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ABSTRACT 

 

Extracellular vesicles (EVs) are lipid bilayer nanovesicles released by most functional 

cells to body fluids, containing bioactive molecules, mainly proteins, lipids, and nucleic 

acids having actions at target cells. The EVs have essential functions in cell-to-cell 

communication by regulating different biological processes in target cells. Fluids from 

the male reproductive tract, including seminal plasma, contain many extracellular 

vesicles (sEVs), which have been evaluated to a lesser extent than those of other body 

fluids, particularly in farm animals and pets. Results from the few studies that have been 

conducted indicated epithelial cells of the testis, epididymis, ampulla of ductus deferens 

and many accessory sex glands release sEVs mainly via apocrine mechanisms. The sEVs 

are morphologically heterogeneous and bind to functional cells of the male reproductive 

tract, spermatozoa, and cells of the functional tissues of the female reproductive tract after 

mating or insemination. The sEVs encapsulate proteins and miRNAs that modulate sperm 

functions and male fertility. The sEVs, therefore, could be important as reproductive 

biomarkers in breeding sires. Many of the current findings regarding sEV functions, 

however, need experimental confirmation. Further studies are particularly needed to 

characterize both membranes and contents of sEVs, as well as the interaction between 

sEVs and target cells (spermatozoa and functional cells of the internal female 

reproductive tract). A priority for conducting these studies is development of methods 

that can be standardized and that are scalable, cost-effective and time-saving for isolation 

of different subtypes of EVs present in the entire population of sEVs. 

 

Keywords: Extracellular vesicles; Epididymis; Accessory sex glands; Seminal plasma; 

Pets; Livestock species. 
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1. Introduction 

 The fertility potential of a sire is determined not only by the spermatozoa 

produced, but also by the accompanying seminal plasma (SP), a fluid produced by the 

secretions of the male reproductive tract, mainly from the epididymis and accessory sex 

glands, and which is the medium that surrounds sperm during and after ejaculation. The 

SP is a complex fluid, containing many active biomolecules that have important functions 

in regulating sperm, fertilizing capacity and signaling uterine immune tolerance to 

facilitate embryo and placental development (Rodriguez-Martinez et al., 2021a). Indeed, 

some SP-biomolecules directly affect important sperm functions such as motility or 

capacitation (López Rodríguez et al., 2013; Pereira et al., 2017). Other components of SP 

regulate the uterine immune system, promoting a tolerogenic environment for optimal 

embryo development (Waberski et al., 2018). Although some SP-biomolecules are free 

in the SP, many others may be encapsulated in extracellular vesicles (EVs) where they 

would remain protected from the many natural inactivators in SP, such as proteases or 

nucleases. In this regard, SP, like other body fluids, contains a large number of EVs (e.g., 

billions in pig SP; Barranco et al., 2021), which are released by the functional secretory 

cells of the different organs of the male reproductive system. 

 Extracellular vesicles are lipid bilayer nanovesicles, 30 to 350 nm in diameter, 

released by the vast majority of functional cells into the body fluids, containing bioactive 

molecules, mainly proteins, lipids and nucleic acids that are transported to target cells 

(Jeppesen et al., 2019). The EVs have an essential function in cell-to-cell communication 

and regulate different biological processes in the target cells (Doyle and Wang, 2019). 

The presence of EVs in the fluids of the male reproductive tract was reported more than 

50 years ago. In fact, these body fluids would be among the first where nanometer-sized 
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vesicles surrounded by a membrane were identified. The first study from which there was 

reporting of vesicle-like membranous structures in semen was performed by Metz et al. 

(1968) in rabbits. Such membranous vesicles were later identified in the semen of human 

(Brody et al., 1983; Ronquist and Brody, 1985), and livestock: sheep (Breitbart et al., 

1983; Breitbart and Rubinstein, 1982), cattle (Agrawal and Vanha-Perttula, 1988, 1987, 

1986), horses (Arienti et al., 1998; Minelli et al., 1999, 1998) and pigs (Ghaoui et al., 

2004). These pioneering studies, based mainly on electron microscopy, were exploratory 

and provided elementary, yet relevant data, such as the size and shape of seminal EVs 

(sEVs). Even though there has been this conducting of these early important studies, the 

sEVs remain poorly evaluated and the biogenesis, characterization and functions of sEVs 

are far from being fully understood. In fact, sEVs are among the least explored among 

the EVs in the body. A global survey recently conducted by the International Society for 

Extracellular Vesicles (ISEV) highlighted that research on EVs has mainly focused on 

those circulating in blood, cerebrospinal fluid and urine; with there being few studies with 

semen or colostrum, which are included in the miscellaneous group of so called "other 

fluids", which together account for about 1% of the total research conducted on EVs 

(Royo et al., 2020). Furthermore, very few of these already limited investigations on sEVs 

have been conducted in livestock species, even though the SP contains comparatively 

more EVs than cerebrospinal fluid or blood plasma, as reported for pigs (Skalnikova et 

al., 2019). 

 Although sEV-research remains limited and has been conducted mostly in humans 

or biomedical model species, there have been some very interesting studies from which 

results have been published in recent years in pets and livestock that provides both 

relevant findings for understanding sEV functions and a basis for future research. The 

objectives of this review are to highlight such research, by providing a review of the most 
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important findings, and also provide the perspective of where future studies should be 

focused. The review also shows some findings from humans and animal models that 

clarify methodological issues about sEVs and provide insights that could be extrapolated 

to sEVs from farm animals as well as pets, specifically dogs and cats. 

 

2. Biogenesis and characterization of seminal extracellular vesicles 

2.1. Biogenesis 

 Conventionally, EVs are clustered into two subsets, namely exosomes (<150 nm) 

and microvesicles (>100 nm) and this subdivision entails differences in release 

mechanisms. Exosomes are released from cytoplasmic multivesicular bodies that fuse 

with the plasma membrane, whereas microvesicles are released by budding directly from 

the plasma membrane (Hessvik and Llorente, 2018). While these releasing mechanisms 

are also present among the epithelial cells of male reproductive tissues, sEVs are 

primarily released following apocrine secretion mechanisms (Foot and Kumar, 2021). 

This mechanism involves the cytoplasmic protrusion of apical vesicles containing even 

smaller vesicles in addition to other molecular components. These apical blebs, so-called 

storage vesicles, detach from the secretory cells into the lumen and disintegrate, releasing 

the smaller vesicles (Hermo and Jacks, 2002). These small vesicles are of different shapes 

and sizes and would be the EVs that are present in the fluids of the male reproductive 

tract (Figure 1). Some of these newly released vesicles would have a very short journey, 

at least in the epididymis, as they bind to proximate epithelial cells, where the contents 

of sEVs promote a favorable microenvironment for sperm maturation (Belleannée et al., 

2013; Tamessar et al., 2021). 

 Traditionally, the EVs present in the fluids of the male reproductive tract are 

mainly released by the epididymis and the prostate gland. In fact, epididymosomes and 
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prostasomes are the terms commonly used to refer to EVs released in the male 

reproductive tract (Saez et al., 2003; Sullivan and Saez, 2013), with prostasomes being 

an inaccurate term to refer to all EVs present in SP. In this review, there will be use of 

the “umbrella” term for seminal extracellular vesicles (sEVs) to refer to all EVs released 

by the male reproductive tract, regardless of the specific site of release. Conceptually, 

functional cells of any tissue of the male reproductive tract should have the capacity to 

release EVs, as occurs in other parts of the body (Hessvik and Llorente, 2018). In addition 

to the epididymis and the prostate gland, epithelial cells of vesicular glands (anatomically 

referred to as seminal vesicles) and the ampulla of the ductus deferens in bulls release 

EVs (Agrawal and Vanha-Perttula, 1987; Renneberg et al., 1995). Furthermore, apocrine 

secretion of EVs in the ductus deferens has been reported in mice (Manin et al., 1995). 

Indirect evidence indicates sustentacular cells in the testis have the capacity to release 

EVs. Mancuso et al. (2018) reported that Sertoli cells of pigs cultured in-vitro release 

EVs with microRNAs (miRNAs) and protein contents that vary with FSH and 

testosterone concentrations in the surrounding milieu, suggesting Sertoli cells have 

signaling pathways to the seminiferous epithelium and to other tissues that are mediated 

by EVs, which could even include other sustentacular cells, such as the rete testis. 

Currently, there are no reports of bulbourethral glands releasing EVs; the secretions form 

these glands occur via an apocrine, goblet-cell like mechanism (Badia et al., 2006). In 

summary, most internal organs of the male reproductive system produce EVs, 

contributing to the heterogeneous population of EVs present in SP. Unfortunately, as the 

present time, there remains to not be sufficient knowledge about the specific markers 

associated with differentiating EVs and how this is affected by tissue source. 

 

2.2.  Characterization 
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 In terms of morphological characterization and in the absence of specific studies 

performed in pets and livestock species, the cryo-electron microscopy study performed 

by Höög and Lötvall (2015) on human sEVs is uniquely illustrative. There was 

identification of morphologically distinct subtypes of sEVs: spherical or oval in shape 

and with electron dense or translucent contents. Extracellular vesicles morphologically 

similar to these subtypes can also be identified in the SP of the pig (Barranco et al., 2019; 

Skalnikova et al., 2019) and chicken (Cordeiro et al., 2021). The transmission electron 

microscopy images depicted in Figure 2 are indicative of sEVs containing some of these 

morphological subtypes. These studies confirm there is a diversity of EVs in the SP-

population and Höög and Lötvall (2015) postulated that each subtype of sEVs were from 

a specific cellular origin. 

 At present, there are limited reports in which there are data reported for 

characterizing the membrane of sEVs and very few of these studies were performed in 

pets and livestock. The only noteworthy study is that of Piehl et al. (2006) where there 

was reporting on the characterization of the membrane of EVs and sperm isolated from 

the sperm-rich fraction (SRF) of boar ejaculates and identification that there was a large 

concentration of cholesterol and sphingomyelin similar to that of the sperm membrane 

contents for these compounds. One of the most interesting techniques used to characterize 

EVs is the specific markers because these markers allow for procedures to be utilized to 

ascertain the differentiation of EVs from other co-isolated nanoparticles and can also be 

utilized to identify specific EV subtypes. The EVs are also enriched in tetraspanins, a 

transmembrane protein family (Jankovičová et al., 2020), in addition to other proteins. 

Accordingly, the International Society for Extracellular Vesicles (ISEV) recommends 

analyzing some of these transmembrane proteins, such as CD9, CD63, CD81, to 

characterize the isolated EVs (Théry et al., 2018). Using these markers, Barranco et al. 
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(2019) identified different subtypes of EVs in SP of boars, which could provide insights 

into the differences in cells producing the EVs and in the contents and also target cells of 

sEVs because tetraspanins have functions in the selective binding of EVs to target cell 

membranes (Gurung et al., 2021). In boar semen, Alvarez-Rodriguez et al. (2019) utilized 

cytometric procedures to determine which sEVs contained CD44, a cell surface protein 

that is important in cell-to-cell interaction and adhesion. Interestingly, the percentage of 

CD44-positive sEVs varied according to objectively collectable ejaculate fractions (10 

first mL of SRF, rest of SRF and post-SRF), being proportionally greater in the first 10 

mL of SRF. There were suggestions, based on the findings, that these CD44-positive 

sEVs are produced by the epididymis, because the SP of the first 10 mL of SRF comes 

mostly from the epididymal cauda (Rodriguez-Martinez et al., 2021a). There has also 

been attempts to characterize chicken sEVs with results indicating there were few sEVs 

and that these did not contain either CD9 or CD44 proteins (Alvarez-Rodriguez et al., 

2020), but these earlier findings are inconsistent with the more recent findings of Cordeiro 

et al. (2021). In summary, the results from studies clearly indicate the SP contains a 

heterogeneous mixture of EVs, which would be produced by different cells, have different 

contents and probably also have different target cells. For example, Sahlén et al. (2010) 

reported that in men there were specific markers such as CD10, CD13 and CD26 that 

were present in sEVs released by the prostate, but not in those secreted by the vesicular 

glands. 

 Extracellular vesicles encapsulate a diversity of active biomolecules, mainly 

lipids, a wide range of proteins, including cytokines and regulatory enzymes, and nucleic 

acids, including DNA and both small non-coding and regulatory RNAs (Keerthikumar et 

al., 2016), and protect these compounds from natural inactivators in body fluids (e.g., 

proteases and nucleases in SP). The complex contents of sEVs is customized by the 
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secretory cells for delivery to specific target cells. Consequently, there may be substantial 

differences in the contents of EVs among body fluids. For example, results from a study 

in cattle in which there was comparison of EVs, indicated there were differences in 

protein contents if EVs were isolated from milk or blood plasma (Koh et al., 2017). There 

are a few studies in which there has been evaluation of sEV contents in pets and livestock 

and they have focused mainly on proteomic and transcriptomic profiling. In the 

proteomics area, there have been two large-scale studies that have recently been 

performed, namely, the study of Leahy et al. (2020) of sheep sEVs and Rowlison et al. 

(2020) with sEVs of cats. There was identification of a total of 520 and 3,008 proteins, 

respectively. The results of the study by Leahy et al. (2020) indicated sEVs of sheep are 

enriched in proteins related to vesicle biogenesis, metabolism, and membrane adhesion 

and remodeling functions, the latter including several reproductive-specific proteins 

directly related to sperm fertilizing capacity. Results from the study by Rowlison et al. 

(2020) that focused on epididymal EVs of domestic cats, comparing the proteome of EVs 

isolated from different epididymal segments, indicated there were several EV-proteins 

were differentially abundant between segments of the epididymis. Some of these proteins 

are related to the epididymal sequential maturation of spermatozoa, specifically with 

acquisition of motility and capacity to bind to the zona pellucida (ZP). Similar results 

were previously reported by Girouard et al. (2011) on EVs isolated from the caput and 

cauda of the bull epididymis. In addition, there are other studies based on one- or two-

dimensional gel electrophoresis (2-DE) with the first reported by Gatti et al. (2005) in 

EVs collected from cauda epididymis of sheep. In this study, there was comparison of the 

sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) banding pattern 

of these epididymal cauda EVs with that of epididymal cauda fluids (raw fluid and the 

supernatant fluid collected using ultra-centrifugation procedures, i.e., EVs-free), SP, 
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cytoplasmic droplets, and mature spermatozoa, and results indicate there were protein 

bands of epididymal cauda EVs that were singular and different from that of other 

samples. The most abundant proteins in epididymal cauda EVs were grouped as 

membrane-bound proteins, metabolic enzymes and cytoskeleton-associated proteins. 

Frenette et al. (2006) compared the protein profile of EVs collected from caput and cauda 

bull epididymis and from ejaculated semen. The protein 2-DE profile varied among the 

sources of EV-origin, with those from caput epididymis having many unique spots, which 

were consistent in gel migration to that of specific proteins such as heat shock protein 

HSP90B1 and HSPA5, with both of these proteins being relevant for oocyte fertilization 

(Dun et al., 2012). In contrast, other proteins related to sperm functions, such as P25b, a 

protein involved in the binding of sperm to the ZP (Caballero et al., 2010), were only 

present in EVs isolated from epididymal cauda and ejaculates. It is noteworthy that sEVs 

contain immunoregulatory proteins, such as transforming growth factor β isoforms 1-3 

(Barranco et al., 2019). Piehl et al. (2013) analyzed the protein composition of boar sEVs, 

with there being identification of a total of 28 distinct proteins using MALDI-TOF 

procedures (Matrix Assisted Laser Desorption/Ionization Mass Spectrometry mass 

spectrometry). The proteins were grouped as structural proteins (mainly actin), enzymes, 

intracellular ion channels and spermadhesins, the most abundant proteins in boar SP 

(Rodriguez-Martinez et al., 2021a). Ronquist et al. (2013) compared the SDS-PAGE 

banding patterns of sEVs from four species, namely human, canine, bovine and equine. 

Most of the protein bands were within the molecular weight in the range of 10 to 150 

kDa, such as with the boar sEVs (Piehl et al., 2013), and with similar banding pattern 

among the four species. Protein bands, however, stained differentially among species, 

with bands from dog sEVs less stained.  



11 
 

 Using transcriptomics, four recent studies were conducted that focused on 

evaluating the miRNA contents of bull, boar and stallion sEVs. In bulls, Alves et al. 

(2021) evaluated the contents of miRNAs of sEVs, identifying 380 miRNAs. There was 

a listing of all miRNAs provided but there was not information provided regarding the 

possible associations with reproductive functions because that was not the goal for 

conducting the study. In boar sEVs, Xu et al. (2020) identified 325 miRNAs, predicting 

reproductive functions for some of these miRNAs. Specifically, there were functions of 

spermatogenesis (ssc-miR-148a-3p; ssc-miR-10a-5p) and fertility (miR-10b, miR-191, 

miR-30d, and let-7a), with one of these (ssc-miR-200b) particularly related to the number 

of piglets born per litter. It was also noted that boar sEVs are rich in PIWI-interacting 

RNAs (piRNAs = 19,749 in number), although there was no evaluation of associations 

of these piRNAs with any reproductive function because of the lack of consultative 

databases. Also in boars, Zhang et al. (2020) evaluated the miRNA contents of EVs 

isolated from urine, blood plasma, SP and bile, and reported that all isolated EVs 

contained well-defined miRNAs related to immune functions. Also recently, Twenter et 

al. (2020) evaluated the miRNA contents of stallion sEVs from the caput, corpus and 

cauda epididymis, and reported that some of the miRNAs that were identified had putative 

functions in sperm motility and viability and also in oocyte maturation and embryo 

development. It was also reported that epididymal EVs have miRNA contents from 

epididymal epithelial cells that are transferred to maturing spermatozoa as these are 

circulating through the epididymis. In addition to this transfer of miRNAs to maturing 

sperm, sEVs are also involved in the transfer of contents to mature sperm, including 

miRNAs, after ejaculation as long as the sperm remain surrounded by SP (Trigg et al., 

2019). Together the results from these proteomic and transcriptomic studies clearly 

indicate sEVs encapsulate biomolecules that modulate sperm functions and also indicate 
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the biomolecules contained in the sEVs varies with the tissues secreting and between 

species producing the sEVs. Besides these two variables, there are other factors 

influencing the contents of sEVs. The contents of sEVs would be testosterone-dependent, 

and the sEVs released when testosterone concentrations are basal would be less effective 

in modulation of sperm functions (Ma et al., 2018). Similarly, environmental factors, such 

as excessive air temperature, would also have effects on the contents of sEVs, at least on 

the content of miRNAs, as reported for heat-stressed bulls (Alves et al., 2021).  

 

3. Interaction between seminal EVs and spermatozoa 

 Once released from the secretory functional cells to the ductal lumen, sEVs 

interact with spermatozoa. The interaction involves three sequential processes, namely, 

binding, fusion and content trafficking. Seminal EVs bind to specific sperm membrane 

receptors such as Rab family proteins and soluble N-ethylmaleimide-Sensitive Factor 

attachment protein receptor (SNARE), both identified in sperm and sEVs (Girouard et 

al., 2011). Components of membrane lipid raft microdomains would be involved in the 

fusion between sEVs and spermatozoa (Candenas and Chianese, 2020). It is still not 

entirely clear how sEVs deliver contents to sperm. Two alternative delivery mechanisms 

are currently contemplated; direct membrane fusion or the formation of transient fusion 

pores (Björkgren and Sipilä, 2019). The first mechanism would involve tetraspanins, such 

as CD9, and integrins to promote competent fusion sites after 

glycosylphosphatidylinositol-anchored mediated binding (Al-Dossary et al., 2015). The 

second mechanism would involve the mechanoenzyme dynamin 1 in the formation of 

transient fusion pores (Zhou et al., 2019). Milk fat globule factor 8 (MFGE8) protein, 

identified in sEVs of sheep (Leahy et al., 2020), could also be relevant for efficient 

trafficking of biomolecules between sEVs and sperm (Trigg et al., 2021). It is also 
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noteworthy that the sEVs, in addition to transferring contents to the sperm, could also be 

involved in processes that lead to removal of "non-useful" proteins from the sperm 

membranes. Leahy et al. (2020) reached this conclusion after analyzing the protein 

contents of sheep sEVs and spermatozoa. The interaction between sEVs and sperm would 

be transient, and the sEVs would bind, fuse, interchange contents and detach. 

 Some sEVs bind to sperm immediately after release, during the period of transport 

of sperm through the male reproductive duct system. Others are free in the SP and are 

transported together with spermatozoa at the time of ejaculation. Some of these free sEVs 

bind to sperm after ejaculation (Du et al., 2016) and others do so after transport into the 

female reproductive tract after mating or AI (Aalberts et al., 2013). Interestingly, Aalberts 

et al. (2013), in an experiment conducted with stallion sEVs, proposed that the three 

sequential interaction processes, namely binding, fusion and content-release or -

exchange, would not occur in a timely sequence after the sEVs bind to sperm in the female 

reproductive tract. There was postulation that the binding would occur in the uterus and 

the fusion in the oviduct, shortly before fertilization, under influence of progesterone 

released at ovulation. The pH of the environment would be a modulating factor of sEV-

sperm interaction although the matter is still controversial. In humans, Murdica et al. 

(2019a) stated that sEV-sperm binding would occur at a neutral pH and fusion at an acidic 

pH, which occurs in the vagina, the site of semen deposition during intercourse in 

humans. This would be feasible in species with vaginal deposition of semen but not in 

those where there is semen deposition in the cervix or uterine body, as occurs in most 

farm animals. In horses, Aalberts et al. (2013) reported that the binding of sEVs to viable 

sperm was optimal at pH of 7.5 to 8.0. Noteworthy to remember is that the spermatozoa 

entering the cervix in humans are those present in the prostate-dominated SP, the non-

coagulating first portion of the ejaculate, while those sperm in the vagina are entrapped 
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in a coagulum formed by semenogelins, and not necessarily involved in fertilization 

(Rodriguez-Martinez et al., 2011). 

 The interaction between sEVs and sperm would be selective. Bull (Schwarz et al., 

2013) and ram (Gatti et al., 2005) EVs from the caput epididymis have more fusogenic 

affinity for spermatozoa than those from the cauda segment. Furthermore, among 

epididymal cauda EVs, CD-9-positive EVs would be those for which there was transfer 

of contents to spermatozoa (Caballero et al., 2013) and for such transfer to occur there 

would be actions of dipeptidyl peptidase-4 protein, also known as CD-26, that would be 

required. Interestingly, the epididymal EV-population lacking CD9 has a greater affinity 

for non-viable sperm, transferring epididymal sperm-binding protein 1 to these cells 

(D’Amours et al., 2012). Binding between spermatozoa and sEVs depends not only on 

sEVs, but also on spermatozoa. The in vivo sEV-to-sperm binding in the epididymal 

lumen is segment-dependent, being greater in the caput and less in the cauda, as occurs 

in sheep (Gatti et al., 2005). Such binding, however, is also greater between caput EVs 

and cauda spermatozoa when these are cultured in vitro (Frenette et al., 2010). These 

findings indicate epididymal sperm are more or less likely to bind with sEVs depending 

on stage of maturation of these spermatozoa. There would also be selectivity with sEV 

binding to sperm because of specificity of binding sites. Sperm have three structurally 

well-defined compartments, namely the head, mid-piece and tail, each of these with well-

defined functions. Vesicles from the epididymis would have a greater targeting affinity 

for the post-acrosomal region of the head (Zhou et al., 2019), whereas those derived from 

the accessory sex glands would have an affinity for all head membrane domains 

(acrosome ridge, acrosome, and post-acrosome) (Aalberts et al., 2013; Du et al., 2016). 

In this regard, sEVs bind to sperm in the three main sperm compartments (Figure 3). The 

different binding site would be linked to the functions and those sEVs bound to the sperm 
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head would influence capacitation, acrosomal reaction and oocyte binding capacity, 

whereas those bound on the mid-piece and main piece of the tail would have a greater 

effect on mitochondrial activity, energy metabolism and motility.  

 

4. Involvement of seminal EVs in sperm maturation and functionality 

 Sperm maturation occurs during the transport through the epididymis and is 

modulated by the sequential interaction of maturing sperm with changing intraluminal 

fluids. This interaction leads to structural and compositional changes that enable sperm 

to acquire the capacity for forward motility and for the fertilization of oocytes (Björkgren 

and Sipilä, 2019). Important factors in this interaction are the sEVs released in the 

epididymis, the so-called epididymosomes, that are involved in the transfer of bioactive 

molecules to maturating sperm for the acquisition of forward motility and the capacity to 

fertilize the oocyte (Sullivan, 2015). Results from research conducted in bulls indicates 

epididymosomes have dual effects on sperm maturation (Belleannée et al., 2013). The 

first, more direct, is by fusing with the membrane of maturing sperm and transfer of 

contents into sperm. The second, indirect action, is by interacting with epithelial 

epididymal cells through paracrine actions to modulate secretions to provide an optimal 

epididymal environmental milieu for sperm maturation. The epididymal environmental 

milieu and the involvement of epididymosomes in sperm maturation are discussed in 

more detail in another review in this Special Issue of Animal Reproduction Science 

(Rodriguez-Martinez et al., 2021b). 

 Most studies relating sEVs and sperm functional parameters have been conducted 

in humans and mostly in men where there are marked alterations of values for seminal 

variables, such as oligozoospermia, azoospermia, asthenozoospermia and 

teratozoospermia (Candenas and Chianese, 2020). Highlighted is the study by Murdica et 
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al. (2019b), where results indicated there were effects of sEVs on the regulation of sperm 

motility and time of capacitation after incubating ejaculated sperm with sEVs isolated 

from the SP of astheno- or normozoospermic men. Specifically, sEVs from 

normozoospermic men but not from asthenozoospermic men, enhanced sperm motility 

and induced capacitation. This differential function of sEVs would be related to 

differences in the abundance of proteins and miRNAs involved in reproductive processes 

that are contained in sEVs from individuals with normal and altered semen parameters 

(Barceló et al., 2018; Murdica et al., 2019a). Similar studies have not been conducted in 

livestock species, perhaps because breeding sires are selected not only for their genetic 

traits, but also for producing ejaculates with satisfactory sperm quantity and quality, while 

those with lesser semen quality are culled. 

 The results from the few studies in pets and farm animals relating sEVs and sperm 

functions indicated sEVs would have effects on sperm motility and capacitation, in 

addition to the acrosomal reaction (Figure 4). In pigs, Piehl et al. (2013) and Du et al. 

(2016) conducted similar studies by incubating/extending ejaculated sperm with sEVs 

and evaluating effects on motility and capacitation. Regarding sperm motility, while Piehl 

et al. (2013) reported there were no differences between treated sperm incubated with 

sEVs and control sperm incubated with extender without EVs. Du et al. (2016) noted that 

EVs enhanced sperm motility. Beyond this inconsistency in findings regarding sperm 

motility, results from both studies were consistent in that sEVs stabilized sperm 

membranes and prevented premature capacitation and consequent acrosome exocytosis. 

In an earlier study with pigs, Siciliano et al. (2008) reported the acrosome rupture was 

induced in sperm incubated with sEVs. In a study conducted with stallion semen, Aalberts 

et al. (2013) reported that incubation of ejaculated sperm with sEVs did not have effects 

on the timing of capacitation. In pets, Mogielnicka-Brzozowska et al. (2015) reported that 
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the total and progressive motility of dog sperm improved after incubation with sEVs. The 

mechanism of action of sEVs in affecting sperm motility would be related to the 

regulation of the sperm intracellular Ca2+ concentrations (Palmerini et al., 1999; Park et 

al., 2011). Recently, Zhang et al. (2021) proposed that sEVs would have functions in 

activating a cation channel of sperm (CatSper), which regulates motility during 

capacitation-related processes (Vicente-Carrillo et al., 2017). Other EV-mechanisms 

could also be involved. For example, sEVs synthesize ATP through glycolysis and this 

ATP would modulate sperm mitochondrial metabolism and, consequently, sperm motility 

(Guo et al., 2019). Furthermore, sEVs would control the transfer of zinc ions into 

spermatozoa, an essential ion to stabilize sperm membranes and thus promote motility 

(Mogielnicka-Brzozowska et al., 2015). The mechanism of action of sEVs on regulating 

the timing of sperm capacitation is still unclear. In humans, Bechoua et al. (2011) 

suggested that sEVs modulate protein tyrosine phosphorylation, a pivotal process in 

sperm capacitation. Aalberts et al. (2013), however, conducted an experiment incubating 

ejaculated spermatozoa of stallions with sEVs with results indicating sEVs would have 

limited effects on tyrosine phosphorylation. The results for these studies in pets and 

livestock were inconsistent regarding the effects of sEVs on sperm functions, and results 

were also inconsistent in studies performed in humans (Foot and Kumar, 2021). There 

are several explanations for these inconsistencies, the most plausible being differences in 

methodologies utilized between studies to isolate sEVs and the intrinsic diversity in the 

contents and membrane composition of isolated sEVs. The isolation methods used in the 

studies did not result in a similar purity of isolated sEVs, and some of the isolated sEVs 

may be contaminated with proteins and miRNAs free in the SP (Royo et al., 2020). 

Another factor contributing to inconsistent results would be the inherent diversity of 

isolated sEVs. Several subtypes of EVs are present in the SP of farm animals (Alvarez-
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Rodriguez et al., 2019; Barranco et al., 2019) and each of these subtypes would have a 

different cellular origin and, therefore, also different contents (Greening and Simpson, 

2018). This diversity of EVs transported through semen can selectively interact with 

target cells, whether spermatozoa or cells of the male or female reproductive tract, 

providing for a very complex and yet, little understood mode of cellular communication.  

 Successful long-term semen preservation in mammals still remains a challenge. 

Current sperm freezing-thawing methods, even the most efficacious, remain suboptimal, 

because by imposing these procedures there is inducing of structural as well as 

biochemical and functional changes in sperm, impairing functions of sperm after thawing, 

including fertilization capacity (Khan et al., 2021; Kumar et al., 2019; Yeste, 2016). To 

the best of our knowledge, there is only one study where there has been exploration of 

the potential of EVs to mitigate the detrimental effects of freezing-thawing processes on 

spermatozoa. The results of the study of Rowlison et al. (2021) conducted in domestic 

cats indicate that frozen-thawed sperm improved motility after thawing when incubated 

with epididymal EVs. In a number of studies, there was investigation of the usefulness of 

EVs secreted outside the male reproductive tract in improving sperm cryopreservation 

(reviewed by Saadeldin et al., 2020). Results from in vitro experiments conducted by 

Alcantara-Neto et al. (2020) indicted the effectiveness of pig oviductal EVs for improving 

the survival of thawed boar sperm. Similar results were reported by De Almeida Monteiro 

Melo Ferraz et al. (2020) when frozen-thawed spermatozoa from red wolves and cheetahs 

were incubated with dog and cat oviductal EVs, respectively. Mesenchymal cell derived 

EVs also have been effective in these regards. Qamar et al. (2019) reported that there was 

greater motility and integrity of plasma and acrosomal membranes of frozen-thawed dog 

sperm by adding mesenchymal cell-derived EVs to the freezing medium. Similar results 

were also reported by Mokarizadeh et al. (2013) for mouse sperm. The results from 



19 
 

studies did not indicate there were causal mechanisms for these outcomes, but Qamar et 

al. (2019) attributed the positive effect to the capacity of EV contents to repair sperm 

membranes and reduce oxidative stress associated with cryopreservation. In that study, 

there were changes in the expression of some genes associated with membrane repair, 

modulation of mitochondrial reactive oxygen species and chromatin integrity. 

Mokarizadeh et al. (2013) also reported that there was an increased abundance of specific 

EV biomolecules in the membranes of thawed spermatozoa, namely CD29, CD44, 

ICAM-I and VCAM-I. Not all EVs, however, would have positive effects on sperm 

functions. Extracellular vesicles from human embryonic kidney-derived cells, a scalable 

cell line used for mass EV-production, did not have effects on the functions of pig sperm 

after 5 h of co-culture (Vilanova-Perez et al., 2020). 

 To the best of our knowledge, there is only one scientific report linking sEVs to 

male in vivo fertility. Cordeiro et al. (2021) isolated sEVs from rooster ejaculates with 

marked differences in sperm viability and motility, and ejaculates from more fertile males 

having smaller sEVs than those from less fertile males. It was also reported that there 

were compositional differences between sEVs, with there being a larger abundance of 

HSP90AA1 in the sEVs isolated from more fertile males. In addition to having effects on 

the functions of sperm and thus male in vivo fertility, sEVs would also contribute to the 

fertility of males through interactions with the epithelial cells of the female reproductive 

tract after mating or insemination (Figure 4). Seminal EVs have the capacity to bind and 

be internalized by the endometrial cells (Paktinat et al., 2019). Bai et al. (2018) reported, 

in an in vitro experiment, that pig sEVs had the capacity to increase the production of 

proteins related to immune and inflammatory responses in endometrial epithelial cells. 

Accordingly, sEVs would have essential functions in regulating the immune response of 

the female reproductive tract, facilitating the survival and functions of sperm and 
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subsequent embryo and placental development. It is noteworthy that sEVs, like those 

present in other body fluids, contain a large number of miRNAs with well-documented 

immune-related functions (Zhang et al., 2020). 

 

5. Conclusions and targets for future research 

 Results from studies addressed in this review indicate sEVs remain underexplored 

compared to those found in other body fluids, such as those circulating in blood or 

cerebrospinal fluids, even though there are comparatively more EVs in SP than in any 

other body fluids. This lack of knowledge is particularly striking for sEVs present in the 

SP of pets (dog and cat) and farm animals. Summarizing the results from the few research 

studies that have been conducted, it seems clear the epithelia of the male reproductive 

system releases EVs, including the testis, epididymis, vas deferens ampulla and some 

accessory sex glands, and that these tissues do so mainly through apocrine mechanisms. 

The released sEVs would bind to and regulate secretory cells in close proximity, with the 

paracrine pathway being the mode of action, spermatozoa and cells of the functional 

tissues of the female reproductive tract, following mating or insemination. In sperm, sEVs 

bind, fuse with the plasma membrane and transfer contents that, based on the current 

knowledge, would affect epididymal maturation, motility and capacitation. Furthermore, 

sEVs would also have functions in the removal of non-functional proteins from 

spermatozoa. Once inside the female reproductive tract, the sEVs would be bound and 

internalized by the epithelial cells modulating the immune response against spermatozoa 

and embryos. The limited results that have been reported provide valuable information 

on sEVs, but many of these findings remain open to speculation and, therefore, findings 

need to be evaluated in future studies. Consequently, the research of sEVs in pets and 

livestock remains a challenge and different research approaches should be considered. 
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 Further characterization studies of both the membrane and contents of sEVs are 

essential, but to do so, will first require methods that can be standardized scalable, 

inexpensive, and time-saving for isolation of pure sEVs. Currently, different isolation 

methods are being used, contributing to some inconsistent and sometimes contradictory 

results, making comparisons difficult and limiting clinical usefulness (Mercadal et al., 

2020). In addition, isolation methods should be able to isolate separately the different 

subtypes of EVs present in SP, because each subtype may have different contents of 

active biomolecules and thus have different effects on target cells. These studies would 

allow for characterization of the different subtypes of EVs present in SP and allow for 

labeling of the distinctive molecules of each sEV-subtype for easy and rapid identification 

and selection. Once the sEV subtypes are identified, it will be possible to better 

understand the involvement of sEVs in sperm functions and male fertility, which 

currently remains unclear and controversial. 

 Finding biomarkers of male fertility remains a challenge, both in domestic animals 

as well as humans. Seminal plasma biomolecules have effects on sperm functions, 

embryo development, and implantation (Bromfield, 2018; Druart et al., 2019; Pérez-

Patiño et al., 2018; Szczykutowicz et al., 2019). Consequently, some SP-biomolecules 

have been postulated as candidates for biomarkers of sperm functions and male fertility 

(Rodriguez-Martinez et al., 2021a). It is known that some of these seminal biomolecules 

are encapsulated in sEVs, where these remain active by being protected from the natural 

inactivators present in SP (e.g., proteases and nucleases). Furthermore, sEVs bind and 

interchange molecules with spermatozoa and epithelial cells of the endometrium. Overall, 

these findings certainly indicate the sEVs are important candidates for use as biomarkers 

of sperm functions and male fertility. The emphasis on search for biomarkers in  seminal 

EVs has been negligible, unlike those circulating/present in other body fluids such as in 
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blood plasma or urine, which have been widely explored for use as biomarkers for diverse 

pathologies, including cancer (Simeone et al., 2020; Street et al., 2017; Yekula et al., 

2020). Only three papers listed in PubMed in May 2020 address this issue and these were 

conducted in humans (Barceló et al., 2018; Larriba and Bassas, 2021; Vickram et al., 

2020). Consequently, determining whether sEVs are useful biomarkers of fertility is an 

exciting challenge. Before addressing this task, it is imperative to fully characterize all 

subtypes of vesicles circulating in the male reproductive tract fluids (Pucci and Rooman, 

2017). Unfortunately, this is a research task that has not yet been completed in pet and 

livestock species, making it a pending challenge. 

 The complete characterization of the sEV subtypes will facilitate that these can be 

used as therapeutic agents (Peng et al., 2020; Sil et al., 2020). The sEVs from 

normozoospermic ejaculates improve sperm motility while those of asthenozoospermic 

ejaculates reduce sperm motility (Murdica et al., 2019b). These findings raise the 

possibility of using sEVs to improve sperm quality in individuals with idiopathic poor 

sperm quality. The sEVs can improve sperm freezability (Qamar et al., 2019). In some 

farm animals there are marked differences between sires in sperm freezing capacity, 

reducing the inclusion of males with less-than-optimal sperm freezing capacity in semen 

cryobanks (Roca et al., 2006). The sEVs could be used to improve sperm cryotolerance 

of males with sperm that have less-than-optimal freezing capacity by supplementing the 

freezing medium with sEVs from males with relatively greater sperm freezing capacity. 

In this case, EVs can be artificially enriched with specific molecules. Specific subtypes 

of sEVs could be loaded with beneficial molecules of interest using proven loading 

procedures, such as electroporation (for miRNAs), sonication (for proteins), or passive 

diffusion of hydrophobic molecules (for soluble chemicals) (Lim and Kim, 2019). Thus, 

"engineered" sEVs would be used to improve the in vivo bioavailability of molecules of 
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interest to both sperm and uterine cells and thus improve functions of these cells. 

Complete characterization of sEV subtypes will also facilitate further studies for 

designing and producing synthetic EVs, structurally similar to those of SP, which would 

contain specific biomolecules for particular applications. For example, as additives to 

semen extenders for improving both sperm preservability and/or in vivo fertility of AI-

doses. These synthetic EVs added to AI-doses can also be used for delivering drugs to 

improve the tolerogenic female local immunity. 
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Figure legends 

 

Fig. 1. Schematic depictions of the mechanism of apocrine secretion, including formation 

of apical vesicles and the processing of large released and decaying vesicles in the lumen 

of the reproductive tract of the male pig (segments of the epididymis and accessory sex 

glands) to subsequent release of extracellular vesicles. The drawing was created in 

BioRender.com. 

 

Fig. 2a-b. Transmission electron micrographs showing extracellular vesicles from boar 

seminal plasma, and the variation in size and shape. Extracellular vesicles were isolated 

using ultrafiltration (0.22 μm plus Amicon®-100K) and size exclusion liquid 

chromatography procedures (Barranco et al., 2021). The arrows identify some 

morphological subtypes of seminal extracellular vesicles according to the classifications 

described by Höög and Lötvall (2015) in human semen: (1) single spherical vesicle 

(unfilled arrow), double spherical vesicle (filled arrow), oval vesicle (unfilled arrowhead) 

and double vesicle (filled arrowhead). Images produced by the authors were generated at 

the Central Experimental Research Service (SCSIE) of the University of Valencia.  
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Fig. 3a-c. Transmission electron micrographs showing extracellular vesicles bound to 

different boar sperm membrane domains in the head (a), neck (b) and tail (c). Images 

produced by the authors were generated at the Scientific and Technical Research Area of 

the University of Murcia. The drawing of spermatozoon was created in BioRender.com. 

 

Fig. 4. Depiction illustrating the seminal extracellular vesicle-releasing tissues in the male 

reproductive tract and the putative functions of released seminal extracellular vesicles on 

both the spermatozoa, male and female reproductive tracts. The putative functions of 

sEVs are those reported in scientific studies in pet and livestock species. Drawings were 

created in BioRender.com. 
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