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Abstract

False Positives (FP) and False Negatives (FN) are com-
mon in every Intrusion Prevention System (IPS). None
of the systems could judge better than others all the
time. This work proposes a system of Ambiguous Session
Extraction (ASE) to create a pool of ambiguous traffic
traces. Traffic traces or sessions are called “ambiguous”,
meaning they cause potential FNs (abbreviated as P-FNs)
and potential FPs (abbreviated as P-FPs) to IPSes. IPS
developers can use these ambiguous traffic traces to im-
prove the accuracy of their products. The key objective
here is to design the ASE system to extract the traces as
complete and pure as possible, which gives IPS develop-
ers resources for further analysis. First, the ASE captures
real traffic and replays captured traffic traces to multiple
IPSes. By comparing the logs of IPSes, we might find
that some sessions are logged or not logged only at a cer-
tain IPS. The former is P-FPs, while the latter is P-FNs
to that IPS. The ASE then starts to extract ambiguous
traffic from replayed traffic traces. IPS developers can fur-
ther analyse the extracted traffic traces and confirm that
some are FNs or FPs. To completely and purely extract
an ambiguous session, the ASE uses an association mech-
anism based on anchor packets, five tuples and time, and
similarity for the first packet, first connection, and whole
session, respectively. It calculates the degree of similarity
among packets to extract an ambiguous session contain-
ing multiple connections. We define variation and com-
pleteness /purity as the indexes to evaluate the ASE. The
experiments demonstrate that 95% of extracted sessions
have low variation, and the average completeness/purity
is around 80%. We also present two case studies, one is
a P-FN and the other is a P-FP, found by the ASE and

confirmed by the IPS developers to be an FN and an FP,
respectively.

Keywords: False positive/negative, intrusion prevention,
packet trace, session extraction, similarity

1 Introduction

It is a challenge for Intrusion Prevention Systems (IPS) to
defend a network [1, 2], since malicious traffic on the In-
ternet keeps growing and changing. Many IPS vendors as-
sign a large number of dedicated engineers to analyse ma-
licious traffic and write appropriate signatures into their
products database, but False Positives (FPs) and False
Negatives (FNs) still happen. If an IPS generates an at-
tack log, but other IPSes do not when processing the same
traffic, there is a high probability that the traffic causes
an FP to that IPS. On the contrary, if an IPS does not
generate an attack log, but other IPSes do when process-
ing the same traffic, there is a high probability that the
traffic causes an FN to that IPS. If we can provide the
traffic trace that causes a potential FN (abbreviated as
P-FN) or a potential FP (abbreviated as P-FP) to IPS
developers for further analysis, the accuracy of the signa-
ture database will be improved. We call a traffic trace or
a session within the trace ambiguous, if it causes a P-FN
or a P-FP.

We design a system of ambiguous session extraction
(ASE) to create a pool of ambiguous traffic traces. The
ASE captures, replays, and extracts real traffic. First,
it captures real traffic from the mirror port of an Ether-
net switch. The captured traffic traces are usually in the
PCAP format (www.tcpdump.org) and contain packets
from various applications such as FTP, Web, E-mail, P2P

2

4



International Journal of Network Security, Vol.14, No.5, PP.243-250, Sept. 2012

and Instant Messenger. Second, it replays traffic traces
to IPSes of different vendors and trigger them to generate
logs. From the logs, we can discover that some attack
logs are generated or not generated only at a certain IPS.
The former are P-FPs, while the latter are P-FNs to that
IPS. A voting process follows for the IPSes to determine
whether the traffic is ambiguous or not. Third, the ASE
system extracts ambiguous traffic and provides extracted
traffic traces to developers for enhancing the accuracy of
their TPSes.

Our main concern for traffic extraction is completeness.
IPS developers generally need an intact session for pre-
cise analysis. The ambiguous traffic trace must contain
not, only packets that can trigger an FN or FP, but also
the entire session that the packets belong to. The extrac-
tion takes some clues to ambiguous traffic from IPS logs,
such as source IP address, source port number, destina-
tion IP address, destination port number, transport layer
protocol and time [3]. According to the clues, the ASE
can find anchor packets that trigger the FN or FP, i.e.,
the critical /essential packets that can make IPS generate
logs. Without any one of the anchor packets, IPSes would
not generate the log. The ASE then associates the other
packets with the anchor packets if they belong to the same
TCP or UDP connection!. However, completely extract-
ing a connection is still insufficient, since a session could
consist of multiple connections and IPSes do not log all
the connections in that session. For example, most IPSes
log only the first connection of a DDOS attack session to
avoid information explosion in the log system. Associat-
ing related connections is required for the ASE.

The remainder of this paper is organized as follows: in
Section 2, we discuss background knowledge and related
work. Section 3 makes a detailed description of the design
and implementation of the ASE. In Section 4, we evaluate
the ASE with two indexes and discuss the results. Two
case studies of FN and FP are illustrated in Section 5.
We conclude with Section 6.

2 Background

2.1 Extraction of Ambiguous Sessions

In this work, we capture and replay real traffic to IPSes,
and look for some clues in the IPS logs to help identify
ambiguous sessions. The steps of capture and replay have
been adopted for performance evaluation of IPSes [4, 5].
Open source tools such as Tepdump (www. tcpdump. org)
and Tcpreplay (tcpreplay.sourceforge.net) can be
used to capture and replay real traffic, respectively. The
former captures real traffic into files in the PCAP format
as traffic traces, while the latter replays the traffic traces
to the IPSes. However, the volume of traffic traces may be
huge, and it is non-trivial to extract an ambiguous session
involving multiple connections from the traces [6, 7, 8].

1We mean the same five tuples, even though UDP is connection-
less.
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Table 1: Three attack types

Attack Number | Number | Examples
type of at- | of con-
tackers nections
per
attacker
1-1 1 1 MySQL authenti-
cation bypass ex-
ploit
1-N 1 N Blaster worm
N-1 N 1 DDoS

This work designs a method to extract an ambiguous ses-
sion based on anchor packets, five tuples and time, and
similarity.

We classify the attacks in an ambiguous session into
three types according to the number of attackers (i.e.,
source IP address) and the number of connections per at-
tacker, as presented in Table 1. An attack of the first type
(i.e., 1-1) involves one attacker and a single connection per
attacker. For example, the MySQL authentication bypass
exploit [9] allows a user to login a MySQL database with-
out authentication. An attack of the second type (i.e.,
1-N) involves one attacker and more than one connection
per attacker. For example, the Blaster worm [10] estab-
lishes three connections for each victim. An attack of
the third type (i.e., N-1) involves multiple attackers and
a single connection per attacker. A Distributed Denial
of Service (DDoS) attack [11, 12, 13, 14, 15] belongs to
this type. This classification will be referred to in the
following ASE design.

2.2 Related Work of the Voting Scheme

Voting schemes are prevalent in the area of malware de-
tection. BotHunter [16] is a system for detecting mal-
ware infection through IDS-driven dialog correlation. It
consists of a correlation engine driven by three malware-
focused network packet sensors. One of the three sen-
sors, SCADE, detects outbound traffic based on a vot-
ing scheme (AND, OR or MAJORITY) of three parallel
anomaly detection models. Provos et. al. conducted an
analysis of web-based malware [17]. They present the
state of malware on the Web, and emphasize the impor-
tance of this rising threat. To classify the different types
of malware, they use a majority voting scheme based on
the characterization provided by popular anti-virus soft-
ware. Employing multiple anti-virus engines allows them
to determine whether some of the malware binaries are
actually new, false positive or older exploits. VirusTo-
tal [18], developed by Hispasec Sistemas, is a service that
analyses suspicious files and facilitates the quick detec-
tion of viruses, worms, trojans, and all kinds of malware
detected by anti-virus engines. It uses several command-
line versions of antivirus engines, updated regularly with
official signatures published by their respective develop-
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ers.

This paper uses multiple IPSes to vote for the ambigu-
ous sessions in the first step of the ASE. The results and
the IPS logs provide some clues to help identify the am-
biguous session. After the voting scheme is the three-pass
scanning/association to extract the ambiguous session as
complete and pure as possible. Completeness and purity
are required for IPS developers to precisely and quickly
analysing the P-FN and the P-FP.

3 The System of Ambiguous Ses-
sion Extraction (ASE)

Figure 1 illustrates the steps in the ASE system. After re-
playing the traffic traces to multiple IPSes and the voting
scheme, the system only knows which packets trigger the
logs, but it is still necessary to extract the entire session
for helping the IPS developers identify an FP or FN pre-
cisely. The session extraction involves three-pass scanning
through the traffic traces: (1) finding the anchor packets
that trigger the P-FP or P-FN from the five-tuple infor-
mation in the IPS logs, (2) associating the other packets
with the anchor packets if they belong to the same TCP
or UDP connection, and (3) associating the other connec-
tions with the connection which the anchor packets belong
to, if they belong to the same session. The sessions as-
sociated with the anchor packets are therefore extracted
in the scanning. They are replayed to the IPSes again to
verify the correctness of extraction.

3.1 The Steps in Session Extraction

The details of each step in Figure 1 are elaborated as
follows.

(i) Repla; (ii) First-pass (i) Second-pass  (iv) Third-pass
Captu’;eg’ scan scan scan
Traffic
Multiple Ambiguous Find out p—
TPSes Logs Packet o Exir
Anchor | —> xet 1) et
Packets Association Association Tra?'fi o
Log
Comparison
(Voting)

Packets onnections
Anchor
Packets

‘onnectio: Session

(v) Verify

Figure 1: System architecture of ambiguous session ex-
traction (ASE)

(i) Replaying traffic traces and voting In this step,
the ASE system leverages the knowledge in signature
databases on commercial IPSes and the open-source
Snort IPS [19] to find ambiguous traffic traces. The
system replays captured traces to multiple IPSes, and
then compares the logs among them in the voting
scheme to find out ambiguous logs, i.e., those only
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generated (P-FP) or not generated (P-FN) at a cer-
tain IPS. These logs will be correlated with the pack-
ets to help the session extraction.

(ii) Finding out anchor packets (the first pass)
This step finds out anchor packets in the ambiguous
traces, i.e., the critical/essential packets that can
trigger IPS logs. For this purpose, we implement
an Alarm Log Table (ALT) to record alarm logs
from IPSes, and a Replay Log Table (RLT) to
record the time of each packet sent from Tcpreplay.
The two tables can keep the useful information for
correlating the logs and packets. Matching the five
tuples should be sufficient to identify the anchor
packets, but unfortunately, some IPSes do not log
the complete five tuples of packets, e.g., only the IP
addresses of both ends. The ASE system therefore
needs to match the time information in both tables.
The time of a log entry in the ALT is correlated
with that in the RLT to determine a time frame.
The system then just needs to search for the anchor
packets within the same time frame in the traffic
trace.

(iii) Packet Association (the second pass) This
step looks for all the other packets that have the
same five tuples as the anchor packets. Those
packets are then associated with the anchor packets
to be in the same connection.

(iv) Connection Association (the third pass)
Because a session may involve multiple connections,
e.g., an ambiguous session with multiple attacking
sources, it is insufficient to only depend on the five
tuples and timestamp of packets. We design a session
association algorithm based on the observation that
such an ambiguous session often consists of only the
TCP ACK or SYN segments, as well as a number of
packets mostly having the same data payload. After
finding the anchor packets of an ambiguous session,
the algorithm checks each subsequent packet to see
if its source IP address or destination IP address is
identical to the victim’s IP address of the anchor
packet. If not, the packet will be considered not
belonging to this attack; otherwise, the algorithm
will continue to compare the payload of each packet
that may belong to this attack for similarity. If the
similarity is high for a packet, the algorithm will
duplicate its copy in the DDoS attack buffer for
later judgment.

The similarity is defined according to the longest
common subsequence (LCS) [20] of two packet pay-
loads. Given a sequence X = (x1,2,...,Zm), a se-
quence Z = (z1,22,...,%m) is a subsequence of X if
there is a strictly increasing sequence (i1, iz, - . - , ix) of
indices of X, such that z;; = z; forall j =1,2,... k.
Given two sequences X and Y, Z is a common sub-
sequence of X and Y if Z is a subsequence of both
X and Y. The longest common subsequence is the
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Table 2: The notations used in the session association

algorithm
[ Notations | Descriptions |
Sip Source IP address
Sport Source port number
Dip Destination IP address
Dport Destination port number
TCPJUDP The TCP/UDP flag
Payload The content of the packet
P; A TCP or UDP packet in the IP network
Tuple(P;) The five tuples of packet P;
A The anchor packet of one attack

PDA(Probably DoS
Attacks)

The set of packets that could be DoS at-
tacks (N-1 type)

PNDA(Probably
Not DoS Attacks)

The set of packets that could not be
probably DoS attacks (1-1 or 1-N type)

Tuple(Pi) = (Stp(Pz)7 Sport(Pi)7 Dip(Pi);
Dyort(B;) TCP/UDP(P})). (2)

Algorithm: The session association algorithm
// The set of packets that could be DoS

attacks

PDA — ¢;
// The set of packets that could probably

not DoS attacks

PNDA «— ¢;
DDoS.packetcount «— 0;

longest one of the all common subsequences. Con-
sider the payloads of two packets as two sequences of
bytes, S1 and S3. LCS(S1,S2) denotes the longest
sequence of bytes that are subsequences of S; and
So. The similarity between two packet payloads is
defined by

2 X |LCS(51, SQ)|

Similarity(S1, S2) = 1S1] + |2
1 2

x 100%.
(1)

The similarity threshold is 80% in the proposed algo-
rithm because the packets collected from the DDoS
attacks are often minimum Ethernet packets of 64
bytes. Excluding the 14-byte MAC header, 20-byte
IP header, 20-byte TCP header and 4-byte checksum,
the remaining payload is only 6 bytes long. We ob-
serve the packet payloads of the DDoS or DoS attacks
we collected are often the same, and the difference is
only one byte if the payloads are different. The sim-
ilarity in this case is 83.33%. This work therefore
sets the similarity threshold to 80%. After identify-
ing similar packets, the session association algorithm
watches the source IP address and the destination
IP address at the same time. This step stores only
the packets between the attacker and the victim, and
drops the other packets.

This step also distinguishes the attacks that have
probably one attacker from those that are probably
DDoS attacks. The algorithm keeps watching the
subsequent packets, and returns the packet count
in the DDoS attack buffer. The ambiguous session
might be a DDoS attack if the count is larger than
200; otherwise the attack type is 1-1 or 1-N.

An anchor packet A triggers an log on an IPS. The
problem, consequently, turns into looking for the
packets having the payload highly similar to A’s and
the packets having the same source IP address or des-
tination IP address as A’s. Figure 2 lists the session
association algorithm, and Table 2 summarizes the
notations in the algorithm. The five tuples of the
packet P; is defined by

for P; in the traffic traces do

if (Tuple(P;).S;, = Tuple(A).D;, or

Tuple(P;).D;, = Tuple(A).D;p) then

if Similarity(P;.Payload, A.Payload) > 80%

then
PDA «— PDAU P;;
DDoS.packetcount «—
DDoS.packetcount + 1;

end

if (Tuple(P;).S;p, = Tuple(A).S;, and

Tuple(P;).Dyp = Tuple(A).D;y) or

(Tuple(P;).Sip = Tuple(A).D;;, and

Tuple(P;).D;p = Tuple(A).S;p) then

| PNDA+— PNDAU P;;

end

end

end

if DDoS.packetcount > 200 then

// N-1 type

return PDA;

else

// 1-1 or 1-N type

return PN DA,;

end

Figure 2: The pseudo code of the session extraction
algorithm

(v) Extracting ambiguous sessions and verifying
Finally, we replay the extracted ambiguous sessions
to the IPSes to verify the correctness of the extrac-
tion. The extracted sessions should trigger exactly
the same alarm logs as the whole traffic does. If an
IPS product does not generate the same logs, the
extraction is invalid.

3.2 An Example of Session Extraction

Figure 3 presents an example of replaying real traffic to
an IPS. We replay the traffic from 13:23:52 to 13:26:12,
and the IPS generates two alarms, buffer overflow and
LSASS, into the ALT. The anchor packet of LSASS could
be the 5-th, 6-th or 7-th packet, since the correlation be-
tween the ALT logs and the RLT logs determines the time
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TcpReplay
Replay Log Table
Pkt | Sendi M
D ending ark Replayed packets
Time E IDP Product I I I
ffffffff e 0O QoA
! 13:23:52 ' Alarm Log Table —_—
Loz 132405 ] BOF _ ¥ Alarm StartTime | StopTime
3 13:24:35 \\ Buffer 13:23:52 | 13:24:15
4 | 13040 aon ™
s [13:25:01  LSASS 7‘3 | sass [1aser [ isasa
L6 | 132516 LSASS 47|
:
Vo7 |132s41 ] LSASS N Feedback alarms
8 13:26:01 Jfor Marking
9 13:26:12

Figure 3: Replaying traffic to an IPS products and corre-
lating the ALT logs with the RLT logs

frame starts from 13:25:01 to 13:25:41 (the first pass). We
arbitrarily choose the 6-th. If the five tuples of the three
packets are the same, they are in the same connection
and will be extracted (the second pass); otherwise, the
session association algorithm compares the IP addresses,
checks the payload, and finally extracts related packets
(the third pass). The extracted traffic trace is again re-
played to the IPS to verify the correctness of extraction.
If the LSASS alarm is not reproduced, we may choose an
incorrect anchor packet, and would try the others to go
through the ASE.

4 Evaluation and Discussion

We use Tcpdump on Linux PCs to capture real traffic
from a sub-network of more than a thousand users in
our campus, and replay the traffic to four IPSes: Snort
on FreeBSD, ISS Proventia, Fortinet FortiGate and Tip-
pingPoint UnityOne. The evaluations of the ASE system
include wvariation and completeness/purity.

4.1 The Result of Session Extraction

Table 3 presents the logged events (due to replaying the
traffic) on the four IPSes in the order of event counts.
Out of total 187 attacks detected and logged, the table
presents only the top 15 frequent attacks that have more
than 500 event counts, meaning the attacks occur at least
500 times. The 15 attacks cover 87% of all event counts.
Table 3(a) contains attacks with high severity, while Ta-
ble 3(b) shows attacks with medium severity. The level
of severity (i.e., high, medium and low) is defined by the
IPSes and is used to notify network administrators how
dangerous an attack could be.

4.2 Variation, Completeness/Purity

The extracted traces might not be complete or pure. The
traces may be incomplete, since the ASE may miss some
packets of low similarity. The traces may also be not pure.
The ASE may extract extra packets, since the system
drops only the packets whose IP addresses, either source
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or destination, do not match the destination IP address
of the anchor packets. We design a method to assess the
completeness and purity of the traces extracted by the
ASE. The idea is extracting a target session multiple times
from n different traffic traces, all containing the target
session, and then comparing the sequence of packet sizes
in the extracted traces with that in the target session. Let
T'S; denotes the target session ¢ and COM P(T'S;) be the
number of extracted traces having an identical sequence
of packet size (in the order of packet time) to that of T'S;.
The variation of T'S; is defined by

Variation(T'S;) = (1 — COMP(TS;)/n) x 100%. (3)

Besides the packet sizes, we also compare the packet con-
tent. The assessment of Completeness/Purity (abbrevi-
ated as CP) of an extracted trace is conducted by first
calculating the similarity of every packet between that
trace and the target session using Equation 1, and then
averaging the similarity values of all the packets to derive
the CP value of an extracted trace.

There are two scenarios in the experiment. In the first
scenario, we prepare 100 attack traces, each is an attack
session (also the target session) derived from the traffic
generated by real attack programs. We also randomly
capture 10 real traffic traces as the background traffic.
Each attack trace is mixed with 10 background traces
(i.e., mixed traces) separately, meaning that the ASE will
later extract an attack session 10 times from the mixed
traces. In the second scenario, we just capture real traf-
fic traces and replay them to an IPS. The ASE extracts
the attack sessions with the procedure in Figure 1. We
then find and launch the attack programs corresponding
to the extracted attack traces, and capture the traffic as
the attack sessions (also the target sessions). The differ-
ence between the two scenarios is the way to mix traffic.
The mixing in scenario 1 is artificial, while it is natural
in scenario 2. No matter in which scenario, however, our
aim is the same — to compare an extracted trace with
the corresponding attack trace.

In Figures 4 and 5, the label of Mized traffic represents
scenario 1, the label of Real traffic represents scenario 2,
and the label of Real traffic-drop impossible traffic means
a variant of scenario 2 in which the packets that are not
part of the attack session are dropped in advance. In sce-
nario 1, Figure 4 shows that 52% of the attack traces have
no variation, 95% have variation less than 20%, and 97%
have variation less than 30%. In general, variation of n%
means that, for an attack trace, only 10 x n% extracted
traces are different from the others. We observe that the
variation results from other connections between the at-
tacker and the victim that do not belong to the attack
session. Consequently, if we modify the IP address pair
of the attack session such that the pair is always unique
in the mixed traces, variations will all become 0%, since
that means no other connections exist concurrently with
the attack session between the attacker and the victim.

Figure 5 shows the maximum, minimum and average
CP values for different variations. For attack traces with
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Table 3: The attacks detected by the IPSes
(a) attacks of high severity

| Attack Name || Event Counts | CVE ID |
SSH_ChallengeResponse_Bo 13489 CVE-2002-0640
SNMP _InvalidTag_OID 11660 CA-2002-03
SNMP_Bad_Variable_Type 6409 CA-2002-03
SSH_Brute_Force 4347 —
DNS_Address_Length 3292 CVE-2001-1329
HTML_Hostname_Overflow 2255 CVE-2005-0554
HTTP_Cisco_Catalyst_Exec 1226 CVE-2000-0945
FTP _List_dotdot 810 —

(b) attacks of medium severity

| Attack Name | Event Counts | CVE ID |
HTTP_Connect_Proxy Bypass_SMTP 29316 —
YahooMSG_UserID_Overflow 13916 CVE-2003-1135
SNMP_Community 9983 CA-2002-03
HTML_NullChar_Evasion 4001 —
TCP_Data_Changed 1212 CA-1995-01
Synflood 519 CVE-1999-0116
ICMP _Redirect 500 CVE-1999-0265

Cumulative Distribution of Attacks(counts)

120

100

90

—

i

5

s

Variation(%)

—g— 100100 l 100

s

—+— Mixed traffic

—#— Real traffic

Real traffic -drop impossible traffic

Figure 4: The variations of the extracted attacks

Complete and pure rate(%)

8094 | 8004]

619 |71508

5836

8771

0%

10% Variations(%) 20%

30%

Figure 5: The CP values for different variations

variation of 10%, the maximum CP value is 97.83%, the
minimum is 74.77%, and the average is 89.58%. The CP
is affected by the thresholds of similarity and packet count
defined in the session extraction algorithm. In our exper-
iment, the best CP is achieved when we set the threshold
of similarity to 80% and the threshold of packet counts
to 200. Figure 6 shows the effect of different thresholds
on the CP values. At variation of 30%, however, the CP
values of different thresholds are the same because there
is no attack of the N-1 type like the DDoS in that situ-
ation. As illustrated in Figure 2, the two thresholds of
similarity and packet count determine only the packets in
PDA. If there is no attack of the N-1 type in the traces
(i.e., an empty PDA), they do not affect the results of
session extraction, and thus neither the CP values.

In scenario 2, we evaluate the 15 attacks on Table 3
based on the experiment in Section 4.1. It means each of
15 attacks is extracted over 500 times and every extraction
is from different mixed traces. 26% of the attack traces
have no variation and only 58% have variation less than
30%. For the attack traces with variation of 10%, the
maximum CP value is 84.27%, the minimum is 73.29%,
and the average is 80.15%. If we filter out packets that
do not belong to the attack session (the result shown in
the line labeled Real traffic-drop impossible traffic), the
percentage of attack traces with no variation will increase
to 47%, and that of the attack traces with variation of
10% will increase to 72%. The CP also increases. Since
the improvement is due to filtering out packets not in
the attack session, we need a white list in the ASE to
describe what kinds of packets should be filtered out in the
beginning without being classified into PDA or PNDA.
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—&— 90%similarity 100 packet count
—#— 90%similarity 200 packet count
80%similarity 100 packet count

40 80%similarity 200 packet count

—*—T0%similarity 100 packet count
—8—70%similarity 200 packet count

Complete and pure rate(%)

0% 10% 20% 30% 40% 50%

Variation(%)

Figure 6: The effect of different thresholds of similarity
and packet count on the CP in the session extraction al-
gorithm

5 Case Studies on False Negatives
and False Positives

The outputs of the ASE are ambiguous sessions that cause
P-FNs and P-FPs to IPSes. IPS developers can analyse
the ambiguous sessions to improve the accuracy of their
products. Below are two examples, one is a P-FN and
the other is a P-FP, found by ASE and confirmed by IPS
developers to be an FN and an FP, respectively.

5.1 False Negatives (FN)

The traffic traces in the first example does not trigger
a log on IPS-1, but on all the other IPSes, meaning the
event is a P-FN to IPS-1. The triggered log is something
like “SQL SA brute force login attempt TDS”. We use
the ASE to extract the session as complete and pure as
possible, and then provide the session to the developers
of IPS-1 for further analysis. They find the signature in
IPS-1 is too specific to detect the event. The signature is
composed based on the assumption that some patterns,
such as “|0000|”2 and “s]|00|a|00|”, will appear frequently.
To solve the problem, the developers should assume less
frequent appearance of those patterns in its signature.

5.2 False Positives (FP)

The traces in the second example trigger a log only on
IPS-2, but not on the others, meaning the event is a P-
FP to IPS-2. The log is “DDOS mstream”. We again use
the ASE to extract and provide the ambiguous session to
the developers of IPS-2 for further analysis. The session
is actually from BitTorrent (a P2P application for file
sharing) communication between two peers, not a DDOS.
The developers find the signature is too general, including
the destination port 12754 as well as the content “>”.
Coincidentally, the ambiguous session matches the two
patterns and causes the false positive. The developers
should figure out a more specific pattern, rather than a
pattern of a single character like “>7.

2 |b1 ...bn| denotes a sequence of bytes in hexadecimal.
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6 Conclusion

This work proposes an ASE system to extract ambiguous
sessions from real traffic as complete and pure as possible.
The ambiguous sessions cause P-FPs or P-FNs to an IPS
and can be used for further analysis by IPS developers to
improve the accuracy of an IPS. The system associates
related packets with an attack by scanning traffic traces
three times — to identify the anchor packets, the packets
in the same connection and the connections in the same
session. For connection association in a session, similarity
between two packets is defined to extract an ambiguous
session of the N-1 type. We define variation and com-
pleteness/purity to evaluate the ASE. 95% of the attack
traces have low variation. Also, the average complete-
ness/purity is around 80%. This method could be ex-
tended to other detection systems such as anti-virus and
P2P management.
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