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11Department of Pathology, University of California at San Diego, La Jolla, CA, USA

Abstract

Human cells have twenty-three pairs of chromosomes but in cancer, genes can be amplified in 

chromosomes or in circular extrachromosomal DNA (ECDNA), whose frequency and functional 

significance are not understood1–4. We performed whole genome sequencing, structural modeling 

and cytogenetic analyses of 17 different cancer types, including 2572 metaphases, and developed 

ECdetect to conduct unbiased integrated ECDNA detection and analysis. ECDNA was found in 

nearly half of human cancers varying by tumor type, but almost never in normal cells. Driver 

oncogenes were amplified most commonly on ECDNA, elevating transcript level. Mathematical 

modeling predicted that ECDNA amplification elevates oncogene copy number and increases 

intratumoral heterogeneity more effectively than chromosomal amplification, which we validated 

by quantitative analyses of cancer samples. These results suggest that ECDNA contributes to 

accelerated evolution in cancer.

Cancers evolve in rapidly changing environments from single cells into genetically 

heterogeneous masses. Darwinian evolution selects for those cells better fit to their 

environment. Heterogeneity provides a pool of mutations upon which selection can act1, 5–9. 

Cells that acquire fitness-enhancing mutations are more likely to pass these mutations on to 

daughter cells, driving neoplastic progression and therapeutic resistance10, 11. One common 

type of cancer mutation, oncogene amplification, can be found either in chromosomes or 

nuclear ECDNA elements, including double minutes (DMs)2–4, 12–14. Relative to 

chromosomal amplicons, ECDNA is less stable, segregating unequally to daughter 

cells15, 16. DMs are reported to occur in 1.4% of cancers with a maximum of 31.7% in 

neuroblastoma, based on the Mitelman database4, 17. However, the scope of ECDNA in 

cancer has not been accurately quantified, the oncogenes contained therein have not been 

systematically examined, and the impact of ECDNA on tumor evolution has yet to be 

determined.

DNA sequencing permits unbiased analysis of cancer genomes, but it cannot spatially 

resolve amplicons to specific chromosomal or EC regions. Bioinformatic analyses can 

potentially infer DNA circularity18, but EC amplicons may vary from cell to cell. 

Consequently, ECDNA oncogene amplification may be greatly underestimated. Cytogenetic 

analysis of tumor cell metaphases can localize amplicons, but this technique does not permit 

unbiased discovery. To quantify the spectrum of ECDNA in human cancer and 

systematically interrogate its contents, we integrated whole genome sequencing (WGS) of 

117 cancer cell lines, patient-derived tumor cell cultures and tumor tissues from a range of 

cancer types (Fig. 1A), with bioinformatic and cytogenetic analysis of 2049 metaphases 

from 72 cancer cell samples for which metaphases could be obtained. Additionally, 290 

metaphases from 10 immortalized cell cultures, and 233 metaphases from 8 normal tissue 

cultures were analyzed, for a total of 2572 metaphases (Source Data Table S1 and Methods).

The fluorescent dye DAPI, 4', 6-diamidino-2-phenylindole, permits ECDNA detection (Fig. 

1B), as confirmed using genomic DNA and centromeric FISH probes (Fig. 1B–D; Extended 

Data Fig. E1). We developed an image analysis software package ECdetect (Fig. 1E; 
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Methods), providing a robust, reproducible and highly accurate method for quantifying 

ECDNA from DAPI-stained metaphases in an unbiased, semi-automated fashion. ECdetect 

accurately detected ECDNA and was highly correlated with visual detection (r=0.98, p < 2.2 

× 10−16, Fig. 1F), permitting quantification in 2572 metaphases, including at least 20 

metaphases from each sample.

ECDNA was abundant in the cancer samples (Fig. 2A), but was rarely found in normal cells. 

Approximately 30% of the ECDNAs were paired DMs (Source Data Table S2). ECDNA 

levels varied among tumor types, with substantially higher levels in patient-derived cultures 

(Fig. 2B). Using the conservative metric of at least 2 ECDNAs in ≥ 10% (2 of 20) 

metaphases, ECDNA was detected in nearly 40% of tumor cell lines and nearly 90% of 

patient-derived brain tumor models (Fig. 2C–D; Methods; Extended Data Fig. E2). No 

significant associations between ECDNA level and either: a) primary vs. metastatic status; 

b) untreated vs. treated samples or c) un-irradiated vs. post-irradiated tumors were detected 

(Source Data Table S2). The diverse array of treatments relative to sample size limited our 

ability to definitively determine the impact of specific therapies on ECDNA levels. ECDNA 

number varied greatly from cell to cell within a tumor culture (Fig. 2E–G; Extended Data 

Fig. E3; Supplementary Section 2.3), as quantified by the Shannon Index19. These data 

demonstrate that ECDNA is common in cancer, varies greatly from cell to cell, and is very 

rare in normal tissue.

WGS with median coverage of 1.19× (Extended Data Fig. E4) revealed focal amplifications 

that were nearly identical to the amplifications found in the TCGA analyses of the same 

cancer types (Fig. 3A; Source Data Table S3), including amplified oncogenes found in a 

pan-cancer analysis of 13 different cancer types20. All of the amplified oncogenes tested 

were found solely on ECDNA, or concurrently on ECDNA and chromosomal homogenous 

staining regions (HSRs) (Fig. 3B–C; Extended Data Fig. E5–6). Oncogenes amplified in 

ECDNA expressed high levels of mRNA transcripts (Fig. 3D) and the copy number diversity 

of commonly amplified oncogenes in ECDNA far exceeded their copy number diversity if 

they were on other chromosomal loci (Extended Data Fig. E7).

To determine whether extra- and intrachromosomal structures had a common origin, we 

developed ‘AmpliconArchitect’ to elucidate the finer genomic structure using sequencing 

data (Methods). To better understand the relationship between subnuclear location and 

amplicon structure, we took advantage of spontaneously occurring subclone of GBM39 cells 

in which high copy EGFRvIII shifted from ECDNA exclusively to HSRs. Independent 

replicates of GBM39 containing an ECDNA amplicon, revealed a consistent circular 

structure of 1.29 MB containing one copy of EGFRvIII (Extended Data Fig. E8). 

Remarkably, the GBM39 subclone harboring EGFRvIII exclusively on HSRs had an 

identical structure with tandem duplications containing multiple copies of EGFRvIII, 

indicating that the HSRs arose from reintegration of EGFRvIII-containing ECDNA elements 

(Extended Data Fig. E8)14. In GBM39 cells, resistance to the EGFR tyrosine kinase 

inhibitors is caused by reversible loss of EGFRvIII on ECDNA21. Structural analysis 

revealed a conservation of the fine structure of the EGFRvIII amplicon containing ECDNA 

in naïve cells, in treatment, and upon regrowth with discontinuation of therapy (Extended 
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Data Fig. E9), indicating that ECDNA can dynamically relocate to chromosomal HSRs 

while maintaining key structural features14, 22.

Does ECDNA localization confer any particular benefit? We hypothesized ECDNA 

amplification may enable an oncogene to rapidly reach higher copy number because of the 

unequal segregation to daughter cells15 than would be possible by intrachromosomal 

amplification. We used a simplified Galton-Watson branching process to model the evolution 

of a tumor23, where each cell in the current generation either replicates or dies to create the 

next generation. A cell with k copies of the amplicon is selected for replication with 

probability bk; bk/(1-bk) = 1 + sfm(k). We provided a positive selection bias towards cells 

with higher ECDNA counts by choosing s ϵ {0.5,1} along with different selection functions 

for f. Specifically, fm(k) increases to a maximum value fm(15) = 1, then declines in a logistic 

manner with fm(m) = 0.5 to reflect metabolic constraints (Methods). We allowed the 

amplicon copy number to grow to 1000 copies (Extended Data Fig. E10), but set bk = 0 for k 

≥ 103. During cell division, the 2k copies resulting from the replication of each of the k 

ECDNA copies segregate independently into the two daughter cells. We contrasted this with 

an intrachromosomal model of duplication with identical selection constraints, but with the 

change in copy number affected by mitotic recombination, and achieved by incrementing or 

decrementing k by 1, with duplication probability pd. A range of values for pd, (0.01 ≤ pd ≤ 

0.1) was used, where the upper bound reflects a change in copy number once every 5 

divisions. The full assumptions of the model are explained in detail in Supplementary 

Material Section 4. Starting with an initial population of 105 cells, with s = 0.5 and m = 100 

and a selection function f100(k) (Fig. 4A), we find that an oncogene can reach much higher 

copy number in a tumor if it is amplified on ECDNA, rather than on a chromosome (Fig. 

4B). As predicted by the model, we detected significantly higher copy number of the most 

frequently amplified oncogenes EGFR (including EGFRvIII) and c-MYC, when they were 

contained within ECDNA instead of within chromosomes (Fig. 4C). We also reasoned that if 

an oncogene is amplified intra-chromosomally, the heterogeneity of the tumor (in terms of 

the distribution of copies of the oncogene) would stabilize at a much lower level. In contrast, 

unequal segregation of ECDNA would be likely to rapidly enhance heterogeneity and 

maintain it. Our model confirmed this prediction (Fig. 4D), consistently for a wide range of 

simulation parameters (Supplementary Material Section 4.3). The heterogeneity of copy 

number change stabilizes and even decreases over time10, 24, much as predicted in Fig. 4C–

D. We also tested the validity of the model by comparing the Shannon entropy against the 

average number of amplicons per cell in our tumor samples. Heterogeneity of a tumor with 

respect to oncogene copy number would be more likely to rise relatively slowly if it is 

present on a chromosome, but would rise more rapidly and be maintained much longer, if 

that oncogene is present on ECDNA, as confirmed by a plot of Shannon entropy vs copy 

number (Fig. 4E). Moreover, the predicted correlation in Fig. 4E is completely recapitulated 

by the experimental data (Fig. 4F), thereby validating the central tenets of the model.

There is growing evidence that genetically heterogeneous tumors are remarkably difficult to 

treat10. The data presented here identifies a mechanism by which tumors maintain cell-to-

cell variability in the copy number and transcriptional level of oncogenes that drive tumor 

progression and drug resistance. We suggest that EC oncogene amplification may enable 

tumors to adapt more effectively to variable environmental conditions by increasing the 
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likelihood that a subpopulation of cells will express that oncogene at a level that maximizes 

its proliferation and survival12, 21, 25–28, rendering tumors progressively more aggressive and 

difficult to treat over time. Even when using a selection function that only mildly depends on 

copy number, we detected a very large difference between intra-and extrachromosomal 

amplification mechanisms leading to higher copy number of amplicons and greater 

heterogeneity of copy number. Thus, even small increases in selection advantage conferred 

by oncogenes amplified on ECDNA would be expected to yield a very high fitness 

advantage (Supplementary Material Section 4.3). The strikingly high frequency of ECDNA 

in cancer, as shown here, coupled to the benefits to tumors of EC gene amplification relative 

to chromosomal inheritance, suggest that oncogene amplification on ECDNA may be a 

driving force in tumor evolution and the development of genetic heterogeneity in human 

cancer. Understanding the underlying molecular mechanisms of tumor evolution, including 

oncogene amplification in ECDNA, may help to identify more effective treatments that 

either prevent cancer progression or more effectively eradicate it.

Methods

Cytogenetics

Metaphase cells were obtained by treating cells with Karyomax (Gibco) at a final 

concentration of 0.01 µg/ml for 1–3 hours. Cells were collected, washed in PBS, and 

resuspended in 0.075 M KCl for 15–30 minutes. Carnoy’s fixative (3:1 methanol/glacial 

acetic acid) was added dropwise to stop the reaction. Cells were washed an additional 3 

times with Carnoy’s fixative, before being dropped onto humidified glass sides for 

metaphase cell preparations. For ECdetect analyses, DAPI was added to the slides. Images 

in the main figures were captured with an Olympus FV1000 confocal microscope. All other 

images were captured at a magnification of 1000 with an Olympus BX43 microscope 

equipped with a QiClick cooled camera. FISH was performed by adding the appropriate 

DNA FISH probe onto the fixed metaphase spreads. A coverslip was added and sealed with 

rubber cement. DNA denaturation was carried out at 75 °C for 3–5 minutes and the slides 

were allowed to hybridize overnight at 37 °C in a humidified chamber. Slides were 

subsequently washed in 0.4× SSC at 50 °C for 2 minutes, followed by a final wash in 2× 

SSC/0.05% Tween-20. Metaphase cells and interphase nuclei were counterstained with 

DAPI, a coverslip was applied, and images were captured.

Cell culture

The NCI-60 cell line panel (gift from Andrew Shiau-obtained from NCI) was grown in 

RPMI-1640 with 10% FBS under standard culture conditions. Cell lines were not 

authenticated, as they were obtained from the NCI. The PDX cell lines were cultured in 

DMEM/F-12 media supplemented with Glutamax, B27, EGF, FGF, and Heparin. 

Lymphoblastoid cells (gifts from Bing Ren) were grown in RPMI-1640, supplemented with 

2 mM glutamine and 15% FBS. IMR90 and ALS6-Kin4 (gift from John Ravits and Don 

Cleveland) cells were grown in DMEM/F-12 supplemented with 20% FBS. Normal human 

astrocytes (NHA) and normal human dermal fibroblasts (NHDF) were obtained from Lonza 

and cultured according to Lonza-specific recommendation. Cell lines were not tested for 

mycoplasma contamination.
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Tissue samples

Tissues were obtained from the Moores Cancer Center Biorepository Tissue Shared 

Resource with IRB approval (#090401). All samples were de-identified and patient consent 

was obtained. Additional tissue samples that were obtained were approved by the UCSD 

IRB (#120920).

DNA library preparation

DNA was sonicated to produce 300–500bp fragments. DNA end repair was performed using 

End-it (Epicentre), DNA library adapters (Illumina) were ligated, and the DNA libraries 

were amplified. Paired-end next generation sequencing was performed and samples were run 

on the Illumina Hi-Seq using 100 cycles.

DNA extraction

Cells were collected and washed with 1× cold PBS. Cell pellets were resuspended in Buffer 

1 (50 mM Tris, pH 7.5, 10 mM EDTA, 50 µg/ml RNase A), and incubated in Buffer 2 (1.2% 

SDS) for 5 minutes on ice. DNA was acidified by the addition of Buffer 3 (3 M CsCl, 1 M 

potassium acetate, 0.67 M acetic acid) and incubated for 15 minutes on ice. Samples were 

centrifuged at 14,000 × g for 15 minutes at 4 °C. The supernatant was added to a Qiagen 

column and briefly centrifuged. The column was washed (60% ethanol, 10 mM Tris pH 7.5, 

50 µM EDTA, 80 mM potassium acetate) and eluted in water.

DNase treatment

Metaphase cells were dropped onto slides and visualized via DAPI. Coverslips were 

removed and slides washed in 2× SSC, and subsequently treated with 2.5% trypsin, and 

incubated at 25 °C for 3 minutes. Slides were then washed in 2× SSC, DNase solution (1 

mg/ml) was applied to the slide, and cells were incubated at 37 °C for 3 hours. Slides were 

washed in 2× SSC and DAPI was again applied to the slide to visualize DNA.

ECDNA count statistics

In Figures 2A and 2B, the violin plots represent the distribution of ECDNA counts in 

different sample types. In order to compare the ECDNA counts between the different 

samples, we use a one-sided Wilcoxon rank sum test, where the null hypothesis assumes the 

mean ECDNA count ranks of the compared sample types equal.

Estimation of frequency of samples containing ECDNA

There is a wide variation in the number of ECDNA across different samples and within 

metaphases of the same sample. We want to estimate and compare the frequency of samples 

containing ECDNA for each sample type. We label a sample as being ECDNA-positive by 

using the pathology standard: a sample is deemed to be ECDNA-positive if we observe ≥ 2 

ECDNA in ≥ 2 images out of 20 metaphase images. Therefore, we ensure that every sample 

contains at least 20 metaphases.

We define indicator variable Xij = 1 if metaphase image j in sample i has ≥ 2 ECDNA; Xij = 

0 otherwise. Let ni be the number of metaphase images acquired from sample i. We assume 
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that Xij is the outcome of the jth Bernoulli trial, where the probability of success pi is drawn 

at random from a beta distribution with parameters determined by ∑jXij. Formally,

We model the likelihood of observing k successes in n = 20 trials using the binomial density 

function as:

Finally, the predictive distribution p(k), is computed using the product of the Binomial 

likelihood and Beta prior, modeled as a “beta-binomial distribution”29.

We model the probability for sample i being ECDNA-positive with the random variable Yi 

such that:

The expected value of Yi is:

Let T be the set of samples belonging to a certain sample type t, e.g. immortalized samples.

We define

We estimate the frequency of samples under sample t containing ECDNA (bar heights on 

Figures 2C and 2D) as

and error bar heights (Figure 2C and 2D) as:
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assuming independence among samples i ϵ T. For any αi or βi = 0, we assign them a 

sufficiently small ε. For more detail, please see Supplementary Material Section 1.

Comparison of ECDNA presence between different sample types

We construct binary ECDNA presence distributions, based on the ECDNA counts, such that 

an image with ≥ 2 ECDNA is represented as a 1, and 0 otherwise. In order to compare the 

ECDNA presence between the different samples, we use a one-sided Wilcoxon rank sum test 

using the binary ECDNA presence distributions, where the null hypothesis assumes the 

mean ranks of the compared sample types equal.

ECdetect: Software for detection of extrachromosomal DNA from DAPI staining metaphase 
images

The software applies an initial coarse adaptive thresholding30, 31 on the DAPI images to 

detect the major components in the image with a window size of 150×150 pixels, and T = 

10% Components breaching 3000 pixels and 80% of solidity are masked, and small 

components discarded. Weakly connected components (CC) of the remaining binary image 

are computed to find the separate chromosomal regions. CC breaching a cumulative pixel 

count of 5000 are considered as candidate search regions, and their convex hull with a 

dilation of 100 pixels are added into the ECDNA search region. Following the manual 

masking and verification of the ECDNA search region, a second finer adaptive thresholding 

with a window size of 20×20 pixels and T = 7% is performed. Components that are greater 

than 75 pixels are designated as non-ECDNA structures and their 15 pixel neighborhood is 

removed from the ECDNA search region. Any component detected with a size less than or 

equal to 75 and greater than or equal to 3 pixels inside the search region is detected as 

ECDNA. For more detail, please see Supplementary Material Section 2.

Bioinformatic datasets

We sequenced 117 tumor samples including 63 cell lines, 19 neurospheres and 35 cancer 

tissues with coverage ranging from 0.6× to 3.89× and an additional 8 normal tissues as 

controls. See Extended Data Figure E4 for the coverage distribution across samples. We 

mapped the sequencing reads from each sample to hg19 (GRCh37) human reference 

genome32 from UCSC genome browser33 using BWA software version 0.7.9a34. We inferred 

an initial set of copy number variants from these mapped sequence samples using the 

ReadDepth CNV software35 version 0.9.8.4 with parameters FDR = 0.05 and 

overDispersion = 1.

We downloaded copy number variation calls (CNV) for 11079 tumor-normal samples 

covering 33 different tumor types from TCGA. We applied similar filtering criteria to 

ReadDepth output and TCGA calls to eliminate false CN amplification calls from repetitive 

genomic regions and hotspots for mapping artefacts.
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We used the filtered set of CNV calls from ReadDepth as input probes for 

AmpliconArchitect which revealed the final set of amplified intervals and the architectures 

of the amplicons. See Supplementary Material Section 3 for more details.

Reconstruction using AmpliconArchitect

We developed a novel tool AmpliconArchitect (AA), to automatically identify connected 

amplified genomic regions and reconstruct plausible amplicon architectures. For each 

sample, AA takes as input an initial list of amplified intervals and whole genome sequencing 

(WGS) paired-end reads aligned to the human reference. It implements the following steps 

to reconstruct the one or more architectures for each amplicon present in the sample: (a) Use 

discordant read-pair alignments and coverage information to iteratively visit and extend 

connected genomic regions with high copy numbers. (b) For each set of connected amplified 

regions, segment the regions based on depth of coverage using a mean-shift segmentation to 

detect copy number changes and discordant read-pair clusters to identify genomic breaks. (c) 

Construct a breakpoint graph connecting segments using discordant read-pair clusters. (d) 

Compute a maximum likelihood network to estimate copy counts of genomic segments. (e) 

Report paths and cycles in the graph that identify the dominant linear and circular structures 

representing one. (Supplementary Material Section 3)

Comparison of CNV gains between the sequencing sample set and TCGA

We compared our sample set against TCGA samples to test the assumption that the genomic 

intervals amplified in our sample set are broadly representative of a pan-cancer dataset, by 

comparing against TCGA samples. Here, we deal with an abstract notation to represent 

different datasets and describe a generic procedure to compare amplified regions. Consider a 

set of K samples. For any k ∈ [1, …, K], let Sk denote the set of amplified intervals in 

sample k.

Let c be the cancer subtype for sample k. We compare Sk against TCGA samples with sub-

type c. Let T denote the set of all genomic regions which are amplified in at least 1% of 

TCGA samples of subtype c. For each interval t ∈ T, let ft denote its frequency in TCGA 

samples of subtype c. We define a match score

The cumulative match score for all samples is defined as:

To compute the significance of statistic D, we do a permutation test. We generate N random 

permutations of the TCGA intervals for subtype c and estimate distribution of match scores 

of our sample set against the random permutations. We choose a random assignment of 

locations of all intervals in T, while retaining their frequencies. For the jth permuted set Tj, 

we computed the cumulative match score Dj relative to our sample set. Thus the significance 
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of overlap between our sample set and the TCGA amplified intervals is estimated by the 

fraction of random permutations with Dj > D. Computing 1 million random permutations 

generated exactly one permutation breaching the TCGA score D, implying a p-value ≤ 10−6.

Oncogene Enrichment

We compared the rank correlation of the most frequent oncogenes in our sample set with the 

top oncogenes as reported by TCGA pan-cancer analysis by Zack et al20. We identified 14 

oncogenes occurring in 2 or more samples of our sample set and compared these with the 

top 10 oncogenes from the TCGA pan-cancer analysis. We found that 7 out of the top 10 

oncogenes were represented in our list of 14 oncogenes. Considering 490 oncogenes in the 

COSMIC database, the significance of observing 7 or more oncogenes in common in the 

two datasets is given by the hypergeometric probability

Amplicon structure similarity

We found high similarity between amplicon structures of biological replicates (e.g. Extended 

Data Figure E8). We estimate probability of common origin between two samples by 

measuring the pairwise similarity between amplicon structures. In reconstructing the 

structures (Supplementary Material Section 3), we identify a set of locations representing 

change in copy number and we use the locations of change in copy number to estimate the 

similarity in amplicon structures.

Let L be the total length of amplified intervals. These intervals are binned into windows of 

size r, resulting in Nb = L/r bins. We use a segmentation algorithm that determines if there is 

a change in copy number in any bin, within a resolution of r = 10,000 bp. (See Meanshift in 

coverage: Supplementary Materials Section 3.2.) Note that this is an over-estimate, since 

with split-reads and high density sequencing data, we can often get the resolution down to a 

few base pairs. Let S1 and S2 represent the set of bins with copy number changes in the two 

samples, respectively. S1 and S2 are selected from a candidate set of locations Nb. Under the 

null hypothesis that S2 is random with respect to S1, we expect I = S1 ∩ S2 to be small. Let 

m = min{|S1|, |S2|}, and M = max{|S1|, |S2|}. A p-value is computed as follows:

In looking at GBM39 replicates (Extended Data Figure E8), we find that all replicates 

displaying EGFR ECDNA are similar to each other. Comparing replicates in row 1 and row 

2 among |Nb| = 129 bins (1.29 Mbp), |S1| = 5 corresponding to row 1 (EC sample), |S2| = 6 
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corresponding to row 2 (EC sample) and intersection set size |I| = 5, we compute the p-value 

for observing such structural similarity by random chance is 2.18 × 10−8 which is the highest 

p-value among all EC replicate pairs. In addition, we compare the replicates displaying 

EGFR on ECDNA with the culture displaying EGFR on HSR. Among |Nb| = 129 bins, |S1| = 

6 corresponding to row 2 (EC), |S2| = 4 corresponding to row 4 (HSR), the intersection set 

has size |I| = 4 intervals giving a p-value of 1.98 × 10−5 which gives the highest p-value 

among the 3 ECDNA replicates compared to the HSR culture, suggesting a common origin.

A branching process model for oncogene amplification

Consider an initial population of N0 cells, of which Nα cells contain a single extra copy of 

an oncogene. We model the population using a discrete generation Galton-Watson branching 

process23. In this simplified model, each cell in the current generation containing k 

amplicons (amplifying an oncogene) either replicates with probability bk to create the next 

generation, or dies with probability 1 - bk to create the next generation. We set the selective 

advantage

(1)

In other words, cells with k copies of the amplicon stop dividing after reaching a limit of Mα 
amplicons. Otherwise, they have a selective advantage for 0 < k ≤ Mα, where the strength of 

selection is described by fm(k), as follows:

(2)

Here, s denotes the selection-coefficient, and parameters m and α are the ‘mid-point’, and 

‘steepness’ parameters of the logistic function, respectively. Initially, fm(k) grows linearly, 

reaching a peak value of fm(k) = 1 for k = Ms. As the viability of cells with large number of 

amplicons is limited by available nutrition36, fm(k) decreases logistically in value for k > Ms 

reaching fm(k) → 0 for k ≥ Mα. We model the decrease by a sigmoid function with a single 

mid-point parameter m s.t. fm(m) = 1/2. The ‘steepness’ parameter α is automatically 

adjusted to ensure that min{1 – fm(Ms), fm(Mα)} → 0.

The copy number change is affected by different mechanisms for extrachromosomal (EC) 

and intrachromosomal (HSR) models. In the EC model, the available k amplicons are on EC 

elements which replicate and segregate independently. We assume complete replication of 

EC elements so that there are 2k copies which are partitioned into the two daughter cells via 

independent segregation. Formally, the daughter cells end up with k1 and k2 amplicons 

respectively, where

(3)
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(4)

In contrast, in the intrachromosomal model, the change in copy number happens via mitotic 

recombination, and the daughter cell of a cell with k amplicons will acquire either k + 1 

amplicons or k − 1 amplicons, each with probability pd. With probability 1 – 2pd, the 

daughter cell retains k amplicons. See Supplementary Material Section 4 for more details.

Code and data availability

AmpliconArchitect is available for use online at: https://github.com/virajbdeshpande/

AmpliconArchitect. ECdetect will be available upon request. Whole genome sequencing 

data is deposited to the NCBI Sequence Read Archive (SRA) under Bioproject at http://

www.ncbi.nlm.nih.gov/bioproject/338012 with Accession ID PRJNA338012. DAPI and 

FISH metaphase images are available for download on figshare at https://figshare.com/s/

ab6a214738aa43833391.
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Extended Data

Figure E1. 
Full metaphase spreads corresponding to the partial metaphase spreads shown in Figure 1. a, 

Images corresponding to Fig. 1B, b, images corresponding to Fig. 1C, c, images 

corresponding to Fig. 1D.
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Figure E2. 
Alternative analysis of ECDNA presence according to varying criteria, stratified by sample 

type: Samples with a minimum number of ECDNA per 10 metaphases in average shown in 

x-axis are classified ECDNA-positive, and their fraction is displayed on the y-axis. The 

vertical line at x=4 shows that for a minimum of 4 ECDNA per 10 metaphases on average, 

0% of normal, 10% of immortalized, 46% of tumor cell line and 89% of PDX samples are 

classified as ECDNA positive.
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Figure E3. 
ECDNA counts in normal and immortalized cells.
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Figure E4. 
Histogram of depth of coverage for next-generation sequencing of tumor samples. We 

sequenced 117 tumor samples including 63 cell lines, 19 neurospheres (PDX) and 35 cancer 

tissues with coverage ranging from 0.6× to 3.89× (excluding one sample with 0.06 × 

coverage) with median coverage of 1.19×.
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Figure E5. 
Full metaphase spreads corresponding to the partial metaphase spreads shown in Figure 3C.
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Figure E6. 
FISH images displaying both ECDNAs and HSRs in cells from the same sample.
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Figure E7. 
Copy number amplification and diversity due to ECDNA. To test how much of the copy 

number and diversity could be attributed to ECDNA, we chose FISH probes that bind to four 

of the most commonly amplified oncogenes in our sample set, EGFR, MYC, CCND1 or 

ERBB2, and quantified the cell-to-cell variability in their DNA copy number in metaphase 

spreads, from four tumor cell lines: GBM39, MB411FH, SF295 and PC3 cancer cells. For 

each cell line, only the target oncogene marked in red is known to be amplified on ECDNA 

(EGFR in GBM39; MYC in MB411FH and PC3, and CCND1 in SF295). The other 3 genes 

reside on chromosomal loci. The target oncogene shows consistently higher copy numbers 

(Top Panel) and diversity (Bottom Panel).
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Figure E8. 
Fine structure analysis of EGFRvIII Amplification in Extrachromosomal or Chromosomal 

DNA in GBM39 Cells: a., FISH images revealed EGFR gene on ECDNAs (top) and HSRs 

(bottom) on different passes of the GBM39 cell line. Analysis of the HSR FISH images 

shows evidence of multiple integration sites on different chromosomes. b., Next generation 

sequencing of DNA from 4 independent cultures of GBM39 was used to analyze the fine 

structure of amplifications (Supplementary Material Section 4.3). In 3 biological replicates 

(rows 1 to 3) of these cultures, EGFRvIII was exclusively on ECDNA, while one of the later 

passage cultures (row 4) was found to contain EGFRvIII entirely on HSRs, with no 

detectable ECDNA. The DNA derived from different ECDNA cultures shows identical 

structure with some heterogeneity (p < 2.18 × 10−8 for all pairs), suggesting common origin. 

However, DNA derived from HSRs reveals a conserved structure that is identical to ECDNA 

structure (p < 1.98 × 10−5, Supplementary Material Section 2.4), possibly with tandem 

duplications. c., A possible progression of normal genome to cancer genome with EGFRvIII 

ECDNAs and amplification to a copy count of around 100 copies. The EGFRvIII ECDNAs 

possibly aggregate into tandem duplications and reintegrate into multiple chromosomes as 

HSRs such that 5–6 HSRs accommodate around 100 copies of EGFRvIII.
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Figure E9. 
Fine structure analysis of EGFRvIII Amplification in Extrachromosomal or Chromosomal 

DNA in naive GBM39 cells and in response to Erlotinib Treatment (ERZ) and Drug 

Withdrawal: a., FISH images of naive GBM39 cells, in response to Erlotinib Treatment 

(ERZ) and Drug Withdrawal displayed EC amplification, HSR amplification and EC 

amplification respectively (top to bottom). b., Next generation sequencing of DNA from 6 

independent cultures of GBM39 was used to analyze the fine structure of amplifications 

(Supplementary Material Section 4.3). Average copy numbers of amplified intervals as 

determined from sequencing analysis in naive samples (biological replicates in rows 1 to 3): 

110 to 150, ERZ sample (row 4): 5.4 and Erlotinib removed (biological replicates in rows 5 

and 6): 100–105. All three categories show similar fine structure indicating common origin 

(Methods). Erlotinib removed replicates show additional rearrangements and heterogeneity 

as compared to naive samples. c., Cytogenetic and sequencing progression suggests the 

EGFRvIII ECDNAs in naive cells get reintegrated into HSRs after drug application and the 

copies in the HSRs break off from the chromosomes again to form ECDNAs with copy 

count similar to naive cells. Drug removed samples also show additional heterogeneity in 

structure.
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Figure E10. 
A GBM metaphase spread with large ECDNA counts (> 600), as determined by manual 

counting and ECdetect.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Integrated next-generation DNA sequencing and cytogenetic analysis of ECDNA
a, Schematic diagram of experimental flow. b, Representative metaphases stained with DAPI 

and a genomic DNA FISH probe (ECDNA, arrows). c, DNase treatment abolishes DAPI 

staining of chromosomal and ECDNA (arrows). d, Pan-centromeric FISH reveals absence of 

a centromere in ECDNAs (arrows). e, Schematic illustration of ECdetect. e.1) DAPI-stained 

metaphase as input. e.2) Semi-automated identification of ECDNA search region via 

segmentation. e.3) Conservative filtering, removing non-ECDNA components. e.4) ECDNA 
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detection and visualization. (F). Pearson correlation between software-detected and manual 

calls of ECDNA (R: 0.98, p < 2.2 × 10−16.
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Fig. 2. ECDNA is found in nearly half of cancers and contributes to intra-tumoral heterogeneity
a, Distribution of ECDNA per metaphase from 72 cancer, 10 immortalized and 8 normal cell 

cultures, Wilcoxon rank sum test. b, ECDNA distribution per metaphase stratified by tumor 

type. c, Proportion of samples with ≥ 2 ECDNAs in ≥ 2 per 20 metaphases. Data shown as 

mean ± SEM. (methods). d, Proportion of tumor cultures positive for ECDNA by tumor 

type. e, Shannon diversity index (SI). Each dot represents an individual cell line sampled 

with ≥ 20 metaphases. f, SI by tumor type. g, DAPI-stained metaphases with histograms.
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Fig. 3. The most common focal amplifications in cancer are contained on ECDNA
a, Comparison of the frequency of focal amplifications detected by next generation 

sequencing of 117 cancer samples studied here (blue), with those of matched tumor types in 

the TCGA (red), demonstrates significant overlap and representative sampling (p-value 10−6 

based upon random permutations of TCGA amplicons; Methods). b, Localization of 

oncogenes by FISH. c, Representative FISH images of focal amplifications on ECDNA 

(arrows). d, EGFRvIII and c-Myc mRNA level, measured by qPCR (p < 0.001, Mann-
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Whitney test), mean ± SEM. n=17; each data point represents qPCR values from three 

technical replicates.
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Fig. 4. Theoretical model for focal amplification via extrachromosomal (EC) and 
intrachromosomal (HSR) mechanisms
Simulated change in copy number via random segregation (EC) or mitotic recombination 

(HSR), starting with 105 cells, 100 of which carry amplifications. a, The selection function 

f100(k) reaches maximum for k=15, then decays logistically. b, Growth in amplicon copy 

number over time. c, DNA copy number stratified by oncogene location. (p<0.001, ANOVA/

Tukey’s multiple comparison). N=52; data points include top five amplified oncogenes, 

mean ± SEM. d, Change in heterogeneity (SI) over time. e, Correlation between copy 

Turner et al. Page 30

Nature. Author manuscript; available in PMC 2017 August 08.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



number and heterogeneity. f, Experimental data showing correlation between ECDNA 

counts and heterogeneity matches the simulation in panel E.

Turner et al. Page 31

Nature. Author manuscript; available in PMC 2017 August 08.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t


	Abstract
	Methods
	Cytogenetics
	Cell culture
	Tissue samples
	DNA library preparation
	DNA extraction
	DNase treatment
	ECDNA count statistics
	Estimation of frequency of samples containing ECDNA
	Comparison of ECDNA presence between different sample types
	ECdetect: Software for detection of extrachromosomal DNA from DAPI staining metaphase images
	Bioinformatic datasets
	Reconstruction using AmpliconArchitect
	Comparison of CNV gains between the sequencing sample set and TCGA
	Oncogene Enrichment
	Amplicon structure similarity
	A branching process model for oncogene amplification
	Code and data availability

	Extended Data
	Figure E1
	Figure E2
	Figure E3
	Figure E4
	Figure E5
	Figure E6
	Figure E7
	Figure E8
	Figure E9
	Figure E10
	References
	References
	Fig. 1
	Fig. 2
	Fig. 3
	Fig. 4

