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Extracellular vesicles are small membrane structures containing proteins and nucleic acids

that are gaining a lot of attention lately. They are produced by most cells and can be

detected in several body fluids, having a huge potential in therapeutic and diagnostic

approaches. EVs produced by infected cells usually have a molecular signature that is very

distinct from healthy cells. For intracellular pathogens like viruses, EVs can have an even

more complex function, since the viral biogenesis pathway can overlap with EV pathways

in several ways, generating a continuum of particles, like naked virions, EVs containing

infective viral genomes and quasi-enveloped viruses, besides the classical complete viral

particles that are secreted to the extracellular space. Those particles can act in recipient

cells in different ways. Besides being directly infective, they also can prime neighbor cells

rendering them more susceptible to infection, block antiviral responses and deliver

isolated viral molecules. On the other hand, they can trigger antiviral responses and

cytokine secretion even in uninfected cells near the infection site, helping to fight the

infection and protect other cells from the virus. This protective response can also backfire,

when a massive inflammation facilitated by those EVs can be responsible for bad clinical

outcomes. EVs can help or harm the antiviral response, and sometimes both mechanisms

are observed in infections by the same virus. Since those pathways are intrinsically

interlinked, understand the role of EVs during viral infections is crucial to comprehend viral

mechanisms and respond better to emerging viral diseases.
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EXTRACELLULAR VESICLES (EVs) IN VIRAL DISEASES

Extracellular vesicles (EVs) are membrane vesicles that have recently received considerable
attention. EVs carry several RNA subtypes, proteins and DNA that can be functional in recipient
cells after transfer. The smallest EV type, initially called an exosome (Johnstone et al., 1987),
originates from multivesicular bodies, a part of the endocytic pathway. They were initially observed
with a cup-shaped morphology through conventional transmission electron microscopy techniques,
although nowadays it is known that this shape is a preparation artifact, and a round morphology is
observed with more advanced cryo-EM techniques (Chuo et al., 2018). They are also enriched with
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molecules such as CD63, CD9 and CD81, Alix and TSG101;
however, the distribution of these surface molecules varies
greatly depending on the cell type, and no canonical markers
applicable to all types of EVs have been described to date (Théry
et al., 2018). Several other types of EVs have been identified, such
as apoptotic bodies, microvesicles and vesicles specific to certain
cell types, such as oncosomes secreted by tumor cells (Raposo
and Stoorvogel, 2013). The exact biogenesis pathway of these
different subtypes is not totally understood. Although EV
pathways are active in homeostasis, they are very important
under disease conditions. It was previously shown that the EV
composition changes drastically during infection, especially
infections by intracellular pathogens such as viruses, and host
RNAs contained in EVs can affect viral recognition by the
immune system to induce or restrict viral propagation in
recipient cells (Yoshikawa et al., 2019).

EVs can affect recipient cells through different mechanisms.
Cargo delivery by membrane fusion can transport functional
molecules such as RNAs into recipient cells (Montecalvo et al.,
2012). The endocytic uptake mechanisms can involve clathrin-
dependent or clathrin-independent pathways, and heterogeneous
populations of EVs are probably internalized by multiple
mechanisms (Mulcahy et al., 2014). The clathrin-independent
mechanisms can be mediated by caveolin or lipid rafts, and EVs
can also be internalized by phagocytosis and micropinocytosis.
Proteins and glycoproteins present on the surface of EVs and in
recipient cells can also influence these mechanisms (Mulcahy
et al., 2014). In addition to cargo delivery by direct fusion or
internalization, EVs can also influence target cells through
interaction with different receptors, such as lectins (Barrès et al.,
2010), heparan sulfate proteoglycans (Christianson et al., 2013),
conexins and integrins (Shimaoka et al., 2019). Extracellular
vesicles can bind to the cell surface and remain attached to
proteins like integrins or trigger intracellular signaling. They
also can be internalized and directed to the endosomal pathway
until they reach multivesicular endosomes (MVEs), where they
can fuse with lysosomes directing their content to degradation and
recycling (Tian et al., 2010). Vesicles near the MVE membrane
can release their contents on the cytoplasm by back fusion
escaping degradation (Bissig and Gruenberg, 2014), and this can
also happen to vesicles attached directly to the plasma membrane.
This process is important to deliver nucleic acids present on the
EVs to the recipient cells, although is still not well understood
(Van Niel et al., 2018). There is also evidence that some vesicles
can be re-secreted by fusion of MVEs with the plasma membrane
or through the early endocytic recycling pathway (Heusermann
et al., 2016).

EVs are secreted by most cells, travel long distances within
the body, and can be found in several bodily fluids, having great
potential as diagnostic tools and in therapeutic and preventive
interventions such as vaccine production (Dogrammatzis et al.,
2020), as already shown for the influenza virus (Keshavarz
et al., 2019), porcine respiratory reproductive syndrome virus
(Montaner-Tarbes et al., 2019), and SARS coronavirus, in
which they were able to induce the production of a high level
of neutralizing antibodies (Kuate et al., 2007). For example,

therapeutic EVs derived from mesenchymal stem cells have the
ability to induce the differentiation of anti-inflammatory
macrophages, inactivate T cells and induce regulatory
immune cells such as T and B lymphocytes and dendritic
cells. These vesicles can be used to treat acute inflammatory
conditions such as severe cases of COVID-19 (Tsuchiya
et al., 2020).

CHALLENGES TO THE ISOLATION AND
DETECTION OF EXTRACELLULAR
VESICLES AND VIRAL PARTICLES

The methodologies used to isolate and characterize extracellular
vesicles are very diverse, and each experimental model and
scientific question poses its own challenges. Fortunately, efforts
of researchers and scientific societies in the EV field are helping
to identify better methods and standards to study EVs (Théry
et al., 2018). Several established methods used for viral isolation,
such as ultracentrifugation, precipitation with crowding
reagents, cross-flow filtration, column chromatography and
affinity purification, can also be used to isolate extracellular
vesicles (McNamara and Dittmer, 2019). Although the ability
to use these methods in both viral and EV fields is interesting, it
poses difficulties for separating replicative viral particles from
extracellular vesicles, especially because these vesicle/virus
populations appear to exist on a continuum. Phenotypic
characterization of those populations with antibodies, affinity
purification after isolation and the use of strategies such as those
involving viral replicons that do not secrete viral particles are
potential research strategies. In addition, new techniques such as
nanofacs and flow virometry seem promising in the search for
better separation of these subpopulations (McNamara and
Dittmer, 2019).

ROUTES OF EXTRACELLULAR VESICLE
BIOGENESIS—EXOSOMES AND
MICROVESICLES

Exosome biogenesis is very complex, can vary depending on the
cargo, cell type and other stimuli received by the cell, with several
mechanisms acting at the same time or sequentially (Edgar et al.,
2014), generating an heterogeneous population of vesicles (Van
Niel et al., 2018). Different sorting machineries can act on the
same endosomal compartment (van Niel et al., 2011), or different
machineries can target the same cargo, as observed for MHC
class II (Buschow et al., 2009). For this reason, different
subpopulations of EVs can coexist (Colombo et al., 2014).
Viral infection can interfere with all cellular processes and the
intervention with cellular metabolism and reorganization of
internal membranes can end up crossing the pathways of EV
biogenesis and viral budding, affecting early endosomal sorting
machineries (Van Niel et al., 2018).
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Exosomes are generated as intraluminal vesicles (ILVs) in the
lumen of endosomes during their maturation to multivesicular
endosomes (MVEs), involving several sorting mechanisms. They
segregate content in membrane microdomains in the MVE
membrane and generate smaller membrane vesicles by inward
budding and fission (Van Niel et al., 2018). The ESCRTmachinery
was one of the first proteins to be discovered in this process
(Hurley, 2008), acting in several steps, in which ESCRT-0 (also
known as HRS) and ESCRT-1 gather ubiquitylated
transmembrane cargos in microdomains, and ESCRT-II recruits
ESCRT-III, responsible for fission and budding. Inactivation of the
members of ESCRT family can affect the composition and release
of vesicles (Colombo et al., 2013) and HRS seems to be required
for exosome formation and secretion by dendritic cells (Tamai
et al., 2010). Molecules like syntenin, ALIX and VPS32 are also
important in this process (Baietti et al., 2012).

Exosomes can also be formed in an ESCRT independentmanner.
When the four ESCRTproteins are depleted, ILVs loadedwithCD63
are still able to be formed (Stuffers et al., 2009). The first ESCRT
independent pathway of exosome formation is mediated by neutral
type II sphingomyelinase, that transforms sphingomyelin in
ceramide (Trajkovic et al., 2008), allowing the formation of
membrane subdomains (Goñi and Alonso, 2009) that create
negative membrane curvatures. Ceramide can also be transformed
in sphingosine-1-phosphate and activate a receptor that is crucial for
cargo sorting (Kajimoto et al., 2013). Tetraspanins like CD81, CD83,
CD9 and CD63 can also regulate biogenesis in an ESCRT-
independent way, since they can form clusters and induce budding
in membrane microdomains with tetraspanins and other
transmembane and cytosolic proteins (Charrin et al., 2014). CD63
was also shown to be involved in endosomal sorting (van Niel et al.,
2011; van Niel et al., 2015), cargo targeting and biogenesis of
exosomes. CD81 presents a cone-like structure that can
accommodate cholesterol inside it, and their clustering can induce
inwardbudding.Tetraspanins canalso regulate the intracellular route
of cargo like integrins (Odintsova et al., 2013). The type of cargo can
also affect the sorting on exosomes. Transmembrane cargos are
heavily depending on endosomal machineries, and the affinity of
molecules like GPI anchored proteins to lipid rafts could affect
membrane properties and be involved in budding (De Gassart
et al., 2003). Soluble proteins can be sequestered inside ILVs by co-
sorting with chaperones (HSP70, HSC70) found in exosomes of
different origins (Géminard et al., 2004). Also, proteins with certain
modifications like ubiquitination or farnesylation are enriched in
ILVs, but the mechanisms are still unknown. The sorting of nucleic
acids is differential, since some types of miRNA motifs are
preferentially sorted inside ILVs (Villarroya-Beltri et al., 2013), but
passive loading can also occur. Machineries involved in nucleic acid
sorting to EVs include the ESCR-II subcomplex that can have RNA-
binding properties (Irion and St Johnston, 2007), sequestration of
RBPs in membrane domains (Perez-Hernandez et al., 2013) or the
presence of RNA silencing complexes likemiRNA induced silencing
complex (miRISC), argonaute 2 (AGO2), KRAS-MEK signaling,
major vault protein and Y box binding protein (YBX1) (Gibbings
et al., 2009; McKenzie et al., 2016; Shurtleff et al., 2016; Teng
et al., 2017).

Although apoptotic bodies are known for a long time, the
mechanisms of microvesicle release from the membrane of
healthy cells are starting to be uncovered only recently.
Rearrangements in the plasma membrane (lipid components,
proteins, and CA+2 levels) are important in this process
(Johnstone et al., 1987). Aminophospholipid translocases
(flippases and floppases), scramblases and calpain are
dependent on Ca2+ and rearrange membrane phospholipids,
bending the membrane and restructuring the actin cytoskeleton,
favoring membrane budding and microvesicle formation (Piccin
et al., 2007). Defects in the scramblase can impair the exposure of
phosphatidylserine and the production of platelet-derived
procoagulant microvesicles (Piccin et al., 2007). Other lipids
like cholesterol can also contribute to microvesicle biogenesis,
since their depletion impair the formation of microvesicles in
neutrophils (Del Conde et al., 2005). Cytoskeleton regulators that
alter actin dynamics, like RHO GTPases and RHO-associated
protein kinase (ROCK), can induce microvesicle biogenesis (Li
et al., 2012). Metabolic changes can also affect their release, as
seen for the Warburg effect, when the inhibition of glutaminase
activity dependent of RHO GTPases can block microvesicle
biogenesis (Wilson et al., 2013). For the cargo selection, lipids
and other cargos with membrane affinity can localize to lipid raft
membrane domains, as happen to oligomeric cytoplasmic
proteins that are anchored in plasma membrane (Yang and
Gould, 2013), and cytosolic components need to bind to the
inner leaflet of the plasma membrane. This mechanism is very
similar to the budding of HIV and retroviruses (Van Niel et al.,
2018). The mechanisms of nucleic acid targeting to the cell
membranes is still unknown, but is still unclear how nucleic
acids, which are generally found in microvesicles, are targeted to
the cell surface. The presence of zip code RNA sequence motifs in
the 3´-UTR regions of mRNA can be one of the possible
targeting mechanisms to microvesicles (Bolukbasi et al., 2012).

VIRUSES USE INTRACELLULAR
MEMBRANES TO EVADE THE
IMMUNE RESPONSE AND
COMPLETE THEIR CYCLE

Viruses can exploit intracellular membranes to complete their
cycles and propagate, creating structures called replicative
organelles (Wolff et al., 2020) and using cellular secretion
mechanisms to facilitate particle formation and budding.
Positive sense RNA viruses, such as nidoviruses (Angelini
et al., 2014), arteriviruses (Knoops et al., 2012), flaviviruses
(Gosert et al., 2002), coronaviruses (Snijder et al., 2006; Ulasli
et al., 2010), have an interestingmechanism of replication involving
internal membrane rearrangements in host cells, generating
double-membrane structures known as replicative organelles
(den Boon and Ahlquist, 2010). These structures contribute to
immune evasion by hiding viral components from the immune
system and working as scaffolds that anchor viral replication and
transcription complexes (V’kovski et al., 2015). This membrane
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reorganization can be induced by viral proteins, as shown for
SARS-CoV, that can induce membrane disorder and proliferation
(through nsp3, in both full length and truncated forms, and nsp6),
membrane pairing (with the synergic action of nsp3 and nsp4) and
induction of perinuclear vesicles around the microtubule
organizing center (through nsp6) (Angelini et al., 2013). The
result of these rearrangements is demonstrated by the formation
of double-membrane vesicles and convoluted membranes
connected to the rough endoplasmic reticulum (Ulasli et al.,
2010). Components of ER-Golgi cellular trafficking were also
shown to be involved in the formation of these structures
(Reggiori et al., 2010), and they are also involved in EV
formation, being a possible point of overlap to allow the presence
of viral components inside EVs. The degree of induction of
intracellular membrane structures can vary between coronavirus
strains, although it is not necessarily correlated with pathogenicity
(Maier et al., 2016). This mechanism also indicates that infection
changes cellular lipid metabolism and that some enzymes involved
in lipid processing are crucial for the formation of these membrane
structures. The inhibition of cytosolic phospholipase A2a
significantly reduces the formation of coronavirus particles in

vitro, suggesting that the formation of these internal membrane
structures is essential for completion of the viral replication cycle
(Müller et al., 2017).

VESICLES OR VIRAL PARTICLES?
OVERLAP BETWEEN VIRAL BUDDING
AND EV BIOGENESIS

In addition to secreting replicative viral particles, infected cells
can also secrete other structures containing viral proteins and
nucleic acids that can activate the immune system or impact
recipient cells, favoring viral propagation (van der Grein et al.,
2018). There is ongoing discussion about the classification of
these particles, since they can be either host EVs containing viral
molecules or defective viral particles. It is difficult to isolate pure
populations of these different types of vesicles since they are of
similar size, density and composition, and most isolation
methods cannot be used to separate them (van der Grein et al.,
2018). The replicative viral structures found inside host EVs can
be complete viral particles or “quasi-enveloped” viruses (viruses
that are classically nonenveloped but can be found “cloaked”
inside host EVs) (Feng et al., 2014).

The virology field classifies some viruses as enveloped when
their capsids are surrounded by host membrane; these viruses
usually bud directly from the plasma membrane or through an
exocytic pathway without necessarily promoting cell death.
Examples of enveloped viruses are HIV, influenza, dengue and
SARS-Cov2. Nonenveloped viruses, such as hepatitis A virus
(HAV), coxsackievirus, norovirus, poliovirus and rhinovirus,
typically promote cell lysis, which is required for their release,
and are not surrounded by host membrane (Lindenbach, 2013;
Altan-Bonnet, 2016). Nevertheless, in 2013, the distinction
between enveloped and nonenveloped viruses became less clear

when both types of particles were found in vivo and in the
extracellular medium of liver cells infected in HAV (Feng et al.,
2013). Cellular analysis was used to track them inside
multivesicular bodies (MVBs) to their cells of origin, and the
depletion of ESCRT proteins blocked their release, suggesting an
overlap of viral particle release and the exosome biogenesis
pathway (Altan-Bonnet, 2016).

Viral particle formation pathways sometimes include the
endosomal machinery that produces EVs. Usually, viruses
enter cells through endocytosis (although some enveloped
viruses can fuse directly to cell membranes) and release their
nucleic acids, which are undergoing replication/transcription,
and new virions can bud through the cell membrane or are
released after cell lysis (Urbanelli et al., 2019). In 2003, the
“Trojan Horse” hypothesis was formulated by Gould and
colleagues who showed that EVs secreted by dendritic cells
infected with HIV were able to infect T CD4+ lymphocytes
(Gould et al., 2003). Gag, an HIV structural protein, is known to
directly recruit Alix and ESCRT-1 proteins (Votteler and
Sundquist, 2013), important components of exosome
formation machinery. The expression of coronavirus E and M
proteins is sufficient to generate virus-like particles even in the
absence of the other viral components (Maeda et al., 1999).
Additionally, some herpesviruses can interact with the ESCRT
machinery during the formation of the viral envelope in
endosomal compartments and the trans Golgi network (TGN)
(Sadeghipour and Mathias, 2017). For this reason, some
nonenveloped viruses can be found in “quasi-enveloped” states
inside exosomes when they are released, cloaked in host
membranes and lack viral surface proteins, as observed for the
hepatitis A virus (HAV) and hepatitis E (Nagashima et al., 2014).
Recent research has demonstrated that collective viral spread
involving viral aggregates can favor viruses and promote the
evolution of defective interfering particles, and extracellular
vesicles may also have a role in this process (Andreu-Moreno
and Sanjuán, 2020), since aggregation can change the
internalization route of EVs, favoring phagocytosis and
micropinocytosis (Feng et al., 2010).

Even when envelopes are acquired in canonical pathways, the
exosomal pathway can be exploited by viruses to facilitate its own
transmission, as seen for porcine reproductive and respiratory
syndrome virus (PRRSV) (Wang et al., 2018), herpes simplex
virus HSV-1 (Bello-Morales and López-Guerrero, 2020),
enterovirus 71 (Gu et al., 2020), and RVFV, which pack viral
RNA and proteins inside vesicles (Ahsan et al., 2016); HIV,
which facilitates macrophage infection through EVs (Kadiu et al.,
2012); HBV, which can directly induce replication through EVs
of infected cells (Li et al., 2019); and HTLV-1, which exports
functional viral proteins inside EVs to uninfected cells (Jaworski
et al., 2014). Cells infected with rhinovirus secrete EVs that
induce the upregulation of viral receptors in monocytes, which
allows the virus to infect alternative cell types (Miura, 2019).
Mosquito cells infected with DENV secrete larger EVs than
uninfected cells, and these structures contain virus-like
particles that are able to infect other cells (Reyes-Ruiz et al.,
2019). Quiescent CD4+ T lymphocytes are usually refractory to
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HIV1 infection; however, EVs from infected cells can make them
permissive to viral replication through the action of ADAM17
and Nef (Arenaccio et al., 2014). Additionally, Nef-containing
EVs can modulate lipid rafts in recipient cells, facilitating the
fusion of new viral particles with these cells and increasing
infection (Dubrovsky et al., 2020). For HCV, it was shown that
replication-competent sub genomic RNAs can be transferred
through EVs and establish infection in recipient cells, even when
complete viral particles are absent (Longatti et al., 2015). Thus,
HCV infectivity was independent of classical HCV receptors or
viral envelope proteins, rendering them partially resistant to
antibody neutralization, which may be an immune evasion
strategy used by several other viruses (Ramakrishnaiah et al.,
2013). Vesicles containing genomic RNAs found in HCV
patients also carried Ago2, HSP90 and miR-122, which
facilitate viral stability and replication (Bukong et al., 2014;
Altan-Bonnet, 2016). It was also shown that ZIKV is able to
induce the amplification of EV production through increased
expression and activity of SMPD3 and that EVs containing viral
RNAs and proteins promote viral transmission (Zhou W. et al.,
2019). FMDV (foot and mouth disease virus) can also be
transmitted through host EVs that carry genomic RNAs and
some viral proteins, and FMDV replication is not fully blocked
by neutralizing antibodies, suggesting an immune evasion
mechanism (Zhang et al., 2019). For SFTS (a tick-borne
bunyavirus associated with hemorrhagic fever), exosomes from
infected cells contained viable virions that were able to infect cells
by an alternative route independent of classical receptors (Silvas
et al., 2016). They enter cells by endocytosis, similar to naked
virions, but they are uncoated, and their genome is released by
different pathways. Viruses that usually have lytic cycles can also
be released from cells in a nonlytic way (Rivera-Serrano et al.,
2019). A scheme depicting an interplay between extracellular

vesicles, viruses and subpopulations of viral particles can be
observed in Figure 1.

SECRETORY AUTOPHAGY AND
VIRAL BUDDING

Some nonenveloped viruses can exit the cell in vesicles that
originate from autophagosomes instead of MVBs, as shown for
rhinovirus, poliovirus and coxsackievirus (Bird et al., 2014;
Robinson et al., 2014). Autophagosomes usually have a double
membrane and are formed from the endoplasmic reticulum,
mitochondria or plasma membrane (Cuervo, 2010), and through
their natural degradation mechanism, they process large
quantities of cytoplasm to provide nutrients during stress
(Feng et al., 2015). However, instead of fusing with lysosomes,
they can fuse with the plasma membrane to release vesicles
containing viral particles. This “secretory autophagy” is observed
in uninfected cells (Ponpuak et al., 2015) from which useful
molecules and organelles are released into the extracellular space
(Altan-Bonnet, 2016). These vesicles are enriched in
phosphatidylserine, which can be important for infection
(Chen et al., 2015), as observed for classical enveloped viruses
such as vaccinia, dengue, Ebola and pseudotype lentivirus
(Amara and Mercer, 2015). The viruses inside exosomes or
large autophagosome-derived vesicles were found to be more
infective than the viruses released when the autophagosomes
were lysed (Altan-Bonnet, 2016). It is believed that these vesicles
can be disrupted once internalized by host cells in acidic
compartments such as acidified endosomes, releasing the viral
particle (Bird et al., 2014). A recent study reviewed the
interaction of MERS, SARS-Cov, and SARS-CoV2 on
autophagic processes. The literature data are very inconsistent

FIGURE 1 | Scheme depicting an interplay between extracellular vesicles, viruses and subpopulations of viral particles.
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regarding the role of autophagy in coronavirus replication, with
some studies suggesting that it is necessary, while others stating
that replication is autophagy-independent, and some studies
showing that the virus can inhibit the autophagy process. This
ambiguity may indicate a nonclassical pathway of autophagy that
may be related to the secretory form of autophagy described
above (Yang & Shen, 2020).

EVs IN IMMUNE COMMUNICATION
AND CYTOKINE RESPONSES
DURING INFECTION

The infection process can drastically change the composition of
host EVs, changing the proportions of host proteins and RNAs
inside these structures (Hoen et al., 2016). During infection, EVs
can amplify inflammation and deflagrate antiviral responses
(Urbanelli et al., 2019) and can also mediate communication
between immune cells and other cell types (Isola and Chen,
2017). The involvement of EVs in viral infection and/or host
interactions in disease has already been described for several
viruses, such as rabies (Wang et al., 2019b), coronaviruses
(Maeda et al., 1999; Kuate et al., 2007; Börger et al., 2020;
Deffune et al., 2020; Hassanpour et al., 2020; Inal, 2020a; Inal,
2020b; Kumar et al., 2020; O’Driscoll, 2020; Tsuchiya et al., 2020;
Urciuoli and Peruzzi, 2020), HCV (Bartosch et al., 2003; Timpe
et al., 2008; Dreux et al., 2012; Bukong et al., 2014), HBV (Jia
et al., 2017; Li et al., 2019), HIV (Princen et al., 2004; Khatua
et al., 2009; Xu et al., 2009; Lenassi et al., 2010; Bernard et al.,
2014; Raymond et al., 2016; Sampey et al., 2016; Kodidela et al.,
2018; Haque et al., 2020; Ranjit et al., 2020), HPV (Honegger
et al., 2015; Guenat et al., 2017; Sadri Nahand et al., 2019;
Chiantore et al., 2020), HSV (Temme et al., 2010; Han et al.,
2016; Deschamps and Kalamvoki, 2018) dengue (Martins et al.,
2018; Mishra et al., 2019; Sung et al., 2019), HTLV-1 (Pinto et al.,
2019), Zika (Zhou W. et al., 2019; Martıńez-Rojas et al., 2020),
West Nile (Slonchak et al., 2019), Epstein Baar (Keryer-Bibens
et al., 2006; Klibi et al., 2009; Zhao M. et al., 2019), influenza
(Liu Y. et al., 2019; Maemura et al., 2020), and SFTS (Silvas
et al., 2016).

EV secretion occurs in several body systems during
homeostasis, and it represents an important communication
pathway in the immune system (Isola and Chen, 2017).
Vesicles transferred between immune cells can transmit signals
that trigger an increase or decrease in cytokine production and
transfer antigens, and some EVs are able to trigger direct antigen
presentation (Lindenbergh and Stoorvogel, 2018). EVs carry
cytokines and cytokine-related RNAs that can elicit the
production of target molecules in recipient cells, having a role
in the antiviral response (Urbanelli et al., 2019). EVs secreted by
infected cells are able to activate other cells, as observed when
vesicles secreted from U937 macrophages infected with DENV-2
activate endothelial cells (Velandia-Romero et al., 2020).
Infection with West Nile virus changes the composition of host
microRNAs, small noncoding RNAs and mRNAs in EVs, and
the enriched RNAs are related to viral processing and host

responses to infection (Slonchak et al., 2019). It was also
observed that two strains of dengue virus with different
virulence profiles induce the secretion of EVs with drastically
different RNA compositions from monocyte-derived dendritic
cells (Martins et al., 2018). When taken up by macrophages,
vesicles from HIV-infected cells containing Nef can trigger the
inflammasome, inducing the secretion of proinflammatory
cytokines (Mukhamedova et al., 2019). EVs released by airway
epithelial cells infected with RSV (respiratory syncytial virus)
have increased expression of regulatory small RNAs and can
stimulate chemokine production in monocytes without
transferring infective particles (Chahar et al., 2018).

Sometimes high levels of proinflammatory cytokine
production can contribute to disease severity, as seen for
several infectious diseases, and EVs can mediate this process.
EVs isolated from bronchoalveolar fluid of mice infected with a
highly pathogenic avian influenza virus (H5N1) showed
enrichment with miR-483-3p, which stimulates innate immune
responses in pneumocytes (Maemura et al., 2018). This molecule
was also enriched in the serum of infected mice, and
pneumocyte-derived EVs enriched with this molecule
increased the expression of proinflammatory cytokine genes in
vascular endothelial cells, suggesting the involvement of EVs in
the inflammatory pathogenesis of H5N1 (Maemura et al., 2020).
A similar process occurs for dengue hemorrhagic fever, a severe
disease in which massive secretion of cytokines and high vascular
hyperpermeability can lead to shock syndrome, and extracellular
vesicles were shown to be involved in this process (Mishra et al.,
2019). A summary of the main findings associated to the EVs and
viruses are described in Table 1.

EVs CAN ELICIT AND PROPAGATE
ANTIVIRAL RESPONSES

The protective effect of EVs during infection can also involve
classical antiviral pathways, such as the interferon response,
because effector molecules, such as interferon stimulated genes
(ISGs), can be carried to other cells (Li et al., 2013). The secretion
of type I interferon is a potent and conserved antiviral response
strategy. IFN protein is produced and then secreted into the
extracellular space after pathogen-associated molecular patterns
(PAMPs) are recognized by Toll-like receptors. After secretion,
the produced IFN molecules can bind to surface receptors in
other cells and trigger a protective response (Schneider et al.,
2014). The translocation of NFKb to the nucleus induces the
transcription of several ISGs, which are the true antiviral
effectors of these pathways. The EV pathway is linked to the
IFN response in several ways. First, viral components from
infected cells can be transferred to other cells through EVs,
where they will induce IFN production. An example of this is
what happens with plasmacytoid dendritic cells (pDCs), that
have an important role in innate immunity by recognizing viral
nucleic acids through TLR7 and TLR9 (Gilliet et al., 2008),
inducing their activation and production of IFN among other
molecules. When transferred to pDCs, EVs from infected cells
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can be internalized and their viral RNA can activate TLR7 (Assil
et al., 2015). The activation of IFN response in pDCs by
extracellular vesicles may be more powerful than the one

induced by only mature virions, since EVs from HCV infected
cells can induce a strong IFN response in pDCs (Dreux et al.,
2012), while conventional HCV particles may block TLR7

TABLE 1 | Summary of the main findings associated to the EVs and viral infections.

EVS FAVORING VIRAL PROPAGATION

Mechanism Virus

EVs facilitate viral transmission HSV-1 (Bello-Morales and López-Guerrero, 2020), KSHV (Chen et al., 2020)., NDV (Zhou C. et al.,

2019), PRRSV (Wang et al., 2017),

enterovirus 71 (Gu et al., 2020), HCV (Bukong et al., 2014), HIV (Kadiu et al., 2012), SFTS (Silvas

et al., 2016)

Viral RNAs/proteins inside EVs Coronavirus (Maeda et al., 1999), EBV (Keryer-Bibens et al., 2006), HCV (Kouwaki et al., 2017).,

HTLV-1, (Jaworski et al., 2014), RVFV (Ahsan et al., 2016), ZIKV (Zhou W. et al., 2019; Martıńez-

Rojas et al., 2020)

Infectious virus-like particles/cloaked virions inside EVs DENV (Reyes-Ruiz et al., 2019), enterovirus 71 (Gu et al., 2020), HCV (Bartosch et al., 2003; Timpe

et al., 2008)

Transfer of infective RNA through EVs withouth complete viral

particles

HCV (Longatti et al., 2015), FMDV (Zhang et al., 2019),

EVs turn cells more permissive to infection, membrane/receptor

modulation

HIV (Arenaccio et al., 2014; Dubrovsky et al., 2020), Rhinovirus (Miura, 2019)

Host molecules in EVs facilitate viral stability and replication in

recipient cells

HBV (Li et al., 2019), HCV (Bukong et al., 2014; Altan-Bonnet, 2016), HIV (Arenaccio et al., 2014;

Ranjit et al., 2020)

Amplification of EV production ZIKV (Zhou W. et al., 2019)

EVs from uninfected cells can activate latent viruses HIV (Barclay et al., 2020)

EVS RELATED TO IMMUNE RESPONSES

Mechanism Virus

EVs from infected cells are able to activate other cells DENV (Velandia-Romero et al., 2020; Mishra et al., 2019)

RNAs inside EVs related to host responses to infection DENV (Martins et al., 2018a), H5N1 (Maemura et al., 2018; Maemura et al., 2020), HBV (Zhao X.

et al., 2019), HIV (Bernard et al., 2014), HSV-1 (Han et al., 2016; Huang et al., 2019), influenza (Liu

Y. et al., 2019), Rabies (Wang et al., 2019a), RSV (Chahar et al., 2018), West Nile (Slonchak et al.,

2019)

EVs from infected cells can trigger the secretion of

proinflammatory molecules in other cells

HIV (Sampey et al., 2016; Mukhamedova et al., 2019), H5N1 (Maemura et al., 2018; Maemura

et al., 2020), HBV (Zhao X. et al., 2019), RSV (Chahar et al., 2018)

EVs involved in IFN-mediated responses DENV (Martins et al., 2018), HBV (Yao et al., 2019; Zhao X. et al., 2019), HCV (Dreux et al., 2012;

Okamoto et al., 2014), HIV-1 (Khatua et al., 2009), HSV-1 (Huang et al., 2019), influenza (Liu et al.,

2019)

EVs that can restrict viral replication Rabies (Wang et al., 2019a), HBV (Zhao X. et al., 2019), HIV (Ouattara et al., 2018),

Induction of massive inflammatory responses/vascular permeability DENV (Sung et al., 2019)

EVs can block/impair viral propagation Enterovirus (Chen et al., 2015), Influenza (Liu Y. et al., 2019), HIV-1 (Khatua et al., 2009), HSV-1

(Han et al., 2016; Deschamps and Kalamvoki, 2018; Huang et al., 2019), Rabies (Wang et al.,

2019a)

EVs can induce antibody production SARS (Kuate et al., 2007)

EVS CAN HELP VIRUSES BLOCK ANTIVIRAL RESPONSES

Mechanism Virus

EVs reduce IFN-mediated antiviral protection in recipient cells enterovirus 71 (Wang et al., 2018), HBV (Shi et al., 2019), HCV (Florentin et al., 2012)

EVs carry host RNAs related to antiviral response blocking enterovirus 71 (Wang et al., 2018)., NDV (Zhou C. et al., 2019)

More cytopatic effect in recipient cells NDV (Zhou C. et al., 2019)

EVs turn recipient cells more permissive to infection rhinovirus (Zhou et al., 2017).

EVs impair other antiviral mechanisms/promote immune evasion EBV (Klibi et al., 2009), HCV (Ashraf Malik et al., 2019), HIV (Schaefer et al., 2008; Xu et al., 2009;

Lenassi et al., 2010; De Carvalho et al., 2014), KSHV (McNamara et al., 2019)

EVS SECRETED DURING INFECTION CAN TRIGGER SECONDARY DISEASES

Mechanism Virus

Oncogenig effect gamma-herpes virus (Zheng et al., 2019), human papillomavirus (Honegger et al., 2015; Ambrosio

et al., 2019; Chiantore et al., 2020), HIV (Sharma, 2019), MVP (Teng et al., 2017)

Accumulation of beta amyloid plaques HIV (Fulop et al., 2019).

Trigger inflammation human papillomavirus (Sadri Nahand et al., 2019)

Contribute to tissue fybrosis HCV (Kim et al., 2019).

Mediate chemoresistance HBV (Liu D. et al., 2019)

Mediate autoimmunity/transplant rejection respiratory viruses (Gunasekaran et al., 2020).

EVs involved in viral latency/persistant infections HIV (Olivetta et al., 2019; Barclay et al., 2020), HCV (Ashraf Malik et al., 2019),

Thrombosis induction SARS CoV-2 (Inal, 2020a), Nomura et al., 2020
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induced signaling as an immune evasion strategy (Florentin
et al., 2012). A recently explored area gaining attention
involves the transfer of ISGs through EVs. The mRNAs for
ISGs can be transferred to bystander cells or over long distances,
and the recipient cells can translate these mRNAs (Li et al.,
2013). Complete ISG proteins can also be transferred (Borghesan
et al., 2019; Yao et al., 2019). The viral entry machinery can also
be used by the cells to transfer antiviral protection since the same
receptors that some viruses use to bind the cells can also bind
EVs. This is exemplified by macrophage-derived exosomes that
depend on T-cell immunoglobulin and mucin receptor 1 (TIM-
1), a receptor used by Hepatitis A Virus (HAV) (Yao et al., 2018).
EVs secreted by THP-1 macrophages treated with IFN-alpha are
enriched with proteins related to the “defense response to virus”
and “type I IFN signaling pathway”. Some of the proteins for
ISGs found in this work were upregulated both in macrophages
treated with IFN and in the EVs secreted by them (IFI44L, IFIT1,
ISG15, EIF2AK2, MX2, IFIT3, MX1, STAT2, OAS3, IFI16,
OAS2, STAT1 and IFIT2), while one ISG was found
upregulated only in EVs (SAMHD1) (Yao et al., 2019). These
vesicles also present potent antiviral activity when delivered to
hepatocytes infected with hepatitis B, suggesting that effector
antiviral molecules induced by IFN can be transferred through
exosomes (Yao et al., 2019).

The presence of HBV-miR-3 in EVs secreted by HBV-
infected cells can induce macrophage polarization to an M1
phenotype, increase IFN production, activate the Jak/STAT
signaling pathway and induce IL-6 secretion. These actions
may restrict HBV replication and suppress the acute liver cell
injury caused by HBV (Zhao X. et al., 2019). Hepatocytes
infected with HCV can produce EVs loaded with infective
HCV RNA that, when internalized by pDCs, can trigger type I
IFN production upon TLR7 binding. This effect is attenuated
when ESCRT-I and ESCRT-III are depleted from the infected
hepatocytes, suggesting a correlation with the EV pathway
(Dreux et al., 2012). Similarly, EVs secreted by cells with HCV
replicons induced the TLR3-mediated production of IFN I and
III by delivering viral RNAs to DCs (Okamoto et al., 2014)
(Kouwaki et al., 2017).

Influenza-infected cells secrete EVs containing miR-1975 that
induce interferon expression in recipient cells (Liu Y. et al.,
2019). Cells infected with herpes simplex virus (HSV-1) produce
EVs packed with miR-H28 and miR-H29, which are able to
restrict viral transmission to uninfected cells through the
induction of IFN-gamma production (Huang et al., 2019).
Other mechanisms of EV-mediated viral inhibition can also
occur, as observed for MRC-5 cells infected with rabies, that
show increased production of EVs containing miR-423-5p,
which inhibits RABV replication in neighboring recipient cells
(Wang et al., 2019a). Exosomes from the microenvironment and
biofluids can also modulate viral infection, as shown for seminal
EVs, which seems to have a protective effect against HIV
infection. They can directly inhibit HIV-1 cellular entry,
prevent transmission of HIV from vaginal epithelial cells to
monocytes, T lymphocytes and PBMCs. They can also inhibit
replication after internalization by blocking reverse transcriptase

activity and inhibiting binding of transcription factors to the
HIV1 promoter (Ouattara et al., 2018). This helps to explain the
low infection rates of people exposed to the virus (Ouattara et al.,
2018; Welch et al., 2019).

VIRUSES CAN EXPLOIT EV MACHINERY
TO BLOCK ANTIVIRAL RESPONSES AND
ALLOW THEIR OWN PROPAGATION

EVs have an important role in transferring antiviral molecules,
facilitating propagation of responses such as interferon activity.
However, several viruses are known to disrupt the defense
pathway mediated by IFN, thus evading the immune response
(Table 1). For example, EVs loaded with IFITM2 delivered to
dendritic cells reduce the capacity of the recipient cells to
produce IFN-alpha and thus counteract HBV infection (Shi
et al., 2019). EVs secreted from cells infected with NDV carry
miR-1273f, miR-1184 and miR-198, which are able to block IFN-
beta antiviral responses and increase the virus-induced
cytopathic effect in recipient cells (Zhou C. et al., 2019).
Similarly, EVs secreted by human epithelial cells infected with
enterovirus 71 (EV71) can transfer miR-30a to macrophages to
target the MyD88 gene, suppressing type I IFN production
(Wang et al., 2018).

Viruses can also use the EV pathway to make neighboring
cells more permissive to infection. Monocytes treated with
conditioned media from rhinovirus-infected epithelial cells
exhibited increased secretion of proinflammatory cytokines
and ICAM1, which makes the monocytes more permissive to
infection and viral replication (Zhou et al., 2017). Usually, TCD4
+ T cells are able to secrete EVs with surface CD4 molecules.
These receptors act as decoys, binding the HIV1 virus and
inhibiting the infection of new cells. However, in addition to
reducing CD4 on cell surfaces, the HIV protein Nef can also
reduce the expression of CD4 on EVs, blocking this mechanism
to allow viral propagation (De Carvalho et al., 2014). When
transferred to B cells through EVs, the HIV Nef protein can
impair the production of IgG and IgA antibodies (Xu et al.,
2009). Nef can induce cell death when delivered to bystander
TCD4+ cells (Lenassi et al., 2010) and the degradation of the viral
receptors CD4 and MHC-1 (an important molecule that presents
viral antigens to the immune system) through the action of Nef-
interacting protein B-cop (Schaefer et al., 2008). In addition, EVs
secreted by uninfected cells can activate the transcription of
latent viruses in HIV-1-infected cells through cellular SRC-1 and
the PI3K/AKT/mTOR pathway (Barclay et al., 2020).

EVs SECRETED DURING VIRAL
INFECTIONS CAN CAUSE SECONDARY
DISEASE

EVs secreted during the course of a viral infection can have
effects in many parts of the body, triggering secondary diseases
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(Table 1). For example, gamma-herpes virus can induce an
oncogenic effect (Zheng et al., 2019), among several others.
There is also evidence that EVs contribute to the beta-amyloid
plaque accumulation that occurs in the brain of HIV patients,
probably contributing to cognitive decline (Fulop et al., 2019).
EVs secreted during human papillomavirus infection can carry
miRNAs that induce cervical inflammation (Sadri Nahand et al.,
2019) and are related to the development of squamous cell
carcinoma (Ambrosio et al., 2019). EVs secreted by HCV-
infected hepatocytes contain miR-192 and, when transferred to
hepatic stellate cells (HSCs), induce TGF-b1 upregulation,
triggering differentiation into myofibroblasts. This process
contributes to the liver fibrosis induced by HCV (Kim et al.,
2019). HIV-1-infected cells secrete EVs containing TAR RNAs
that have pro-growth and pro-survival effects on cancer cells,
having the potential to induce tumor progression and
malignancy (Sharma, 2019). Kaposi’s sarcoma-associated
herpesvirus (KSHV), a tumor-associated virus, can induce the
proliferation, migration and transcriptional changes of
uninfected endothelial cells through EVs, thereby evading the
pathogen recognition surveillance system (McNamara et al.,
2019). It was also shown that salivary EVs from HIV patients
carried tar, tat and nef RNAs but not TAT or Nef proteins.
Treatment with these EVs increased the KSHV infection rate of
oral epithelial cells through the EFG receptor (EGFR), and this
effect was blocked by cetuximab, a drug that targets EGFR. This
facilitation of KSHV infection caused by HIV EVs can explain
the high rates of Kaposi sarcoma in HIV patients and indicates
that this virus can break the epithelial barrier to spread through
the body (Chen et al., 2020). HBV-associated liver cancer
presents more chemoresistance than non-HBV tumors. EVs
from HBV-infected cancer cells were able to downregulate the
apoptosis of recipient cells upon drug treatment, modulate cell
death through the CMA pathway and upregulate Lamp2A,
suggesting that the EVs induced by infection can mediate
chemoresistance through chaperone-mediated autophagy
(Liu D. et al., 2019). Patients with respiratory viral infections
after lung transplantation had circulating EVs containing lung
self-antigens, the 20S proteasome and viral antigens that can
trigger a rejection response against the transplanted lung and
lead to allograft dysfunction (Gunasekaran et al., 2020). EVs in
this context can also facilitate the establishment of persistent
viral infections. HIV can persist in latent reservoirs that are not
recognized by the immune system, leading to a rebound infection
after discontinuation of antiretroviral therapy, and it is believed
that EVs are crucial for the preservation of these reservoirs
(Olivetta et al., 2019). For HCV, CD81+ EVs loaded with viral
particles allow the virus to escape immune surveillance, helping
to establish persistent infections (Ashraf Malik et al., 2019).

Additionally, systemic hemorrhagic diseases that involve
vascular permeability, such as dengue hemorrhagic fever, show
the involvement of EVs during pathogenesis. Besides being
important in immune cell communication, like EVs secreted
by mdDCs that carry RNAs related to antiviral response and
inflammatory cytokines (Martins et al., 2018), DENV infection
can induce the secretion of platelet EVs that cause massive
inflammatory responses by activation of CLEC5A and TLR2
on macrophages and neutrophils (Sung et al., 2019), and induce
the formation of Neutrophil Extracellular Traps (Mishra et al.,
2019). Additionally, it was already discussed that extracellular
vesicles can be involved in thrombosis events observed after
infection by several types of viruses (Nomura et al., 2020).

CONCLUDING REMARKS

Despite experimental difficulties, the field of extracellular vesicles in
viral infections is growing and has tremendous potential to solve
healthcare problems. The EVs can carry infective viral particles, they
also influence the response of surrounding cells and turning them
more susceptible to infection. On the contrary the EVs can also help
the host cell to fight the infection, by triggering antiviral responses
and cytokine secretion. As stated, the EVs can either facilitate or
impair the antiviral response, and sometimes both mechanisms are
observed in infections by the same virus. Since those pathways are
intrinsically interlinked, understand the role of EVs during viral
infections is crucial to comprehend viral mechanisms and respond
better to emerging viral diseases. In summary, several mechanisms
of virus and EV biogenesis are shared, and knowledge in one field
can help to advance the prospects of the other. Understanding the
interplay between viruses and extracellular vesicles can also help to
develop mechanisms to respond better to public health threats
caused by viral pathogens.
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factor-bearing microvesicles arise from lipid rafts and fuse with activated platelets
to initiate coagulation. Blood 106, 1604–1611. doi: 10.1182/blood-2004-03-1095

den Boon, J. A., and Ahlquist, P. (2010). Organelle-Like Membrane
Compartmentalization ofPositive-Strand RNA Virus Replication Factories.
Annu. Rev. Microbiol. 64, 241–256. doi: 10.1146/annurev.micro.112408.134012

Deschamps, T., and Kalamvoki, M. (2018). Extracellular Vesicles Released by
HerpesSimplex Virus 1-Infected Cells Block Virus Replication in Recipient
Cells in a STING-DependentManner. J. Virol. 92, 1–19. doi: 10.1128/jvi.01102-18

Dogrammatzis, C., Waisner, H., and Kalamvoki, M. (2020). Cloaked Viruses and
Viral Factors in CuttingEdge Exosome-Based Therapies. Front. Cell Dev. Biol.
8, 1–20. doi: 10.3389/fcell.2020.00376
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