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Extraclassical receptive field phenomena in V1 are commonly

attributed to long-range lateral connections and/or extrastriate

feedback. We address 2 such phenomena: surround suppression

and receptive field expansion at low contrast. We present rigorous

computational support for the hypothesis that the phenomena largely

result from local short-range (<0.5 mm) cortical connections and

lateral geniculate nucleus input. The neural mechanisms of surround

suppression in our simulations operate via (A) enhancement of

inhibition, (B) reduction of excitation, or (C) action of both simulta-

neously. Mechanisms (B) and (C) are substantially more prevalent

than (A). We observe, on average, a growth in the spatial summation

extent of excitatory and inhibitory synaptic inputs for low-contrast

stimuli. However, we find this is neither sufficient nor necessary to

explain receptive field expansion at low contrast, which usually

involves additional changes in the relative gain of these inputs.

Keywords: model, receptive field, simulation, spatial summation,

surround suppression, visual cortex

Introduction

In mammals, the very first stage of cortical visual processing

takes place in the striate cortex (area V1). Already at this level,
spatial summation of visual input is considerably complex. This is
manifest from the fact that cells in V1 display a set of phenomena
that are conventionally referred to as ‘‘extraclassical receptive

field phenomena.’’ In this paper, we focus on 2 such phenomena,
surround suppression (suppression for increasing stimulus size,
‘‘size tuning’’) and the increase of the receptive field size at low

contrast. These 2 phenomena are observed throughout the
striate cortex, including all cell types in all layers and at all
eccentricities (Schiller and others 1976; Dow and others 1981;

Silito and others 1995; Kapadia and others 1999; Sceniak and
others 1999, 2001; Anderson and others 2001; Cavanaugh and
others 2002; Ozeki and others 2004). The suppression seen is

substantial, with cells in macaque V1 showing, on average, a 30--
40% reduction in their firing rates at large stimulus sizes
(Cavanaugh and others 2002). Similarly significant is the re-
ceptive field expansion at low contrast. Typical is a doubling in

receptive field size when stimulus contrast is reduced by a factor
of 2--3 (Sceniak and others 1999). Apparently, at low contrast,
neurons in V1 sacrifice spatial sensitivity in return for a gain in

contrast sensitivity (Sceniak and others 1999). Neural mecha-
nisms responsible for these 2 phenomena are at present poorly
understood. Understanding these mechanisms is potentially

important for developing a theoretical model of early signal
integration and neural encoding of visual features in V1.
Popular working hypotheses are that these 2 extraclassical

receptive field phenomena are a product of long-range hori-

zontal connections (DeAngelis and others 1994; Dragoi and Sur

2000; Hupé and others 2001; Stettler and others 2002) and/or

feedback from extrastriate areas (Sceniak and others 2001;
Angelucci and others 2002; Cavanaugh and others 2002; Bair
and others 2003). Arguments in support of these hypotheses are
based on the observed surround sizes and the cortical magni-

fication factor and claim that short-range ( <0.5 mm) and even
long-range horizontal ( <5 mm) connections in V1 would not
have sufficient spatial extent to be responsible for surround

suppression or receptive field expansion (Sceniak and others
2001; Cavanaugh and others 2002). Further, support along this
line was presented using anterograde and retrograde tracer

injections (Angelucci and others 2002) and timing experiments
(Bair and others 2003). So far, however, these hypotheses are
based on indirect experimental observations and also lack

rigorous computational support.
The hypothesis that the phenomena result from local short-

range ( <0.5 mm) cortical connections and lateral geniculate
nucleus (LGN) input is largely ignored or dismissed. However,

support for it can be found in the experimental data. For
instance, surround suppression and receptive field expansion at
low contrast are significant throughout V1 (Sceniak and others

1999, 2001), including in layers that do not receive extrastriate
feedback and do not have long-range horizontal connections.
Both phenomena have been observed in the LGN and are likely

to be partially inherited by V1 via the feed-forward input from
the LGN (Solomon and others 2002; Ozeki and others 2004).
Finally, there is experimental evidence for contextual modu-
lations mediated by local short-range connections in cats (Das

and Gilbert 1999).
In this paper, we suggest neural mechanisms for surround

suppression and receptive field expansion in layers 4Ca and 4Cb
of macaque V1. We show that local short-range cortical
connections and LGN input are, in principle, sufficient to
explain a major part of the phenomena. We do this by means

of a large-scale neural network model that is constructed, as
much as possible, from established experimental data. We
suggest neural mechanisms for the phenomena by analyzing

the synaptic inputs that generate them in the model. An
illustration of the model’s architecture is given in Figure 1.
A brief summary of the model is given in Methods.

Methods

The Model

Our model consists of 8 ocular dominance columns and 64 orientation
hypercolumns (i.e., pinwheels), representing a16-mm2 area of amacaque
V1 input layer 4Ca or 4Cb. The model contains approximately 65 000
cortical cells and the corresponding appropriate number of LGN cells.
Our cortical cells are modeled as conductance-based integrate-and-fire
point neurons, 75% are excitatory cells and 25% are inhibitory cells. Our
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LGN cells are half-wave rectified spatiotemporal linear filters. The model
is constructed with isotropic short-range cortical connections ( <500
lm), realistic LGN receptive field sizes and densities, realistic sizes of
LGN axons in V1, and cortical magnification factors and receptive field
scatter that are in agreement with experimental observations. We will
only give a very brief description of the model here; it is explained in
detail in Supplementary Materials. Some background information can
also be found in previous works (McLaughlin and others 2000; Wielaard
and others 2001) by one of the authors (J.W.).

Dynamic variables of a cortical model cell i are its membrane potential
vi(t) and its spike train Siðt Þ = +

k
dðt –ti ;kÞ; where t is the time and ti,k is

its kth spike time. Membrane potential and spike train of each cell obey
a set of N equations of the form

Ci

dvi

dt
= – g L;iðvi – vLÞ – g E;iðt ; ½S�E;gEÞðvi – vEÞ – g I;iðt ; ½S�I;gIÞðvi – vIÞ;

i = 1; . . . ;N : ð1Þ

These equations are integrated numerically using a second-order
Runge--Kutta method with time step 0.1 ms. Whenever the membrane
potential reaches a fixed threshold level vT, it is reset to a fixed reset
level vR (equal to the leakage (rest) potential vL) and a spike is
registered. The equation can be rescaled so that vi(t) is dimensionless
and Ci = 1, vL = 0, vE = 14/3, vI = –2/3, vT = 1, vR = 0, and conductances
(and currents) have dimension of inverse time.

The quantities gL;i ; gE;i ðt ; ½S�;gEÞ; and g I;i ðt ; ½S�;gIÞ are the leakage
(rest), excitatory, and inhibitory conductances of neuron i. They are
defined by interactionswith the other cells in the network, external noise
gE(I), and, in the case of gE,i possibly by LGN input. The notation ½S�EðIÞ
stands for the spike trains of all excitatory (inhibitory) cells connected to
cell i. Both the excitatory and inhibitory populations consist of 2
subpopulations PkðEÞ and PkðIÞ; k = 0, 1, a population that receives
LGN input (k = 1) and one that does not (k = 0). In the model presented
here, 30% of both the excitatory and inhibitory cell populations receive
LGN input. We assume noise, cortical interactions, and LGN input act
additively in contributing to the total conductance of a cell,

g E;iðt ; ½S�E;gEÞ = gE;iðt Þ + g cor

E;iðt ; ½S�EÞ + dig
LGN

i
ðt Þ

g I;iðt ; ½S�I;gIÞ = gI;iðt Þ + g cor

I;i ðt ; ½S�IÞ; ð2Þ

where di = ‘ for i 2 fP‘ðEÞ;P‘ðIÞg; ‘ = 0, 1. The terms g cor
l;i ðt ; ½S�lÞ are the

contributions from the cortical excitatory (l = E) and inhibitory (l = I)
neurons and include only isotropic connections,

g
cor

l;i ðt ; ½S�lÞ =
Z

N

–N

ds +
1

k = 0

+
j2Pk ðlÞ

Ck9;k

l9;l ðk~xi – ~xjkÞGl;j ðt – sÞSj ðsÞ; ð3Þ

where i 2 Pk9ðl9Þ: Here ~xi is the spatial position (in cortex) of neuron i,
the functions Gl,j (s) describe the synaptic dynamics of cortical
synapses, and the functions Ck9;kl9;l ðr Þ describe the cortical spatial

couplings (cortical connections). The length scale of excitatory and
inhibitory connections is about 200 and 100 lm, respectively.

An important class of parameters is the geometric parameters, which
define and relate the model’s geometry in visual space and cortical
space. Geometric properties are different for the 2 input layers 4Ca and
4Cb and for the 2 eccentricities. As said, the 2 extraclassical phenomena
we seek to explain are observed to be largely insensitive to those
differences (Kapadia and others 1999; Sceniak and others 1999, 2001;
Cavanaugh and others 2002). In order to verify that our explanations are
consistent with this observation, we have performed numerical simu-
lations for 4 sets of parameters, corresponding to the 4Ca and 4Cb layers
at parafoveal eccentricities <5� and at eccentricities around 10�. These
different model configurations are referred to as M0, M10, P0, and P10 in
the text. Reported results are qualitatively similar for all 4 configurations
unless otherwise noted.

In agreement with experimental findings (see references in McLaugh-
lin and others 2000), the LGN neurons are modeled as half-wave
rectified center--surround linear spatiotemporal filters. A cortical cell,
j 2 P1ðlÞ is connected to a set N LGN

L; J of left eye LGN cells or to a set
N LGN
R;J of right eye LGN cells,

g
LGN

j
ðt Þ = +

‘2N LGN
Q;j

g
CS

‘

= +
‘2N LGN

Q;j

g
0

‘
+ g

V

‘

Z

N

–N

ds

Z

d~yGLGN

‘ ðt – sÞL‘ðk~y‘ – ~ykÞIð~y; sÞ
� �

; ð4Þ

Figure 1. Model architecture. (A) A select cluster of ON (blue circles) and OFF (red dots) magno-LGN cells that feed into 1 cortical cell. Receptive field centers of LGN cells are
organized on a square lattice (orange). (B) Select M-LGN axons in our model-V1. Points of the same color are cortical cells that connect to the same LGN cell. (C) Pinwheel structure
and ocular dominance columns for M10 model, constructed from averaged responses in the spirit of optical imaging experiments (Blasdel 1992). Samples used to analyze the 2
extraclassical phenomena are made up of cells from within the white dashed rectangle (see Methods for details).

Table 1

Summary of basic notation used in the paper

CV Circular variance (eq. 11)
F0s, F1s, F2s Mean, first, and second harmonic of the cycle-trial--averaged spike train
F0v, F1v, F2v Mean, first, and second harmonic of the cycle-trial--averaged

membrane potential
gE, gI, g

LGN Excitatory and inhibitory conductance and conductance of the LGN
input of V1 cells

M0, M10 Magnocellular versions of the model at 0� and 10� eccentricity
P0, P10 Parvocellular versions of the model at 0� and 10� eccentricity
rA Aperture radius (size of the stimulus)
rþ, r� Receptive field sizes (radius) for high (þ) and low (�) contrast stimuli.

In some cases it is indicated for which response measure they are
evaluated (e.g., spike responses, rþ(s))

Rþ, R� Surround sizes (radius) for high (þ) and low (�) contrast stimuli
hSðt Þi Firing rate (cycle-trial--averaged spike train) in spikes per second
hvðt Þi Cycle-trial--averaged membrane potential
SI1 Suppression index (eq. 7) similar to that used in Cavanaugh and others (2002)
SI2 Suppression index (eq. 9) similar to that used in Sceniak and others (2001)

Note: This is not a complete list but covers most of the notation used in the figures and the main

text. See Methods for additional information.
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where Q = L or R. Here [x]+ = x if x > 0 and [x]+ = 0 if x < 0, L‘ðr Þ and
GLGN
‘ ðsÞ are the spatial and temporal LGN kernels, respectively, and ~y‘ is

the receptive field center of the ‘th left or right eye LGN cell, which is
connected to the jth cortical cell, I ð~y ; sÞ is the visual stimulus. The
parameters g0

‘ represent the maintained activity of LGN cells, and the
parameters gV

‘ measure their responsiveness to visual stimuli. Their
numerical values are taken to be identical for all LGN cells in the model,
g0
‘ = 2 s

–1 and gV
‘ = 25 cd

–1 m2 s
–1. The LGN kernels are of the form

(Benardete and Kaplan 1999)

G
LGN

‘ ðsÞ = 0; if s< s0‘ ;
ks5ðe – s=s1

– c e
– s=s2 Þ; if s > s0‘ ;

�

ð5Þ

and

L‘ðxÞ = ±ð1 – K‘Þ – 1 1

pr2

c;‘

e
– ðx=rc;‘Þ2

–

K‘

pr2

s;‘

e
– ðx=rs;‘Þ2

( )

; ð6Þ

where k is a normalization constant, rc, ‘ and rs, ‘ are the center and
surround sizes, respectively, and K‘ is the integrated surround--center
sensitivity. The temporal kernels are normalized in Fourier space,
R

N

–N
jĜLGN

‘ ðxÞjdx = 1; ĜLGN
‘ ðxÞ = ð2pÞ–1

R

N

–N
GLGN
‘ ðt Þe–ixt dt : For the

magno cases (M0, M10), the time constants s1 = 2.5 ms, s2 = 7.5 ms,
and c = (s1/s2)

6 so that ĜLGN
‘ ð0Þ = 0; in agreement with experiment

(Benardete and Kaplan 1999). For the parvo cases (P0, P10), the time
constants s1 = 8 ms, s2 = 9 ms, and c = 0.7(s1/s2)

5. The delay times s0‘ are
taken from a uniform distribution between 20 and 30 ms, for all cases.
Sizes for center and surround were taken from the experimental data
(Hicks and others 1983; Derrington and Lennie 1984; Spear and others
1984; Shapley 1990; Croner and Kaplan 1995) and were rc, ‘ =rc = 0.1�,
0.2�, 0.04�, 0.0875� (centers) and rs, ‘ = rs = 0.72�, 1.4�, 0.32�, 0.7�
(surrounds), for M0, M10, P0, and P10, respectively. The integrated
surround--center sensitivity was in all cases K‘ = 0.55 (Croner and
Kaplan 1995). By design, no diversity has been introduced in the
center and surround sizes in order to demonstrate the level of diversity
resulting purely from the cortical interactions and the connection
specificity between LGN cells and cortical cells (i.e., the sets N LGN

Q;j ; see
specifications below). Further, no distinction was made between ON-
center and OFF-center LGN cells other than the sign reversal of their
receptive fields (± sign in eq. 6). The LGN receptive field centers ~y‘
were organized on a square lattice with lattice constants rc/2, rc, rc/
2, and rc/2 for M0, M10, P0, and P10, respectively. These lattice
spacings and consequent LGN receptive field densities imply LGN
cellular magnification factors that are in the range of the experimental
data available for macaques (Conolly and van Essen 1984; Malpeli and
others 1996). The connection structure between LGN cells and
cortical cells, given by the sets N LGN

Q;j ; is made so as to establish ocular
dominance bands and a slight orientation preference, which is
organized in pinwheels (Blasdel 1992). It is further constructed under
the constraint that the LGN axonal arbor sizes in V1 do not exceed the
anatomically established values of 1.2 mm for magno and 0.6 mm for
parvo cells (Blasdel and Lund 1983; Freund and others 1989). A sketch
of the model is given in Figure 1. Further details are provided in
Supplementary Materials.
Some of the geometric differences between the different model

configurations can be expressed by the dimensionless parameter
X = v–1rc ‘

–1
c ; where v

–1 is the cortical magnification factor, rc is the
LGN receptive field size (center size), and ‘c is a characteristic length
scale for the excitatory cortical connectivity. Substituting numerical
values taken from the experimental data, this parameter is 1, 0.57, 0.4,
and 0.25 for M0, M10, P0, and P10, respectively. At 30� eccentricity, the
experimental data suggest values for this parameter not very different
from its values at 10� (X = 0.5 for M30 and X = 0.25 for P30).
In the construction of the model, our objective has been to keep the

parameters deterministic and uniform as much as possible. This
enhances the transparency of the model while at the same time
provides insight into what factors may be essential for the considerable
diversity observed in the responses of V1 cells. Important parameters
which are not subject to cell-specific variability are

Parameters related to the integrate-and-fire mechanism, such as
threshold, reset voltage, and leakage conductance. These are
identical for all cells (eq. 1).

The cortical interaction strengths and connectivity length scales. These
are presented by the functions Ck9;kl9;l ðr Þ; which are not cell specific
but only specific with respect to the 4 cell populations. Note: the
functions Ck9;kl9;l ðr Þ are also not configuration specific (eq. 3).

Maintained activity and responsiveness to visual stimulation of LGN
cells (eq. 4).

Receptive field sizes of LGN cells. These are neither cell nor population
specific (i.e., where ‘‘population’’ in this case refers to the ON and
OFF LGN cell populations) but are only specific with respect to the
4 model configurations, that is, receptive field sizes of all LGN cells
are identical for a particular configuration (eq. 6).

Important model parameters which are subject to a cell-specific
variability are

The external noisy conductances gE,i (t) (excitatory) and gI,i (t)
(inhibitory) (eq. 2).

The cortical synaptic dynamics as described by the kernels Gl,j (s)
(eq. 3).

The LGN temporal kernels G‘
LGN(s) (eq. 4).

The LGN connectivity to our model cortex as described by N LGN
L;j and

N LGN
R;j (eq. 4).

Visual Stimuli and Data Collection

The stimulus used in this paper to analyze surround suppression and
contrast-dependent receptive field size is a drifting grating confined to
a circular aperture, surrounded by a blank (mean luminance) back-
ground. The luminance of the stimulus is given by I ð~y ; t Þ =
I0ð1 + e cosðxt –~k � ~yÞÞ for k~yk< rA and I ð~y ; t Þ = I0 for k~yk >rA; with
average luminance I0, contrast e, temporal frequency x, spatial wave
vector ~k; and aperture radius rA. The aperture is centered on the
receptive field of the cell and varied in size, whereas the other
parameters are kept fixed at close to preferred values for the cell. The
stimuli are presented monocularly (other eye I = 0). As the aperture size
increases, the response of a real V1 cell to such stimuli typically reaches
a maximum, after which it settles down to a steady level.
Surround suppression is typically characterized by comparing the

neuron’s maximum firing rate to its firing rate at large aperture sizes.
The aperture size for which the response reaches its maximum (fmax) is
sometimes referred to as ‘‘the classical receptive field’’ size (DeAngelis
and others 1994; Levitt and Lund 1997; Sceniak and others 1999). We
will simply refer to the minimum aperture radius for which the response
f(rA) is >95% of its maximum as ‘‘the receptive field’’ size (r). We define
the surround size (R) as the minimum aperture radius > r for which the
suppression fs(rA) = fmax – f(rA) is >95% of its maximum. We define the
asymptotic response f

N
as the average response beyond R. We define

the suppression index SI1 as the relative surround suppression,

SI1 =
fmax – f

N

fmax – f0
; ð7Þ

where f0 is the response to a blank stimulus. The suppression index SI1 is
similar to the one used in Cavanaugh and others (2002) but different
from the integrated suppression index used in Sceniak and others
(1999) (see below).
The primary data in this paper, that is, responses and conductances as

a function of aperture size for monocular stimulation, are obtained with
the temporal and spatial frequencies of the grating set equal to the
averaged preferred values for each model configuration (M0, M10, P0,
and P10). Data used for analysis are from cells that have their preferred
orientation equal to the grating angle, their preferred temporal fre-
quency within 2 Hz of the grating frequency, a preferred spatial
frequency kp that satisfies 1

2k <kp <2k; where k is the grating spatial
frequency, a receptive field center that is less than 1/20th of the average
receptive field size away from the aperture center, a maximum response
at low contrast that is greater than fb + 5 where fb is the mean blank
response (in spikes per second), and, finally, a central cortical location
confined to the dashed white rectangle in Figure 1. Samples consist of
approximately 200 cells, with about equal numbers of simple and
complex cells. Each stimulus was presented for 3 s and preceded by a 1 s
blank stimulus. The procedure was repeated five times with different
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D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/c
e
rc

o
r/a

rtic
le

/1
6
/1

1
/1

5
3
1
/3

1
6
9
2
0
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



initial conditions and noise realizations. Standard errors in cycle-trial
average responses and conductances are negligible. The experiments
were performed at ‘‘high’’ contrast, e = 1, and ‘‘low’’ contrast, e = 0.3.
Additional details are provided in Supplementary Materials.

Difference-of-Gaussians and Ratio-of-Gaussians Models

In the Difference-of-Gaussians (DOG) model (DeAngelis and others
1994; Sceniak and others 1999, 2001), the response f(rA) is fit to

f ðrAÞ = f0 +
2
ffiffiffi

p
p KE

Z rA

0

e
– ðy=rEÞ2dy – KI

Z rA

0

e
– ðy=rIÞ2dy

� �

: ð8Þ

In this model, the response is assumed to arise from a summation of
background activity (f0), ‘‘excitation’’ (spatial scale rE), and ‘‘inhibition’’
(spatial scale rI). The integrated suppression index SI2 is defined as

SI2 =
KIrI

KErE

: ð9Þ

As is true for SI1, SI2 can be greater than one, indicating surround
suppression beyond the background response. The limitations of the
DOG model can be made more apparent by noting that, given the
validity of the half-wave rectification model equation (13), one ‘‘derives’’
the DOG model by the substitutions gE;I~

R rA
0 e–ðy=rE;IÞ2dy :

The Ratio-of-Gaussians (ROG) model (Cavanaugh and others 2002) is
defined by

f ðrAÞ = f0 +
kc

2
ffiffi

p
p
R rA

0
e

– ðy=wcÞ2dy
� �2

1 +ks
2
ffiffi

p
p
R rA

0
e

– ðy=wsÞ2dy
� �2 : ð10Þ

In this model, the response beyond the background response is assumed
to arise from a division of center activity (excitation, spatial scale wc,
gain kc) and surround activity (inhibition, spatial scale ws, gain ks).

As for the DOGmodel, the limitations of the ROG model can be made
more apparent by noting that, from equation (12), it may be ‘‘derived’’
from the standard half-wave rectification model. Equation (12) can be
rewritten such that the numerator (N) and the denominator (D)
represent a half-wave rectified weighted difference of the excitatory
and inhibitory conductances, and the total conductance g T, respec-
tively. The ROG model used in Cavanaugh and others (2002) is then

obtained by the substitutions N ;D–1~
R rA
0 e–ðy=wc ;s Þ2dy

h i2

:

Results

Classical Response Properties

One of our model’s strong accomplishments is that it produces,
with the same fixed parameters, a variety of response properties
in good agreement with the experimental data. It also displays

a great diversity in each of its response properties, quite similar
to what is seen experimentally. Cells in the model exhibit in
addition to the 2 extraclassical response properties central in

this paper many realistic ‘‘classical response properties.’’ By this
wemean response properties, such as orientation tuning, spatial
and temporal frequency tuning, and response modulations for

drifting and contrast reversal grating stimuli, obtained for large,
homogeneous (grating) stimuli, so that size effects of the
stimulus are no longer observable. Our motivation for referring

to these properties as ‘‘classical’’ stems from the fact that this is
how they are traditionally obtained, that is, with use of large
homogeneous stimuli. Classical response properties generally
show modest changes when the stimuli are confined to the

classical receptive field. These changes, in fact, form an in-
teresting class of extraclassical response properties by them-
selves, of which surround suppression, as defined in this paper,

is just 1 example. The classical receptive field is approximately
equivalent to the minimum response field (Hubel and Wiesel

1962; Henry and others 1978; Gilbert 1997) and is precisely
defined in Methods. Throughout this paper, we will refer to the
classical receptive field simply as the receptive field.
Classical response properties are important when consider-

ing extraclassical phenomena. One of the reasons is that
extraclassical phenomena are evoked from outside the re-
ceptive field but are not known to occur without sufficient

stimulation of the receptive field. Extraclassical responses are
thus defined relative to responses from within the receptive
field, or equivalently, relative to classical responses. For exam-

ple, consider orientation tuning. A cell’s orientation-tuning
curve obtained for a large, homogeneous grating (classical
response property) will, in general, be modestly different from

its tuning curve obtained when the same grating is confined to
the receptive field. In general, there will be an overall increase
in response and orientation selectivity will be somewhat less for
the latter stimulus, whereas the preferred orientation will

remain the same. Differences between the cell’s orientation
tuning for the 2 stimuli are precisely what constitute the
extraclassical response properties (phenomena) in this case. It

would therefore be less meaningful to present an analysis of
extraclassical receptive field phenomena based on a cell pop-
ulation of a model if the basic classical responses for that cell

population are nonexistent or show poor agreement with the
experimental data.
Another reason for the importance of classical response

properties is that responses of cortical cells depend strongly

on how the cell’s environment is responding. The responses of
the cells that make up this environment will, in general, display
an enormous diversity to any particular fixed stimulus. A cell’s

cortical environment generally consists of cells that have vastly
different orientation and spatial and temporal frequency tuning
widths and preferences. The fact that our model’s classical

responses, including their diversity, agree well with the ex-
perimental data thus provides some guarantee for a reasonable
response of a cell’s environment, not only for classical stimuli

but, more importantly perhaps, also for extraclassical stimuli.
A selection of classical response properties of the model is

illustrated in Figures 2--4. All plots are for the M0 configuration
(see Methods), but the other configurations yield similar results.

The spatial distribution of the circular variance (CV) for our
model cortex is shown in Figure 2A. The CV is a measure for
orientation selectivity and is defined as

CV = 1 –

�

�

�

�

R

r ðhÞexpð2ihÞdh
R

r ðhÞdh

�

�

�

�

: ð11Þ

Here r(h) is the mean firing rate and h the orientation. Smaller

CV indicates a higher orientation selectivity. Cells with CV =

0 respond at just 1 orientation and hence are very selective
(sharply tuned). Cells with CV = 1 respond identically at all

orientations and hence are not selective for orientation. In
Figure 2A, we color coded the CV for all cells within the white
dashed rectangle in Figure 1. The stimulus (drifting grating) was
presented monocularly; the other eye received no visual input.

Pixels colored black indicate cells that do not show a significant
response for this monocular stimulation and are mostly cells
that respond to stimulation of the other eye. Notice that our

model cortex is filled with very selective cells, moderately
selective cells, and nonselective cells, as is the primary visual
cortex of macaques. Notice also that there is no particular

spatial organization of orientation selectivity in our model. Our
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model yields a diversity in spatial and temporal frequency

tuning properties that is quite similar to what is observed
experimentally. This is illustrated in Figure 2B--E. In considering
this diversity, it is important to note that, in this respect, all LGN
cells in a particular configuration are identical by construction.

Their spatio-temporal tuning properties are indicated by the
thick black curves. As in reality, the preferred temporal
frequencies of our cortical cells are lower than the preferred

temporal frequency of our LGN cells. The main reason for this is
the inclusion of slow, N-methyl-D-aspartate, excitation in the
model (Krukowski and Miller 2001) (see also Supplementary

Materials). The diversity seen in the spatial frequency tuning of
our cortical cells, when compared with the LGN cells, originates

in part from the spatial diversity in the feed-forward LGN

connections. However, by far the largest contributions, partic-
ularly for what concerns the increase in selectivity (sharpen-
ing), are cortical in origin. That is, the spatial frequency
selectivity of the LGN inputs gLGN is substantially sharpened

by the cortical interactions, similar to the sharpening of
orientation selectivity as explained in McLaughlin and others
(2000).

A partial list of the sources of variability (and of invariability)
in the model’s construction is given in Methods. In observing
the diversity of responses in our model, however, one should

also bear in mind that our model is a high-dimensional (many
dynamic variables, i.e., vi (t) and Siðt Þ) nonlinear system. The

Figure 2. Select classical response properties of the M0 version of the model, other configurations yield similar results. (A) Spatial distribution of orientation selectivity, expressed
in the CV (color coded), for cells within the white rectangle in Figure 1. Black pixels are cells that do not show sufficient response for this monocular stimulation. (B) Spatial
frequency tuning curves for select M0 cells. Thick black curve refers to the LGN cells, which are all identical in this respect. (C) Distribution of preferred spatial frequencies for the
M0 cells. (D) Temporal frequency tuning curves of some M0 cells. Thick black curves refer to the LGN cells, which are all identical in this respect. (E) Distribution of preferred
temporal frequencies for the M0 cells. Histograms show fraction of cells, and the arrow indicates mean value.

Figure 3. Response modulations in the model for (large) drifting grating stimuli with average optimal spatial and temporal frequency of the cortical cells. (A) Response waveforms
for a simple and a complex cell, with optimal spatial and temporal frequencies close to the grating values, for a number of different grating orientations (angles) running form 0 to
7p/8. (B) Distributions (normalized to peak value 1) of F1s/F0s for spike responses and F1v/F0v for membrane potential responses. (C) Spatial distribution of F1s/F0s (spike train) for
cells within the white rectangle in Figure 1. Black pixels are cells that do not show sufficient response for this monocular stimulation. For sample selection and additional details, see
Supplementary Materials.
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behavior of such systems is almost by definition nontrivial. Note

in this respect, for instance, that the cortical interaction term,
equation (3), contains the dynamic variables Siðt Þ: This means
that, although some diversity may have been introduced in the

construction of the model (LGN connectivity for instance), it is
not correct to conclude that therefore the diversity observed in
the model’s response would simply be a direct reflection of that
diversity. Because of the dynamic variables Siðt Þ; diversity (and

in fact, by far the largest) is also introduced by the dynamics of
the model. A good example of this, and at the same time of the
nontrivial behavior of such large systems, is orientation tuning.

As can be seen in Figure 2A, the system displays a large diversity
for orientation tuning, attaining a CV anywhere between 0 and
1. If one considers the CV in our model without the cortical

interactions, however, one finds that now there is practically no
orientation tuning or diversity, CV’s range anywhere between
0.8 and 1. Thus, the diversity introduced, by construction, in the

LGN connectivity provides by itself little diversity in orientation
tuning because the CV as a result of these inputs alone is always
greater than 0.8 (and less than 1). The diversity of orientation
tuning in the model is thus largely dynamical in origin and due

to the cortical interactions, that is, to the dynamics of these in-
teractions. We cannot discuss such issues in too much detail as
it would lead us away from the main points. A nice demonstra-

tion of the above example, however, can be found in McLaughlin
and others (2000). In that paper, the diversity in orientation
tuning generated by the cortical interactions is shown explic-

itly, with practically no diversity in the LGN connectivity.
Another example of classical response properties of the

model is provided in Figure 3. Shown in Figure 3A are averaged
response waveforms of spike train and membrane potential in

response to a drifting grating. These are responses of a simple
and a complex cell, for several grating orientations, at the cells’
preferred spatial and temporal frequencies. The modulation in

the spike train at the preferred orientation is frequently used to
classify simple and complex cells in V1. A cell is ‘‘complex’’
whenever F1s/F0s < 1 and ‘‘simple’’ otherwise, where F1s is the

first harmonic of the spike response and F0s the mean. The

distribution of F1s/F0s over a cell population is shown in Figure

3B (top). Our model contains about an equal number of simple
and complex cells. The bimodal shape of the distribution of F1s/
F0s agrees well with the experimental data (Ringach and others

2002). In fact, the availability of this distribution provided us
with a useful criterion for setting the cortical interaction
strength parameters in the model (see Supplementary Materials
for details).

It is easy to understand the origins of the diversity in response
modulations in our model. The modulations enter our model
cortex via the LGN input, which targets 30% of the cortical cells.

The phases of these LGN inputs vary randomly (approximately
uniform distribution) on [0, 2p]. This is due to the receptive
field offsets of the clusters of LGN cells connected to different

cortical cells, the difference in shape (symmetry) of the clusters
themselves, and the diversity in temporal delays in the LGN
kernels. A cell receives input from many other cells, thus a cell’s

excitatory and inhibitory inputs will show stronger or weaker
modulations depending on its specific environment in the
network and whether or not it receives LGN input. Interplay
between the strengths and phases of the modulations in these

inputs ultimately determine the modulation in the cell’s firing
rate and membrane potential. Most cells that receive LGN input
are simple cells (80% in our model), and most cells that do not

receive LGN input are complex (70% in our model).
The distribution of the subthreshold modulation ratio F1v/

F0v, where the membrane potential is measured with respect to

a blank stimulus, is shown in Figure 3B (bottom). Notice that the
bimodality we observe in the distribution of F1s/F0s is not
present in the distribution of F1v/F0v. However, we find that
(not shown) the classification of simple and complex cells can

be equally well made in terms of the distribution of F1v/F0v, the
2 modes in this case being its ‘‘core’’ (jF1v=F0vj <2; complex
cells) and its ‘‘tails’’ (jF1v=F0vj >2; simple cells). Also notice that

we observe a ‘‘gap’’ in the distribution at small negative values.
Details regarding the F1v/F0v distribution for our model will
be published in a separate note. The distribution of modulat-

ions in the membrane potential has not yet been observed

Figure 4. Response modulations in the model for (large) standing grating (contrast reversal) stimuli with the average optimal spatial and temporal frequency of the cortical cells.
(A) Response waveforms for a simple and a complex cell with preferred orientation, optimal spatial and temporal frequencies, close to the grating values, for a number of different
spatial phases w. (B) Distributions (normalized to unity) of the phase-averaged F2s/F1s ratio for spike train (top) and F2v/F1v for membrane potential (bottom) responses to
a contrast reversal grating at the preferred orientation. Sample contained 1200 cells. For sample selection and additional details, see Supplementary Materials.
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experimentally for macaques. Some data for cats have recently
been published (Priebe and others 2004), and they do not
contradict the predictions based on our model. The spatial
distribution of F1s/F0s (spike train) across all cells within the

white dashed rectangle in Figure 1 is shown in Figure 3C. Once
again, the stimulus was presented monocularly, and pixels
colored black indicate cells that do not show a significant

response for this stimulation. The figure shows that simple and
complex cells are randomly distributed across ourmodel cortex,
that is, there is no particular spatial organization of F1s/F0s.

A final example of classical response properties of our model
is provided in Figure 4. Averaged response waveforms of spike
train andmembrane potential in response to a standing (contrast

reversal) grating I ð~y; t Þ = I0ð1 + e cosðxt Þcosð~k � ~y +wÞÞ at the
preferred orientation are shown in Figure 4A. Shown are the
responses of a simple and a complex cell in the model for
several spatial phases w of the grating. Simple cells perform an

approximately linear spatial summation, that is, their responses
contain a dominant first harmonic (F1s, F1v), and the spatial
phase dependence of their response waveform is similar to the

spatial phase dependence of the magnitude of the intensity
modulations of the stimulus at any given fixed position. Complex
cells respond nonlinearly, and their response waveform is

relatively insensitive to spatial phase and contains a dominant
second harmonic (F2s, F2v). The distribution of the ratio of
second to first harmonic of the response, averaged over the
spatial phase w, is shown in Figure 4B. For what concerns the

spike train waveforms (top), the distribution of F2s/F1s displays
a weak bimodality and its behavior for our model cells agrees
with the experimental data (Hawken and Parker 1987), complex

cells having mostly F2s/F1s > 1 and simple cells F2s/F1s < 1.
Note that this property of our model cells follows naturally,
without any parameter adjustments, after the strength param-

eters have been set to achieve essentially only orientation tuning
and a proper distribution of response modulations in response
to a drifting grating (Fig. 3B, see also Wielaard and others 2001).

It is easy to understand the origins of the diversity in F2s/F1s
(and F2v/F1v) in the model. As explained in Wielaard and others
(2001), for a contrast reversal grating stimulus, each total LGN
input into a cortical cell has, in general, a dominant first

harmonic with a phase close to either 0 or p, determined by
the relative positions of the ON and OFF subfields of the
corresponding cluster. The cortical excitatory and inhibitory

inputs in a cell will thus have a relatively strong second har-
monic component because they arise from many other cells.
The actual strengths of first and second harmonic in a cell’s ex-

citatory and inhibitory inputs thus depend on the cell’s spe-
cific environment in the network and on whether it receives
LGN input or not. Interplay of these inputs determines the
ratios of first to second harmonic in the cell’s spike and

membrane potential responses. Clearly, most cells that receive
LGN input (simple) will have F2s/F1s, F2v/F1v < 1 and most
cells that do not receive LGN input (complex) will have

F2s/F1s, F2v/F1v > 1.
No experimental data are available for the distribution of F2v/

F1v of the membrane potential waveforms. The distribution of

this quantity (averaged over the spatial phase w) for the model is
shown in Figure 4B (bottom). Our model predicts that, quite
contrary to the situation for F1v/F0v, the (weak) bimodality of

the distribution of F2s/F1s for spike waveforms is not elimi-
nated but, rather, becomes more pronounced in the F2v/F1v
distribution for membrane potential waveforms. This, in fact,

can be understood quite simply from a standard half-wave
rectification model, in which the membrane potential wave-
forms are subjected to a threshold to give the spike waveforms.
Specifically, for complex cells, both the membrane potential and

spike responses will contain a strong second harmonic compo-
nent. In this case, practically all of the membrane potential
waveform will be above threshold, so that evaluation of F2s/F1s

for spike waveforms will yield about the same result as F2v/F1v
for membrane potential waveforms. This is also apparent in
Figure 4B: the F2s/F1s > 1 and the F2v/F1v > 1 sections of the 2

distributions (in top and bottom panels) are very similar. For
simple cells, the membrane potential and spike responses will
contain a dominant first harmonic and for both responses about

an equally small second harmonic component. Because of the
half-wave rectification, the F1v component in the membrane
potential waveform is substantially reduced in the spike
waveform. Hence, F2v/F1v will turn out substantially smaller

than F2s/F1s. This is again apparent in Figure 4B: the F2v/F1v <

1 section (simple cells) of the distribution for membrane
potential waveforms (bottom) is markedly shifted to the left

with respect to the F2s/F1s < 1 section of the distribution for
spike responses (top).

Extraclassical Response Properties

In this section, we summarize the extraclassical results for our
model and compare them with the experimental data. Contrary
to classical response properties, the 2 extraclassical response

properties focused on in this paper are, as for experimental data,
not substantially different for simple and complex cells and are
therefore not made type specific in what follows. Figure 5A,B

shows examples of the surround suppression and receptive field
expansion observed in our model. Responses are shown for
both firing rate and membrane potential, at high (solid) and low

(dashed) contrast.
Distributions of receptive field and surround sizes for the

4Cb, 10�-eccentricity model (P10) are shown in Figure 5C,D.

The distributions for the other model configurations are given
in Supplementary Materials. Receptive field sizes and surround
sizes in our model show excellent agreement with the
experimental data (Sceniak and others 2001; Cavanaugh and

others 2002). This is true for the mean values, for the diversity,
as well as for their dependence on eccentricity. Specifically,
Figure 3A of Sceniak and others (2001) shows that surround

sizes are for about 95% of the cells <4� in radius, with an average
surround radius of approximately 2�. Note that Sceniak and
others (2001) actually use the inhibitory space constant of the

DOG model as a measure of surround radius, though this is
a minor detail. Further, Figure 2 of Cavanaugh and others (2002)
shows that 100% of the cells have surround radii <6�. Average
surround radius at 10� eccentricity is about 2.5�; at para-foveal

eccentricities, the average surround radius is 1.25�. In Figure 5A
of Levitt and Lund (2002) about 85% of the cells have surround
radii <2.5�. Average surround radius is about 1.5�. In Figure 2D

of Angelucci and others (2002) about 70% of the cells have
surround radii <6�, whereas the average surround radius is 2.5�.
We have pointed to the relevant figures from these references

for extra clarity, because the precise sizes of the surrounds in
V1 are the cause of some ongoing debate.
The distribution of surround suppression and receptive

field growth for the M0 configuration of our model is given in
Figure 5E,F. The suppression index SI1 is defined in Methods.
Briefly, it gives the relative suppression: cells without surround
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suppression have SI1 = 0 and cells with fully suppressed

response for large stimuli have SI1 = 1. In agreement with the
experimental data, the shape of the distribution of the suppres-
sion index SI1 is skewed to low suppression (Cavanaugh and
others 2002). Further, in agreement with the experimental data,

we observe a small increase in the mean suppression at low
contrast (Sceniak and others 1999; Cavanaugh and others 2002).
The change in suppression, DSI1 = SI1(–) – SI1(+), is broadly

distributed (Sceniak and others 1999) around a mean 0.06 (see
Figure 6A,B). The average suppression index (over all eccen-
tricities) is SI1 ~ 0.2, and this is about half of what is observed

experimentally (Cavanaugh and others 2002). The receptive
field and surround growths (Fig. 5F) are expressed as ratios,
r–/r+ and R–/R+, respectively. The indices + and – refer to high
and low contrast, respectively. We observe an average growth

by about a factor of 2 in both receptive field size (r–=r + ~2) and
surround size (R–=R + ~2). This receptive field growth is a little
less than what is observed in experiments (Kapadia and others

1999; Cavanaugh and others 2002).
We also fitted our data with the DOG and ROG (Sceniak and

others 1999; Cavanaugh and others 2002) models (Methods).

We obtain for the integrated suppression index SI2 ~ 0.4.
Average growth ratio for the excitatory space constant is
r–

E=r
+

E ~1:5 (both DOG and ROG, averaged over all eccentric-

ities). Again, in agreement with the experimental data (Sceniak
and others 1999), we observe a small increase in the mean sup-

pression at low contrast, and the change in suppression, DSI2 =
SI2(–) – SI2(+), is broadly distributed around a mean 0.04 (see
Figure 6A,B). The suppression index and growth ratio are again
less than those experimentally observed (0.6 and 2.3, respec-
tively; Sceniak and others 1999).

All the above findings are based on spike responses. Mem-
brane potential responses yield qualitatively similar results, but
due to the spike threshold, suppression in the membrane

potential is systematically smaller. This is illustrated in Figure
6C. The same observation has also been made experimentally in
cats (Anderson and others 2001). A more extensive summary of

the data generated by our model data, for different eccentric-
ities and including receptive field sizes and surround sizes, is
given in Supplementary Materials.

Mechanisms of Surround Suppression

The DOG and ROG models are phenomenological models and
provide limited insight into the neural mechanisms of the

phenomena. Both models miss an essential feature of the
excitatory and inhibitory inputs, which is that these inputs
generally show surround suppression themselves (Anderson

and others 2001). In ourmodel, we similarly observe a significant
suppression in both conductances, as shown in Figure 6D.
This cell shows that, unlike what is suggested by the DOG and

ROG models, surround suppression in the spike response takes
place entirely in the region of decreasing synaptic inputs

Figure 5. Summary of surround suppression and receptive field growth at low contrast in the model. (A) Responses (F1s, F1v) as function of aperture size rA for a cell from the M0
model. Shown are firing rate (black) and membrane potential (brown) for high (squares) and low (circles) contrast. Standard errors are negligibly small. (B) Responses (F1s) for
another cell from the M0 model. Shown are firing rate as function of the aperture size rA (black) and the response to the inverse stimulus (green), that is, a stimulus where the
aperture is ‘‘blank’’ and is surrounded by drifting grating. Responses are again shown at high (solid) and low contrast (dashed). Stimulation solely from outside the cell’s receptive
field r+,– does not evoke any response, believed to be a signature of extraclassical responses. (C and D) Receptive field and surround sizes for the P10 model at high (unfilled) and
low (shaded) contrast. The diversity of responses produced by the model is similar to what is seen in the experimental data (Sceniak and others 2001; Cavanaugh and others 2002).
(E) Distribution for the M0 model of the suppression index SI1 at high (unfilled) and low (shaded) contrast. All suppression is exclusively cortical in origin and due solely to short-
range connectivity. (F) Distributions for the M0 model of the ratios of the receptive field and surround sizes at low and high contrast, r– /r+ (blue shaded) and R– /R+ (unfilled).
(Wilcoxon test on ratio larger than unity: P < 0.001 for both receptive field and surround growth.) In panels (C--F), histograms give fraction of cells, arrows indicate means, solid
arrow corresponds to shaded histograms, and dashed arrow corresponds to unfilled histograms. For a more complete summary of our model data, see Supplementary Materials.
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(conductances). We can say that the surround suppression of
this cell is caused by a decrease of excitation because the
decrease of inhibition could not by itself suppress the cell’s

response. This cell is not uncommon in our model, and the
above scenario is indeed how surround suppression works in
about 50% of the cells.
Analysis of the surround suppression in our model is based on

the fact that the average membrane potential Ævkðt ; rAÞæ and
instantaneous firing rate ÆSkðt ; rAÞæ (of the k th neuron) are well
approximated by (Wielaard and others 2001)

Ævkðt ; rAÞæ � Vk [
ÆID;kæ

Æg T;kæ
; ð12Þ

and

ÆSkðt ; rAÞæ � fk [ dk½ÆID;kæ – Æg T;kæ – Dk� + : ð13Þ
Here [x]+ = x if x > 0 and [x]+ = 0 if x < 0, and for most cells,

good approximations are obtained with a gain dk and threshold
Dk that depend neither on the aperture radius rA nor on time.
The total conductance gT,k and difference current ID,k are given
by

g T;k = g L + g E;k + g I;k ð14Þ

ID;k = g E;kVE – g I;kjVIj: ð15Þ
Equations (12) and (13) allow us to base our analysis directly on
the (cycle-trial averaged) conductances as a function of the
aperture radius rA and time. In what follows, we drop the
averaging notation Æ � æ; assuming it unless stated otherwise.

Given equations (12) and (13), there are 3 ways in which
surround suppression of spike train and membrane potential
could arise, namely, (A) @gE,k/@rA > 0 and @g I,k/@rA > 0, (B)

@gE,k/@rA < 0 and @g I,k/@rA < 0, or (C) @gE,k/@rA < 0 and @g I,k/
@rA > 0. In other words, surround suppression is caused by (A)
an increase in the inhibitory conductance, (B) a decrease in the

excitatory conductance, or (C) both (A) and (B) simultaneously.
Examples of this analysis for a (simple) cell receiving LGN

input and a (complex) cell that does not receive LGN input
are given in Figure 7. The cycle-trial--averaged conductances

for consecutive apertures around the aperture of maximum

response (rA = r, marked by an asterisk) are shown in Figure
7C--F. For example, by comparing the conductances for aper-
ture ‘‘asterisk’’ and the aperture for which the suppression is

maximum (rA = R, for instance, the third aperture to the right
of aperture asterisk in Fig. 7C), we see that at high contrast
the suppression mechanism for the simple cell (Fig. 7C) is (A)
and for the complex cell (Fig. 7D) is (B). At low contrast

the suppression mechanisms are (C) and (B) (Fig. 7E,F,
respectively).
We observe all 3 mechanisms (A, B, and C) in our model. By

comparing the responses and conductances for apertures from
the receptive field size rA = r to the surround size rA = R, we can
identify the suppression sequence, that is, the mechanisms that

act sequentially as the aperture size rA increases from receptive
field size r to surround size R. We observe a rich variety of
suppression sequences in the model. In some cases, we find that

different mechanisms are active during different times in the
stimulus cycle.
As may be clear from Figure 7, identifying the mechanisms for

surround suppression based on equations (12) and (13) can be

rather more subtle than just comparing the mean (F0) conduc-
tance, its first harmonic (F1), or the peak conductance (~F0 +

F1). However, we find that for most cells, an analysis using the

sum of first and second harmonic (F0 + F1) of the conductances
allows the identification of the suppression mechanisms.
Comparing conductances at rA = r and at rA = R in this way,

we find that at low contrast all 3 mechanisms are about equally
prevalent, whereas at high-contrast mechanism (A) is somewhat
more likely than (B) and (C).

Mechanisms of Receptive Field Expansion

The DOG model suggests that receptive field growth at low
contrast is due to an increase of the spatial summation extent of
excitation (Sceniak and others 1999) (for our data, correlation

coefficient between r–/r+ and r–

E=r
+

E is r = 0.55, correlation
coefficient between r–/r+ and r–

I=r
+

I is r = 0.17). This was
partially confirmed experimentally in cat’s primary visual cortex
(Anderson and others 2001). Although it has been claimed

(Cavanaugh and others 2002) that the ROG model would
explain receptive field growth solely from a change in the
relative gain parameter ks, we believe this is incorrect. Because

Figure 6. Relations between some key response measures for the M0 configuration of the model, other cases yield qualitatively similar results. (A) Distribution of the change in the
suppression index with contrast, DSI1, 2 = SI1, 2(–) – SI1, 2(+), for the suppression indices used in Cavanaugh and others (2002) (SI1, unfilled histogram) and in Sceniak and others
(1999) (SI2, pink-shaded histograms). Histograms give fraction of cells, arrows indicate means, solid arrow corresponds to shaded histogram, and dashed arrow corresponds to
unfilled histogram. (B) Scatter plot of surround suppression at low and high contrast expressed in the 2 different suppression indices SI1 (black) and SI2 (pink). (C) Scatter plot of
surround suppression in spike train and membrane potential at high (black) and low (gray) contrast. (D) First harmonic (F1) of spike responses, membrane potential responses, and
cortical conductances as function of aperture size for a model simple cell that shows about 50% surround suppression (in spike train). Notice the surround suppression of the
conductances.
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there is a one-to-one relation between ks and the surround
suppression, this would imply that receptive field growth

(increase) at low contrast simply results from contrast-
dependent (decrease) surround suppression, which contradicts
the experimental data (Sceniak and others 1999; Cavanaugh and
others 2002). As does the DOGmodel, the ROGmodel, based on

analysis of our data, also predicts that receptive field growth at
low contrast is due to a growth of the spatial summation extent
of excitation at low contrast. As we will now show, our

simulations do confirm an average growth of spatial summation
extent of excitation (and inhibition) at low contrast, but this
growth is neither sufficient nor necessary to explain receptive

field growth.
From equations (12) and (13) it follows that a change in

receptive field size, in general, results from a change in behavior
of the relative gain parameter, defined as

GðrAÞ =
@g E=@rA
@g I=@rA

: ð16Þ

Note that this is a rather different parameter than the ‘‘surround

gain’’ parameter ks used in the ROGmodel. (For example, unlike
ks, G(rA) is not simply related to the degree of surround

suppression.) Qualitatively, the conductances show a similar
dependence on aperture size as the membrane potential

responses and spike responses in that they display surround
suppression (Fig. 6D). Receptive field sizes based on these
conductances are a measure of the spatial summation extent of
excitation and inhibition.

A change in the spatial summation extent of gE and/or g I is
just one of the many ways to change the behavior of G and
consequently the receptive field size. For example, some other

possibilities are illustrated by the 2 cells in Figure 7. These cells
show, both in spike and membrane potential responses, a re-
ceptive field growth of a factor of 2 (left) and 3 (right) at low

contrast. However, for both cells, the spatial summation extent
of excitation at low contrast is 1 aperture less than at high
contrast.
The receptive field expansion at low contrast is apparent in

Figure 8A. In agreement with the experiment (Sceniak and
others 1999; Cavanaugh and others 2002), we observe little
correlation between this growth and the surround suppression

(correlation coefficient between r–/r+ and DSI1 is r = 0.01). In
a similar way as for spike train responses, we obtained receptive
field sizes for the conductances. As shown in Figure 8B,C, both

excitation and inhibition also show, on the average, an increase

Figure 7. Two example cells, an M0 simple cell that receives LGN input (left) and an M10 complex cell that does not receive LGN input (right). (A and B) Responses as functions of
aperture size. Mean responses (firing rate and membrane potential) are plotted for the complex cell, and first harmonic for the simple cell. Apertures of maximum of responses (i.e.,
receptive field sizes, rA = r) are indicated with asterisks, red = high contrast, green = low contrast. (C and D) Conductances for high contrast at consecutive apertures near the
maximum responses. (E and F) Conductances for low contrast at consecutive apertures near the maximum responses. Panels (C and E) each consist of 9 subpanels, panels (D and
F) each consist of 11 subpanels, giving the cycle-trial averaged conductances as function of time (relative to cycle) and aperture size. Asterisks indicate corresponding apertures of
maximum response in (A and B).
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in their spatial summation extent as contrast is decreased. This
increase is, however, rather arbitrary and bears not much
relation with the receptive field growth based on spike
responses (correlation coefficient between r–/r+(s) and

r–/r+(gE) is r = 0.06, between r–/r+(s) and r–/r+(g I) is r = 0.07,
between r–/r+(gE) and r–/r+(g I) is r = 0.1). Further, the increase
is, in general, smaller than what is seen for spike responses,

particularly for cells that show significant receptive field
growth. For instance, we see from Figure 8B,C that for cells
with receptive field growth ~2 and greater the growth for the

conductances is always considerably less than the growth based
on spike responses. Expressed more rigorously, a Wilcoxon test
on ratio of growth ratios larger than unity gives P < 0.05 (all

cells, excitation, Fig. 8B), P < 0.15 (all cells, inhibition, Fig. 8C),
and P < 0.001 (cells with receptive field growth rate r–/r+ > 1.5,
both excitation and inhibition). Similar conclusions follow from
membrane potential responses (not shown).

For cells with significant receptive field growth (r–/r+ > 1.5),
we are able to identify additional properties of the mechanisms
of the receptive field expansion. For instance, we find that for

more than 50% of such cells, a transition takes place from a
high-contrast receptive field size less or equal to the spatial
summation extent of excitation and inhibition to a low-contrast

receptive field size which exceeds both. Details of this analysis
are given in Supplementary Materials.

LGN Contributions

The extraclassical responses in our model discussed so far are,
by construction, exclusively the result of cortical interactions
and not inherited from LGN inputs. This is due to our use of

the standard center--surround model for LGN receptive fields
(Methods). Our simulations so far have shown that the cortical
contributions to surround suppression and receptive field

growth can account for a large fraction, but not all, of the
magnitude of the phenomena observed experimentally. This
leaves room for contributions from the LGN.

It seems reasonable to assume that LGN cells in macaques will
display both extraclassical phenomena. Somewhat surprisingly
this has to our knowledge not actually been verified yet.
Extraclassical surround suppression of LGN cells (at average

cortical optimal spatial frequencies) has been observed in
marmosets (Solomon and others 2002) and cats (Ozeki and
others 2004). Contrast-dependent receptive field growth of

LGN cells has been observed in marmosets and an average
growth ratio of 1.3 was reported (Solomon and others 2002).

As observed experimentally, the optimal spatial frequency of
the LGN cells in our model is substantially smaller than the
average optimal spatial frequency kC of the cortical cells (see
Fig. 2B). This is why, although our model LGN cells of course do

show surround suppression at their optimal spatial frequency,
they do not show surround suppression at the higher cortically
optimal spatial frequency kC. This is illustrated in Figure 9A.

Plotted is the response (gCS) of a single LGN cell as function of
aperture size for gratings of different spatial frequencies k.
No suppression occurs for k = kC. Suppression starts at spatial

frequencies of about 0.5kC. It becomes stronger for smaller
spatial frequencies and is 17% at 0.25kC. Further, we find (not
shown) that at 0.25kC the surround is not yet able to evoke

responses on its own, and the suppression thus in some sense
qualifies as ‘‘extraclassical.’’ By lowering the spatial frequency of
the stimulus, our model thus enables us to study the transfer of
LGN surround suppression to cortical cells.

According to Hubel and Wiesel (1962), LGN input arrives in
a V1 cell essentially as output of small clusters of about 10--20
LGN cells. Therefore, it is not immediately clear if, and how

much of, the surround suppression of the LGN cells is trans-
ferred to V1 cells. Our model is constructed to be consistent
with the Hubel and Wiesel view (Methods), and the total

conductance gLGN (eq. 4) of the cluster of LGN cells feeding
into a particular cortical cell is shown in Figure 9B. Plotted are
the sum of first and second harmonic (F0 + F1) of gLGN, as

a function of aperture size for a grating frequency k = kC (red
curves) and k = 0.25kC (blue curves) at high and low contrast.
The cell’s spike response and cortical excitatory and inhibitory
conductances are plotted in Figure 9C,D,E, respectively.

From Figure 9B we see that, other than for the suppression,
the behavior of the LGN conductance gLGN is not very different
for gratings with k = kC and k = 0.25kC. In particular, its

behavior up to its peak value is practically unaltered. This is
true in general.
It is important to realize that, in the model, any change in the

stimulus affects V1 solely via the LGN inputs gLGN. Further, all
LGN inputs oscillate with the constant grating temporal
frequency x, both at k = kC and at k = 0.25kC. By far the
dominant changes in the LGN inputs (which are the summed

outputs of 20 or so LGN cells) for k = 0.25kC occur in the F1
components. First, in their amplitudes, which has been ad-
dressed in Figure 9A,B. Second, in their relative phases. These

phase changes, however, can only have a very minor effect on
the surround suppression, which can be seen as follows.

Figure 8. (A) Joint distribution of high- and low-contrast receptive field sizes, r+ and r–, based on spike responses. All scales are logarithmic (base 10). All distributions are
normalized to peak value 1. Receptive field growth at low contrast is clear. Average growth ratio is 1.9 and is significantly greater than unity (Wilcoxon test, P < 0.001). (B and C)
Joint distributions of receptive field growth and growth of spatial summation extent of excitation (B) and inhibition (C) (computed as ratios). There is practically no correlation
between receptive field growth and the growth of the spatial summation extent of excitatory or inhibitory inputs (see text). For cells in the sample with larger receptive field growth
(factor of ~2 and greater), this growth is always considerably larger than the growth of their excitatory and inhibitory inputs.
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As explained earlier, the phases of the LGN inputs vary
stochastically with an approximately uniform distribution on [0,

2p], this is so at k = kC and is not notably different at k = 0.25kC

(it is only at stimuli close to the uniformly oscillation stimulus,
k = 0, that one would observe notable differences [narrowing] in

this distribution). The collective effect of the change in the rel-
ative phases of the LGN inputs is thus practically nonexistent.
Indeed, the 4 different model configurations, that is, M0, M10,

P0, and P10, have similar distributions of surround suppression,

receptive field growth etc., whereas each configuration has very
different LGN connection structures (N LGN

G ;j ; eq. 4), with very
different relative phases of the LGN inputs in any 2 particular V1

cells. Yet, each case having a similar (close to uniform) dis-
tribution of these phases, our simulations show (Supplementary
Materials) that the distributions of surround suppression, re-

ceptive field growth, and so on do not differ substantially for the
different cases.
Hence, we may conclude that substantial differences in

behavior of our model cortex for k = kC and k = 0.25kC must
be attributed truly to the presence of the surround suppression
of the LGN inputs gLGN. Equivalently, we may conclude that
such differences must be attributed to the surround suppres-

sion of the LGN cells, rather than to other changes in the
behavior of the LGN inputs at k = 0.25kC (small contributions of
which cannot of course be entirely ruled out).

Some of the differences induced by the LGN surround
suppression are apparent from the responses of the cell in
Figure 9B--E. We see that there is a sharp increase in the

surround suppression of the spike response (Fig. 9C). For k = kC

the suppression mechanism is (C) (reduction of excitation and
increase of inhibition), whereas for k = 0.25kC it is (B)

(reduction of excitation). We can also identify the suppression
sequence, which is, as defined earlier, the sequence of active

mechanisms when the aperture size rA increases from receptive
field size r to surround size R. It is AB at k = kC, and BB at k =

0.25kC. For this cell, which receives LGN input, the increased
suppression is caused directly by the LGN suppression (Fig. 9B)
as well as an increase in the suppression of the excitatory

cortical conductance (Fig. 9D). This increase in the suppression
of the excitatory cortical conductance is itself induced by the
suppression of the LGN inputs into the many other cells that
together make up the cell’s cortical environment. We note that,

in general, the LGN suppression also induces an increase in the
surround suppression of the inhibitory conductances, although
for this particular cell this is not significant (Fig. 9E).

A summary of the difference in surround suppression in the
model with and without LGN suppression is given in Figure 9F--
H. The surround suppression (averaged over high and low

contrast) present in the LGN conductances gLGN at k = kC and
k = 0.25kC is shown in Figure 9F. As mentioned earlier, we see
that at k = kC the LGN inputs do not exhibit surround

suppression. Further, we see (shaded histogram) that the
average surround suppression of the LGN inputs gLGN is 14%.
The distribution of V1 surround suppression (spike responses,
averaged over high and low contrast) with and without

contributions from the LGN is shown in Figure 9G. Average
surround suppression of the cortical cells has increased from
25% to 50%, due to the presence of LGN surround suppression.

As mentioned, the LGN surround suppression affects surround
suppression of the cortical cells in 2 ways. First, directly via the
LGN input for cells that receive it. Second, via the collective

action of these inputs, that is, by the increase of the surround
suppression of the cortical excitatory conductances. Conse-
quently, we observe that as a result of the LGN surround

suppression, the prevalence of suppression mechanisms for our
V1 cells is substantially altered in favor of mechanisms (B) and

Figure 9. Transfer of LGN surround suppression to cortical cells. (A) Responses of the P10 model LGN cells as function of aperture size, at different spatial frequencies (peak values,
relative to response at k = kC). Recall that all LGN cells in a particular model configuration are identical in this respect (Methods). The LGN cells show no surround suppression at the
average cortically preferred spatial frequency kC (thick black). The LGN cells show 17% surround suppression at a spatial frequency k = 0.25kC (green). (B--E) Conductances and spike
responses for a P10 cortical cell as function of aperture size, for a grating with k = kC (black) and k = 0.25kC (green), at high (solid) and low (dashed) contrast. The LGN conductance
gLGN arises from 17 LGN cells for this particular cortical cell. Notice the suppression in gLGN at k = 0.25kC which is absent at k = kC. We see an increase in surround suppression at
k = 0.25kC, both in the firing rate ÆSæ (panel C) and the excitatory cortical conductance gE (panel D) as a result of the suppression in gLGN. Surround suppression in the
inhibitory conductance gI (panel E) in general also increases at k = 0.25kC but not for this particular cell. Sum of first and second harmonic (F0 + F1) is plotted for the conductances,
and first harmonic is plotted for the firing rate. Unfilled histograms correspond to k = kC, shaded histograms to k = 0.25kC. (F) Distributions of the suppression index of LGN inputs
gLGN. (G) Distributions of the suppression index for spike responses of cortical cells in the model. (H) Prevalence of the suppression mechanisms in the model. (I) Distributions of the
ratio of spatial summation extent at high and low contrast of LGN input gLGN. (J) Distributions of receptive field growth of cortical cells in the model based on spike responses.
Histograms give fractions of cells, arrows indicate means, solid arrow corresponds to shaded histogram, and dashed arrow corresponds to unfilled histogram.
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(C) (which require a reduction of excitation) at the expense of
mechanism (A) (increased direct inhibition), as shown in Figure
9H. Given that an average surround suppression of SI1 ~ 0.4 is
observed in macaques (Cavanaugh and others 2002), our

simulations show cortical short-range connections together
with surround suppression present in LGN cells can, in
principle, fully account for the degree of surround suppression

seen experimentally.
With respect to the possible transfer of receptive field growth

of LGN cells to V1 cortical cells, our simulations seem to indicate

a lesser sensitivity than for the transfer of surround suppression.
As can be seen from Figure 9G, for k = kC the LGN inputs gLGN do
not contribute to receptive field growth of our cortical cells. For

k = 0.25kC, the average growth ratio of the LGN inputs gLGN has
decreased about 10% from its value for k = kC (Fig. 9I), but there
is no obvious effect on the average growth ratio for cortical cells
(Fig. 9J). Indeed, our analysis of the mechanisms of surround

suppression and receptive field growth based on the conduc-
tances is largely insensitive to whether we include the LGN
conductance in the excitatory conductance or use only the

cortical contribution instead. Further, we find that the observa-
tions made earlier on, regarding the neural mechanisms of
contrast-dependent receptive field size for k = kC, remain

qualitatively valid for k = 0.25kC. Our simulations thus indicate
an independence of these mechanisms on the transfer of LGN
surround suppression to V1.
Despite the apparent lesser sensitivity for transfer from LGN

to V1, receptive field growth of LGN cells in some sense
introduces an overall geometric scaling factor on the entire
visual input to V1. Though this observation ignores a great many

details of course. For instance, the fact that the density of LGN
cells (LGN receptive fields) is not known to change with
contrast. On the other hand, it seems unlikely that a reasonable

receptive field expansion for LGN cells would not be at least
partially transferred to V1.

The Cortical Magnification Factor

As mentioned in the Introduction, arguments in favor of

involvement of long-range connections and/or extrastriate
feedback in extraclassical phenomena are indirect and rely on
the cortical magnification factor as a key ingredient. Receptive

field size and scatter are systematically ignored. It is argued that
surround sizes would be too large to result from local short-
range connections.We have already shown that, on the contrary,

a neural network model constrained by the basic architecture of

the V1 input layers, with only local short-range connections,
refutes this argument and exhibits surround sizes similar towhat
is observed experimentally.
One naturally wonders if, and to what extent, our findings

depend on the actual value of the cortical magnification factor.
Intuitively, a smaller cortical magnification factor is not bene-
ficial for the role of short-range connections in the creation of

extraclassical receptive field phenomena because these con-
nections cover less visual space. However, the minimum
amount of visual space covered is set by the receptive field

size and scatter.
To check whether this minimum visual range of cortical

short-range connections is in itself sufficient to generate

surround suppression and receptive field expansion, we re-
peated our simulations with an infinite cortical magnification
factor, v–1

=N (geometric parameter X =N, all else unchanged,
see Methods). The results are shown in Figure 10 for the P0 case

(M0 yields similar results). Clearly, the finite receptive field
scatter by itself, 60% (M0) and 30% (P0) of the average receptive
field size (Methods), is sufficient to generate both extraclassical

phenomena to practically the same degree as it does in the
presence of a realistic cortical magnification factor. Other
properties of our model discussed in this paper are also not

qualitatively different for infinite cortical magnification factor,
with one exception.
As is apparent from Figure 10A, it is now more difficult to

connect the LGN cells in such a manner that the organization of

orientation preference and ocular dominance displays the same
level of order as seen for a realistic cortical magnification factor
(Fig. 1). But, this, however, does not imply that order could not

be improved with more specific connections.
Arguments ruling out local short-range connections and LGN

input as the origins of extraclassical phenomena based on the

cortical magnification factor are inherently weak because this is
a macroscopic measure. Hence, inferences based on it regarding
cell--cell influence cannot be very precise. Our simulations fur-

ther challenge such arguments, by showing that receptive field
size and scatter by themselves, regardless of the cortical
magnification factor, can be a determinative factor for extrac-
lassical receptive field phenomena.

Discussion

There is considerable debate over the origins of extraclassical
receptive field phenomena such as surround suppression and

Figure 10. Results for infinite cortical magnification factor (X = N) for the P0 configuration, M0 configuration yields similar results. (A) Simulated optical image of ocular
dominance and orientation preference, in the spirit of optical imaging experiments (Blasdel 1992) (compare Fig. 1). (B) Distribution of the suppression index SI1 at high (unfilled) and
low (shaded) contrast (compare Fig. 5E). (C) Distributions of the receptive field and surround growth ratios, r– /r+ (blue shaded) and R– /R+ (unfilled). Histograms give fractions of
cells, arrows indicate means, solid arrow corresponds to shaded histogram, and dashed arrow corresponds to unfilled histogram.
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receptive field expansion at low contrast. A primary reason is
that it still poses a great challenge for experimental methods to
be able to directly distinguish between mechanisms of these
phenomena based on local short-range connection, long-range

lateral connections, or extrastriate feedback connections. To
our knowledge such data are not yet available. This requires that
any data regarding the phenomena need to be related to neural

mechanisms through some sort of model or theoretical frame-
work. This is not without challenges either. Such a model needs
to be sufficiently sophisticated, for example, it needs to cover

a large piece of the visual field and cortex, and it needs to
adequately address classical response properties because they
set the context for the extraclassical phenomena. Ours is an

attempt in this direction.
We know of only one other large-scale neural network model

in the published literature (Somers and others 1998) that
addresses the extraclassical response phenomena discussed in

this paper. That model does not address classical response
properties, and neural mechanisms for extraclassical phenom-
ena, by construction, arise from long-range connections. Fur-

ther, in that model, receptive field growth at low contrast is
achieved via contrast-dependent surround suppression. That is,
the surround suppression systematically decreases as a function

of decreasing contrast, which contradicts the experimental data
(Sceniak and others 1999; Cavanaugh and others 2002).
We have shown that surround suppression and receptive field

expansion at low contrast can be spontaneously generated by

short-range cortical connections alone, without any contribu-
tion from other sources. We showed that cortical contributions
alone, mediated by short-range connections, can explain a major

part or the phenomena. We demonstrated that surround sup-
pression of LGN cells, if present, is easily transferred to V1. Our
simulations thus provide rigorous computational support for

the intriguing hypothesis that the LGN input and cortical short-
range connections in V1 are primarily responsible for the
surround suppression observed in V1, with little requirement

for contributions from long-range or extrastriate connections.
We showed that with only 17% suppression in the LGN cells’
responses, the cortical surround suppression in the model
exceeds the suppression observed experimentally. More radi-

cally interpreted, our results therefore would suggest that long-
range lateral connections and/or extrastriate feedback, in fact,
contribute negatively to surround suppression. That is, rather

than being suppressive, our results suggest that their contribu-
tions may in fact be facilitatory.
In our model, 3 synaptic cortical mechanisms for surround

suppression are active, in agreementwith experimental observa-
tions in cats (Anderson and others 2001). When LGN suppres-
sion is included, we observe strong contributions to cortical
suppression from a reduction of recurrent cortical excitation,

rather than from an increase in direct cortical inhibition. We
find, on average, a growth of spatial summation extent of
excitation and inhibition at low contrast, as predicted by DOG

(Sceniak and others 1999) and ROG models. But this growth
bears no simple relationship with the receptive field growth,
neither for superthreshold (spikes) nor for subthreshold (mem-

brane potential) responses. Receptive field growth for these
responses usually involves other/additional changes in the
relative gain of the excitatory and inhibitory inputs. Notably,

significant receptive field growth for these responses is usually
much larger than the growth of the spatial summation extent of
excitation and inhibition (Fig. 8).

As does the biological primary visual cortex, our model
produces these properties in distinctly different geometric
settings (with identical strength parameters), namely, for the
magno and parvo input layers, at parafoveal eccentricities and

around 10� eccentricity. Dimensional observations (parameter
X) imply that our model results also translate to 30� eccentric-
ity, modulo a geometric scaling factor. The ubiquitous nature of

these phenomena and their mechanisms in our model suggest
that they are basic response properties of V1. In principle, given
realistic classical response properties, they seem to require little

more than receptive field scatter and isotropic short-range
connectivity, with perhaps some weak constraints on macro-
scopic organization of ocular dominance and orientation

preference. They do not, in principle, seem to require more
elaborate architecture or physiological properties, such as
specific cortical connectivity, long-range connections within
V1, extrastriate feedback, and synaptic depression/facilitation.

Recent data from cats suggest that partial inheritance of
surround suppression in V1 from LGN cells does indeed occur
(Ozeki and others 2004). Other recent experiments show that

strong surround suppression is observed for drifting gratings
having spatial and temporal frequencies outside the range at
which most cortical cells typically respond, indicating these

signals arise within the input layer of V1 or the LGN itself (Webb
and others 2004). Given the general nature of our results, we
may conclude that the presence of the phenomena in LGN cells
could in principle be of the same origin as we have suggested

here for V1 cells.
There are further aspects of surround suppression that we

have not explicitly addressed in this paper. Among them are

orientation tuning of the surround and dynamics (timing) of the
suppression. Preliminary simulations indicate that orientation
tuning of the surround is well captured by our model. For what

concerns timing of the suppression seen in our model, it is clear
that through polysynaptic interactions in the network, delays of
the onset of surround suppression could range anywhere from

0 to 20 ms, conservatively estimated. Indeed, preliminary sim-
ulations show that timing of the surround suppression in our
model is consistent with recent experimental findings (Xing
and others 2004). Our model has rich dynamics and is well

suited to also yield relevant results regarding the dynamics of
surround suppression. This is one of our interests for future
research.

Supplementary Material

Supplementary materials can be found at http://www.cercor.
oxfordjournals.org/
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Hupé J, James A, Girard P, Bullier J. 2001. Response modulations by static
texture surround in area V1 of the macaque monkey do not depend
on feedback connections from V2. J Neurophysiol 85:146--163.

Kapadia M, Westheimer G, Gilbert C. 1999. Dynamics of spatial
summation in primary visual cortex of alert monkeys. Proc Natl
Acad Sci USA 96:12073--12078.

Krukowski A, Miller K. 2001. Thalamocortical NMDA conductances and
intracortical inhibition can explain cortical temporal tuning. Nat
Neurosci 4:424--430.

Levitt J, Lund J. 1997. Contrast dependence of contextual effects in
primate visual cortex. Nature 387:73--76.

Levitt J, Lund J. 2002. The spatial extent over which neurons in macaque
striate cortex pool visual signals. Vis Neurosci 19:439--452.

Malpeli J, Lee D, Baker F. 1996. Laminar and retinotopic organization of
the macaque lateral geniculate nucleus: magnocellular and parvo-
cellular magnification functions. J Comp Neurol 375:363--377.

McLaughlin D, Shapley R, Shelley M, Wielaard J. 2000. A neuronal
network model of macaque primary visual cortex (V1): orientation
selectivity and dynamics in the input layer 4Ca. Proc Natl Acad Sci
USA 97:8087--8092.

Ozeki H, Sadakane O, Akasaki T, Naito T, Shimegi S, Sato H. 2004.
Relationship between excitation and inhibition underlying size
tuning and contextual response modulation in the cat primary visual
cortex. J Neurosci 24:1428--1438.

Priebe N, Mechler F, Carandini M, Ferster D. 2004. The contribution of
spike threshold to the dichotomy of cortical simple and complex
cells. Nat Neurosci 7:1113--1122.

Ringach D, Shapley R, Hawken M. 2002. Orientation selectivity in
macaque V1: diversity and laminar dependence. J Neurosci
22:5639--5651.

Sceniak M, Hawken M, Shapley R. 2001. Visual spatial characterization of
macaque V1 neurons. J Neurophysiol 85:1873--1887.

Sceniak M, Ringach D, Hawken M, Shapley R. 1999. Contrast’s effect
on spatial summation by macaque V1 neurons. Nat Neurosci
2:733--739.

Schiller P, Finlay B, Volman S. 1976. Quantitative studies of single-cell
properties in monkey striate cortex. I. Spatiotemporal organization
of receptive fields. J Neurophysiol 39:1288--1319.

Shapley R. 1990. Visual sensitivity and parallel retinocortical channels.
Annu Rev Psychol 41:635--658.

Silito A, Grieve K, Jones H, Cudeiro J, Davis J. 1995. Visual cortical
mechanisms detecting focal orientation discontinuities. Nature
378:492--496.

Solomon S, White A, Martin P. 2002. Extraclassical receptive field
properties of parvocellular, magnocellular and koniocellular cells
in the primate lateral geniculate nucleus. J Neurosci 22(1):338--349.

Somers D, Todorov E, Siapas A, Toth L, Kim D, Sur M. 1998. A local circuit
approach to understanding integration of long-range inputs in
primary visual cortex. Cereb Cortex 8:204--217.

Spear P, Moore R, Kim C, Xue J, Tumosa N. 1984. Effects of aging in the
primate visual system: Spatial and temporal processing by lateral
geniculate neurons in young adult and old rhesus monkeys.
J Neurophysiol 72(1):402--420.

Stettler D, Das A, Bennett J, Gilbert C. 2002. Lateral connectivity and
contextual interactions in macaque primary visual cortex. Neuron
36:739--750.

Webb B, Druv N, Peirce J, Solomon S, Lennie P. 2004. Origin of surround
suppression in macaque V1 neurons. Soc Neurosci Abstr 713.3.

Wielaard J, Shelley M, McLaughlin D, Shapley R. 2001. How simple cells
are made in a nonlinear network model of the visual cortex.
J Neurosci 21(14):5203--5211.

Xing D, Joshi S, Henrie J, Williams P, Hawken M, Shapley R. 2004.
Dynamics of size tuning in macaque V1. Soc Neurosci Abstr 410.10.

Cerebral Cortex November 2006, V 16 N 11 1545

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/c
e
rc

o
r/a

rtic
le

/1
6
/1

1
/1

5
3
1
/3

1
6
9
2
0
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2


