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Abstract 

Simple secood-order recurrent netwoIts are shown to readily learn sman brown 
regular grammars when trained with positive and negative strings examples. We 

show that similar methods are appropriate for learning unknown grammars from 

examples of their strings. TIle training algorithm is an incremental real-time, re

current learning (RTRL) method that computes the complete gradient and updates 

the weights at the end of each string. After or during training. a dynamic clustering 
algorithm extracts the production rules that the neural network has learned.. TIle 

methods are illustrated by extracting rules from unknown deterministic regular 
grammars. For many cases the extracted grammar outperforms the neural net from 

which it was extracted in correctly classifying unseen strings. 

1 INTRODUCTION 

For many reasons, there has been a long interest in "language" models of neural netwoIts; 

see [Elman 1991] for an excellent discussion. TIle orientation of this work is somewhat dif
ferent TIle focus here is on what are good measures of the computational capabilities of 

recurrent neural networks. Since currently there is little theoretical knowledge, what prob
lems would be "good" experimental benchmarks? For discrete i.q>uts, a natural choice 
would be the problem of learning fonnal grammars - a "hard" problem even for regular 

grammars [Angluin, Smith 1982]. Strings of grammars can be presented one charncter at a 

time and strings can be of arbitrary length. However, the strings themselves would be, for 

the most part, feature independent Thus, the learning capabilities would be, for the most 

part, feature independent and, therefore insensitive to feature extraction choice. 

TIle learning of known grammars by recurrent neural networks has sbown promise, for ex

ample [Qeeresman, et al1989], [Giles, et al199O, 1991, 1992], [pollack 1991], [Sun, et al 

1990], [Watrous, Kuhn 1992a,b], [Williams, Zipser 1988]. But what about learning Ml!

~ grammars? We demonstrate in this paper that not only can unknown grammars be 

learned, but it is possible to extract the grammar from the neural network, both during and 
after training. Furthennore, the extraction process requires no a priori knowledge about the 
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grammar, except that the grammar's representation can be regular, which is always true for 
a grammar of bounded string length; which is the grammatical "training sample." 

2 FORMAL GRAMMARS 

We give a brief introduction to grammars; for a more detailed explanation see [Hopcroft & 
Ullman, 1979]. We define a grammar as a 4-mple (N, V, P, S) where N and V are DOOler
minal and tenninal vocabularies, P is a finite set of production rules and S is the start sym
bol. All grammars we discuss are detelUlinistic and regular. For every grammar there exists 
a language - the set of strings the grammar generates - and an automaton - the machine that 
recognizes (classifies) the grammar's strings. For regular grammars, the recognizing ma
chine is a deterministic finite automaton (DFA). There exists a one-ta-one mapping be
tween a DFA and its grammar. Once the DFA is known, the production rules are the 
ordered triples (notk, arc, 1Wde). 

Grammatical inference [Fu 1982] is defined as the problem of finding (learning) a grammar 
from a finite set of strings, often called the training sample. One can interpret this problem 
as devising an inference engine that learm and extracts the grammar, see Figure I. 

UNKNOWN 
GRAMMAR 

LabeBed Extraction 
striDgs INFERENCE Process .... ENGINE .. - (NEURAL 

NETWQRKl 

Figure I: Grammatical inference 

INFERRED 
GRAMMAR 

For a training sample of positive and negative strings and no knowledge of the unknown 
regular grammar, the problem is NP..complete (for a summary, see [Angluin, Smith 1982]). 
It is possible to construct an inference engine that consists of a recurrent neural network and 
a rule extraction process that yields an inferred grammar. 

3 RECURRENT NEURAL NETWORK 

3.1 ARCHITEcruRE 

Our recmrent neural network is quite simple and can be considered as a simplified version 
of the model by [Elman 1991]. For an excellent discussion of recurrent networks full of ref
erences that we don't have room for here, see [Hertz, et all99I]. 

A fairly general expression for a recunent network (which has the same computational 
power as a DFA) is: 

s~+ I = F(St I·W) 
r j' , 

where F is a nonlinearity that maps the stale neuron Sl and the input neuron 1 at time t to 
the next state S'+ 1 at time t+ 1. The weight matrix W parameterizes the mapping and is usu
ally leamed (however, it can be totally or partially programmed). A DFA has an analogous 
mapping but does not use W. For a recurrent neural network we define the mapping F and 
order of the mapping in the following manner [Lee, et aI 1986]. For a first-order recmrent 
net: 

where N is the number of hidden state neurons and L the number of input neurons; Wij and 
Yij are the real-valued weights for respectively the stale and input neurons; and (J is a stan-
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N L 

S:+1 = a (7WilJ + Pi/!) 
dard sigmoid discriminant function. The values of the hidden state neurons Sl are defined 

in the finite N-dimensional space [O,I]N. Assuming all weights are connected and the net 

is fully recurrent, the weight space complexity is bounded by O(N2+NL). Note that the in

put and state neurons are not the same neurons. This representation has the capability. as

suming sufficiently large N and L, to represent any state machine. Note that there are non

trainable unit weights on the recurrent feedback connections. 

TIle natural second-order extension of this recurrent net is: 

where certain state neurons become input neurons. Note that the weights W ijk modify a 

product of the hidden Sj and input Ik neurons. This quadratic fonn directly represents the 

state transition diagrams of a state automata process -- (input, state) ::::) (next-state) and thus 

makes the state transition mapping very easy to learn. It also pennits the net to be directly 

programmed to be a particular DFA. Unpublished experiments comparing first and second 

order recurrent nets confirm this ease-in-Iearning hypothesis. The space complexity (num
ber of weights) is O(LN2). For L«N, both first- and second-order are of the same complex
ity,O(N2). 

3.2 SUPERVISED TRAINING & ERROR FUNCTION 

The error function is defined by a special recurrent output neuron which is checked at the 
end of each string presentation to see if it is on or off. By convention this output neuron 

should be on if the string is a positive example of the grammar and off if negative. In prac

tice an error tolerance decides the on and off criteria; see [Giles, et all991] for detail. [If a 

multiclass recognition is desired, another error scheme using many output neurons can be 

constructed.] We define two error cases: (1) the networl.c fails to reject a negative string (the 

output neuron is on); (2) the network fails to accept a positive string (the output neuron is 

oft). This accept or reject occurs at the end of each string - we define this problem as infer
ence versus prediction.There is no prediction of the next character in the string sequence. 

As such, inference is a more difficult problem than prediction. If knowledge of the classi

fication of every substring of every string exists and alphabetical training order is pre

served, then the prediction and inference problems are equivalent. 

The training method is real-time recurrent training (RTRL). For more details see [Williams, 

Zipser 1988]. The error function is defined as: 

E = (1/2) (Target-S~) 
2 

where Sf is the output neuron value at the final time step t=fwhen the final character is 

presented and Target is the desired value of (1.0) for (positive. negative) examples. Using 

gradient descent training, the weight update rule for a second-order recurrent net becomes: 

{ d~ 
W1mn = -aV E = a(Target-So) . dW 

lmn 

where a is the learning rate. From the recursive network state equation we obtain the rela
tionship between the derivatives of st and St+l: 
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~; = a'· [f>US~-lr.-l + l:W;jtt.-l~~-l J 
1m" jk 1m" 

where a' is the derivative of the discriminant function. This pennits on-line learning with 

partial derivatives calculated iteratively at each time step. Let "dS'=O IdWlmn = O. Note that 

the space complexity is O(L 2~) which can be prohibitive for large N and full connectivity. 

It is important to note that for all training discussed here, the full gradient is calculated as 

given above. 

3.3 PRESENTATION OF TRAINING SAMPLES 

The training data consists of a series of stimulus-response pairs, where the stimulus is a 

string ofO's and 1 's, and the response is either "I" for positive examples or "0" for negative 

examples. The positive and negative strings are generated by an unknown source grammar 

(created by a program that creates random grammars) prior to training. At each discrete 

time step, one symbol from the string activates one input neuron, the other input neurons 

are zero (one-hot encoding). Training is on-line and occurs after each string presentation; 

there is no total error accumulation as in batch learning; contrast this to the batch method 

of [Watrous, Kuhn 1992]. An extra end symbol is added to the string alphabet to give the 

network more power in deciding the best final neuron state configuration. This requires an

other input neuron and does not increase the complexity of the DFA (only N2 more 

weights). The sequence of strings presented during training is very important and certainly 

gives a bias in learning. We have perfonned many experiments that indicate that training 

with alphabetical order with an equal distribution of positive and negative examples is 

much faster and converges more often than random order presentation. 

TIle training algorithm is on-line, incremental. A small portion of the training set is pre

selected and presented to the network. The net is trained at the end of each string presenta

tion. Once the net has learned this small set or reaches a maximum number of epochs (set 

before training, 1000 for experiments reported), a small number of strings (10) classified 

incorrectly are chosen from the rest of the training set and added to the pre-selected set. This 

small string increment prevents the training procedure from driving the network too far to
wards any local minima that the misclassified strings may represent. Another cycle of ep

och training begins with the augmented training set. If the net correctly classifies all the 

training data, the net is said to converge. The total number of cycles that the network is per

mitted to run is also limited, usually to about 20. 

4 RULE EXTRACTION (DFA GENERATION) 

As the network is training (or after training), we apply a procedure we call dynamic state 

partitioning (dsp) for extracting the network's current conception of the DF A it is learning 

or has learned. The rule extraction process has the following steps: 1) clustering of DFA 

states, 2) constructing a transition diagram by connecting these states together with the al
phabet-labelled transitions, 3) putting these transitions together to make the full digraph -

fonning cycles, and 4) reducing the digraph to a minimal representation. The hypothesis is 

that during training, the network begins to partition (or quantize) its state space into fairly 

well-separated, distinct regions or clusters, which represent corresponding states in some 

DFA. See [Cleeremans, et al1989] and [Watrous and Kuhn 1992a] for other clustering 

methods. A simple way of finding these clusters is to divide each neuron's range [0,1] into 

q partitions of equal size. For N state neurons, qN partitions. For example, for q=2, the val

ues of S'~.5 are 1 and S'<.0.5 are 0 and there are 2N regions with 2N possible values. Thus 

for N hidden neurons, there exist I' possible regions. The DFA is constructed by generating 
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a state transition diagram -- associating an input symbol with a set of hidden neuron parti

tions that it is currently in and the set of neuron partitions it activates. This ordered triple 

is also a production rule. The initial partition, or start state of the DFA, is detennined from 

the initial value of St=O. If the next input symbol maps to the same partition we assume a 

loop in the DFA. Otherwise, a new state in the DFA is fonned.This constructed DFA may 

contain a maximum of cf states; in practice it is usually much less, since not all neuron par

tition sets are ever reached. This is basically a tree pruning method and different DFA could 

be generated based on the choice of branching order. TIle extracted DF A can then be re

duced to its minimal size using standard minimization algorithms (an 0(N2) algorithm 

where N is the number of DFA states) [Hopcroft, Ullman 1979]. [This minimization pro
cedure does not change the grammar of the DFA; the unminimized DFA has same time 

complexity as the minimized DFA. TIle process just rids the DFA of redundant, unneces

sary states and reduces the space complexity.] Once the DF A is known, the production rules 

are easily extracted. 

Since many partition values of q are available, many DF A can be extracted. How is the q 

that gives the best DFA chosen? Or viewed in another way, using different q, what DFA 
gives the best representation of the grammar of the training set? One approach is to use dif

ferent q's (starting with q=2), different branching order, different runs with different num

bers of neurons and different initial conditions, and see if any similar sets of DFA emerge. 

Choose the DFA whose similarity set has the smallest number of states and appears most 

often - an Occam's razor assumption. Define the guess of the DFA as DFAg.This method 

seems to woIk fairly well. Another is to see which of the DFA give the best perfonnance 

on the training set, assuming that the training set is not perfectly learned. We have little ex

perience with this method since we usually train to perfection on the training set It should 

be noted that this DF A extraction method may be applied to any discrete-time recurrent 

net, regardless of network order or number of hidden layers. Preliminary results on first
order recurrent networks show that the same DFA are extracted as second-order, but the 

first-order nets are less likely to converge and take longer to converge than second-order. 

5 SIMULATIONS - GRAMMARS LEARNED 

Many different small « 15 states) regular known grammars have been learned successfully 

with both first-order [Cleeremans, et al1989] and second-order recurrent models [Giles, et 

al 91] and [Watrous, Kuhn 1992a]. In addition [Giles, et al1990 & 1991] and [Watrous, 

Kuhn 1992b] show how corresponding DFA and production rules can be extracted. How

ever for all of the above work, the grammars to be learned were alreatb known. What is 

more interesting is the learning of unknown grammars. 

In figure 2b is a randomly generated minimallO-state regular grammar created by a pro
gram in which the only inputs are the number of states of the umninimized DFA and the 
alphabet size p. (A good estimate of the number of possible unique DFA is (n2lln1'"/n!) 
[Aton, et al1991] where n is number ofDFA states) TIle shaded state is the start state, filled 

and dashed arcs represent 1 and 0 transitions and all final states have a shaded outer circle. 

This unknown (honestly, we didn't look) DFA was learned with both 6 and 10 hidden state 

neuron second-order recurrent nets using the first 1000 strings in alphabetical training order 

(we could ask the unknown grammar for strings). Of two runs for both 10 and 6 neurons, 

both of the 10 and one of the 6 converged in less than 1000 epochs. (TIle initial weights 

were all randomly chosen between [1,-1] and the learning rate and momentum were both 

0.5.) Figure 2a shows one of the unminimized DFA that was extracted for a partition pa

rameter of q=2. The minimized 10-state DFA, figure 3b, appeared for q=2 for one 10 neu

ron net and for q=2,3,4 of the converged 6 neuron net Consequently, using our previous 
criteria, we chose this DFA as DFAg, our guess at the unknown grammar. We then asked 
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Figures 2a & 2b. Unminimized and minimized 100state random grammar. 

the program what the grammar was and discovered we were correct in our guess. The other 
minimized DFA for different q's were all unique and usually very large (number of states 
> 1(0). 

The trained recurrent nets were then checked for generalization errors on all strings up to 

length 15. All made a small number of errors, usually less than 1 % of the total of 65,535 

strings. However, the correct extracted DFA was perfect and, of course, makes no errors on 
strings of any length. Again, [Giles, et a11991, 1992], the extracted DFA outperforms the 

trained neural net from which the DF A was extracted. 

Figures 3a and 3b, we see the dynamics ofDFA extraction as a 4 bidden neuron neural net

work is leaming as a function of epoch and partition size. This is for grammar Tomita-4 

[Giles, et al 1991, 1992]] - a 4-state grammar that rejects any string which has more than 
three 0' s in a row. The number of states of the extracted DF A starts out small, then increas

es, and finally decreases to a constant value as the grammar is learned As the partition q of 

the neuron space increases, the number of minimized and unminimized states increases. 

When the grammar is learned, the number of minimized states becomes constant and, as 

expected, the number of minimized states, independent of q, becomes the number of states 

in the grammar's DFA - 4. 

6 CONCLUSIONS 

Simple recurrent neural networks are capable ofleaming small regular unknown grammars 

rather easily and generalize fairly well on unseen grammatical strings. The training results 
are fairly independent of the initial values of the weights and numbers of neurons. For a 

well-trained neural net, the generalization perfonnance on long unseen strings can be per

fect. 
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Figures 3a & 3b. Size of number of states (unmioimized and minimized) ofDFA 
versus training epoch for different partition parameter q. The correct state size is 4. 

A heuristic algorithm called dynamic state partitioning was created to extract detenninistic 

finite state automata (DFA) from the neural network, both during and after training. Using 

a standard DFA minimization algorithm, the extracted DFA can be reduced to an equivalent 

minimal-state DFA which has reduced space (not time) complexity. When the source or 

generating grammar is unknown, a good guess of the unknown grammar DFAg can be ob

tained from the minimal DFA that is most often extracted from different runs WIth different 

numbers of neurons and initial conditions. From the extracted DF A, minimal or not, the 
production rules of the learned grammar are evident. 

There are some interesting aspects of the extracted DFA. Each of the unminimized DFA 

seems to be unique, even those with the same number of states. For recunent nets that con

verge, it is often possible to extract DFA that are perfect, i.e. the grammar of the unknown 

source grammar. For these cases all unminimized DFA whose minimal sizes have the same 

number of states constitute a large equivalence class of neural-net-generated DFA. and 
have the same performance on string classification.This equivalence class extends across 

neural networks which vary both in size (number of neurons) and initial conditions. Thus. 

the extracted DF A gives a good indication of how well the neural network learns the gram

mar. 

In fact, for most of the trained neural nets, the extracted DF ~ outperforms the 
trained neural networks in classification of unseen strings. (By aefinition, a perfect 

DFA will correctly classify all unseen strings). This is not surprising due to the possibility 

of error accumulation as the neural network classifies long unseen strings [pollack 1991]. 

However, when the neural network has leamed the grammar well, its generalization perfor

mance can be perfect on all strings tested [Giles, et al1991, 1992]. Thus, the neural network 

can be considered as a tool for extracting a DF A that is representative of the unknown 

grammar. Once the DFAg is obtained, it can be used independently of the trained neural 

network. 

The learning of small DFA using second-order techniques and the full gradient computa

tion reported here and elsewhere [Giles, et all991, 1992], [Watrous, Kuhn 1992a, 1992b] 

give a strong impetus to using these techniques for learning DFA. The question of DFA 

state capacity and scalability is unresolved. Further work must show how well these ap-
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proaches can model grammars with large numbers of states and establish a theoretical and 
experimental relationship between DFA state capacity and neural net size. 
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