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INTRODUCTION

The main goals in patients with acute myocardial infarction 

are to minimize myocardial damage, enhance cardiac repair, 

and decrease myocardial remodeling. Current high-tech ther-

apy involves speedy reperfusion of the infarcted myocardium 

through revascularization of the occluded vessel. However, the 

advantage of reperfusion is compromised by the endothelial 

damage and in�ammation that follow the reinstitution of the 

blood �ow, leading to additional myocardial damage in a pro-

cess named “ischemia/reperfusion (IR) injury.”1-3 IR injury 

can be accompanied by lethal ventricular arrhythmias in ad-

dition to the myocardial injury. 

Mesenchymal stem cells (MSCs), and other cell types, re-

lease extracellular vesicles (EVs) that play a role in intercellu-

lar communication by transporting mRNA, microRNA, and 

proteins between cells. EVs are a class of membrane-bound 

organelles secreted by various cell types.4 �e potential for EVs 
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Purpose: Bioactive molecules critical to intracellular signaling are contained in extracellular vesicles (EVs) and have cardiopro-

tective e�ects in ischemia/reperfusion (IR) injured hearts. �is study investigated the mechanism of the cardioprotective e�ects 

of EVs derived from hypoxia-preconditioned human mesenchymal stem cells (MSCs).

Materials and Methods: EV solutions (0.4 μg/μL) derived from normoxia-preconditioned MSCs (EVNM) and hypoxia-precondi-

tioned MSCs (EVHM) were delivered in a rat IR injury model. Successful EV delivery was con�rmed by the detection of PKH26 

staining in hearts from EV-treated rats.

Results: EVHM signi�cantly reduced infarct size (24±2% vs. 8±1%, p<0.001), and diminished arrhythmias by recovering electrical 

conduction, INa current, and Cx43 expression. EVHM also reversed reductions in Wnt1 and β-catenin levels and increases in GSK3β 

induced after IR injury. miRNA-26a was signi�cantly increased in EVHM, compared with EVNM, in real-time PCR. Finally, in in vitro 

experiments, hypoxia-induced increases in GSK3β expression were signi�cantly reduced by the overexpression of miRNA-26a. 

Conclusion: EVHM reduced IR injury by suppressing GSK3β expression via miRNA-26a and increased Cx43 expression. �ese 

�ndings suggest that the bene�cial e�ect of EVHM is related with Wnt signaling pathway.
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to be used as therapeutic agents, or as biomarkers of pathologi-

cal states, has generated enormous interest.5,6 EVs have been im-

plicated in the process of a remarkable antitumor e�ect in can-

cer by ameliorating tumor immune suppression, metastasis, 

and angiogenesis, along with having a primary role in tissue re-

generation.7-9 EVs have been proposed to stimulate favorable 

signaling pathways in cardiovascular disease: for example, po-

tentially mediating the proangiogenic actions of human stem 

cells.10 Studies have reported that the bene�cial activity of the 

conditioned medium from MSCs is attributable to EVs.11,12 Im-

portantly, exposure to various stressors can change the com-

position of EVs to change the surrounding microenvironment 

through EV-mediated cell-to-cell communication.13 In normal 

cell physiology, EV secretion is a protective process to eliminate 

harmful components released during harmful conditions, such 

as IR injury.14 Under hypoxic conditions, genetically modi�ed 

bone marrow-derived MSCs overexpressing Akt1 have been 

found to release paracrine factors that exert cytoprotective ef-

fects on cardiomyocytes exposed to hypoxia.15 Another study 

of the helpful byproduct e�ects of MSCs reported the release 

of cytokines from bone marrow stem cells boosting new ves-

sel formation, inhibiting cardiomyocyte apoptosis, and main-

taining myocardial contractility.16 Recently, it was reported 

that MSC-derived exosomes increase ATP levels, decrease ox-

idative stress, activate the PI3K/Akt pathway, and increase 

phosphorylated-GSK3β levels to enhance myocardial viability 

and to prevent adverse remodeling after myocardial IR injury.17

Because GSK3β is associated with the Wnt-Fizzled pathway, 

we hypothesized that MSC-derived exosomes would attenuate 

IR injury by e�ecting Wnt pathways. To prove this hypothesis, 

we investigated whether EVs derived from MSCs cultured in 

hypoxic media (EVHM) in�uence Wnt1, GSK3β, and β catenin. 

We also compared Wnt-related miRNA levels between EVHM 

and EVs derived from MSCs cultured in normoxic media (EVNM), 

and found signi�cant increases in miRNA (miR) 26a in EVHM. 

Finally, we demonstrated that EVHM directly targets GSK3β us-

ing anti-miR-26a.

MATERIALS AND METHODS

�is investigation conformed to the Guide for the Care and Use 

of Laboratory Animals published by the US National Institutes 

of Health, and was approved by the animal ethics committee 

of Yonsei University College of Medicine and Cardiovascular 

Research Institute (approval reference number 2016-0135). 

Study groups
To establish an IR injury model, all adult male Sprague-Dawley 

rats (230±10 g) were anesthetized by intramuscular injection 

of ketamine hydrochloride (80 mg/kg) and xylazine hydro-

chloride (4 mg/kg). �e rats were intubated, and were ventilated 

with positive pressure (180 mL/min) using a ventilator (Harvard 

Apparatus model 683, Millis, MA, USA). The small incision 

was operated at the left lateral costal rib to expose the heart. 

�e left anterior descending artery was ligated for 1 h with a 

6-0 silk suture (Ethicon, Somerville, NJ, USA), followed by re-

perfusion for 3 h. Immediately after the initiation of reperfusion, 

125 μL of an EV solution (0.4 μg/μL) in phosphate bu�ered sa-

line (PBS) (IR+EVNM or IR+EVHM group) or PBS alone (IR group) 

was systemically injected via the leg veins of the rats. We used 

sham-operated rats as controls. �e animals were sacri�ced 3 

hours after the EV injection.

To measure the myocardial infarcted size, hearts were sec-

tioned and incubated in 1% 2,3,5-triphenyltetrazolium chlo-

ride (TTC; Sigma-Aldrich, St Louis, MO, USA) for 30 min at 

37°C. Each heart specimen was fixed for 24 h in 10% para-

formaldehyde. Myocardium was identified as red, whereas 

infarcted areas appeared yellow. �e region of normal and in-

farcted left ventricular myocardium was directly assessed by 

planimetry using dedicated software (ImageJ software, NIH 

software). 

Immunohistochemical staining 
For immunostaining of heart tissue, the anterior walls of the 

left ventricles were harvested after being �xed with 10% form-

aldehyde in PBS (pH 7.4), embedded with para�n, and then 

sectioned at a thickness at 4 µm. Immunostaining was detect-

ed with the avidin-biotin complex (ABC) method. �e prima-

ry antibodies used were rabbit anti-Cx43 polyclonal antibody 

(1:2000, Santa Cruz Biotechnology, Santa Cruz, CA, USA) de-

tecting only Cx43. To inactive tissue endogenous peroxidase 

was then blocked by incubation with peroxidase block for 30 

min, and then, the tissue sections were incubated for enzymat-

ic retrieval, followed by 10% blocking serum. �e slides were 

incubated overnight at room temperature, immunohistochem-

istry was colored using the polymer method (Vectastain ABC 

kits, PK-4000, Vector Laboratories, Burlingame, CA, USA), and 

later color development was performed with diaminobenzi-

dine (DAB) and contrast staining with hematoxylin.

Western blotting
Rat heart samples were homogenized and centrifuged at 15000×g 

for 15 min at 4°C, and protein concentration was determined 

using the Pierce BCA Protein Assay kit (�ermo Scienti�c Inc., 

Rockford, IL, USA). �e protein samples were separated using 

SDS-polyacrylamide gel, and the separated proteins were trans-

ferred to a nitrocellulose membrane (Bio-Rad, Richmond, CA, 

USA). After blocking with 10% non-fat milk/TBS-T for 1 h, the 

membrane was incubated with indicated primary antibodies 

[anti-CD81, HSP70, CD63 (System Biosciences, Palo Alto, CA, 

USA), Annexin, Integrin (Abcam, Cambridge, MA, USA), Wnt1, 

GSK3β, p-GSK3β, β-catenin, p-β-catenin (Cell Signaling, Dan-

vers, MA, USA), Cx43 (Santa Cruz Biotechnology), and GAPDH 

(at a dilution of 1:1000, Cell Signaling) overnight at 4°C, and 

then incubated with horseradish peroxidase-conjugated sec-
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ondary antibodies for 1h at room temperature. Western blot sig-

nals were assayed using a reinforced chemiluminescence detec-

tion system (ECL, Amersham Pharmacia Biotech, Piscataway, 

NJ, USA).18 

Real-time polymerase chain reaction
A total of 500 ng RNA was extracted using TRIzol® Reagent (In-

vitrogen, Carlsbad, CA, USA) according to the manufacturer’s 

instructions. cDNA was synthesized using a RevertAidTM First 

Strand cDNA Synthesis Kit (Fermentas, Ontario, Canada). 

Quantitative RT-PCR (qRT-PCR) was performed using SYBR® 

Premix Ex TaqTM II (TaKaRa, Otsu, Japan) for quantification. 

Triplicates were tested for each sample. �e expression of the 

target miRNA were normalized by U6 snRNA, respectively. Pu-

rity of PCR products was identi�ed using a melting curve.

miR and anti-miRNA transfection
We used four intended miRNA target prediction algorithms: 

DIANA-microT3.1, MirTarget2, miRDB, and TargetScan5.1. 

Conserved miRNAs that are expected to target a given gene in at 

least three of the four algorithms were considered as candidates 

for further analysis (Supplementary Figs. 1 and 2, only online).

miR targeting GSK3β and miR-26a-speci�c anti-miRNA were 

transfected into H9C2 cells using Lipofectamine RNAiMax 
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Fig. 1. Isolation, characterization, and delivery of EVs. (A) Isolation of EV-rich fractions from human MSC media using a standard protocol of serial dif-
ferential centrifugation and ultracentrifugation steps. (B) Transmission electron microscopy image showing typical EVs. (C) Nanoparticle tracking 
analysis of EVs showing the number and size distributions of particles. (D) Western blot of HSP70, Annexin, integrin, and CD63. (E and F) PKH26-la-
beled IR+EVHM was detected in the H9C2 cells (E) and heart tissue after leg vein injection (F); white arrows, PKH26. EV, extracellular vesicle; MSC, 
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739

Hyewon Park, et al.

https://doi.org/10.3349/ymj.2018.59.6.736

(Invitrogen, Carlsbad, CA, USA) as per the manufacturer’s in-

structions. After transfection for the indicated time periods, 

cells were analyzed for proliferation, and formaldehyde-�xed 

cells were obtained for immuno�uorescence analysis.19

Immuno�uorescence staining
Cells from the control and experimental groups were grown on 

general cell culture dishes and a �exible energy harvester, re-

spectively. �e cultured cells were �xed with 4% ice-cold form-

aldehyde (pH 7.2–7.3) for 1 h at room temperature, and then 

washed and permeated with 0.3% Triton X-100 for 30 min. Cells 

were washed and blocked with 5% bovine serum albumin (BSA) 

and 0.3% Triton X-100 in PBS for 30 min. Cells were washed 

and stained with GSK3β (Santa Cruz Biotechnology) and phos-

phor β-catenin (Santa Cruz Biotechnology) primary antibod-

ies using 1% BSA with 0.3% Triton X-100 in PBS overnight in a 

cold room at 4°C. Cells were washed and stained with Alexa 

Fluor 488 and Alexa 555 secondary antibodies using 1% BSA 

with 0.3% Triton X-100 in PBS for 3 h at room temperature. Cells 

were washed three times for 5 min, and then stained with 4’,6-di-

amidino-2-phenylindole (DAPI) during the �nal wash. Fluores-

cence images were recorded using a confocal microscope.

Statistical analysis
Data are presented as the mean±SEM. Patch clamp data were 

analyzed using pClamp software, version 10.4 (Axon Instru-

ments, Foster City, CA, USA) and Origin Pro, version 9.0 (Origin-

Lab Corp., Northampton, MA, USA). �e parameters indicat-

ed under the di�erent S1–S2 intervals, and multiple comparisons 

were determined by ANOVA analysis with Bonferroni post-

hoc analyses. A value of p<0.05 was considered statistically 

signi�cant. Details of materials and experimental procedures 

are available in Supplementary Materials and Methods (only 

online).

RESULTS

Con�rmation of EV characteristics and transfer to 
cardiomyoblasts
Fifteen milliliters of each human MSC culture was pelleted at 

300×g for 10 min to remove dead cells. Next, supernatants from 

both cell cultures were obtained by centrifugation at 750×g for 

5 min and then at 1500×g for 15 min to remove large debris and 

apoptotic bodies, respectively. EVs from supernatants were 
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pelleted and washed 3 times (45 min at 14000×g, room tem-

perature) (Fig. 1A).

We con�rmed the diameter of isolated EVs were <1000 nm 

using transmission electron microscopy (Fig. 1B) and 

nanoparticle tracking analysis (Fig. 1C). EVs were electropho-

resed and analyzed by Western blotting using anti CD81, 

Hsp70, Annexin, integrin, and CD63 antibodies (Fig. 1D). 

PKH26-labeled IR+EVHM was detected in H9C2 cells and heart 

tissue after leg vein injection (Fig. 1E and F).

EVHM attenuated IR injury and arrhythmias in 
IR-injured rats
Fig. 2A shows the extent of the infarct size assessed by histolo-

gy with TTC staining. Compared with the IR group (19±1%), the 

degree of infarct expansion was markedly decreased to a third 

in the IR+EVHM group (7±2%, p<0.001) (Fig. 2B). �e typical ST-

segment elevation after IR injury was not observed in the IR+ 

EVHM group (Fig. 2C). Fig. 2D shows examples of ventricular 

tachycardia (VT) and ventricular �brillation (VF) recorded by 

ambulatory Holter monitoring in the IR group. While sponta-

neous VT or VF was not observed in control rats, they were ob-

served in six (60%) rats in the IR group (p=0.003). However, the 

VT episodes were not observed after systemic EVHM treatment 

in the IR group (p<0.001) (Fig. 2E).

Fig. 3A and B show traces of action potentials (APs) and the 

typical maps of activation and AP duration (APD) at a pacing 

cycle length (CL) of 300 ms. In the IR group, the amplitude of 

APD of border (②) and infarcted zone (③) were noticeably 

improved, and activation was hindered. However, the ampli-

tude of APD in the IR-injured zone was signi�cantly restored, 

and activation was spread wider inside the infarcted zone in 

the IR+EVHM group. �e EVHM treatment reversed IR-induced 

APD shortening. Fig. 3C show representative examples of con-

duction velocity (CV) maps for all four groups, and the EVHM 

treatment generally recovered the IR-induced reduction of 

CV. The average CV was calculated from the vector maps at 

infarcted border zone or at corresponding sites. 

Conduction velocity was considerably slowed, and the slope 

of the CV restitution curve became steeper after IR. In the 

IR+EVHM group, the CV value and CV restitution slope were 

comparable to those of the control group. EVHM signi�cantly re-

duced the induction rate of VT/VF in the IR injury group (67% 

vs. 0%, p<0.05) (Supplementary Fig. 3, only online).
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Fig. 3. Electrophysiologic effects of EVHM after IR injury. (A) Sample traces of Vm from the three groups (cycle length=300 ms). (B) Representative acti-
vation (left panels) and action potential duration maps (right panels) from the three groups. (C) Conduction velocity vector maps. EVHM, hypoxia-pre-
conditioned extracellular vesicles; EVNM, normoxia-preconditioned extracellular vesicles; IR, ischemia/reperfusion; LV, left ventricle, RV, right ventricle.
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Reversal of the sodium current (INa) reduced by 
hypoxic injury 
To determine whether EVHM directly alters the function of the 

cardiac sodium channel, INa was recorded in adult rat cardio-

myocytes of the control (n=5), IR (n=5), and IR+EVHM groups 

(n=5). As detailed in Table 1, compared with that recorded in 

the control cells (-73±2 pA/pF), the INa peak density was mark-

edly decreased in the IR cells (-31±2 pA/pF, p=0.001), but not 

after EVHM treatment (-80±7 pA/pF, p=0.002). �e inactivation 

kinetics (τinact) were increased in the IR group (8±1 ms vs. 12±0.2 

ms, p=0.001), but preserved in the IR+ EVHM group (9±0.5 ms, 

p=0.001) (Fig. 4).

Since it is known that arrhythmia is particularly associated 

with gap junctions, we further examined the e�ects of EVHM on 

the levels of the gap junction protein Cx43. Whereas Cx43 (brown 

color, arrows) was su�cient at the cell-cell junctions in nor-

mal myocardium, Cx43 expression was decreased in IR myocar-

dium. Injection of EVHM resulted in the reorganization of Cx43 

at the cell-cell junction (Supplementary Fig. 4A, only online). 

According to Western blot assay of Cx43, IR-induced reduction 

of Cx43 (0.2-fold from normal) was recovered to 0.5-fold to 

normal level by EVHM treatment (Supplementary Fig. 4B, only 

online). �is result shows that EVHM changed the gap junction 

that was interrupted by IR injury, and then leading to stable 

conduction. 

E�ects of EV on the Wnt signaling pathway 
GSK-3β is associated with the Wnt-Fizzled pathway, and Wnt 

signaling is most well known to be a signi�cant modulator of 

Cx43-dependent intercellular coupling in the heart.20 �us, the 

level of Wnt signaling proteins were further assayed (Fig. 5A). 

After IR injury, compared with control, p-β-catenin/β-catenin 

increased by 2.6-fold (p<0.001), and p-GSK3β/GSK3β was de-

creased by 0.7-fold (p=0.036). Compared to IR, EVHM treat-

ment decreased p-β-catenin/β-catenin by 0.4-fold (p=0.004), 

and increased p-GSK3β/GSK3β by 1.4-fold (p=0.032) and 

Wnt1 by 1.3-fold (p<0.001) (Fig. 5B).

�e putative target prediction of validated miRNAs by qRT-

PCR was performed using TargetScan (Version 6.2) and mirDB, 

providing an individual miRNA repression rate for target genes 

related with Wnt pathway. Combining this p-value and its abun-

dance value for each miRNA, the repression rates for the whole 

miRNA pro�le were calculated. Based on the results, the sig-

nificantly expressed five miRNAs were selected. To evaluate 

the change in miRNAs related with Wnt pathway after IR injury 

and EVHM treatment, we next performed qRT-PCR of miR-26, 

miR-148a, miR-31, miR-27a, miR-200a, and miR-34b in hearts 

from each study group. We found that miR-26a was signi�cant-

ly deceased in the IR model and reversed after EVHM treatment 

(Fig. 5C). 

Cardioprotection e�ect of EVHM via miRNA26a 
It is widely known that upregulation of GSK3β and p-β-catenin 

is closely associated with IR injury. Fig. 6A shows confocal mi-

croscope images of H9C2 cells upon immunofluorescence 

staining for GSK3β and p-β-catenin. In hypoxic conditions, 

both GSK3β (3.1-fold) and p-β-catenin (3.8-fold) increased; 

however, EVHM and miR-26 e�ectively prevented increases in 

GSK3β (1.2-fold, p<0.001 vs. IR group) and p-β-catenin (1.1-fold, 

p<0.001 vs. IR group) in hypoxic conditions. After suppression 

Table 1. Effect of Extracellular Vesicles (EVs) on the Time Properties of the INa Current Recorded in Adult Rat Cardiomyocytes

Maximum INa density (pA/pF) Erev (mV) τact (ms) τinact (ms)

Control (n=5) -72.7±1.7 -35.8±3.7 0.7±0.1 8.1±0.8

IR (n=5)   -30.7±2.1* -32.5±1.6 0.5±0.2 12.3±0.2*

IR+EVHM (n=5) -80.3±6.7 -40.0±1.7 0.6±0.2 8.7±0.5

IR, ischemia/reperfusion; EVHM, hypoxia-preconditioned extracellular vesicles.
IR indicates hypoxia/reoxygenation.
*p<0.01. IR vs. IR+EVHM.
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of miR-26a using anti-miR-26a, the e�ect of EVHM was elimi-

nated; EVHM showed no effect on GSK3β and p-β-catenin (Fig. 

6B). �e e�ects of miR-26a and anti-miR-26a on di�erent con-

ditions are presented in Supplementary Fig. 5 (only online). 

DISCUSSION

�e main �ndings of this study were that EVs derived from hy-

poxia-preconditioned MSCs attenuated IR injury by suppress-

ing GSK3β expression. Moreover, they increased electrical con-

duction and Cx43 expression by increasing Wnt1. Finally, miR-

26a was increased in EVs after hypoxic stress, and was related 

with decreases in GSK3β and p-β-catenin. �ese �ndings high-

light a potential new bene�cial tool in IR injury.

Systemic injection of EVs protects the heart against IR 
injury
In this study, the degree of infarct expansion was markedly de-

creased by the systemic injection of EVs originating from hy-

poxic human MSCs. EVHM e�ectively attenuated increases in 

GSK3β, which is important in the process of IR injury. During 

ischemic preconditioning (IPC), GSK3β is phosphorylated and 

inhibited in a Wortmannin-sensitive manner.21 GSK-3β is in-

activated by phosphorylation. Akt, PKC, and PKA phosphorylate 

and inactivate GSK3β. FrzA, a secreted antagonist of the Wnt/

Frizzled pathway, decreases the phosphorylation of GSK3β, 

independent of Akt activity. Overexpression of FrzA blocks the 

IPC-mediated increase in phosphorylation of GSK3β and blocks 

the protection a�orded by IPC.22 Phosphorylation and inacti-

vation of GSK3β are antiapoptotic. Tong, et al.23 showed that 

preconditioning results in increased phosphorylation of GSK3β, 

which is blocked by inhibitors of PI3K. In this study, EVHM re-

duced the sizes of infarct areas. We also con�rmed that EVHM 

was well delivered to the infarct border zone. �erefore, EV func-

tions as a miRNA source to the cell of the infarct border zone.

EVHM improves electrical conduction
Cells in the surviving peri-infarct zone have prepotentials and 

notches on phase 0 upstrokes, decreased space constants, and 
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discontinuous propagation due to abnormal cell-to-cell cou-

pling.24 Surviving border-zone tissue exhibits a decreased phase 

amplitude and upstroke velocity (dV/dtmax), reminiscent of a 

reduced INa.25 Isolated border zone cardiomyocytes also have 

a reduced dV/dtmax26 and marked irregularities in the INa, in-

cluding a diminished current density, increased inactivation, 

and slowed reactivation.27 Marked alterations in the gap junc-

tion organization and Cx43 distribution happen within improved 

myocardial infarctions.28 �us, coupling irregularities due to 

Cx43 changes are central to ventricular arrhythmogenesis af-

ter infarction. �is study showed that EVs improve Na+ current 

and Cx43 expression, which were decreased after IR injury. 

GSK3β is associated with the Wnt-Fizzled pathway, and Wnt 

signaling is best known to be a signi�cant modulator of Cx43-

dependent intercellular coupling in the heart.20 Consistently, Wnt 

1 was signi�cantly increased with EVHM in the IR injury model.

EVHM had a cardioprotective e�ect after IR injury via 
miRNA-26a 
EVs can directly interact with the ligands present on the sur-

face of target cells and activate cascade signaling. In addition, 

EVs can transfer proteins, mRNA, microRNA, and bioactive 

lipids by interacting with target cells by either fusion or inter-

nalization.29,30 Numerous miRNAs have been found to regu-

late regeneration and cardiac repair,31 and these microparticles 

have also been identi�ed as immature mRNA when secreted 

from MSCs.32 �e IR injury protective e�ect of EVs might be 

mediated by heat-shock proteins or a speci�c microRNA. It is 

noteworthy that heat shock protein 20, compared with other 

small heat-shock proteins, is mostly upregulated in animal 

hearts during ischemic conditions.33 Increased miRNA-494 lev-

els protect hearts against IR injury.34

Icli, et al.35 reported that miR-26a acts as a previously unrec-

ognized pivotal regulator of pathological and physiological an-

giogenesis by targeting a SMAD1-Id1-p21WAF/CIP1/p27 signal-

ing axis to promote an antiangiogenic program in ECs. Furthermore, 

neutralization of miR-26a was found to rapidly induce angio-

genesis, to reduce acute myocardial infarction (MI) size, and to 

improve heart function in mice. However, an acute IR model 

demonstrated an essential role for miR-26a in inhibiting high 

mobility group box-1 (HMGB1) expression and attenuating car-

diac IR injury. miR-26a overexpression results in reduced car-

diac IR injury and suppressed HMGB1 expression. �erefore, 

the discrepancy of the e�ect of miR-26 might be related with 

the stage of MI or model of MI.

GSK-3β is a key integration point in IPC, with GSK-3β phos-

phorylation/inhibition raising the threshold for oxidative stress-

induced mitochondrial permeability transition, and thereby pro-

tecting the heart.36 Many other studies have reported that the 

inhibition of GSK-3β mimics the e�ect of IPC and reduces in-

farct size in rats.21,37 In contrast, diabetic rat hearts show increased 

GSK-3β activity and reduced cardioprotection from IPC.38 In this 
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study, GSK-3β phosphorylation/inhibition of IR+EVHM model 

could explain the reduced infarct size of EVHM. Consistent with 

our report, Suh, et al.39 reported that up-regulation of miR-26a 

repress GSK-3β protein expression.

This study showed that increased miR-26a levels in EVHM 

protected hearts after IR injury. We also demonstrated that EVHM 

directly targets GSK3β using anti-miR-26a. The involvement 

of miR-26a in the suppression of GSK3β after IR injury was 

supported by the experiment showing that suppression of GSK3β 

by EVHM is eliminated by the transfection of anti-miR-26a. 

miR-26a was significantly deceased in the IR model and re-

versed after EVHM treatment. However, the delivery of miR-26 

by EVHM was not evaluated in this study. In H9C2 cells, EVNM 

also had a protective e�ect without statistical signi�cance. In-

hibition with anti-miR-26a decreased e�ect of Hy+EVHM to the 

same level as Hy+EVNM. �erefore, the protective e�ect of EVNM 

might be miR-26a-independent. Moreover, the transfection of 

miR-26a successfully suppressed GSK3β in H9C2 cells after hy-

poxic stress. 

There are some limitations to our research. The proteins of 

the EVs were not assayed in this study. Kim, et al.40 pro�led the 

MSC-EV proteome to investigate their therapeutic e�ects, and 

identi�ed 730 EV proteins. A functional enrichment analysis 

showed that cellular processes represented by the MSC-EV 

proteins include cell proliferation, adhesion, migration, and 

morphogenesis. �erefore, the antiarrhythmic e�ects are re-

lated to the combined e�ects of several EV proteins. �is study 

could not demonstrate whether miR-26a targets GSK3β di-

rectly. Dual luciferase assay should be carried out for the eval-

uation of miRNA binding on 3’UTR of GSK3β. Future studies 

are needed to reveal the detailed mechanism. 

In summary, our study demonstrates that EVHM reduced IR 

injury by suppressing GSK3β expression and increased Cx43 

expression suggesting that the bene�cial e�ect of EVHM is re-

lated with Wnt signaling pathway. �ese e�ects might be cor-

related with miR-26a. �ese �ndings highlight a potential new 

bene�cial tool in IR injury. Further study is need to reveal wheth-

er EV-derived miR-26 actually a�ects the function of the gap 

junction (or at least the amount of Cx43).
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