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Extracellular vesicles (EVs) are known immune-modulators exerting a critical role in kidney

transplantation (KT). EV bioactive cargo includes graft antigens, costimulatory/inhibitory

molecules, cytokines, growth factors, and functional microRNAs (miRNAs) that may

modulate expression of recipient cell genes. As paracrine factors, neutrophil- and

macrophage-derived EVs exert immunosuppressive and immune-stimulating effects on

dendritic cells, respectively. Dendritic cell-derived EVs mediate alloantigen spreading

and modulate antigen presentation to T lymphocytes. At systemic level, EVs exert

pleiotropic effects on complement and coagulation. Depending on their biogenesis, they

can amplify complement activation or shed complement inhibitors and prevent cell lysis.

Likewise, endothelial- and platelet-derived EVs can exert procoagulant/prothrombotic

effects and also promote endothelial survival and angiogenesis after ischemic injury.

Kidney endothelial- and tubular-derived EVs play a key role in ischemia–reperfusion

injury (IRI) and during the healing process; additionally, they can trigger rejection

by inducing both alloimmune and autoimmune responses. Endothelial EVs have

procoagulant/pro-inflammatory effects and can release sequestered self-antigens,

generating a tissue-specific autoimmunity. Renal tubule-derived EVs shuttle pro-fibrotic

mediators (TGF-β and miR-21) to interstitial fibroblasts and modulate neutrophil and

T-lymphocyte influx. These processes can lead to peritubular capillary rarefaction and

interstitial fibrosis–tubular atrophy. Different EVs, including those from mesenchymal

stromal cells (MSCs), have been employed as a therapeutic tool in experimental models

of rejection and IRI. These particles protect tubular and endothelial cells (by inhibition

of apoptosis and inflammation–fibrogenesis or by inducing autophagy) and stimulate

tissue regeneration (by triggering angiogenesis, cell proliferation, and migration). Finally,

urinary and serum EVs represent potential biomarkers for delayed graft function (DGF)

and acute rejection. In conclusion, EVs sustain an intricate crosstalk between graft

tissue and innate/adaptive immune systems. EVs play a major role in allorecognition,

IRI, autoimmunity, and alloimmunity and are promising as biomarkers and therapeutic

tools in KT.
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INTRODUCTION

Extracellular vesicles (EVs or microparticles) is a general term
that refers to membrane structures released by all cell types
through different biogenesis pathways; EVs are secreted after
fusion of endosomes with the plasma membrane (exosomes),
shed from plasma membrane (microvesicles), or released during
apoptosis (apoptotic bodies). These three entities differ in size
(exosomes, 30–150 nm; shedding microvesicles, 150 nm−1µm;
apoptotic bodies, 1–5µm) and partly in content (1–4). In this
review, we will employ the umbrella term “EVs” to include all
the above-mentioned types of secreted membrane vesicles.

After cellular shedding, EVs are rapidly taken up
by neighboring or distant target cells (paracrine and
endocrine effects) through a variety of mechanisms, such
as endocytosis, phagocytosis/pinocytosis, membrane fusion, and
receptor-mediated endocytosis (2).

EVs are involved in a wide range of physiological
and pathological processes (4–7), including acute kidney
injury (AKI), chronic kidney disease (CKD), thrombotic
microangiopathies, and vasculitis (2, 3). EVs play a key
role in all these settings by shuttling their bioactive cargo
between cells. Most of their effects are mediated by microRNAs
(miRNAs), which modulate gene expression in target cells
and induce epigenetic reprogramming (3). Additionally, EVs
carry a wide variety of immune modulatory molecules (e.g.,
cytokines, costimulatory/inhibitory molecules, and growth
factors). Packing of nucleic acids and other contents into EVs
is coordinated by multiple signals from EVs themselves or
from cellular/extracellular environment (8–10). For example,
TNFα modulates miRNA content of endothelial particles
(11). Of interest, most EVs do not express human leukocyte
antigens (HLAs) and escape the immune system; moreover, they
cross numerous biological barriers (8), including glomerular
endothelium basement membrane (12). Homing and uptake of
EVs are mediated by signals and receptors on target cells (13)
and influenced by local factors such as pH and electric charge
(14). After intake, their complex biocargo exerts multiple effects:
mRNAs are translated; miRNAs activate or silence protein
expression (1, 2, 8); surface receptors are transferred from one
cell to another (15, 16) and bacterial, viral, or graft alloantigens
can be exchanged among immune cells (17, 18). A detailed
analysis of EV general properties has been covered by recent
reviews (1, 6, 8) (Figure 1).

EVs released from innate immune cells, such as macrophages,
dendritic cells (DCs), or natural killer (NK) cells, are involved
in the regulation of innate immune response mainly as pro-
inflammatory and paracrine mediators (4, 19). However, their
immunomodulatory role is probably far more complex and
includes anti-inflammatory and immunosuppressive effects.

The role of innate immunity as a trigger for acute rejection
has been the focus of intense research over the last years (20, 21),
and the possibility of manipulating EVs as a therapeutic tool or
employing them as biomarkers is opening new paths in solid
organ transplantation (22).

The aim of this review is to outline the role of EVs
in innate immunity by analyzing different aspects of kidney

FIGURE 1 | Extracellular vesicle (EV) biogenesis.

transplantation (KT) biology. After analyzing EVs as mediators
among different innate immune cell types, we will describe
the role in complement and coagulation, two pivotal systems
in innate immunity, and in other key settings such as
allorecognition, ischemia–reperfusion injury (IRI), and the
autoimmune component of antibody-mediated rejection. Finally,
we will review recent evidence about the role of EVs as potential
therapeutic tools and biomarkers in KT.

A general overview of immune-modulating effects of innate
cell-derived EVs on different immune system cells or molecular
targets is outlined in Table 1.

NEUTROPHIL-DERIVED EXTRACELLULAR
VESICLES

Far from being mere final effectors of the inflammatory response,
neutrophils [or polymorphonuclear cells (PMN)] exert several
modulating effects on both innate and adaptive immune cells
and canmigrate to secondary lymphoid organs. These actions are
partly mediated by EVs (23).

In general, PMN-derived EVs have anti-inflammatory and
immunosuppressive effects, mainly on DCs and macrophages.
EVs released from apoptotic PMNs also extend their actions on
T-lymphocyte subsets, blunting their activation (24).

Neutrophil-derived EVs can inhibit lipopolysaccharide
(LPS)-activated DCs and macrophages by reducing their
phagocytic capacity, their maturation, and the release of pro-
inflammatory cytokines (IL-8, IL-10, IL-12, and TNFα) while
increasing TGF-β1 excretion. This cytokine plays a key role in
suppressing immune response: it promotes anti-inflammatory
DC, suppresses CD4+ and CD8+ T cells and induces T reg
expansion (25, 26).
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TABLE 1 | Immune-modulating effects of innate cell-derived EVs on other immune system cells or molecular targets.

Cell of origin Cellular/molecular

target

EV-surface proteins and content Main biological effects References

PMN DC/macrophage Phosphatidylserine

Annexin 1

MPO

CD11b/CD18

Lactoferrin

Elastase

Reduced DC phagocytosis, maturation and

capacity to stimulate T-cell proliferation;

reduced production of pro-inflammatory

cytokines and increased release of TGF β1 by

DC and macrophage (tolerogenic profile)

(23, 24)

(25, 26)

T lymphocytes CD11b/CD18 Annexin V

Elastase

Reduced release of TNFα by naive and

activated effector T cells; reduced IL2 secretion

and CD25 expression by resting T helper cells

(27)

(28)

(29)

(30)

(31)

(32)

Cytokines/membrane

receptors

Catepsin G

Proteinase 3

Cleavage of cytokines and their membrane

receptors

(33)

(34)

L-Arginine Arginase-1 Reduced T-cell proliferation and function (30)

Neutrophil LT B4 and enzymes for its synthesis;

C5R1

PMN chemotaxis (35)

(36)

Macrophage Macrophage

and DC

p-MHC;

Microbial and viral antigens;

Hsp-70;

IL1β;

TNFα;

CCL2-5;

C3 fragments;

Proteins of the leukotriene pathway

IL 36y

miR-223

Transfer of p-MHC, antigens and activating

signals to DCs; DC maturation, activation and

migration;

release of Th1 - (M1 macrophages- derived

EVs) or Th2-promoting cytokines (M2

macrophages-derived EVs)

(37)

(38)

(39)

(40)

(41)

(42)

PMN Enzymes of the leukotriene biosynthesis PMN chemotaxis (43)

T lymphocytes IL1β

TNFalfa and CCL2-5

proteins of the leukotriene pathway

IL 36y

Increased T cell expansion and differentiation;

induction of IFNy and IL 17 producing CD4+ T

cells (T helper 17); inhibition of Treg

(40)

(44)

(45)

(46)

(35)

(47)

B lymphocytes C3 fragments

IL 36y

Increased B cell expansion and differentiation (41, 48)

(47)

DC DC TLR4

p-MHC;

Costimulatory or inhibitory molecules;

miRNA (miR-148a, miR 451)

Amplification of antigen spreading among

APCs and antigen presentation to T

lymphocytes

(49, 50)

(17, 51)

(52)

PMN Enzymes of the leukotriene biosynthesis Neutrophil chemotaxis (43)

T lymphocytes p-MHC;

MHC II;

Microbial or tumoral antigens;

adhesion molecules (ICAM-1);

costimulatory molecules (B7

family members)

Activation (mature DCs) or inhibition (immature

DCs) of CD4/CD8 pos T lymphocytes

(4, 49)

(53)

(54)

(55)

(56)

B-lymphocytes Complement fragments, microbial or

tumoral antigens

(20, 52)

MC DC p-MHC; FcǫRI

Hsp 60, Hsp 70;

PLA2, PLC, PLD;

PGD2,PGE2

Transfer of p-MHC II and IgE-antigens

complexes; antigens activation and DC

maturation; generation of neolipid antigens

(51)

(57)

(58)

(59)

(60)

(61)

T lymphocyte Proteases Cytokine inactivation, T helper 2 induction (51)

B lymphocyte CD 40 EVs binding; IL-10 competent B cells (62)

Eosinophil DC MBP

EPO

DC maturation; DC-driven Th2 response (63)

(64)

NK T lymphocyte Perforin

FasL

Cell lysis (65)
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EVs released by apoptotic human PMN suppress T-cell
proliferation, IL-2 production, and IL-2 receptor upregulation on
activated T cells (27). The binding of these EVs to activated T cells
seems to occur through Mac-1 (CD11b/CD18), an integrin also
involved in immunological synapse formation (28).

The bioactive cargo of PMN-derived EVs includes numerous
immune modulatory molecules: annexin V (induction of Tregs)
(29), arginase-1 (depletion of arginine with inhibition of T-
cell proliferation), lactoferrin (inhibition of DC migration to
lymph nodes) (30), myeloperoxidase (inhibition of DCs) (31),
elastase (conversion of human immature DCs into TGF-β1-
secreting cells) (32), and other proteases such as cathepsin G and
proteinase 3, which can inactivate pro-inflammatory cytokines
(IL-2, IL-6, and TNFα) (33) and cleave their receptors from
the plasma membrane (34). Additionally, PMN EVs regulate
inflammatory cell trafficking; leukotriene B4 (LTB4) activates
PMN chemotaxis and is particularly enriched in their EVs (35).
Conversely, during sepsis, PNM shed C5a receptor 1 into their
EVs and reduce their response to complement activation (36).

MACROPHAGE-DERIVED
EXTRACELLULAR VESICLES

In general, macrophage-derived EVs exert pro-inflammatory
effects, mainly directed toward DCs, macrophages, PMNs, and
T lymphocytes.

Infected macrophages release EVs loaded with pathogens’
proteins that can activate other antigen-presenting cells
(APCs). Depending on the microenvironment, targeted
macrophages activate either M1 or M2 polarization (37),
whereas DCs process and present the antigens to T cells,
thus promoting allorecognition and adaptive immunity. In
addition to microbial or viral antigens, macrophage-derived EVs
also carry peptide–major histocompatibility complex (MHC)
complexes and costimulatory molecules, further enhancing
alloantigen spreading among innate immune cells (38).

The cargo of macrophage-derived EVs includes several
molecules with immunomodulatory functions, such as Hsp 70
(pro-inflammatory or tolerogenic effect depending on coexistent
signals) (39), IL-1 β (DC migration and expansion of T/B
lymphocytes) (40, 41), TNFα, and several chemokines (CCL2,
CCL3, CCL4, and CCL5) (44–46). Complement C3 fragments are
expressed on EV surface and interact with T cells during antigen
presentation (48). Proteins involved in leukotriene synthesis were
isolated in human macrophages, converting LTA4 into LTB4
and LTC4 and potentially activating DCs and CD4/CD8T cells
(43). IL-36γ was found in EVs released by infected pulmonary
macrophages, with possible impact on DC maturation and
T-cell activation [T helper (Th)1 or Th17 development and
inhibition of Tregs] (47). Finally miR-223, a regulator of myeloid
differentiation, was found in macrophage-derived EVs (42).

Zhang et al. stimulated macrophages in vitro with different
protocols and performed an extensive proteomic profiling of
their EVs. When the inflammasome complex was activated, EVs
had a higher immunogenicity and induced NF-κB signaling in
neighboring immune cells, thus amplifying inflammation (44).

The inflammasome is a multimeric caspase-activating complex
that can modulate a wide range of pathways in response to
pathogens and activate both innate and adaptive immunity.

This is relevant to KT because IRI determines tissue damage,
release of EVs, and inflammasome activation (44). These aspects
will discussed in Extracellular Vesicles in Ischemia–Reperfusion
Injury and in the Autoimmune Component of Rejection.

Finally, glucocorticoid therapy and long-term LPS exposure
(mimicking chronic infection) can trigger macrophage release of
toll-like receptor-2-containing EVs; these particles act as decoy
receptors to antagonize toll-like receptor-2 signaling and blunt
inflammation (66).

DENDRITIC CELL-DERIVED
EXTRACELLULAR VESICLES: EARLY
INFLAMMATORY RESPONSE AND
T-LYMPHOCYTE ACTIVATION

Dendritic Cell Extracellular Vesicle and
Innate Immunity
DCs highly express pattern recognition receptors and represent
a pivotal link between innate and adaptive immunity (49). Toll-
like receptors belong to pattern recognition receptors family and
play a key role in the early inflammatory response; indeed, toll-
like receptors avidly bind damage-associated molecular patterns,
a wide group of molecules released by damaged tissues (e.g.,
during IRI) (67, 68). Toll-like receptor 4 is transferred via
EVs among bone marrow DCs (BM-DCs) and activate NF-
κB signaling pathway (50). Moreover, EV-mediated transfer
of miRNAs among DCs contributes to enhance their mutual
activation during inflammation (17, 69).

As described above (PMN paragraph), DC-derived EVs also
carry enzymes of the leukotriene biosynthesis, which stimulate
PMN chemotaxis (43).

Antigen Presentation to T Lymphocytes
DC-derived EVs also play a pivotal role in allorecognition (4, 49).
DCs capture EVs released from graft tissue. Graft particles carry
surface class I and II MHC molecules, non-HLA donor antigens,
costimulatory and adhesion molecules, and pro-inflammatory
cytokines such as IL-1β (52). The DC–EVs axis plays a pivotal
role in all the three antigen presentation pathways described in
transplant immunology, as reported in Figure 2 (53, 68, 70, 71):

• Direct antigen presentation: In this setting, donor APCs
interact with recipient T cells. Of note, donor DC-derived EVs
contain high density of allogeneic peptides complexed with
donor MHC (p-MHC) and can interact directly with CD8+

and CD4+ T cells.
• Indirect antigen presentation: In this pathway, recipient APCs

interact with recipient T cells. Graft EVs are internalized into
the recipient APC and transfer their peptides to MHC class II
molecules. These complexes are then exposed to APC surface
for indirect presentation to T lymphocytes.

• Indirect antigen presentation by “cross-dressing” APCs
(semi-direct antigen presentation): Donor-derived EVs
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FIGURE 2 | Role of Extracellular Vescicles (EVs) in alloantigen presentation to T lymphocytes. (A) Classical direct and indirect presentation; (B) “semi-direct”

presentation trough cross-dressing of recipient APC with graft-derived EVs.

containing p-MHC complexes are captured by recipient
APC on their surface and then presented directly to T cells
without any p-MHC reprocessing, a phenomenon referred to
as “cross-dressing.”

Recent evidence suggests that donor DC transplanted with the
graft are antigen transporting rather than antigen presenting
cells and that “cross-dressing” rather than “passenger leukocyte”
is the main mechanism of alloantigen presentation from
donor APC (70, 71). Although semi-direct modality rapidly
initiates alloresponse and leads to acute rejection, indirect T-cell
activation has been associated with chronic antibody-mediated
rejection (72). “Cross-dressing” is also typical of follicular DCs,
key players in germinal center reactions (54).

The effectiveness of DC-derived EVs in p-MHC presentation
depends on the coexistence of other molecules in their cargo
(MHC class II, CD86, and ICAM) and on parental cell
maturation (20):

• Mature DC-derived EVs are characterized by higher
expression of surface MHC, adhesion, and costimulatory
molecules (55, 73) and present antigens to CD4+ T
lymphocytes through “cross-dressing,” promoting Th1
phenotype (56, 74).

• Immature DC-derived EVs are efficiently internalized by
mature APCs and transfer their antigens to the target cell
MHC. Thus, the antigen is indirectly presented to CD4+

T lymphocytes, skewing them toward a Th2 phenotype.
Additionally, immature DC can release immunoregulatory
EVs loaded with anti-inflammatory cytokines such as TGF-β1
(4) and can target other DCs to amplify a tolerogenic
response (75).

Therefore, donor EVs target recipient cells and generate a
chimerism that can determine either DC activation or DC
inhibition depending on their content (76, 77). For example,
EV-derived CD86, a costimulatory molecule, activates T cells
through direct or semi-direct pathway, whereas the indirect
pathway vehicles miRNAs upregulating PD-L1 and induces
CD4T cells anergy (78). Indeed, graft-infiltrating PD-L1hi cross-
dressed DCs blunted T-cell response in a mouse model of liver
transplantation (77).

Finally, the relationship between DCs and adaptive immunity
is bidirectional: for example, DCs are targeted by Treg-derived
EVs that induce a tolerogenic phenotype trough transfer of
miRNAs (miR-150-5p and miR-142-3p) (79).

MAST CELL-DERIVED EXTRACELLULAR
VESICLES

MC-derived EVs contain p-MHC complexes or endocytosis-
derived antigens and can be released by both activated and resting
BM-MCs. The main target of these particles is DCs and other
professional APCs (51, 80, 81). Skokos et al. investigated the role
of MCs in allo-antigen presentation; the authors observed that
ovalbumin was more effectively recognized by T cell if taken
up by MCs and then transferred to DCs rather than presented
directly by DCs (57). Indeed, MCs and DCs form a highly
structured immune synapsis devoted to antigen transfer through
EVs (58).

Several molecules with immunomodulatory roles have been
isolated in MC-derived EVs. Heat shock proteins (Hsp 60
and 70) are essential for antigen loading and EV uptake by
DCs (57, 59) and are capable of inducing BM-DC maturation;
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FceRI–IgE complexes contribute to horizontal antigen transfer
among MCs; additionally, phospholipases (PLA-A2, C, and D2),
neolipid antigens, and lysophospholipids (60, 61) inhibit DC
functions (e.g., phosphatidic acid) and induce Th2 response
[lysophosphatidylcholine (LPC)] (60, 82). MC-derived EVs also
carry proteases that inactivate cytokines and also target T-cell
proteins (34, 60). Finally, CD40L-positive EVs from BM-derived
MCs generate IL-10 competent B cells (62, 83).

OTHER INNATE IMMUNE CELL-DERIVED
EXTRACELLULAR VESICLES

There is a paucity of data about EVs generated by other innate
immune cells.

Eosinophils can release EVs containing major basic protein
(MBP) and eosinophil peroxidase (EPO) when stimulated with
IFNγ; both promote DC maturation (63, 64, 84).

NK cells can release EVs loaded with several cytotoxic proteins
(85, 86), including perforin and FasL, which can induce lysis of
activated T lymphocyte and thus possibly blunt inflammation
(65, 87).

The main immune-modulating effects of innate cell-derived
EVs on other immune system cells or molecular targets are
summarized in Table 1.

EXTRACELLULAR VESICLES AND THE
COMPLEMENT SYSTEM

EVs can play a dual role in this setting, either activating or
inhibiting the complement cascade (88).

This function is extremely relevant to the transplant setting, as
EVs play a role in complement attack on ECs in both antibody-
mediated rejection (89) and IRI (90).

a) Extracellular Vesicles as Complement
Activators
T cell-derived EVs can activate complement through
immunoglobulin binding, whereas other types of EVs do
so directly, through interactions between C1q and their
membrane lipids (91, 92). For instance, both PMN- and
erythrocyte-derived EVs (93, 94) can provide a platform for C1q
deposition, with consequent activation of classic pathway on
their surface.

Activated endothelial cells can shed EVs under inflammatory
conditions; this phenomenon has been observed after
complement activation andmembrane attack complex formation
on endothelial cell surface (95). These endothelial-derived
EVs express membrane attack complex and have a strong
procoagulant phenotype, which further triggers complement
activation through thrombin formation. This creates a vicious
circle of endothelial complement-mediated damage and
endothelial shedding of complement-enhancing EVs (88).

b) Extracellular Vesicles as Complement
Inhibitors
On the other hand, EV shedding could also represent a
mechanism to protect cells from complement attack: indeed,
EVs remove complement molecules from cell surface acting
as “scavengers” and allowing complement evasion (88).
Complement-induced EVs shedding has been demonstrated in
PMNs, erythrocytes, and glomerular endothelial and epithelial
cells (96).

Consistently, complement-coated EVs from leukocytes can be
rapidly phagocytosed by PMNs. Clearance of these opsonized
EVs is also facilitated by complement receptor 1, expressed on
erythrocytes; as such, red blood cells bind EVs and transport
them to the liver and spleen (94).

EVs also carry several complement inhibitors that allow
them to transport activated complement factors without being
lysed: CR1, CD55, or decay-accelerating factor (modulation of
C3 and C5 convertase), CD59 (direct MAC inhibitor), and
membrane cofactor protein (MCP or CD46) (2, 97). Interestingly,
endothelial EVs are also rich in complement inhibitor mRNA
and prevent glomerular injury in experimental models of
glomerulonephritis (98).

EXTRACELLULAR VESICLES AND THE
COAGULATION SYSTEM

Complement and coagulation cascades are key components
of innate immunity and are tightly connected to each other;
their simultaneous activation has been extensively studied in
transplant rejection and IRI (99–102). EVs released from
endothelial cells and platelets (PLTs) are critical promoters of
coagulation in renal disease (89); besides carrying inflammatory
and chemotactic proteins, these vesicles release also a number
of growth factors [e.g., PLT-derived growth factor (PDGF)] and
promote tissue regeneration.

a) Endothelial Extracellular Vesicles
When shed after complement activation, endothelial cell EVs
have procoagulant and PLT-activating effects (95, 103). They
expose phosphatidylserine and binding sites for factor Va
and tissue factor (TF) (104, 105); the latter triggers extrinsic
pathway determining thrombin generation (106). Thrombin
directly cleaves complement components C3 and C5 into C3/C5
convertase, further amplifying the cascade (107). Endothelial EVs
can also transfer TF to monocytes and PLTs (108). On the other
hand, these EVs preserve endothelial cell survival in physiological
condition (caspase-3 removal and protein C receptor exposure)
(109), and EVs derived from endothelial progenitor cells can
promote angiogenesis (110).

b) Platelet-Derived Extracellular Vesicles
These play a key role in hemostasis and coagulation (111)
through a variety of mechanisms summarized in Table 2 (112–
119). Of note, PLT-derived EVs have a 50- to 100-fold stronger
procoagulant/prothrombotic effect than have PLTs (120). On
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TABLE 2 | Platelet-derived EVs procoagulant and prothrombotic effects.

Molecule Mechanism References

Phosphatidylserine

surface expression

Negative charged surface creates

binding sites for factors II, Va, Xa

(prothrombinase complex)

(112)

Tissue Factor surface

expression

It binds factor VIIa on

phosphatidylserine- containing

surface and activates extrinsic

pathway of coagulation

(113)

Protein disulfide

isomerase (PDI)

Platelet aggregation (114)

Receptors for factor

VIII

Thrombin generation (115)

Release of factor XIIa Activation of intrinsic pathway (116)

Thromboxane A2

synthesis and release

Platelet aggregation (117)

IL 1-β release Monocyte adhesion to endothelium,

endothelial cell activation

(118)

RANTES deposition Monocyte recruitment to

endothelium

(119)

the other hand, they promote angiogenesis and endothelial cell
regeneration after vascular injury (2, 121).

EXTRACELLULAR VESICLES IN
ISCHEMIA–REPERFUSION INJURY AND IN
THE AUTOIMMUNE COMPONENT OF
REJECTION

IRI is the main cause of delayed graft function (DGF), which
determines an increased risk of acute rejection and progression
to chronic allograft dysfunction (122). IRI triggers a complex,
alloantigen-independent immune response characterized by
crosstalk between PMNs, macrophages, and DCs (123). All these
cells release EVs with pro-inflammatory and anti-inflammatory
effects (see above) (19).

Two other cell types release critical EVs in this condition:
endothelial cells and renal tubular epithelial cells. Both release
EV when exposed to hypoxia, oxidative stress, acidic pH, or
inflammation. Hypoxia determines an accumulation of hypoxia-
inducible factor (HIF)-α subunit, which dimerizes with HIF-β
to form HIF, a transcription factor that can activate over 70
target genes. This results in changes in surface receptors and
remodeling of plasma membrane, which triggers release of EVs
(124). Furthermore, HIF increases Rab22, an essential element
for EV biogenesis (125).

ENDOTHELIAL CELLS

IRI induces a complex vascular phenotype characterized by a
progressive spectrum of functional and structural alterations:
vasoconstriction, vascular inflammation, microvascular
rarefaction of peritubular capillaries, chronic hypoxia, interstitial
fibrosis, and tubular atrophy (126, 127). Microvascular lesions

appear to be a key driver of fibrosis after IRI, with a predominant
effect over tubular ones (128).

Transplant procedure itself is characterized by tissue damage
and some degree of ischemia, resulting in activation of different
cell death programs (apoptosis, necrosis, necroptosis, pyroptosis,
and autophagy-associated cell death) with release of damage-
associated molecular patterns. Bacterial and viral components
can also be released during transplant surgery or in infections
after KT (122, 123). Both damage-associated molecular patterns
and pathogen-associated molecular patterns bind a wide range
of innate pattern recognition receptors expressed on several
cells, including macrophages, DCs, and endothelia (129). Pattern
recognition receptor activation triggers inflammatory response
and EV release (126).

Caspase-3 is a pivotal regulator of cell apoptosis (128); under
physiological conditions, endothelial EVs protect parental cell
by removing caspase-3 (130). During IRI, caspase-3 hyper-
activation can overtake EV clearance and cause cell death.
In this scenario, endothelial cell generate both “classical”
apoptotic bodies and smaller exosome-like vesicles; both are
overloaded with caspase-3 and can propagate cell death.
Additionally, these exosome-like vesicles carry activated 20S
proteasome; this complex recruits adaptive immune cells and
induces the production of auto-antibodies toward perlecan/LG3,
angiotensin-1 receptor, and dsDNA, further aggravating vascular
inflammation (46, 127, 131). Reperfusion has also been associated
with the occurrence of a broad range of IgM “natural
antibodies,” targeting “neo-epitopes” on ischemic tissues and
activating complement (123). Thus, EVs shed by an activated
or injured endothelium can trigger mechanisms of alloimmunity
and autoimmunity.

The role of EVs in the autoimmune component of rejection
has been the focus of recent studies. Tissue-specific self-antigens
were found in circulating EVs released by apoptotic cells in
the lung, heart, islet, and KT recipients while rejection is
developing, whereas they were not detected in control grafts
(132). For example, EVs from KT recipients with transplant
glomerulopathy have an increased expression of fibronectin and
type IV collagen than have EVs from stable KT recipients (133).

Innate immune response generates graft tissue damage, which
can favor continuous release of sequestered self-antigens through
EVs, with secondary activation of self-reactive T lymphocytes
and development of a tissue-restricted form of autoimmunity
(46, 72).

It must be emphasized that only in an inflammatory
environment (e.g., IRI) can adaptive cells determine
autoimmunity. Consistently, Sharma et al. showed that
anti-cardiac myosin (CM) antibodies trigger graft rejection in
syngeneic heart transplantation only when administered at time
of surgery, but not 1 week after it (134).

RENAL TUBULAR EPITHELIAL CELLS

In general, whereas EVs from injured cells can promote tubule
interstitial inflammation and fibrosis, those derived from cells
with regenerative properties can promote cell proliferation and
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tissue repair. However, this distinction is blurred, as injured
renal tubular epithelial cells can also stimulate repair (as detailed
below), whereas mesenchymal stromal cell (MSC)- or endothelial
progenitor cell-derived EVs can have harmful effects (135).

With this caveat, we will now focus on actions mediated by
EVs released by ischemic renal tubular epithelial cells, whereas
EV potential to repair tissue damage will be dealt with in a
specific paragraph.

Renal proximal tubular epithelial cells are especially prone
to ischemic damage because they depend on mitochondrial
metabolism for ATP production owing to their modest
glycolytic capacity.

Under hypoxic conditions, HIF-1mediates EV release by renal
proximal tubular epithelial cells (136), whichmodulate severity of
kidney injury by targeting neighboring cells (3).

Furthermore, renal proximal tubular epithelial cells express
receptors for complement fractions C3a and C5a and toll-
like receptors, making them responsive to innate immune
activation (137). Damage-associated molecular patterns can be
transferred into renal tubular epithelial cells trough EVs (138)
and prevent tubular recovery (139, 140). Pathogen-associated
molecular patterns, such as LPS, upregulate the expression of
DC-SIGN and toll-like receptor 4, stimulating tubular secretion
of IL-6 and TNFα (141).

In this early inflammatory phase, tubular EVs containing
cytokines, growth factors, and complement fractions can recruit
innate immune cells such as PMNs, M1 macrophages, and NK
cells (135). EVs released by hypoxic renal tubular epithelial cells
are characterized by a decreased content of miR-7641-2-3p, a
downregulator of chemoattractant CXCL1, resulting in increased
PMN influx (142).

Injured hypoxic tubular cells can transfer TGF-β-containing
EVs across disrupted basement membrane to interstitial
fibroblasts, activating them and mediating progression to
CKD (143). Furthermore, TGF-β itself stimulates renal tubular
epithelial cells in an autocrine way to secrete EVs enriched for
miR-21, which targets recipient tubules enhancing Akt-mTOR
proliferative pathway and consequently exacerbating interstitial
fibrosis (144); of note, miR-21 is also released by several other
types of human cells through toll-like receptor 3 activation (145).

Also, miR-155 worsens tubular damage during IRI, as it
promotes tubular pyroptosis by upregulating expression of
caspase-1 and downregulating FoxO3a expression together
with its downstream protein “apoptosis repressor with caspase
recruitment domain” (146, 147).

In addition to hypoxia, also albuminuria triggers release of
CCL2-containing EVs, activating interstitial macrophages and
promoting tubule interstitial inflammation (148). Proteases and
glycosidase on EV surface may contribute to interstitial fibrosis
by degrading extracellular matrix (149).

Furthermore, besides tubular-interstitial diffusion, EVs from
renal proximal epithelial cells can also move downstream
through urinary tract to target distal tubule or collecting duct (3),
although with largely unknown effects.

Tubule-derived EVs can mediate anti-inflammatory and pro-
angiogenic actions, for example, secreting IL-10, which polarizes
macrophages toward anM2 phenotype, and galectin-1 and CD73,

which promote Treg function (135, 150–152). Tubule-derived
EVs can also directly interact with T lymphocytes through T-cell
immunoglobulin- and mucin-containing molecules Tim-1 and
Tim-4; interestingly, the same receptor Tim-1 (also called KIM-1)
is expressed on renal tubular epithelial cells surface and mediates
suppression of NF-κB (153).

EVs also mediate a less defined crosstalk between endothelia
and renal tubular epithelial cells. On the one hand, tubule-derived
EVs transport ApoA1, which inhibits ICAM-1 and P-selectin
and alleviates ischemic damage and PMN retention (154); on
the other hand, endothelial EVs can pass into urinary space
upregulating HIFα/VEGFα signaling in renal tubular epithelial
cells (155).

EXTRACELLULAR VESICLES AS A
THERAPEUTIC TOOL IN RENAL
TRANSPLANTATION

Most studies on EVs as a therapeutic tool in renal transplantation
have employed MSC-derived EVs (MSC-EVs) and have focused
especially on IRI.

MSCs themselves have drawn much interest in
transplantation, mainly because of their capacity to stimulate
tissue repair after ischemic injury and their immunomodulatory
properties (156).

Injected MSCs can inhibit tubular cell apoptosis and
interstitial fibrosis while stimulating proliferation of tissue-
specific progenitor cells. Although MSCs can engraft in renal
tubular and endothelial cells, regenerative actions are primarily
mediated by EVs (157, 158).

Additionally, MSC modulate both innate (DCs, monocytes,
and NK cells) and adaptive (T and B lymphocytes) immune cells,
with predominantly anti-inflammatory and immunosuppressive
effects, which may play a role in preventing or counteracting
rejection. Also these effects are predominantlymediated byMSC-
EVs (159).

Since side effects and practical challenges of MSC therapy
have been reported (160), MSC-EVs have been proposed by
several studies as a safer, cell-free alternative. Nevertheless, they
have shown similar or even potentially additive regenerative and
immunomodulatory properties (161).

Recent evidence suggests that innate immune EVs and
MCS EVs play opposite roles in immune system regulation:
whereas the former can carry and spread alloantigens,
stimulating allorecognition and rejection, the latter can
exert immunosuppressive and tolerogenic effects. In particular,
MSC-EVs inhibit DC maturation and NK function and skew
T lymphocytes toward a Treg phenotype. Of note, MSC-EV
proteomic analysis has identified 938 proteins, which could be
relevant to MSC-EV interaction with immune cells (159, 162).

MSC-EVs and immune cell EVs are phenotypically different,
as they reflect profile of surface molecules of respective parental
cell; in particular, MSCs are defined by the expression of CD73,
D90, and CD105 and lack CD14, CD34, and CD45 markers
(163). However, MSC-EV cargo is not merely a reflection of
their parental cell, as it is characterized by a peculiar enrichment
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FIGURE 3 | Different sources of extracellular vesicles (EVs) employed as therapy in ischemia–reperfusion injury.

in mRNA, miRNAs, and proteins involved in key processes,
such as cell cycle regulation, cell differentiation, and immune
regulation (157).

a) Ischemia–Reperfusion Injury
Mesenchymal Stromal Cell-Derived Extracellular

Vesicles
MSCs can be isolated from different tissues, as shown in Figure 3.
MSC-EVs recapitulate beneficial properties of origin cells, which
are mediated by a variety of mRNAs, miRNAs, and proteins.
These molecules are horizontally shuttled into recipient cells and
activate signaling pathways related to the following (164):

• renal protection: inhibition of apoptosis/necrosis,
inflammation, oxidative stress, fibrogenesis, and promotion of
autophagy (165); and

• renal regeneration: stimulation of cell proliferation, migration,
tubular dedifferentiation, and angiogenesis.

Importantly, pretreatment with RNAase abolishes these
effects, indicating that mRNAs and/or miRNAs account for
them (166).

Ferguson et al. identified 23 top miRNAs, which account for
over 79% of total miRNA load in MCS exosomes and seem to

mediate the predominant effects, targeting 5,481 genes (167).
Different miRNAs carried by MSC-EVs are extensively reviewed
elsewhere (168–171).

The main miRNAs involved in renal protection from IRI,
type of secreting cell, and mechanisms of action are outlined in
Table 3 (172–181).

Specific functions of these miRNAs are being defined:
miR-125a can promote endothelial cell angiogenesis (172);
miR-29b inhibits angiotensin II-induced epithelial-to-
mesenchymal transition of rat RTECs (173) and blunts
inflammation by inhibiting NF-κB; miR-21 prevents renal
tubule epithelial cell apoptosis and inhibits DC maturation
(174); and miR-199a-5p alleviates endoplasmic reticulum
stress at very early reperfusion stages (8–16 h after reperfusion
in vivo) (177).

Murine studies in which MSC-EVs were employed as a
therapeutic tool for IRI are summarized in Table 4 (166, 177,
182–194). In all of them, administration of MSC-EVs improved
renal function and/or decreased tubular injury through multiple
mechanisms (164). Most studies were performed with BM- and
umbilical cord-derived EVs; however, other MSC have been used
including kidney resident populations (189, 190) and adipose
tissue (191). Of interest, i.v. administered human MSC-EVs were
effective in alleviating renal damage in rats that had received KT

Frontiers in Immunology | www.frontiersin.org 9 February 2020 | Volume 11 | Article 74

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Quaglia et al. Extracellular Vesicles in Kidney Transplantation

TABLE 3 | Main miRNAs involved in renal protection from IRI.

miRNA Parental cell Mechanism of action References

miR-125a Adipose tissue-MSC Increases endothelial cell angiogenesis (172)

miR-29b MSC Inhibits epithelial mesenchymal transition of rat renal tubule epithelial cells (173)

miR-21 MSC Inhibits renal tubule epithelial cells apoptosis and DC maturation (174)

miR-let7c MSC Inhibits renal fibrosis (175)

mi-R 30 Wharton Jelly-MSC Inhibits renal tubule epithelial cells mitochondrial fission (176)

miR-199a-5p Bone marrow-MSC Alleviate endoplasmic reticulum stress at reperfusion (177)

miR-486-5p Endothelial cell forming colonies Inhibits endothelial cell apoptosis and endothelial-mesenchymal transition (178, 179)

miR-218 Renal artery progenitor cell Increases endothelial cell migration (180)

miR-126

miR-296

Endothelial progenitor cell Increases endothelial cell angiogenesis (181)

from cardiac death donor, a procedure characterized by severe
IRI (194) (Table 3).

Trophic factors carried in MSC-EVs depend on the parental
cell and the surrounding milieu, such as inflammation and
hypoxia (136, 164, 195).

Hypoxia has a profound impact on EV properties. In general,
ischemic conditioning (preconditioning, postconditioning, and
remote conditioning) provides positive results in the setting of
myocardial infarction, and hypoxic EVs appear to mediate these
effects (124, 125, 195).

Hypoxic EVs derived from BM MSCs can exert protective
effects in experimental models of AKI through several
mechanisms: inhibition of renal tubule and endothelial cell
apoptosis, stimulation of endothelial cell proliferation, reduction
of inflammation and PMN infiltration, and inhibition of renal
fibrosis (124).

Of interest, hypoxia can stimulate the secretion of EVs
by adipose tissue-derived MSCs and can enhance their
regenerative properties; specific anti-apoptotic, anti-oxidative,
anti-inflammatory and pro-angiogenic pathways are activated by
hypoxic EVs, and a distinct proteomic pattern is determined by
this type of EVs in renal proximal tubule epithelial cells (196).

In the study by Collino et al. (196), four effects were
specifically enhanced in hypoxic EV and could blunt progression
of ischemic AKI to CKD: downregulation of fibroblast
growth factor receptor 1 (FGFR-1), which mediates TGF-
β1-induced epithelial-to-mesenchymal transition, and inhibition
of maladaptive repair and fibrogenesis (197); angiogenesis
stimulation, alleviating renal microvasculature rarefaction under
hypoxia (198); translocation of Nrf-2 into the nucleus, activating
antioxidant genes such as HO-1 (199); and downregulation of
IL-6, blunting macrophage infiltration and polarization toward a
M2 phenotype (200).

Moreover, hypoxic EVs carry respiratory complexes,
supporting a non-mitochondrial aerobic metabolism when
mitochondrial respiratory capacity is impaired (201); they
reestablish intracellular ATP levels and reverse pre-apoptotic
changes like histone H2 and H2B upregulation (202); they favor
cell proliferation through JNK pathway activation (203) and
downregulate calnexin, a NADPH oxidase NOX4-interacting
protein, reducing reactive oxygen radical formation (204–206).

However, remote ischemic preconditioning on KT recipients
has not proven to be as clinically effective as in ischemic heart
disease, and further studies are needed to implement these
findings into clinical tools (207, 208).

Another therapeutic approach is MSC transfection with
specific miRNA. These engineered EVs proved to be more
effective than those derived from naïve MSCs (209).

Other Cell Type-Derived Extracellular Vesicles
Cell types other than mesenchymal stromal cells also release
reno-protective extracellular vesicles.

Under hypoxic conditions, endothelial colony-forming cells
inhibit endothelial cell apoptosis and endothelial mesenchymal
transition through EV containing miR-486-5p (178, 179),
whereas renal artery progenitor cells increase endothelial cell
migration through EV containing miR-218 (180).

Endothelial progenitor cells inhibit capillary rarefaction and
progression toward chronic lesions in ischemic AKI; this effect
was lost after depletion of pro-angiogenic miR-126 and miR-296
by transfection with specific antagomirs (181).

EVs from renal tubule cells also are capable of
accelerating recovery of established renal ischemic
damage (210).

b) Acute Rejection
Mesenchymal Stromal Cell-Derived Extracellular

Vesicles
Studies using EVs from stem cells and tumors have shown
immunosuppressive effects of their transcription factors and
miRNAs (159).

In an MHC-mismatched rat model of kidney transplant,
injection of recipient MSC-EVs on day 7 after transplant has
reduced NK infiltrates and almost completely abolished intra-
graft TNFα expression. However, B- and T-lymphocyte infiltrates
were higher in EV-treated rats, whereas there was no difference
in macrophage populations. Importantly, no difference was
observed in antibody response against the donor, which occurred
in both groups. These data suggest that MSC-EVs mainly affect
some type of innate immunity cells (NK cells and related
cytokines, such as TNFα), whereas they do not suppress adaptive
immunity and rejection in a strong alloreactive model (162, 211).
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TABLE 4 | Studies on MSC-derived EVs as therapeutic tool in AKI from IRI.

MSC origin Mechanism References

Human bone marrow Reduced apoptosis and increased

proliferation of renal tubule epithelial

cells

(166)

Rat bone marrow Reduced inflammatory cytokines

(IL1β; TNFα)

(182)

Human umbilical cord Antioxidation through activation of

Nrf2/antioxidant response elements

(ARE) and decreased expression of

NOX2

(183, 184)

Human umbilical cord Decreased renal fibrosis

(downregulation of CX3CL1,

decrease of CD68+macrophages);

increased angiogenesis (increased

expression of renal VEGF)

(185–187)

Human umbilical cord Tubular cell dedifferentiation and

growth (increased ERK1/2 and HGE

expression)

(188)

Human umbilical cord Inhibition of mitochondrial fission

(miR-30) and reduced apoptosis

(176)

Mouse kidney

resident

Increased proliferation and reduced

apoptosis; increased angiogenesis

(189)

Mouse kidney

resident (glomeruli)

Increased proliferation of renal

tubule epithelial cells

(190)

Rat adipose tissue Inhibition of oxidative stress,

apoptosis, renal fibrosis

(191)

Human umbilical cord Increased proliferation and fibrosis

(releasing from G2/M cell cycle

arrest)

(192)

Human bone marrow Inhibition of apoptosis

(downregulation of Sema3A

expression and activation of

AKT/ERK pathways through

miR-199a-3p); inhibition of NK

(193)

Human umbilical cord Inhibition of apoptosis, increased

proliferation of renal tubule epithelial

cells; reduced CD68+macrophages

infiltration; reduced fibrosis

(decreased expression of aSMA

and TGFβ; increased expression of

HGF)

(194)

Human BM Suppression of endoplasmic

reticulum stress (miR-199a-5p)

(177)

Immune Cell-Derived Extracellular Vesicles
Immunosuppressive properties of EVs (75–79) could be
exploited to inhibit innate component of rejection, for example,
skewing DC function and maturation toward a tolerogenic
profile (212–214). EVs released from Treg lymphocytes
modulated DC maturation and prolonged kidney allograft
survival in a rat model (215).

In a study on heart transplant rat model, DC-derived
EVs were administered together with LF-15-0195, a DC
maturation blocker. This approach determined a donor-specific
tolerance with significantly blunted anti-donor proliferative
response and chronic rejection, resulting in prolonged graft
survival (2, 211).

EXTRACELLULAR VESICLES AS
BIOMARKERS IN KIDNEY
TRANSPLANTATION

EVs have also been investigated as possible biomarkers
in KT. Plasma and urinary EVs have been studied
in different transplant settings and will be discussed
separately (216).

a) Acute Rejection
Plasma Extracellular Vesicles
Plasma EVs are one of the most promising biomarkers for solid
organ transplantation, reducing or even obviating the need for
renal biopsy (216–218).

In a recent study, Zhang et al. compared levels of mRNA
transcripts carried by plasma EVs of patients with antibody-
mediated rejection, T-cell mediated rejection, and no rejection
and their related genes, identifying those that were significantly
overexpressed in EVs from patients with antibody-mediated
rejection. On this basis, they created a gene combination
score elaborated from mRNA transcripts of four genes (gp130,
SH2D1B, TNFα, and CCL4), which was able to predict imminent
antibody-mediated rejection (219).

In a study on 231 KT patients, circulating endothelial
microparticles were analyzed before and periodically after KT (up
to 2 months); plasma levels increased during antibody-mediated
rejection episodes and decreased after therapy, with a slower
decline in patients with peritubular capillary C4d staining (220).

In another study, quantification was carried out of
plasma C4d+CD144+ EVs released from endothelial cells
associated with antibody-mediated rejection (11-fold increase
in concentration compared with that in patients with no
rejection), its severity, and response to treatment (over 70%
decrease in concentration after successful anti-rejection
therapy) (100).

Urinary Extracellular Vesicles
In one study (221), 11 proteins were significantly enriched
in urinary EVs from patients with T cell-mediated rejection;
of note, the association was lost when the whole urinary
protein fraction was analyzed. This finding highlighted the
impact of “background noise” from uromodulin and proteinuria,
suggesting that urinary EVs are a more selective source of
biomarkers. Despite this, little evidence has been produced on
urinary EV RNAs so far, as most papers have focused on total,
cell-derived, or cell-free urinary transcripts (222).

In a more recent study, increased expression of 17 urinary EV
proteins was found in patients with T cell-mediated rejection and
two proteins—tetraspanin-1 and hemopexin—were proposed as
biomarkers (223).

Finally, a urine-based platform termed IKEA (“integrated
kidney exosome analysis”), detecting EVs shed by T cells into
urine, revealed high levels of CD3-positive EVs in patients with
rejection, with an accuracy of over 90% for T cell-mediated
rejection (224).
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b) Delayed Graft Function and Other
Settings
Plasma Extracellular Vesicles
In the already mentioned study by Qamri et al., circulating
endothelial microparticles decreased within 2 months of KT,
paralleling renal function recovery, only in patients with specific
types of causal nephropathies such as diabetic nephropathy or
glomerulonephritis secondary to autoimmune disorders (220).

Consistently, Al Massarani et al. found a progressive decrease
in serum EV concentration and in their procoagulant activity
after KT. This evolution was independent from the type of
immunosuppression, whereas it seemed to be influenced by
history of cardiovascular disease and CMV infection (225, 226).
In a Brazilian cohort of 91 KT patients, PLT and endothelial EV
size and concentration were significantly different depending on
renal function and time from KT (227).

Taken together, these data suggest that decreased endothelial
EVs after KT reflect not only antibody- or T cell-mediated
rejection but also improvement of preexisting endothelial
dysfunction and of cardiovascular risk factors, paralleling
recovery of renal function after KT (227, 228).

Urinary Extracellular Vesicles
Urinary EVs have been proposed an enriched source of
biomarkers of DGF. For example, neutrophil gelatinase-
associated lipocalin expression in EVs was higher than in urinary
cells and correlated with DGF (229).

Urinary CD133+ EVs appear to be decreased in KT patients
with slow graft function and vascular damage, suggesting possible
damage to renal stem cell compartment (230).

Likewise, a reduction in urinary aquaporin-1- and aquaporin-
2-containing EVs was observed in rat model of IRI, probably
reflecting impaired trafficking and expression of these proteins
in renal tubule epithelial cells (231), confirming previous finding
of decreased abundance of aquaporin-1 in KT recipients in the
immediate postoperative days (232).

LIMITS, PERSPECTIVES, AND
CONCLUSIONS

Despite the large volume of literature, our knowledge of innate
immunity EVs is still limited (233). Further studies are needed
to widen our understanding in graft antigen spreading and
processing by DCs (53, 70–72) and to clarify their tolerogenic
potential (75–78). Little evidence has been produced on PMN
or macrophage vesicles. Additionally, few studies identified the
target genes of EV miRNAs.

Finally, a major limit of EV analysis is the lack of
standardization and consistency (234): based on different
techniques, diverse markers with almost no overlapping results
have been proposed. Of note, most housekeeping genes used

for cellular assay normalization (e.g., β-actin or GAPDH) are
not consistently expressed in EVs. Normalization of urinary
EV proteins with tetraspanins (CD9, CD63, or CD81) is not
a validated approach, and mRNA analysis remains problematic
(235). Finally, most urinary markers should be standardized for
urinary creatinine, but not all studies have adopted this method.

Despite these barriers, EVs appear promising as both
biomarkers and therapeutic agents in KT. Enhancement of MSC-
EVs therapeutic potential through stimulation with biophysical
or biochemical cues (i.e., LPS, hypoxia, inflammatory cytokines,
growth factors, hormones such as erythropoietin, nitric oxide,
and EVs from other cells such as endothelial cells) is
an attractive perspective (236). Genetically engineered EVs
overexpressing specific proteins or miRNAs acquire stronger
therapeutic properties: for example, HIF-α-overexpressing MSCs
have enhanced angiogenic activity and repaired more efficiently
cardiac tissue in a mouse model compared with control EVs
(237); miR-let7c-overexpressing MSCs selectively homed to
damaged kidney, where they upregulated miR-let7c genes and
downregulated expression of TGF-β, its receptor (TGF-β-R1),
and other pro-fibrotic genes in a renal mouse model of unilateral
ureteral obstruction (175).

Bioengineered EVs hold promise as targeted vehicle of drugs
or miRNAs, as they naturally overcome biological barriers (209,
238). “Decoy EVs” have also been employed to antagonize
inflammatory cytokines (239).

In conclusion, EVs finely tune the crosstalk among innate
immune cells and graft tissue; in particular, they determine
antigen spreading and “cross-dressing” in the early transplant
phases, thus being a key trigger of either alloimmunity or
graft tolerance. Systemically, they modulate complement and
coagulation cascades during transplant related kidney injuries as
antibody-mediated rejection and IRI.

Growing evidence support a potential application of EVs
derived from MSCs and other cell types as therapeutic tools in
different settings of renal transplantation. Finally, urinary and
serum EVs are promising biomarkers of rejection and DGF,
opening new paths toward a renal “liquid biopsy.”
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