diseases, such as glioblastomas.

• Extracellular vesicles (EVs) are cell-secreted vesicles that are 30–2000 nm in 

size. EVs contain genetic and proteomic contents that reflect the cell of origin.

• Glioblastoma cells secrete EVs that harbor tumor-specific mRNAs, miRNAs 

and proteins. These EVs transgress multiple anatomic compartments and can be 

detected in the blood and cerebrospinal fluid of glioblastoma patients.

• Pilot studies have demonstrated that glioblastoma disease burden and 

therapeutic responses associate with protein, miRNA and mRNA profiles of 

EVs isolated from the biofluids of glioblastoma patients.

• Optimization and validation of results provided by the pilot studies are needed 

to advance EV as a platform for glioblastoma biomarker development.
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Figure 1. Extracellular vesicles (EV) as a diagnostic biomarker platform
EVs are secreted by glioblastomas and carry tumor-specific genetic materials. (A) MRI 

demonstrating a glioblastoma in the left temporal region. (B) The secreted EVs transgress 

histo-anatomic boundaries of tumor cell (yellow), blood vessel (red) and stroma cell 

(purple). (C) Scanning electron microscopy image of a primary glioblastoma cell. Note the 

EVs on the cell surface. (D) Higher magnification showing the vesicles on the cell surface. 

(E) Electron micrograph of the EVs isolated from the biofluid of glioblastoma patients.

Adapted with permission from [18] © Macmillan Publishers Ltd. (2008).
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