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Abstract

We give explicit constructions of extractors which work for a source of any min-entropy on strings of
length n. These extractors can extract any constant fraction of the min-entropy using O(log2 n) additional
random bits, and can extract all the min-entropy using O(log3 n) additional random bits. Both of these
constructions use fewer truly random bits than any previous construction which works for all min-
entropies and extracts a constant fraction of the min-entropy. We then improve our second construction
and show that we can reduce the entropy loss to 2 log(1/ε) + O(1) bits, while still using O(log3 n) truly
random bits (where entropy loss is defined as [(source min-entropy) + (# truly random bits used) −

(# output bits)], and ε is the statistical difference from uniform achieved). This entropy loss is optimal
up to a constant additive term.

Our extractors are obtained by observing that a weaker notion of “combinatorial design” suffices for
the Nisan–Wigderson pseudorandom generator, which underlies the recent extractor of Trevisan. We give
near-optimal constructions of such “weak designs” which achieve much better parameters than possible
with the notion of designs used by Nisan–Wigderson and Trevisan.

We also show how to improve our constructions (and Trevisan’s construction) when the required
statistical difference ε from the uniform distribution is relatively small. This improvement is obtained
by using multilinear error-correcting codes over finite fields, rather than the arbitrary error-correcting
codes used by Trevisan.
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1 Introduction

Roughly speaking, an extractor is a function which extracts (almost) truly random bits from a weak random
source, using a small number of additional random bits as a catalyst. A large body of work has focused on
giving explicit constructions of extractors, as such constructions have a wide variety of applications. A recent
breakthrough was made by Luca Trevisan [Tre99], who discovered that the Nisan–Wigderson pseudorandom
generator [NW94], previously only used in a computational setting, could be used to construct extractors. For
certain settings of the parameters, Trevisan’s extractor is optimal and improves on previous constructions.
More explicitly, Trevisan’s extractor improves over previous constructions in the case of extracting a relatively
small number of random bits (e.g., extracting k1−α bits from source with “k bits of randomness”, where
α > 0 is an arbitrarily small constant) with a relatively large statistical difference from uniform distribution
(e.g., constant ε, where ε is the statistical difference from uniform distribution required from the output).
However, when one wants to extract more than a small fraction of the randomness from the weak random
source, or when one wants to achieve a small statistical difference from uniform distribution, Trevisan’s
extractor performs poorly (in that a large number of truly random “catalyst” bits are needed).

In this paper, we show that Trevisan’s ideas can be used in a more general and efficient way. We present
two new ideas that improve Trevisan’s construction. The first idea allows one to extract more than a small
fraction of the randomness from the weakly random source. In particular, the idea can be used to extract
all of the randomness from the weak random source. This is accomplished by replacing the “combinatorial
designs” underlying the Nisan–Wigderson generator and Trevisan’s construction with a weaker (and more
suitable) notion. Applying a result of Wigderson and Zuckerman [WZ99] to these extractors, we also obtain
improved constructions of highly expanding graphs and superconcentrators.

The second idea improves Trevisan’s construction in the case where the output bits are required to be
of a relatively small statistical difference from uniform distribution. The two ideas can be combined, and
the final outcome is a set of new extractors that use fewer truly random bits than any previous construction
which extracts at least a constant fraction of the randomness from any weak random source.

Extractors

The definition of an extractor requires quantifying two notions: how much “randomness” is in a probability
distribution, and what it means for two distributions to be “close”. The first is measured using a variant of
entropy. A distribution X on {0, 1}n is said to have min-entropy k if for all x ∈ {0, 1}n, Pr [X = x] ≤ 2−k.
This should be thought of as saying that X has (at least) “k bits of randomness.” For example, if X is
uniformly distributed on a set of size 2k, then X has min-entropy k.

The distance measure between probability distributions used is a standard one. Two distributions X and
Y on a set S are said to have statistical difference (or variation distance) ε if

max
D

|Pr [D(X) = 1] − Pr [D(Y ) = 1]| = ε,

where the maximum is taken over all functions (“distinguishers”) D : S → {0, 1}.
A function Ext : {0, 1}n × {0, 1}d → {0, 1}m is called a (k, ε)-extractor if for every distribution X

on {0, 1}n of min-entropy k, the induced distribution Ext(X,Ud) on {0, 1}m has statistical difference at
most ε from Um (where Uj denotes the uniform distribution on {0, 1}j). In other words, Ext extracts m
(almost) truly random bits from a source with k bits of hidden randomness using d additional random bits
as a catalyst. The goal is to construct extractors which minimize d while m is as close to k as possible.
Nonconstructively, it can be shown that for every n, k ≤ n, and ε > 0, there exists a (k, ε)-extractor

Ext : {0, 1}n × {0, 1}d → {0, 1}m
with m = k and d = O(log(n/ε)), i.e. all the randomness of the source

is extracted using only logarithmically many additional truly random bits.1 However, we are interested in
explicit constructions. More precisely, a family of extractors {Exti : {0, 1}ni × {0, 1}di → {0, 1}mi}i∈I is
called explicit if Exti can be evaluated in time poly(ni, di).

Dispersers are the analogue of extractors for one-sided error; instead of inducing the uniform distribution,
they simply hit all but a ε fraction of points in {0, 1}m with nonzero probability.

1Actually, since the extractor is fed d truly random bits in addition to the k bits of hidden randomness, one can hope to
have m be close to k + d. This will be discussed in more detail under the heading “Entropy loss and strong extractors.”
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Other notations. “log” indicates the logarithm base 2 and “ln” denotes the natural logarithm. If X is a
probability distribution on a finite set, we write x←X to indicate that x is selected according to X.

Previous work

Dispersers were first defined by Sipser [Sip88] and extractors were first defined by Nisan and Zucker-
man [NZ96]. Much of the motivation for research on extractors comes from work done on “somewhat
random sources” [SV86, CG88, Vaz87b, VV85, Vaz84, Vaz87a, CW89, Zuc96]. There have been a number of
papers giving explicit constructions of dispersers and extractors, with a steady improvement in the parame-
ters [Zuc96, NZ96, WZ99, GW97, SZ98, SSZ98, NT98, Zuc97, Ta-98, Tre99]. Most of the work on extractors
was based on techniques such as k-wise independence, the Leftover hash lemma [ILL89], and various forms
of composition. A new approach to constructing extractors was recently initiated by Trevisan [Tre99], who
discovered a fascinating connection between constructing extractors and constructing pseudorandom gener-
ators from hard functions [Tre99]. In addition to establishing this connection, Trevisan used it to give a
strikingly simple extractor construction based on the Nisan–Wigderson pseudorandom generator. This is
the starting point for our work.

Explicit constructions of extractors and dispersers have a wide variety of applications, including simu-
lating randomized algorithms with weak random sources [Zuc96]; constructing oblivious samplers [Zuc97];
constructive leader election [Zuc97, RZ98]; randomness-efficient error reduction in randomized algorithms
and interactive proofs [Zuc97]; explicit constructions of expander graphs, superconcentrators, and sorting
networks [WZ99]; hardness of approximation [Zuc96, Uma99]; pseudorandom generators for space-bounded
computation [NZ96, RR99]; derandomizing BPP under circuit complexity assumptions [ACR97, STV99];
and other problems in complexity theory [Sip88, GZ97].

For a detailed survey of previous work on extractors and their applications, see [NT98].

Main results

The first family of extractors constructed in this paper is given in the following theorem:

Theorem 1 For every n, k,m ∈ N and ε > 0, such that m ≤ k ≤ n, there are explicit (k, ε)-extractors
Ext : {0, 1}n × {0, 1}d → {0, 1}m with

1. d = O
(

log2(n/ε)
log(k/m)

)

, or

2. d = O
(

log2(n/ε) · log(1/γ)
)

, where 1 + γ = k/(m − 1), and γ < 1/2.

In particular, using the second extractor with k = m, we can extract all of the min-entropy of the source
using

O
(

log2(n/ε) · log k
)

additional random bits. (If ε is constant then this is just O(log2 n · log k) additional random bits). Using
the first extractor with k/m constant, we can extract any constant fraction of the min-entropy of the source
using

O
(

log2(n/ε)
)

additional random bits. (If ε is constant then this is just O(log2 n) additional random bits).
An undesirable feature of the extractors in Theorem 1 (and the extractor of Trevisan [Tre99]) is that the

number of truly random bits depends quadratically on log(1/ε). In (nonconstructive) optimal extractors and
even some previous constructions (discussed later), this dependence is linear. Indeed, some applications of
extractors, such as [RR99], require a linear dependence. In our second theorem, we improve our extractors
to have a linear dependence on log(1/ε).

Theorem 2 For every n, k, m, and ε, such that m ≤ k ≤ n, there are explicit (k, ε)-extractors Ext :
{0, 1}n × {0, 1}d → {0, 1}m with

1. d = O
(

log2 n·log(1/ε)
log(k/m)

)

, or
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2. d = O
(

log2 n · log(1/γ) · log(1/ε)
)

, where 1 + γ = k/(m − 1), and γ < 1/2.

Thus, in all cases, the log2(n/ε) in Theorem 1 has been replaced with log2 n · log(1/ε), which is an
improvement when ε is relatively small. One case of note is when we want to extract m = k1−α bits
from a source of min-entropy k ≥ nα, for an arbitrarily small constant α > 0. This is the case in which
Trevisan’s extractor performs best, using d = O(log2(n/ε)/ log n) truly random bits (which is O(log n) for
ε ≥ 1/poly(n)). In this case, Theorem 2 gives

d = O (log n · log(1/ε)) ,

which is an improvement for small ε. We only provide a sketch of Theorem 2, because the results have been
superseded by our recent work [RRV99a] which gives a general method to reduce the error of any extractor.

A summary of our results is given in Figure 1, and a comparison with the best previous constructions
is given in Figure 2. Trevisan’s construction [Tre99] uses only O(log2(n/ε)/ log k) truly random bits but

reference min-entropy k output length m additional randomness d type

Thm. 1 any k m = (1 − α)k d = O(log2(n/ε)) extractor

Thm. 1 any k m = k d = O(log2(n/ε) · log k) extractor

Thm. 2 any k m = k1−α d = O(log2 n · log(1/ε)/ log k) extractor

Thm. 2 any k m = (1 − α)k d = O(log2 n · log(1/ε)) extractor

Thm. 2 any k m = k d = O(log2 n · log(1/ε) · log k) extractor

Above, α is an arbitrarily small constant.

Figure 1: Summary of our constructions

reference min-entropy k output length m additional randomness d type

[GW97] any k m = k d = O(n − k + log(1/ε)) extractor

[Zuc97] k = Ω(n) m = (1 − α)k d = O(log(n/ε)) extractor

[NT98] any k m = k d = O(log9 n · log(1/ε)) extractor

[Ta-98] any k m = k − polylog(n) d = O(log(n/ε)) disperser

[Tre99] any k m = k1−α d = O(log2(n/ε)/ log k) extractor

ultimate goal any k m = k d = O(log(n/ε)) extractor

Above, α is an arbitrarily small constant.

Figure 2: Best previous constructions

extracts only a small fraction (k1−α) of the source min-entropy. The best previous construction that extracts
all of the source min-entropy was given by Ta-Shma [NT98] and used O(log9 n · log(1/ε)) truly random bits.2

Our extractors use more truly random bits than the extractor of [Zuc97] and the disperser of [Ta-98], but
our extractors have the advantage that they work for any min-entropy (unlike [Zuc97]) and are extractors
rather than dispersers (unlike [Ta-98]). The disadvantage of the extractors of [GW97] described in Figure 2
is that they only use a small number of truly random bits when the source min-entropy k is very close to the
input length n (e.g., k = n− polylog(n)). There are also extractors given in [GW97, SZ98] which extract all
of the min-entropy, but these use a small number of truly random bits only when the source min-entropy is
very small (e.g., k = polylog(n)), and these extractors are further discussed in the context of entropy loss.

Plugging the second extractor of Theorem 1 into a construction of [WZ99] (see also [NT98]) immediately
yields the following construction of highly expanding graphs:

2In [NT98], the number of truly random bits used by the extractor is given as d = polylog n, a polynomial of unspecified
degree in log n. Ta-Shma [TS98] estimates the degree of this polynomial to be 9.
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Corollary 3 For every N and K ≤ N , there is an explicitly constructible3 graph on N nodes with degree
(N/K) · 2O((log log N)2(log log K)) such that every two disjoint sets of vertices of size at least K have an edge
between them.

This compares with a degree bound of (N/K) · 2O((log log N)9) due to Ta-Shma [NT98]. We also obtain
similarly improved constructions of depth-2 superconcentrators, using general techniques for building them
from extractors [WZ99, NT98]. These highly expanding graphs and depth-2 superconcentrators have further
applications to sorting and selecting in rounds, constructing small-depth linear-sized superconcentrators, and
constructing non-blocking networks [Pip87, AKSS89, WZ99], so our results translate similar improvements
in each of these applications. We remark that the construction of [WZ99] used to obtain Corollary 3 requires
extractors that extract nearly all the entropy of the source.

Entropy loss and strong extractors

Since a (k, ε)-extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m is given k bits of hidden randomness in its first
input and d truly random bits in its second input, one can actually hope for the output length m to be
almost k + d, rather than just k. The quantity ∆ = k + d − m is therefore called the entropy loss of the
extractor. Hence, in this language, the goal in constructing extractors is to simultaneously minimize both d
and the entropy loss.

Actually, in some applications of extractors, it is important not only to retain the randomness of the d
truly random bits invested, but to explicitly retain their values in the output. This leads to a more stringent
notion of extractors. A function Ext : {0, 1}n×{0, 1}d → {0, 1}m is called a strong (k, ε)-extractor if for every

distribution X on {0, 1}n of min-entropy k, the induced distribution (Ud,Ext(X,Ud)) on {0, 1}d × {0, 1}m

has statistical difference at most ε from Ud ×Um. Naturally, the entropy loss of a strong extractor is defined
to be ∆ = k − m.

Nonconstructively, one can show that, for any n and k ≤ n, there exist strong extractors Extn,k :
{0, 1}n×{0, 1}d → {0, 1}k−∆ with d = log(n−k)+2 log(1/ε)+O(1) and entropy loss ∆ = 2 log(1/ε)+O(1),
and these bounds on d and ∆ are tight up to additive constants (even for non-strong extractors) [RT97]. The
explicit constructions, however, are still far from achieving these parameters. As for previous results, every
entry in Figure 2 yields a (not necessarily strong4) extractor with an entropy loss of k +d−m, by definition.
For example, the extractor of [NT98] and the disperser of [Ta-98] have entropy losses of polylog n. The
extractor of [GW97] is actually better than Figure 2 indicates; it is a strong extractor with an entropy loss of
n−k +O(log(1/ε)) (though this is only interesting when k is very close to n). In addition, the “tiny families
of hash functions” of [SZ98] give strong extractors with d = O(k + log n) and entropy loss 2 log(1/ε) + O(1);
these have optimal entropy loss but are only interesting when k is very small (e.g., k = polylog n), as d is
linear in k. (The fact that d here does not explicitly depend on ε is not a contradiction to the lower bound
on d, as no nontrivial extraction is occurring when k < ∆ and the lower bounds do not apply.)

Our extractors are in fact strong extractors. Moreover, by combining the second extractors of Theorem 1
and Theorem 2 with the low min-entropy extractors of [SZ98], we are able to achieve optimal entropy loss
(up to an additive constant):

Theorem 4 For every n, k ∈ N, and ε > 0 such that k ≤ n, there are explicit strong (k, ε)-extractors
Ext : {0, 1}n × {0, 1}d → {0, 1}k−∆ with entropy loss

∆ = 2 log(1/ε) + O(1),

and

1. d = O
(

log2(n/ε) · log k
)

, or

2. d = O
(

log2 n · log(1/ε) · log k
)

.

3By explicitly constructible, we mean that, given N and K, the graph can be constructed deterministically in time poly(N).
4However, subsequent to this work, it was shown how to transform any extractor into a strong extractor, with only a small

cost in the other parameters [RSW00].
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In particular, in order for the output of the extractor to have statistical difference .01 from uniform, one
need only lose a constant number of bits of entropy. A comparison of this result with previous results on
entropy loss is given in Figure 3.

reference additional randomness d entropy loss ∆ type strong?

[GW97] d = O(n − k + log(1/ε)) ∆ = n − k + 12 log(1/ε) + O(1) extractor yes

[GW97] d = n − k + 2 log(1/ε) + O(1) ∆ = 2 log(1/ε) + O(1) extractor no

[SZ98] d = O(k + log n) ∆ = 2 log(1/ε) + O(1) extractor yes

[NT98] d = O(log9 n · log(1/ε)) ∆ = O(log9 n · log(1/ε)) extractor no

[Ta-98] d = O(log(n/ε)) ∆ = polylog(n/ε) disperser no

Thm. 4 d = O
(

log2(n/ε) · log k
)

∆ = 2 log(1/ε) + O(1) extractor yes

Thm. 4 d = O
(

log2 n · log(1/ε) · log k
)

∆ = 2 log(1/ε) + O(1) extractor yes

nonconstructive d = log(n − k) + 2 log(1/ε) + O(1) ∆ = 2 log(1/ε) + O(1) extractor yes

& optimal [RT97]

All of the above work for any source of min-entropy k.

Figure 3: Results on entropy loss

Techniques and Tools

Here we briefly highlight some of the techniques and tools used to achieve our improvements. In particular,
we give the definitions of both combinatorial designs and weak designs.

Designs. The main combinatorial objects underlying the Nisan–Wigderson pseudorandom generator and
subsequently Trevisan’s extractors are collections of sets with small pairwise intersections. Following [NW94],
we will refer to these as designs, but in the combinatorics literature, they are often called packings (cf., [AS00,
Sec. 4.7]).

Definition 5 For ℓ ∈ N and ρ ≥ 1, a family of sets S1, . . . , Sm ⊂ [d] is an (ℓ, ρ)-design if

1. For all i, |Si| = ℓ.

2. For all i 6= j, |Si ∩ Sj | ≤ log ρ.

The first improvement of this paper stems from the observation that actually a weaker form of designs
suffices for the analysis of [NW94, Tre99]. As it turns out, it is sufficient to use a set system in which the
quantity maxi

∑

j<i 2|Si∩Sj | is small (in contrast to designs, in which maxi6=j |Si ∩ Sj | is bounded). We call
such set systems weak designs.

Definition 6 A family of sets S1, . . . , Sm ⊂ [d] is a weak (ℓ, ρ)-design if

1. For all i, |Si| = ℓ.

2. For all i,
∑

j<i

2|Si∩Sj | ≤ ρ · (m − 1).

Clearly, every (ℓ, ρ)-design is also an (ℓ, ρ)-weak design, but not conversely. Indeed, we will see that, for
some settings of parameters, it is possible to have the universe size d much smaller for weak designs than the
corresponding designs. This will allow our extractors to attain a much smaller seed length than Trevisan’s
extractors when extracting most or all of the min-entropy from the source. The weak designs used in the
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first extractor of Theorem 1 are constructed using an application of the Probabilistic Method, which we then
derandomize using the Method of Conditional Expectations (cf., [AS00] and [MR95, Ch. 5]). We then apply
a simple iteration to these first weak designs to obtain the weak designs used in the second extractor. We
also prove a lower bound showing that our weak designs are near-optimal.

Multilinear error-correcting codes. The second improvement of the paper (reducing the dependence
of the seed length on ε) is achieved by using a specific error-correcting code rather than an arbitrary one.
More specifically, we use multilinear error-correcting codes over finite fields. The main property we use is
that the restriction of a multilinear function to a subset of its input variables is still a multilinear function.
We can hence bound the description size of that restriction by the description size of a multilinear function
rather than the description size of an arbitrary function. This turns out to be very useful in the extractor
analysis.

A general method to obtain optimal entropy loss. For our third improvement, we observe that a
method of Wigderson and Zuckerman [WZ99] (with a slightly refined analysis) along with the “low min-
entropy” extractor of Srinivasan and Zuckerman [SZ98] can be used to reduce the entropy loss of any extractor
to the optimal value of 2 log 1/ε + O(1). This transformation increases the seed length of an extractor by
at most O(log n + ∆) bits, where ∆ is the initial entropy loss. Applying this general transformation to the
extractors of Theorem 1 and Theorem 2 gives the extractors of Theorem 4.

Organization

In Section 2, we analyze the Trevisan extractor and show that weak designs can be used instead of standard
designs in this construction. Section 3 contains our results on the construction of weak designs. We also give
lower bounds showing that the parameters achieved by our weak designs are impossible for standard designs,
and that our constructions of them are nearly optimal. Theorem 1 is proven in Section 4 (as a corollary
of the results of Sections 2 and 3). In Section 5, we sketch our method for improving the dependence on
the error as claimed in Theorem 2. In Section 6, we give a general method for obtaining optimal entropy
loss in extractors. In Section 7, we show that using a relaxed notion of designs also gives some quantitative
improvements over [NW94] in the construction of pseudorandom generators from hard Boolean functions.
We conclude with a discussion of subsequent work and open problems in Section 8.

2 The extractor

In this section, we describe the Trevisan extractor and present a more refined analysis of it. Most importantly,
we show that weak designs can be used instead of standard designs. We also show that it is in fact a strong
extractor (i.e., the seed can be given as part of the output). Aside from these two improvements, the
description of the extractor follows [Tre99] very closely. The main tool in the Trevisan extractor is the
Nisan–Wigderson pseudorandom generator [NW94]. Let S = (S1, . . . , Sm) be a collection of subsets of [d] of
size ℓ, and let P : {0, 1}ℓ → {0, 1} be any Boolean function. For a string y ∈ {0, 1}d, define y|Si

to be the
string in {0, 1}ℓ obtained by projecting y onto the coordinates specified by Si. Then the Nisan–Wigderson
generator NWS,P is defined as

NWS,P (y) = P (y|S1
) · · ·P (y|Sm

).

In addition to the Nisan–Wigderson generator, the Trevisan extractor makes use of error-correcting codes.
We need codes satisfying the following lemma. Such codes can be obtained using standard techniques; for
completeness a proof is given in Appendix A.

Lemma 7 (error-correcting codes) For every n ∈ N and δ > 0 there is a code ECn,δ : {0, 1}n → {0, 1}n

where n = poly(n, 1/δ) such that every Hamming ball of relative radius 1/2 − δ in {0, 1}n contains at most
1/δ2 codewords. Furthermore, ECn,δ can be evaluated in time poly(n, 1/δ) and n can be assumed to be a
power of 2.
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We can now describe the Trevisan extractor, which takes as parameters n,m, k ∈ N, and ε > 0, where
m ≤ k ≤ n. Let EC : {0, 1}n → {0, 1}n be as in Lemma 7, with δ = ε/4m and define ℓ = log n = O(log n/ε).
For u ∈ {0, 1}n, we view EC(u) as a Boolean function u : {0, 1}ℓ → {0, 1}. Let S = (S1, . . . , Sm) be a
collection of subsets of [d] (for some d) such that |Si| = ℓ for each i. (How S is selected will crucially affect
the performance of the extractor; we will later choose it to be one of our weak designs.)

Then the extractor ExtS : {0, 1}n × {0, 1}d → {0, 1}m is defined as

ExtS(u, y) = NWS,u(y) = u(y|S1
) · · ·u(y|Sm

).

We will now analyze this extractor. The following lemma, due to Yao, allows us to focus on “next-bit
predictors” instead of distinguishers.

Lemma 8 ([Yao82]) Suppose that 〈Y,Z〉 is a distribution on {0, 1}d×{0, 1}m
s.t. Y is uniformly distributed

over {0, 1}d
yet the statistical difference of 〈Y,Z〉 from Ud × Um is greater than ε. Then there is an i ∈ [m]

and a function (“next-bit predicator”) A : {0, 1}d × {0, 1}i−1 → {0, 1} such that

Pr
〈y,z〉←〈Y,Z〉

[A(y, z1z2 · · · zi−1) = zi] >
1

2
+

ε

m
.

Moreover, if there is a circuit D : {0, 1}d × {0, 1}m → {0, 1} of size s distinguishing 〈Y,Z〉 from Ud × Um

with advantage ε, then A may also be taken to be of circuit complexity s.

We will not use the “moreover” part of Lemma 8 in the analysis of our extractor; it will only be used for
our quantitative improvement to the pseudorandom generators of [NW94] given in Section 7.

The following lemma is a refinement of ones in [NW94, Tre99]. It shows how, from any next-bit predictor
A for NWS,P , one can obtain a “program” of small description size (or circuit complexity) which, using A
as an oracle, computes P with noticeable advantage.

Lemma 9 Fix S. For every i ∈ [m], there is a set Fi of functions from {0, 1}ℓ to {0, 1}d+i−1 (depending
only on S and i) such that

1. For every function P : {0, 1}ℓ → {0, 1} and every predictor A : {0, 1}d+i−1 → {0, 1}, there exists a
function f ∈ Fi such that

Pr
x

[A(f(x)) = P (x)] ≥ Pr
y

[

A
(

y, P (y|S1
) · · ·P (y|Si−1

)
)

= P (y|Si
)
]

,

where x is selected uniformly from {0, 1}ℓ and y from {0, 1}d
.

2. log |Fi| ≤ d +
∑

j<i 2|Si∩Sj |.

3. Each function in Fi can be computed by a circuit of size O
(

∑

j<i

(

2|Si∩Sj | − 1
)

)

.5

The main improvement over [NW94, Tre99] in Lemma 9 is the use of
∑

j<i 2|Si∩Sj | rather than (i − 1) ·
2maxj |Si∩Sj | in the bound on |Fi|. This refined bound illustrates the connection with weak designs. We
will not use Item 3 (the bound on circuit size) in the analysis of our extractor; we only use this for the
construction of pseudorandom generators in Section 7.

Proof: Let
α = Pr

y

[

A
(

y, P (y|S1
) · · ·P (y|Si−1

)
)

= P (y|Si
)
]

By an averaging argument we can fix all the bits of y outside Si while preserving the prediction probability.
Renaming y|Si

as x, we now observe that x varies uniformly over {0, 1}ℓ while P (y|Sj
) for j 6= i is now a

function Pj of x that depends on only |Si ∩ Sj | bits of x. So, we have

Pr
x

[A (y(x), P1(x) · · ·Pi−1(x)) = P (x)] ≥ α.

5We measure circuit size by the number of internal gates, so, for example, the identity function has circuit size 0.
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Therefore, it suffices to let Fi be the set of functions f of the form x 7→ (y(x), P1(x), P2(x), . . . , Pi−1(x)),
where Pj(x) depends only some set Tij of bits of x, where |Tij | = |Si ∩ Sj |. The number of bits it takes to
represent each Pj is 2|Tij | = 2|Si∩Sj |. Also, y(x) is simply a function that places x in the positions indexed
by Si and is fixed in the other d − ℓ positions. So, the total number of bits it takes to represent a function
in Fi is at most d − ℓ +

∑

j<i 2|Si∩Sj |, giving the desired bound on log |Fi|. For the bound on circuit size,
notice that the circuit size of f is simply the sum of the circuit sizes of the Pj ’s, and every function on t bits
can be computed by a circuit of size c · (2t − 1), for some constant c (cf., [Weg87, Thm. 2.2]). Note that
this bound on circuit size is even true for t = 0, since we count the circuit size of a constant function as 0.

We now analyze the extractor ExtS when we take S to be a weak design. The argument follows the
analysis of Trevisan’s extractor in [Tre99] except that we use the more refined bounds on |Fi| given by
Lemma 9.

Proposition 10 If S = (S1, . . . , Sm) (with Si ⊂ [d]) is a weak (ℓ, ρ)-design for ρ = (k−3 log(m/ε)−d−3)/m,
then ExtS : {0, 1}n × {0, 1}d → {0, 1}m is a strong (k, ε)-extractor.

Proof: Let X be any distribution of min-entropy k. We need to show that the statistical difference between
〈Ud Ext(X,Ud)〉 and Ud×Um is at most ε. By Lemma 8, it suffices to show that for every next-bit predictor
A: {0, 1}d × {0, 1}i−1 → {0, 1},

Pr
u←X,y

[

A
(

y, u(y|S1
) · · ·u(y|Si−1

)
)

= u(y|Si
)
]

≤ 1

2
+

ε

m

where y is selected uniformly from {0, 1}d. So let A: {0, 1}d × {0, 1}i−1 → {0, 1} be any next-bit predictor
and let Fi be as in Lemma 9, so that |Fi| < 2d+ρm.

Let B be the set of u for which there exists an f ∈ Fi such that Prx [A(f(x)) = u(x)] > 1/2 + ε/2m. In
other words, B is the set of “bad” u for which u can be approximated by a function of small “description
size” relative to A. Now a counting argument will show that this can only happen with small probability,
since u is a codeword in an error-correcting code selected according to a distribution with high min-entropy.
By the property of the error-correcting code given in Lemma 7, for each function f ∈ Fi, there are at most
(2m/ε)2 strings u ∈ {0, 1}n such that Prx [A(f(x)) = u(x)] > 1/2 + ε/2m. By the union bound,

|B| ≤ (2m/ε)2 · |Fi| < (2m/ε)2 · 2d+ρm.

Since X has min-entropy k, each u ∈ B has probability at most 2−k of being selected from X, so

Pr
u←X

[u ∈ B] <
(

(2m/ε)22d+ρm
)

· 2−k

=
(

(2m/ε)22d+k−3 log(m/ε)−d−3
)

· 2−k

= ε/2m

Now, by Lemma 9, if u /∈ B, then

Pr
y

[

A
(

y, u(y|S1
) · · ·u(y|Si−1

)
)

= u(y|Si
)
]

≤ 1

2
+

ε

2m
.

Thus,

Pr
u←X,y

[

A
(

y, u(y|S1
) · · ·u(y|Si−1

)
)

= u(y|Si
)
]

≤ Pr
u←X

[u ∈ B] + Pr
u←X

[u /∈ B] ·
(

1

2
+

ε

2m

)

≤ ε

2m
+

(

1

2
+

ε

2m

)

=
1

2
+

ε

m
.
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The bound ρ = (k − 3 log(m/ε) − d − 3)/m can be viewed as follows: we start with min-entropy k, then
we immediately incur a (typically small) entropy loss of 3 log(m/ε)− d− 3, and then the output m is a 1/ρ
fraction of what is left.

Remark 11 Two improvements to the above analysis can slightly reduce the entropy loss of 3 log(m/ε) +
d + O(1) incurred in Proposition 10. We only give brief sketches of these improvements, since the savings
will be completely subsumed by our general entropy loss reduction technique in Section 6. First, d bits
of entropy loss can be completely eliminated by doing things a little differently. Specifically, the bits of y
outside Si can be fixed at the same time as when Lemma 8 is applied and absorbed into the predictor A.
The key point is that these bits need not depend on the particular sample u selected from the source X and
hence they need not count towards the “description size” of u.

Second, the 3 log(m/ε) bits of entropy loss can be improved to 2 log(1/ε)+3 log m+O(1). This is achieved
by partitioning the set of “bad” u for which u can be approximated by a function of the form A(f(·)), into sets
Bj according to the quality of approximation (e.g., take Bj to be those u for which u can be approximated
with error between 1/2 − 2jε/2m and 1/2 − 2j−1ε/2m). Then we use an error-correcting code in which for
every δ′ ≥ δ (rather than just δ′ = δ) any Hamming ball of relative radius 1/2 − δ′ contains at most 1/(δ′)2

codewords. Doing the analysis separately for each Bj has the effect of balancing the probability that u←X
lands in Bj against the maximum advantage possible for u in Bj .

Remark 12 An interesting feature of our extractors is that for m′ ≤ m, the m′-bit prefix of the output is
essentially the same as if the extractor had been constructed for output length m′. This makes it possible
to construct (k, ε)-extractors Ext with the property that even if Ext is applied to a source of (unknown)
min-entropy k′ < k, an m′ = m′(k′) prefix of the output will still be ε-close to uniform. To implement this
idea, one should use our construction of weak designs in Lemma 15, which has the property that the weak
(ℓ, ρ)-design (S1, ..., Sm) constructed is such that for every i, (S1, ..., Si) is also a weak (ℓ, ρ)-design.

3 Designs — constructions and lower bounds

To motivate our design constructions, observe that in extractor analysis above, the parameters of a design
correspond to the parameters of the extractor as follows (in the discussion below the parameter ε of the
extractor is fixed, for simplicity, to be some small constant):

source min-entropy ≈ ρm

output length = m

input length = 2Θ(ℓ)

additional randomness = d

Hence, our goal in constructing designs is to minimize d given parameters m, ℓ, and ρ (such that ρ ≥ 1).
Notice that 1/ρ is essentially the fraction of the source min-entropy that is extracted, so ideally ρ would be
as close to 1 as possible.

The construction of designs used in Trevisan’s extractor is given by the following lemma (rediscovered in
[NW94, Tre99]):

Lemma 13 ([EFF85]) For m, ℓ, d ∈ N and ρ > 1, there exists an efficiently constructible (ℓ, ρ)-design

S1, . . . , Sm ⊆ [d] if m ≤
(

d
⌊log 2ρ⌋

)

/
(

ℓ
⌊log 2ρ⌋

)2
. In particular, for any m, ℓ ∈ N and ρ > 1, one exists with

d = O

(

ℓ2 · m1/ log ρ

log ρ

)

.

Notice that the dependence of d on ρ is very poor. In particular, if we want to extract a constant fraction of
the min-entropy, we need more than mΩ(1) truly random bits. This is unavoidable with the current definition
of designs: if ρ < 2, then all the sets must be disjoint, so d ≥ mℓ. In general, we have the following lower
bound, which is well-known in the “packing” literature (cf., [Röd85]).
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Proposition 14 If S1, . . . , Sm ⊂ [d] is an (ℓ, ρ)-design, then m ≤
(

d
⌊log 2ρ⌋

)

/
(

ℓ
⌊log 2ρ⌋

)

. In particular,

d ≥ m1/ log 2ρ · (ℓ − log ρ)

Proof: Let I = ⌊log 2ρ⌋ > maxi6=j |Si ∩ Sj |. For each j = 1, . . . ,m, let Γj be the set of subsets of Sj of

size I, so |Γj | =
(

ℓ
I

)

. Let Γ =
⋃

j Γj . Notice that the sets Γj are disjoint, because no two distinct sets Si, Sj

share I or more elements. Thus, |Γ| = m ·
(

ℓ
I

)

. At the same time, |Γ| consists of subsets of [d] of size I, so

|Γ| ≤
(

d
I

)

. So we have

m ·
(

ℓ

I

)

≤
(

d

I

)

,

establishing the first bound of the proposition. The “in particular” part is obtained as follows.

m ≤
(

d
I+1

)

(

ℓ
I+1

) =

(

d

ℓ

) (

d − 1

ℓ − 1

)

· · ·
(

d − I

ℓ − I

)

≤
(

d

ℓ − I

)I+1

.

We will now show that, for many settings of m, ℓ, and ρ, there exist weak (ℓ, ρ)-designs S1, . . . , Sm ⊂ [d]
with much smaller values of d than possible with (ℓ, ρ)-designs. In particular, in the following lemma, we
give a construction of weak designs where the universe size d does not depend on m, the number of sets.

Lemma 15 For every ℓ,m ∈ N and ρ > 1, there exists a weak (ℓ, ρ)-design S1, . . . , Sm ⊂ [d] with

d =

⌈

ℓ

ln ρ

⌉

· ℓ.

Moreover, such a family can be found in time poly(m, d).

Proof: Let ℓ, m, and ρ be given, and let d = ⌈ℓ/ ln ρ⌉ · ℓ. We view [d] as the disjoint union of ℓ blocks
B1, . . . , Bℓ, each of size ⌈ℓ/ ln ρ⌉. We construct the sets S1, . . . , Sm in sequence so that

1. Each set contains exactly one element from each block, and

2.
∑

j<i 2|Si∩Sj | ≤ ρ · (i − 1).

Existence. Suppose we have S1, . . . , Si−1 ⊂ [d] satisfying the above conditions. We prove that there exists
a set Si satisfying the required conditions using the Probabilistic Method [AS00] (see also [MR95, Ch. 5]).
Let a1, . . . , aℓ be uniformly and independently selected elements of B1, . . . , Bℓ, respectively, and then let
Si = {a1, . . . , aℓ}. We will argue that with nonzero probability, Condition 2 holds. Let Yj,k be the indicator
random variable for the event ak ∈ Sj , so Pr [Yj,k = 1] = 1/|Bk| = 1/⌈ℓ/ ln ρ⌉. Notice that for a fixed j, the
random variables Yj,1, . . . , Yj,ℓ are independent.

E





∑

j<i

2|Si∩Sj |



 =
∑

j<i

E
[

2
∑

k Yj,k

]

=
∑

j<i

E

[

∏

k

2Yj,k

]

=
∑

j<i

∏

k

E
[

2Yj,k
]

= (i − 1) ·
(

1 +
1

⌈ℓ/ ln ρ⌉

)ℓ

≤ (i − 1) · ρ
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Hence, with nonzero probability, Condition 2 holds, so a set Si satisfying the requirements exists. How-
ever, we want to find such a set deterministically. This can be accomplished by a straightforward application
of the Method of Conditional Expectations (see [AS00] and [MR95, Ch. 5]), as proceed to show.

Derandomization. Above, we showed that E
[

∑

j<i 2|Si∩Sj |
]

≤ ρ · (i−1). By averaging, this implies that

there exists an α1 ∈ B1 such that

E





∑

j<i

2|Si∩Sj |

∣

∣

∣

∣

∣

∣

a1 = α1



 ≤ ρ · (i − 1) (1)

So, assuming we can efficiently calculate the conditional expectation E
[

∑

j<i 2|Si∩Sj |
∣

∣

∣ a1 = α1

]

for every

α1 ∈ B1, we can find the α1 that makes Inequality 1 hold. Then, fixing such an α1, another averaging
argument implies that there exists an α2 ∈ B2 such that

E





∑

j<i

2|Si∩Sj |

∣

∣

∣

∣

∣

∣

a1 = α1, a2 = α2



 ≤ ρ · (i − 1) (2)

Again, assuming that we can compute the appropriate conditional expectations, we can find an α2 that
makes Inequality 2 hold. Proceeding like this, we obtain α1, . . . , αℓ such that

E





∑

j<i

2|Si∩Sj |

∣

∣

∣

∣

∣

∣

a1 = α1, a2 = α2, . . . , aℓ = αℓ



 ≤ ρ · (i − 1) (3)

But now there is no more randomness left in the experiment, and Inequality 3 simply says that
∑

j<i 2|Si∩Sj | ≤
ρ · (i− 1), for Si = {α1, . . . , αℓ}. To implement this algorithm for finding Si, we need to be able to calculate
the conditional expectation

E





∑

j<i

2|Si∩Sj |

∣

∣

∣

∣

∣

∣

a1 = α1, . . . , at = αt



 ,

for any t and α1, . . . , αt. If we let T = {α1, . . . , αi}, then a calculation like the one in the proof of Lemma 15
for the unconditional expectation shows

E





∑

j<i

2|Si∩Sj |

∣

∣

∣

∣

∣

∣

a1 = α1, . . . , at = αt



 =
∑

j<i

2|T∩Sj | ·
(

1 +
1

⌈ℓ/ ln ρ⌉

)ℓ−t

,

which can be easily computed.

Remark 16 A perhaps more natural way to carry out the above probabilistic construction is to chose Si

uniformly from the set of all subsets of [d] of size ℓ, rather than dividing [d] into ℓ blocks. This gives essentially
the same bounds, but complicates the analysis because the elements of Si are no longer independent.

Lemma 15 already gives something much better than Lemma 13; for constant ρ > 1, d is O(ℓ2) instead of
ℓ2 ·mΩ(1). However, as ρ gets very close to 1, d gets very large. Specifically, if ρ = 1+γ for small γ, then the
above gives d = O(ℓ2/γ). To improve this, we notice that the proof of Lemma 15 does not take advantage
of the fact that there are fewer terms in

∑

j<i 2|Si∩Sj | when i is small; indeed the proof actually shows how

to obtain
∑

j<i 2|Si∩Sj | < ρ · (i − 1).6 Since we only need a bound of ρ · (m − 1) for all i, this suggests that
we should “pack” more sets in the beginning. This packing is accomplished by iterating the construction
of Lemma 15 (directly inspired by the iteration of Wigderson and Zuckerman [WZ99] on extractors), and
yields the following improvement.

6In fact it is necessary that d = Ω(ℓ2/ log ρ) if
∑

j<i 2|Si∩Sj | < ρ · (i − 1) for all i. See Remark 19.
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Lemma 17 For every ℓ,m ∈ N and 0 < γ < 1/2, there exists a weak (ℓ, 1 + γ)-design S1, . . . , Sm ⊂ [d] with

d = O

(

ℓ2 · log
1

γ

)

.

In particular, for every ℓ,m ∈ N, there exists a weak (ℓ, 1)-design S1, . . . , Sm ⊂ [d] with

d = O
(

ℓ2 · log m
)

.

Moreover, these families can be found in time poly(m, d).

Proof: Let d0 = ⌈ℓ/ ln 2⌉ · ℓ, h = ⌈log(4/γ)⌉, and d = h · d0 = O(ℓ2 · log(1/γ)). We view [d] as the disjoint
union of h blocks B0, . . . , Bh−1 each of size d0. For each t ∈ {0, . . . , h−1}, let nt = ⌊(1−2−t) · (1+γ/2) ·m⌋
and mt = nt+1 − nt. Note that nh ≥ m.

Now we define our weak design S1, . . . , Sm. For each t ∈ {0, . . . , h−1}, we let Snt+1, . . . , Snt+mt
⊂ Bt be

a weak (ℓ, 2)-design as given by Lemma 15. In other words, we take the ordered union of h weak (ℓ, 2)-designs
(consisting of m1,m2, . . . ,mh sets, respectively) using disjoint subsets of the universe for each. The number
of sets is nh ≥ m, the size of the universe is d, and each set is of size ℓ, so we only need to check that for all
i ∈ [m],

∑

j<i 2|Si∩Sj | < ρ · (m − 1). For i ∈ {nt + 1, . . . , nt + mt}, Si is disjoint from any Sj for any j ≤ nt

and
i−1
∑

j=nt+1

2|Si∩Sj | ≤ 2 · (mt − 1)

since Snt+1, . . . , Snt+mt
is a weak (ℓ, 2)-design. Thus, we have

∑

j<i

2|Si∩Sj | =

nt
∑

j=1

2|Si∩Sj | +
i−1
∑

j=nt+1

2|Si∩Sj |

≤ nt + 2 · (mt − 1)

= 2 · nt+1 − nt − 2

< 2 · (1 − 2−t−1) · (1 + γ/2) · m − (1 − 2−t) · (1 + γ/2) · m − 1

≤ (1 + γ) · (m − 1),

as desired (except when m = 1, which is a trivial case). The “in particular” part of Lemma 17 follows be-
cause every weak (ℓ, 1+1/m)-design is actually a weak (ℓ, 1)-design (since ⌊(1+1/m) ·(m−1)⌋ = m−1).

In terms of our extractors, Lemma 17 translates to extracting essentially all of the entropy of a source on
{0, 1}n

of min-entropy k using d = O(log2 n · log k) truly random bits (as we will prove formally in Section 4).
For extractors which use only O(log n) truly random bits, one would need d = O(ℓ). However, one cannot
hope to do better than Ω(ℓ2) using the current analysis with weak designs. Indeed, the following proposition
shows that our weak designs are optimal up to the log(1/γ) factor in our second construction.

Proposition 18 For every weak (ℓ, ρ)-design S1, . . . , Sm ⊂ [d],

d ≥ Ω

(

min

{

ℓ2

log 2ρ
,mℓ

})

Notice that d = mℓ can be trivialily achieved having all the sets disjoint. Moreover, log 2ρ approaches 1
as ρ approaches 1, so the lower bound for m ≥ ℓ and ρ ≈ 1 is Ω(ℓ2).

Proof: Let m = ⌈2d/ℓ⌉. If m ≥ m, then d ≥ ℓ · (m − 1)/2 = Ω(mℓ) and we are done, so we may assume
that m < m. We will now consider only the first m sets. We have

ρ ≥ max
i

1

m − 1

∑

j<i

2|Si∩Sj |
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≥ 1

m(m − 1)

m
∑

i=1

∑

j<i

2|Si∩Sj |

=
1

2





1
(

m
2

)

∑

j<i≤m

2|Si∩Sj |





≥ 1

2
· 2

(

1

(m
2 )

∑

j<i≤m |Si∩Sj |

)

where the last inequality is an application of Jensen’s inequality. Thus,

log 2ρ >
2

m2

∑

j<i≤m

|Si ∩ Sj | (4)

By the inclusion-exclusion bound,

∑

j<i≤m

|Si ∩ Sj | ≥
(

m
∑

i=1

|Si|
)

−
∣

∣

∣

∣

∣

m
⋃

i=1

Si

∣

∣

∣

∣

∣

≥ mℓ − d

= 2d − d = d

Putting this in Inequality 4, we have

log 2ρ >
2d

m2 =
2d

(2d/ℓ)2
=

ℓ2

2d
,

which proves the proposition.

Remark 19 The above proof gives a stronger bound on d if we have a family of sets S1, . . . , Sm such that
for all i,

∑

j<i 2|Si∩Sj | < ρ · (i − 1) (e.g., the family of sets constructed in the proof of Lemma 15). If we
have such a bound, then summing over i from 1 to m gives

ρ ·
(

m

2

)

=
∑

i≤m

ρ · (i − 1) >
∑

j<i≤m

2|Si∩Sj |,

and applying Jensen’s inequality and taking logs as in the above proof gives

log ρ >
2

m2

∑

j<i≤m

|Si ∩ Sj |

instead of Inequality 4. Following the rest of the proof without change, this shows that

d ≥ Ω

(

min

{

ℓ2

log ρ
,mℓ

})

.

Remark 20 Using an information-theoretic analogue of the inclusion-exclusion bound, due to Impagliazzo
and Wigderson [IW96], one can generalize the lower bound of Proposition 18 to a wider class of generators
with similar properties to the Nisan–Wigderson generator. Specifically, one can prove the following:

Proposition 21 Suppose X = (X1, . . . ,Xm) and Y = (Y1, . . . , Ym) are (jointly distributed) random vari-
ables such that

1. For all i, H(Xi|Yi) ≥ ℓ, and
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2. For all i,
∑

j<i

2H(Xj |Yi) ≤ ρ · (m − 1).

Then

H(X) ≥ Ω

(

min

{

ℓ2

log 2ρ
,mℓ

})

.

In Proposition 21, H(·) denotes the entropy function and H(·|·) denotes conditional entropy (cf., [CT91]).
Impagliazzo and Wigderson [IW97] had previously given a statement like Proposition 21 with the second
condition replaced by maxi,j H(Xj |Yi) ≤ log ρ; ours is a generalization to the analogue of “weak designs.”
The proof directly follows the proof of Proposition 18, replacing the usual inclusion-exclusion bound with
that of [IW96], which states that H(X) ≥

∑

i H(Xi|Yi) −
∑

j<i H(Xj |Yi).
To compare Proposition 21 with the Nisan–Wigderson generator NWS,P , let Xi = x|Si

and Yi = x|Si
,

where x is chosen uniformly at random. In the analysis of our extractor, the properties of the Nisan–
Wigderson generator we use are that, conditioned on Yi = y, Xi takes on all possible values in {0, 1}ℓ

whereas
∑

j<i nj ≤ ρ · (m− 1), where nj is the number of values that Xj can take on given that Yi = y. The
properties required by the hypothesis of Proposition 21 are even weaker.

4 Putting it Together

Theorem 1 almost follows immediately by combining Proposition 10 with the weak designs given by Lem-
mas 15 and 17. The only technicality is that Proposition 10 does not allow us to take ρ = k/m (or k/(m−1))
which is what we would need to deduce Theorem 1 directly. Instead, we use ρ = (k−∆)/m for some ∆ = O(d)
and consequently lose ∆ bits of the source entropy in Proposition 10. However, since ∆ will be relatively
small, we can compensate for this by giving our extractor ∆ more truly random bits in its seed (increasing
the seed length by only a constant factor) which we just concatenate to the output to compensate for the
loss. We give the details of this below, starting by presenting our extractors as strong extractors with an
extra entropy loss of ∆ = O(d).

Theorem 22 For every n, k,m ∈ N and ε > 0, such that m ≤ k ≤ n, there are explicit strong (k, ε)-
extractors Ext : {0, 1}n × {0, 1}d → {0, 1}m−∆ with

1. d = O
(

log2(n/ε)
log(k/m)

)

, or

2. d = O
(

log2(n/ε) · log(1/γ)
)

, where 1 + γ = k/(m − 1), and γ < 1/2,

and ∆ = O(d).

Proof: Let ∆ ≥ 1 be an integer parameter to be set later, and let k′ = k − ∆ + 1, m′ = m − ∆,
ρ = k/(m − 1) ≤ k′/m′, and let ℓ = Θ(log n/ε) (as in our extractor construction). For Part 1 (resp.,
Part 2), let S = (S1, . . . , Sm′), with Si ⊂ [d′] be the weak (ℓ, ρ)-design of Lemma 15 (resp., Lemma 17),

so d′ = O
(

log2(n/ε)
log(k/m)

)

(resp., d′ = O(log2(n/ε) log(1/γ))). Since d′ is independent of ∆, we can set

∆ = d + 3 log(m/ε) + 4 = O(d). Proposition 10 tells us that ExtS : {0, 1}n × {0, 1}d → {0, 1}m′

is a
strong (k, ε)-extractor.

To obtain Theorem 1, we simply add ∆ extra bits to the seed and concatenate them to the output.
(Recall that Theorem 1 does not claim strong extractors).
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5 Reducing the error

The construction given above works well and improves over previous constructions when ε is relatively large.
However, the number d of truly random bits needed is quadratic in log(1/ε), which is not as good as the linear
dependency achieved by some previous constructions. In this section, we improve this quadratic dependency
in our constructions (and in Trevisan’s construction) to a linear dependency. We only sketch the proof in
this section, as even better extractors can be obtained using our recent work [RRV99a].

The quadratic dependence on log(1/ε) in our extractor arises from the fact that an (ℓ, ρ)-weak design
requires a universe whose size grows quadratically with ℓ (cf., Proposition 18). In the extractor of the previous
section (and Trevisan’s extractor), ℓ is taken to be the logarithm of the length of the error-correcting code

used (as we view codewords as functions P : {0, 1}ℓ → {0, 1}). The analysis of the extractor reveals that
in order to achieve a small statistical difference ε from uniform, we must use an error-correcting code with
very good distance properties; namely, one in which no Hamming ball of radius 1/2−O(ε/m) contains many
codewords. However, an error-correcting code with such a strong distance property must have length at
least poly(n, ε), resulting in ℓ = Ω(log(n/ε)), and a seed length that is quadratic in log(1/ε).

The solution we give in this section is to use an error-correcting code over a large alphabet F , in which
we view every codeword as a function from F ℓ to F rather than a function from {0, 1}ℓ

to {0, 1}. Then it is
possible to have a code with very good distance properties (relative to ε) with ℓ being independent of ε; only
the alphabet size F need depend on ε. Using this approach, we encounter two problems. The first problem
is that the function which computes the codeword P given a predictor A (as in Lemma 9) will be built from
functions of the form Pj : F |Si∩Sj | → F . In the proof of Lemma 9, we bounded the description size of the
Pj ’s by the description size of an arbitrary function F |Si∩Sj | → F , which is 2|Si∩Sj | when F = {0, 1}. But,
as F increases in size, this bound on description size becomes too large to handle. The second problem is
that, when we use a large alphabet, the output of the extractor consists of elements of F rather than bits.
We will not be able to argue that these elements of F are uniformly distributed, but rather that (with high
enough probability) the i’th element of F in the output is unpredictable given the first i − 1 elements of F .

The solution to the first problem comes from our choice of error-correcting codes. We use multilinear
error correcting codes (over finite fields) rather than the arbitrary error correcting codes used in Section 2.
We can then make use of the fact that the restriction of a multilinear function to a subset of its input
variables is still a multilinear function. We can hence bound the description size of that restriction by the
description size of a multilinear function rather than the description size of an arbitrary function.

The second problem can be solved using standard techniques. Specifically, the fact that the i’th compo-
nent of the output is (almost always) unpredictable given the first i − 1 components means that the output
is what is known as an (almost) block-wise source [CG88]. In our case, the block-wise source has blocks of
logarithmic length, and standard techniques can be used to extract truly random bits from such a source
using a small number of additional truly random bits.

Let F be some fixed finite field such that log |F | ≈ c · log(n/ε), where c is some sufficiently large constant
(say c = 10). For ε ≥ 1/n, the dependence on ε in the extractors of Theorem 1 can be absorbed into the
hidden constant. Thus, we will only need to use the constructions of this section in case ε < 1/n, and hence
we may assume that

log |F | = O(log(1/ε)).

In this section, we think of an extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m as a function

Ext : Fn′ × F d′ → Fm′

,

where n′ = n/(log |F |), d′ = d/(log |F |) and m′ = m/(log |F |). (We assume for simplicity that n′, d′,m′,
log n′, and log |F | are all integers.)

Let S = (S1, . . . , Sm′) be a collection of subsets of [d′] such that |Si| = ℓ for each i, and let P : F ℓ → F
be any function. For a string y ∈ F d′

, define y|Si
to be the string in F ℓ obtained by projecting y onto the

coordinates specified by Si. Then we define NW′
S,P as

NW′
S,P (y) = P (y|S1

) · · ·P (y|Sm′ ).

We will use in this section ℓ = log n′; note that ℓ is bounded by log n, independent of ε. Let G be the set of
all functions from F ℓ to F . A multilinear function from F ℓ to F is a function of ℓ variables over F that is
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linear (over F ) in each one of the variables. There are |F |2ℓ

= |F |n′

multilinear functions from F ℓ to F (one
needs to specify 2ℓ coefficients), so we may define an error-correcting code EC : Fn′ → G which associates
to each element u of Fn′

a distinct multilinear function EC(u) = u : F ℓ → F . The distance property of this
code is formalized by the following standard bound:

Lemma 23 (cf., [GRS00, Thm. 17]) For every function Q : F ℓ → F , there are at most O(
√

|F |/ℓ)

codewords (i.e., multilinear functions) that agree with Q in at least a
√

2ℓ/|F | fraction of the points in F ℓ.

We define the function BW-ExtS : Fn′ × F d′ → Fm′

as

BW-ExtS(u, y) = NW′
S,u(y) = u(y|S1

) · · ·u(y|Sm′ ).

(The function BW-Ext is not our final extractor. Rather, it will be used to extract an (almost) block-wise
source; hence the notation BW-Ext.) Note that the number of truly random bits used by BW-Ext is
d′ log |F | = O(d′ · log(1/ε)). The following lemma is analogous to Lemma 9. It shows how, from any next-
element predictor A for NW′

S,P , one can obtain a “program” of small description size (or circuit complexity)
which, using A as an oracle, computes P with noticeable advantage.

Lemma 24 Fix S. For every i ∈ [m′], there is a set Fi of functions from F ℓ to F d′+i−1 (depending only
on F,S and i) such that

1. For every multilinear function P : F ℓ → F and every predictor A : F d′+i−1 → F , there exists a
function f ∈ Fi such that

Pr
x

[A(f(x)) = P (x)] ≥ Pr
y

[

A
(

y, P (y|S1
) · · ·P (y|Si−1

)
)

= P (y|Si
)
]

,

where x is selected uniformly from F ℓ and y from F d′

.

2. log |Fi| ≤
(

d′ +
∑

j<i 2|Si∩Sj |
)

· log |F |.

For the proof, we use the fact that the restriction of a multilinear function to a subset of its input variables
is a multilinear function, and the fact that the logarithm of the number of multilinear functions in |Si ∩ Sj |
variables is 2|Si∩Sj | · log |F |. Otherwise, the proof is similar to the one of Lemma 9.

Now assume that S is a weak (ℓ, ρ)-design for ρ = (k − d− c · log |F |)/m (where, say, c = 10), and let X
be any distribution of min-entropy k. The following proposition shows that BW-Ext(X,Ud) doesn’t have
a good next-element predictor. The proposition is analogous to Proposition 10.

Proposition 25 If S = (S1, . . . , Sm′) (with Si ⊂ [d′]) is a weak (ℓ, ρ)-design for ρ = (k − d − c · log |F |)/m
(where c is some sufficiently large constant, say c = 10), and X is a distribution of min-entropy k then for
every next-element predictor A : F d′+i−1 → F ,

Pr
u←X,y

[

A
(

y, u(y|S1
) · · ·u(y|Si−1

)
)

= u(y|Si
)
]

≤ 1

|F |δ

where δ is some (not too small) constant (say δ = 1/4), and where y is selected uniformly from F d′

.

The proof is similar to the one of Proposition 10, except that we use the distance property of multilinear
error-correcting codes given by Lemma 23 and we use Lemma 24 rather than Lemma 9.

In general, the function BW-ExtS is not a good extractor. Nevertheless, by Proposition 25, we know
that (with probability m ·

(

1/|F |Ω(1)
)

) each element BW-Ext(X,Ud) has large min-entropy (Ω(log |F |) bits)
given all its predecessors. That is, it is close to a “block-wise source” in the sense of [CG88], in which the
min-entropy of each block given the predecessors (and the seed) is a constant fraction of its length (which is
log |F |). We can now construct an extractor from BW-ExtS in one of the following ways:

1. By applying on the entire output BW-Ext(X,Ud) the extractor of [Zuc97] that extracts a constant
fraction of the min-entropy as long as the min-entropy is at least a constant fraction of the number of
bits.
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2. By applying on each element of BW-Ext(X,Ud) a pairwise independent hash function h : {0, 1}log |F | →
{0, 1}δ′·log |F |, where δ′ is some small constant (we can apply the same hash function on all the ele-
ments). This is a special case of the block-wise extraction methods of [CG88, NZ96].

Both ways are very efficient in terms of the number of additional random bits needed.
The first part of Theorem 2 is now obtained by using the weak designs given by Lemma 15 (as in the

proof of Theorem 1). The resulting seed length (using an (ℓ, ρ)-weak design for ρ = (k−d− c · log |F |)/m) is

d = O(d′ log(1/ε)) = O

(

ℓ2

log ρ
· log(1/ε)

)

.

However, the number of bits we extract is only δ′ · log |F | · m′ = δ′m ≈ δ′k/ρ, for some constant δ′ < 1.
Hence, we can only directly use this to extract up to a small constant fraction of the min-entropy (even if we
use the weak designs of Lemma 17). In order to extract more of the min-entropy of the source, we will need
to use iterations, as in [WZ99] (cf., Lemma 26). A constant number of iterations will allow us to extract
any constant fraction of the min-entropy. In general, to obtain m = k/(1 + γ), we will need O(log(1/γ))
iterations and hence we need O

(

log2 n · log(1/ε) · log(1/γ)
)

additional random bits.

6 Achieving optimal entropy loss

In this section we give a general method for reducing the entropy loss of extractors (recall that the entropy
loss of an extractor is the quantity ∆ = k + d − m). Applied to the extractors of previous sections, this
transformation gives the extractors of Theorem 4 which have optimal entropy loss (up to a constant additive
term) of 2 log 1/ε + O(1).

We use an idea due to Wigderson and Zuckerman [WZ99]: Suppose we have a strong (k, ε)-extractor
Ext : {0, 1}n × {0, 1}d → {0, 1}k−∆ with entropy loss ∆. Now, if X is a source of min-entropy k, then
conditioned on “most” values of (Ud,Ext(X,Ud)), X will still have min-entropy close to ∆. So, we can
use a different extractor (with fresh truly random bits) to extract some more of this min-entropy. This is
formalized by the following lemma, which slightly strengthens one in [WZ99]:

Lemma 26 Let s > 0. Suppose Ext1 : {0, 1}n × {0, 1}d1 → {0, 1}m1 is a strong (k, ε1)-extractor with
entropy loss ∆1 and Ext2 : {0, 1}n ×{0, 1}d2 → {0, 1}m2 is a strong (∆1 − s, ε2)-extractor with entropy loss
∆2. Define Ext : {0, 1}n × {0, 1}d1+d2 → {0, 1}m1+m2 by

Ext(x, (y1, y2)) = Ext1(x, y1) ◦ Ext2(x, y2),

where ◦ denotes concatenation. Then Ext is a strong
(

k,
(

1
1−2−s

)

· ε1 + ε2

)

with entropy loss ∆2 + s.

The main difference from the corresponding lemma in [WZ99] is that the statistical difference from
uniform in Ext has a better dependence on s (in [WZ99], the expression is ε1 + ε2 + 2−s). There is also an
analogue of Lemma 26 for non-strong extractors; in that case, Ext2 should be applied to the pair (x, y1)
rather than just x. Details can be found in the preliminary version of this work [RRV99b].

Before proving Lemma 26, let us see how it can be used to obtain extractors with near optimal entropy
loss. Note that the entropy loss of Ext in Lemma 26 only depends on the entropy loss of Ext2. Furthermore,
Ext2 needs to work for min-entropy ∆1 (the entropy loss of Ext1) which will be relatively small (i.e., O(d1))
in our application. We therefore need extractors which work well for small min-entropy (and in particular
have very small entropy loss). Such extractors are the “low min-entropy” extractors of Srinivasan and
Zuckerman [SZ98]:

Lemma 27 ([SZ98]) For every n, k ≤ n, and ε > 0, there is an explicit strong (k, ε)-extractor Ext :
{0, 1}n × {0, 1}d → {0, 1}k−∆ with entropy loss ∆ = 2⌈log(1/ε)⌉ + 2 and d = O(k + log n).

The transformation we were looking for (that reduces the entropy loss of extractors) is now obtained as
a simple corollary of Lemma 26 and Lemma 27:
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Lemma 28 Let Ext1 : {0, 1}n × {0, 1}d1 → {0, 1}k−∆1 be any strong (k, ε/4)-extractor with entropy loss
∆1. Then there exists a strong (k, ε)-extractor Ext : {0, 1}n × {0, 1}d1+d2 7→ {0, 1}k−∆ such that

1. Ext has entropy loss ∆ = 2⌈log(1/ε)⌉ + 5,

2. d2 = O(∆1 + log n), and

3. Ext is computable in polynomial time with one oracle query to Ext1.

Proof: By Lemma 27, there is an explicit strong (∆1 − 1, ε/2)-extractor Ext2: {0, 1}n × {0, 1}d2 →
{0, 1}∆1−1−∆2 with d2 = O(∆1 +log n) and entropy loss ∆2 = 2⌈log(2/ε)⌉+2 = 2⌈log(1/ε)⌉+4. Combining
Ext1 and Ext2 via Lemma 26 (with s = 1) gives a (k, ε)-extractor Ext: {0, 1}n ×{0, 1}d → {0, 1}k−∆ such
that

1. Ext has entropy loss ∆ = ∆2 + 1 = 2⌈log(1/ε)⌉ + 5

2. d = d1 + d2.

3. Since Ext2 is explicit, Ext is computable in polynomial time with one oracle query to Ext1.

The transformation of Lemma 28 applies to any extractor Ext1.
7 However, it is especially interesting

when the entropy loss of Ext1 is O(d1). In this case, the seed length of Ext is only larger by a constant
factor than the seed length of Ext1 (i.e., the transformation is not “too costly”). One example of such
extractors is the construction of [NT98] (where the seed length and entropy loss are both O(log9 n)). Other
examples are our constructions in the previous sections. Applying Lemma 28 to these extractors give the
extractors of Theorem 4 as a simple corollary:

Proof of Theorem 4: Part 1 of the theorem is obtained by applying Lemma 28 to the second extractor of
Theorem 22 (with m = k) as Ext1. Part 2 of the theorem is obtained by applying Lemma 28 to the second
extractor of (the strong extractor version of) Theorem 2.

Proof of Lemma 26: Let X be any source of min-entropy k. Let L be the set of pairs (y, z) ∈
{0, 1}d1 × {0, 1}m1 such that Pr [Ext1(X, y) = z] < 2−(m1+s) (i.e., L is the set of pairs (y, z) for which z is
“light” under Ext1(·, y), in the sense that it occurs with probability that is smaller than uniform by a factor
of 2s). Recall that the entropy loss is defined as ∆1 = k − m1.

Claim 29 For every (y, z) /∈ L, the conditional distribution of X given that Ext1(X, y) = z has min-entropy
at least ∆1 − s.

Proof of claim: For every x such that Ext1(x, y) = z,

Pr [X = x|Ext1(X, y) = z] =
Pr [X = x]

Pr [Ext1(X, y) = z]

≤ 2−k

2−m1−s

= 2−(∆1−s).

This proves Claim 29. 2

Thus, since Ext2 is a (∆1 − s, ε2)-extractor, for every (y, z) /∈ L, the conditional distribution of
(Ud2

,Ext2(X,Ud2
)) given that (Ud1

,Ext1(X,Ud1
)) = (y, z) has statistical difference at most ε2 from uni-

form. Now we argue that (Ud1
,Ext1(X,Ud1

)) lands in L with low probability.
7Although the lemma is stated only for strong extractors, an analogous lemma holds for non-strong extractors (using the

analogue of Lemma 26 for non-strong extractors mentioned above).
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Claim 30 Pr [(Ud1
,Ext1(X,Ud1

)) ∈ L] ≤ ε1/(2s − 1).

Proof of claim: For every (y, z) ∈ L, Pr [Ud1
× Um1

= (y, z)] > 2s·Pr [(Ud1
,Ext1(X,Ud1

)) = (y, z)].
Thus, Pr [Ud1

× Um1
∈ L] ≥ 2s · Pr [(Ud1

,Ext1(X,Ud1
)) ∈ L]. Now, by definition, the statistical

difference between Ud1
× Um1

and (Ud1
,Ext1(X,Ud1

)) is at least

Pr [Ud1
× Um1

∈ L] − Pr [(Ud1
,Ext1(X,Ud1

)) ∈ L] ≥ (2s − 1) · Pr [(Ud1
,Ext1(X,Ud1

)) ∈ L] .

Since Ext1 is a strong (k, ε1)-extractor, this statistical difference is at most ε1, and the claim
follows. 2

Thus, (Ud1
,Ext1(X,Ud1

)) ◦ (Ud2
,Ext2(X,Ud2

)) can be described as a joint distribution A ◦ B with
following properties:

1. A has statistical difference at most ε1 from Ud1
× Um1

.

2. With probability at least 1− δ over a←A, B|A=a has statistical difference at most ε2 from Ud2
× Um2

(where δ = ε1/(2s − 1)).

From this, it follows that A ◦ B has statistical difference at most ε1 + δ + ε2 =
(

1
1−2−s

)

· ε1 + ε2 from

Ud1
× Um1

× Ud2
× Um2

= Ud1+d2
× Um1+m2

, proving Lemma 26.

7 Better pseudorandom generators

Using alternative types of designs also gives some quantitative improvements in the construction of pseu-
dorandom generators from hard predicates in [NW94]. From Lemma 9, we see that the relevant notion of
design in the setting of pseudorandom generation versus small circuits is the following:

Definition 31 A family of sets S1, . . . , Sm ⊂ [d] is a type 2 weak (ℓ, ρ)-design if

1. For all i, |Si| = ℓ.

2. For all i,
∑

j<i

(

2|Si∩Sj | − 1
)

≤ ρ · (m − 1).

Notice that it is meaningful to consider even values of ρ less than 1, since 2|Si∩Sj | − 1 can be zero. Using
the the same construction as Lemma 15, we obtain:

Lemma 32 For every ℓ,m ∈ N and ρ > 0, there exists a type 2 weak (ℓ, ρ)-design S1, . . . , Sm ⊂ [d] with

d =

⌈

ℓ

ln(1 + ρ)

⌉

· ℓ.

Moreover, such a family can be found in time poly(m, d).

Proof: The construction of a weak (ℓ, ρ′)-design in Lemma 15 actually gives a family of sets S1, . . . , Sm

such that for all i,
∑

j<i 2|Si∩Sj | ≤ ρ′ · (i − 1), which implies that
∑

j<i

(

2|Si∩Sj | − 1
)

≤ (ρ′ − 1) · (i − 1) ≤
(ρ′ − 1) · (m − 1). Setting ρ′ = ρ + 1, we have a type 2 weak (ℓ, ρ) design, and the universe size is
d = ⌈ℓ/ ln ρ′⌉ · ℓ = ⌈ℓ/ ln(1 + ρ)⌉ · ℓ.

The quantitative relation between pseudorandom generators and (type 2) weak designs follows readily
from Lemmas 8 and 9:

19



Lemma 33 Suppose P : {0, 1}ℓ → {0, 1} is a predicate such that no circuit of size s can compute P correctly
on more than a fraction 1

2 + ε of the inputs and suppose that S = (S1, . . . , Sm) where Si ⊂ [d] is a type 2
weak (ℓ, ρ)-design. Then no circuit of size s−O(ρ ·m) can distinguish NWS,P from uniform with advantage
greater than mε.

Combining this and Lemma 32 with s = 2m and ρ a small constant, we obtain

Theorem 34 Suppose P : {0, 1}ℓ → {0, 1} is a predicate such that no circuit of size 2m can compute P

correctly on more than a fraction 1
2 + ε

m of the inputs. Then there is a generator GP,m: {0, 1}O(ℓ2) → {0, 1}m

computable in time poly(m, ℓ), making m oracle calls to P , such that no circuit of size m can distinguish
the output of G from uniform with advantage greater than ε.

In other words, to obtain m bits which are pseudorandom against circuits of size m, we need only assume
that there is a predicate which is hard against circuits of size O(m). In contrast, the results of [NW94]
always need to assume that the predicate is hard against circuits of size m1+ǫ for some constant ǫ > 0 (or
else their generator will require a seed length that is polynomial in m instead of ℓ). In fact, if we instead
take ρ = 1/ℓ, we need only assume that the predicate is hard against circuits of size (1 + 1/ℓ) · m (and the
generator will have a seed length O(ℓ3)).

8 Subsequent Work and Open Problems

Subsequent to the original version of this work [RRV99b], there have been several papers giving further
improved extractor constructions, which bring us closer to (but not yet at) the ultimate goal of optimal
extractors for all settings of parameters [RRV99a, ISW00, RVW00, RSW00, TUZ01].

The work most directly related to ours is that of Hartman and Raz [HR00], which is not concerned with
improving the parameters but rather the explicitness. Specifically, they show how to construct extractors with
the same parameters as ours, but which are computable in logarithmic space rather than just polynomial time.
They do this by giving a logarithmic-space construction of weak designs based on low-degree polynomials.
(Our construction of weak designs, based on the Method of Conditional Expectations, appears inherently
sequential.)

We remark that it might be possible to obtain extractors which extract all the randomness using a seed
of length O(log2 n) just by giving an improved construction of weak designs. This corresponds to the gap
of Θ(log 1/γ) between our upper and lower bounds for weak designs (Lemma 17 and Proposition 18). We
leave closing this gap as an open problem.
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A Error-correcting codes

Proof of Lemma 7: The code we need can be obtained by “concatenating” a Reed-Solomon code with a
Hadamard code (cf., [MS77]). Specifically, given parameters n and δ, let σ = δ2 and let m = ⌈log(n/σ)⌉. Let

Had : {0, 1}m → {0, 1}2m

be the Hadamard code — that is, for x, y ∈ {0, 1}m
, the y’th component of Had(x)

is the inner-product of x and y mod 2. Thus, for x1 6= x2, Had(x1) and Had(x2) have (relative) Hamming
distance 1/2. Let F = GF(2m); an explicit description of F can be found in time poly(2m) = poly(n, 1/δ)
by exhaustively searching for an irreducible polynomial of degree m over GF(2). We can view strings
x ∈ {0, 1}n ⊂ ({0, 1}m

)⌈n/m⌉ as giving the coefficients of a polynomial px of degree at most d = ⌈n/m⌉ over
F .

Now we define the error-correcting code EC : {0, 1}n → ({0, 1}2m

)|F | as

EC(x) = (Had(px(a1)), . . . ,Had(px(a|F |))),

where a1, . . . , a|F | are all the elements of F . Thus the codewords are of length n = 2m · |F | = O(n2/δ4). Now
we show that the (relative) minimum distance of this code is 1/2−σ/2. For any two distinct elements x and
y of {0, 1}n

, px and py disagree in at least |F | − d elements F (as they are distinct polynomials of degree
d). For each a such that px(a) 6= py(a), Had(px(a)) and Had(py(a)) disagree in 2m/2 positions. Thus, for
distinct x and y, EC(x) and EC(y) disagree in at least q = (|F | − d) · 2m/2 positions, for a relative distance
of

q

|F | · 2m
=

1

2
− d

2|F | ≥
1

2
− n

2(n/σ)
=

1

2
− σ

2
.

Now we apply the following general bound (cf., [BGS98, Lemma A.1]).

Lemma 35 Suppose C is an error-correcting code with (relative) minimum distance ≥ 1/2 − β/2. Then
every Hamming ball of (relative) radius 1/2 −

√
β contains at most 1/3β codewords.

Applying this lemma with C = EC and β = σ, we see that every Hamming ball of relative radius 1/2− δ
has at most 1/3δ2 < 1/δ2 codewords.
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