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Abstract—Protein-protein interaction network study has 

attracted a lot of attention from bioinformatics community 
because it is essential to understand the fundamental processes 
that govern cell biology. However, most of the protein-protein 
interaction information relevant to cell biology research still 
exists only in biomedical literature, which is written in a natural 
language that computers cannot easily manipulate. Retrieving 
and mining this information is very difficult due to the lack of 
formal structure in the natural-language narrative in those 
documents and the huge volume of biomedical literature. In this 
paper we integrate information extraction and data mining 
techniques to extract and mine the protein-protein interaction 
network from biomedical literature such as MedLine. Our 
system SPIE-DM (Scalable and Portabel Information Extraction 
and Data Mining) consists of two phases: Phase 1: we develop a 
Scalable and Portable IE method (SPIE) to extract the protein-
protein interaction from the biomedical literature. These 
extracted protein-protein interactions form a scale-free network 
graph. In Phase 2, we apply a novel clustering method SFCluster 
to mine the protein-protein interaction network.  The clusters in 
the network graph represent some potential protein complexes, 
which are very important for biologist to study the protein 
functionality. The clustering algorithm considers the 
characteristics of the scale-free network graphs and is based on 
the local density of the vertex and its neighborhood functions that 
can be used to find more meaningful clusters at different density 
levels. The experiments of SPIE-DM on around 1600 chromatin 
proteins indicate that our system is very promising for extracting 
and mining from biomedical literature databases.  

 
Index Terms—graph, protein-protein interaction, text mining 
 

I. INTRODUCTION 
any biological results are published only in plain–text 
documents and these documents or their abstracts are 

collected in online biomedical literature databases such as 
MedLine. MedLine contains bibliographic citations and author 
abstracts from more than 4,000 biomedical journals and is the 
largest English language biomedical bibliographic database 
with more than 12 million abstracts stored in plain text files. 
The sheer size of MedLine can be daunting to many scientists 
involved in biomedical research. To expedite the progress of 
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functional bioinformatics, it is important to develop scalable 
learning methods to efficiently process large amounts of 
biomedical literature and to extract the results into a structured 
format that is easy for retrieval and analysis by genomic and 
medical researchers. Automated discovery and extraction of 
these biological relationships from biomedical literatures have 
become essential because of enormous amounts of biomedical 
literature published each year. A promising approach for 
making such huge amounts of information manageable and 
easily accessible is to integrate information extraction and data 
mining methods to automatically process biomedical literature 
and to extract important biological relationships such as 
protein–protein interactions and to consolidate them into a 
structured format such as databases. Some databases that 
accumulate these biological relationships are DIP for protein–
protein interactions [1] and BIND for molecular interactions 
[2]. Most of the protein-protein interaction relationships stored 
in these databases are manually constructed. However, it is 
becoming more and more difficult for curators to keep up with 
an increasing volume of literature. Thus, automatic methods 
are needed to speed up the construction of such databases. 
Integration of data mining and IE provides a promising 
direction to assist in the curation process to construct such 
databases. Biomedical literature mining has recently attracted 
a lot of attention from IE, data mining, natural language 
processing (NLP) and bioinformatics community [3]. A lot of 
methods have been proposed and various systems have been 
developed in extracting biological relationships from 
biomedical literature such as finding protein or gene names 
[4], protein–protein interactions [5], etc.  

Scalability and portability are two major problems which 
are recognized as impeding widespread use of IE in huge 
collections of biomedical literature such as MedLine. With the 
development of genomic research, the scope and goal of 
bioinformatics research is getting more complicated and the 
number of published documents is growing at a very fast rate, 
thus the IE and mining methods must be flexible to work for 
multiple goals in different sub–disciplines and should be able 
to scale to millions of documents. Current IE techniques 
extract biological relations from MedLine by examining every 
abstract, or use filters to select promising abstracts for 
extraction. With more than 12 million abstracts in MedLine 
database, processing time is becoming a bottleneck when 
exploiting IE technology for leveraging extracted information 
with relational databases. Examining every abstract is not 
feasible for huge online biomedical literature databases. 
Filtering techniques focus on potentially useful abstracts and 
can dramatically improve the efficiency and scalability of the 
IE process. However, the current filtering techniques require 

M 



Proceedings of the 2004 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology 
(IEEE CIBCB 2004) 

 

2

human involvement to maintain and to adapt to new topics or 
sub disciplines.  
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Fig. 1.  Architecture of SPIE-DM 
 
This paper discusses a hybrid system SPIE-DM (Scalable 

and Portable IE-Data Mining), which integrates information 
extraction and data mining to automatically extract and mine 
biological relationships from a huge collection of biomedical 
literature to help biologists in functional bioinformatics 
research. The system architecture is shown in Figure 1. SPIE-
DM consists of two phases: Phase 1: SPIE is used to extract 
the protein-protein interaction from the biomedical literature. 
These extracted protein-protein interactions form a scale-free 
network graph that has many distinct properties such as in-
degrees and out-degrees of the vertices following power laws. 
In Phase 2, we apply a novel clustering method SFCluster to 
mine the protein-protein interaction network.  The clusters in 
the network graph represent some potential protein complexes, 
which are very important for biologist to study the protein 
functionality. The clustering algorithm considers the 
characteristics of the scale-free network graphs and is based 
on the local density of the vertex and its neighborhood 
functions that can be used to find more meaningful clusters 
with different density level. 

By using an automated information extraction approach, 
biological relationships and knowledge such as protein-protein 
interaction from scattered sources will be synthesized and 
consolidated into a single database and are amenable to 
computational analysis. Compared with previous work, our 
methods reduce the manual intervention to a great minimum. 
The most closely related work to ours is Snowball [6]. 
Snowball can only handle situations where one entity is 
involved in only one relationship in bioinformatics domain; 
however, an entity may be involved in many relationships. For 
example, a protein may interact with many other proteins. 

By mining the protein-protein interaction network, indirect 
or hidden relationships between proteins will be identified and 
clustered. This will reveal information beyond simple binary 
interactions about important protein complexes or pathways, 
which otherwise would prove to be challenging and time-

consuming by manual searches of the literature. These 
biological relationships will help uncover hidden relationships 
and complexes governing genomic operations. 

The rest of the paper is organized as follows: In Section 2, 
we discuss the technical details of SPIE. We present our novel 
cluster algorithm SFCluster in Section 3. We conclude with 
some discussion and our future research plan in Section 4. 

II. PRINCIPLE AND ARCHITECTURE OF SPIE FOR INFORMATION 
EXTRACTION 

SPIE uses a pipelined architecture and extracts with as little 
human intervention as possible.  Unlike previous approaches, 
which use annotated corpus for training, we only use a few 
seed examples, making it easier to port from one subject 
domain to another. In biomedical research, especially in 
rapidly changing fields such as molecular biology and 
medicine, subjects can be extremely complex: there are many 
synonym terms, new connections are constantly discovered 
between previously unrelated subjects, and review documents 
are outdated very quickly.  In these situations, a technique in 
which queries are automatically updated based on the previous 
search results is necessary in order to retrieve relevant 
documents from large text databases for IE. Such an automatic 
query learning technique allows an IE system to be easily 
adapted to a new domain or to a new databases with minimal 
human effort. Based on these considerations, we develop a 
scalable and portable information extraction method with 
automatic query learning system. The data flow architecture of 
SPIE is shown in Fig. 2. 

 

Set of Documents

Queries

Pattern Base

Biomedical 
Literature DB

Mutual Reinforcement  of 
Pattern Generation 

- Instance Extraction

Automatic Query Generation & 
Document CategorizationInitial seed tuples

Instance Relation

 Initial seed tuples

 tuples generated from IE

Automatic 
Categorization of 

Documents

Extract text segment 
of interest

Find occurrence of 
seed tuples

Generate extraction 
pattern and store it in 

pattern base

New instance 
extraction based on 

pattern matching

Query List

Data Mining to 
generate rules from 

categorized 
documents

Search Engine

 
Fig. 2.  Data Flow of SPIE 

SPIE consists of the following steps: 
1. Starting with a set of user-provided seed tuples (the seed 

tuples can be quite small, normally 5 to 10 is enough), SPIE 
retrieves a sample of documents from the biomedical 
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literature library. At the initial stage of the overall 
document retrieval process, it has no information about the 
documents that might be useful for the goal of extraction. 
The only information we require about the target relation is 
a set of user-provided seed tuples, including the 
specification of the relation attributes to be used for 
document retrieval. We construct some simple queries by 
using the attribute values of the initial seed tuples to extract 
the document samples of a pre-defined size using from the 
search engine.  

2. The tuple set induces a binary partition (a split) on the 
documents: those that contain tuples or those that do not 
contain any tuple from the relation. The documents are thus 
labeled automatically as either positive or negative 
examples, respectively. The positive examples represent the 
documents that contain at least one tuple. The negative 
examples represent documents that contain no tuples. 

3. Next data mining and/or IR techniques are applied to the 
classified documents obtained from Step 2 to derive queries 
targeted to match—and retrieve— additional documents 
similar to the positive examples. 

4. Then a mutual reinforcement pattern generation and tuple 
extraction technique is applied over the documents. It 
produces a set of extracted patterns using the top-ranked 
tuples in the relations. These patterns are kept in the pattern 
base, which will be used to generate new tuples from the 
documents.  

5. The system queries the biomedical literature databases 
using the automatically learned queries from Step 3 to 
retrieve a set of new promising documents from the 
databases and then goes to Step 2.  The whole procedure 
repeats until no new tuples can be added into the relation or 
the number of text documents to be processed has reached 
the pre-set limit. 
The technical details of some key steps are discussed in the 

following subsections 

A. Learning Queries to Retrieve Potential Promising 
Documents  

Previous approaches for addressing the high computational 
cost of IE techniques used document filtering techniques 
which select the documents that deserve further processing by 
the IE system. This filtering still requires scanning the 
complete database to consider every document. Alternative 
approaches use keywords or phases as filter (which could be 
converted to queries) that were manually crafted and tuned by 
the IE system developers. In biomedical and bioinformatics 
domain, there exist research topics that cannot be uniquely 
characterized by a set of key words because relevant keywords 
are (i) also heavily used in other contexts and (ii) often 
omitted in relevant documents because the context is clear to 
the target audience. To yield a high recall at a reasonable 
precision, the results of a broad information retrieval search 
have to be filtered to remove irrelevant documents. We use 
automated text categorization for this purpose.  In the initial 
round, we select a pre–specified number of documents based 
on the seed examples. For example, if our system is used for 
extraction of protein–protein interactions, the seed examples 
are a set of protein name pairs as shown in Table 1.  

 
TABLE I 

 INITIAL TRAINING SEED TUPLES 
Protein 1 Protein 2 Interaction 

HP1 histoneH3 Yes 
HP1 HDAC4 Yes 

KAP1 SETDB1 Yes 
AuroraB INCENP Yes 

 
Therefore, we can first select some of those documents in 

MedLine which contains at least one pair of related protein 
name  in the seed examples. If a document does contain a pair 
of protein names in a single sentence, we label it as a positive 
document; otherwise a negative one. These labeled documents 
are used in the later stage for data mining algorithms to learn 
the characteristic of the documents, and the learned rules are 
converted to a query list in order to retrieve potentially 
promising documents for IE in the next iteration. Starting from 
the second round, we use the query list derived from the 
learned rules to select potentially interesting documents and 
rely on all the available tuples for document classification. 
The procedure is illustrated in Figure 3. 

 

 
Fig. 3.  The process of learning queries from retrieved documents 

 

 

Given a set of positive and negative documents as the 
training set, our goal now is to generate queries that would 
retrieve many documents that our IE system will find useful, 
and few that IE will not be able to use.  The process consists 
of two stages: (1) convert the positive and negative examples 
into an appropriate representation for training, and (2) run the 
data mining algorithms on the training examples to generate a 
set of rules and then convert the rules into an ordered list of 
queries expected to retrieve new useful documents. In our 
current implementation, we integrate fast rule induction 
algorithms: Ripple [7]. We rank all the rules based on the 
Laplace measures and the top 10% of the rules are converted 
into a query list. 

 

For example if a rule set is 
Positive  IF WORDS  ~  

protein AND binding . 
Positive  IF WORDS ~   

cell and function . 
then they can be converted to a query list: 

Query 1:  protein AND binding  
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Query 2:  cell AND function  
 

 
Unlike most other IR systems which uses a single term 

selected with statistical-based term weighting [8], we use data 
mining algorithms to extract rules from documents and then 
use the terms from the rules as the basic unit for our next 
query term.   

B.  Mutual Reinforcement Principle for Pattern Generations 
and Tuple Extraction 

A crucial step in the extraction process is the generation of 
new patterns. Patterns are generated by grouping the 
occurrences of known patterns in documents that occur in 
similar contexts.  Good patterns should be selective but have 
high coverage so that they do not generate many false positive 
and can identify many new tuples. Most machine learning 
methods and algorithms have been developed to automatically 
generate extraction patterns.  These methods and algorithms 
use special training resources, such as texts annotated with 
domain-specific tags (e.g., AutoSlog [9], WHISK [10]). A key 
limitation of using machine learning methods to induce IE 
methods is the availability of high-quality pre-classified 
corpora in IE from text database.  Creating a pre-classified 
corpus entails high workload for domain experts, and a corpus 
for a specific domain cannot usually be directly transferred to 
other domains, thus making the portability a very challenging 
issue. The heart of our approach is the mutual reinforcement 
technique that learns extraction patterns from the tuples and 
then exploits the learned extraction patterns to identify more 
tuples that belong to the relation.  

The pattern representation used in SPIE is similar to those 
used in Eliza [11], which can make use of limited syntactic 
and semantic information.  SPIE represents the context around 
the related entities in the patterns in a flexible way that 
produces patterns that are selective, yet have high coverage. 

 

Definition 1 A pattern is a 5–tuples <prefix, entity_tag1, 
infix, entity_tag2, suffix>, where prefix, infix, and suffix are 
vectors associating weights with terms entity_tag1and 
entity_tag2. Prefix is the part of sentence before entity_tag1, 
infix is the part of sentence between entity_tag1 and 
entity_tag2 and suffix is the part of sentence after entity_tag2. 

 
For example, a protein–protein interaction pattern in our 

approach is represented as a tuple (or an expression) 
consisting of two protein names that correspond to some 
conventional way of describing the interaction. For every such 
a protein pair tuple <p1, p2>, it finds segments of text in a 
sentences where p1 and p2 occur close to each other and 
analyzes the text that “connects” p1 and p2 to generate 
patterns. For example, our approach inspects the context 
surrounding chromatin protein HP1 and HDAC4 in “HP1 
interacts with HDAC4 in the two–hybrid system” to construct 
a pattern { “”,  <Protein>,  “interacts with”,  <Protein>, 
“”}. After generating a number of patterns from the initial 
seed examples, our system scans the available sentences in 
search of segment of text that match the patterns. As a result 
of this process, it generates new tuples and uses them as the 
new “seeds” and starts the process all over again by searching 

for these new tuples in the documents to identify new 
promising patterns. 

In order to learn these patterns from these sentences, we 
use a sentence alignment method to group similar patterns 
together and then learn each group separately for the 
generalized patterns. 

 

Definition 2. The Match(Ti, Tj) between two patterns Ti  
and Tj, which are two 5–tuples Ti=<prefixi, tagi1, infixi, tagi2, 
suffixi> and Tj = <prefixj, tagj1, infixj, tagj2, suffixj>, is defined 
as Match(Ti, Tj)=Wprefix*Sim(prefixi, prefixj)+Winfix * Sim(infixi, 
infixj) + Wsuffix *Sim(suffixi, suffixj)    

There are many methods or formulas available to evaluate 
the similarity of two sentence segments such as perfixi and 
prefixj, which are ordered list of words, numbers and 
punctuation marks etc. In our system, we use the sentence 
alignment function similar to the sequence alignment in 
bioinformatics. The advantage of using sentence alignment for 
similarity measurement is that it is flexible and can be 
implemented efficiently based on dynamic programming.  

After generating patterns, SPIE scans the text collection to 
discover new tuples. The basic ideas are outlined below. Our 
system first identifies sentences that include a pair of entities. 
For a given text segment, with an associated pair of entities E1 
and E2,, it generates the 5–tuples T=<perfix, E1_tag1, infix, 
E2_tag2, suffix>. A candidate tuple <E1, E2> is generated if 
there is a pattern Tp such that Match(T, Tp) is greater than the 
pre-specified threshold. Each candidate tuple will then have a 
number of patterns that helped generate it, where each is 
associated with a degree of match. Our approach relies on this 
information, together with score of the patterns (the score 
reflects the selectivity of the patterns), to decide what 
candidate tuples to actually add to the biological relationship 
table that is being constructed. Below are some sample 
extraction patterns generated from MedLine for protein-
protein interactions. 

{“”, <Protein>, “interacts with”, <Protein> , “”} 
{“ ”, <Protein>,  “binds to”,  <Protein> , “”} 
{“Bind of ”, <Protein>, “to” ,<Protein>,  “”} 
{ “Complex of ”, <Protein> ,“and ”,  <Protein>,  “”} 

 

To test the scalability of SPIE in MedLine, we conducted 
two experiments. One is to simulate the biologist to 
manually create a set of keyword filters to select the 
documents which are relevant to protein interactions, and 
then run the IE procedure on these documents. Nowadays 
this manual approach is used by most users of Medline. 
However, information retrieval in such databases becomes 
very time-consuming because searchers who are likely to 
identify much relevant information also find many irrelevant 
documents. For example, a text query for “protein 
interaction” of the Medline database retrieves 145857 
documents (in Dec. 2003). In this study, we use 1600 human 
chromatin protein names. When we used synonyms derived 
from LocusLink and nucleotide databases maintained by 
NCBI, the total number of protein names was around 7000. 
The result is shown in Table 2.  In our second experiment, 
we started with 10 pairs of protein-protein interaction (PPI) 
pairs as seed instances. We then used SPIE to automatically 
construct queries and used the learned queries to retrieve 



Proceedings of the 2004 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology 
(IEEE CIBCB 2004) 

 

5

document from MedLine. In each iteration, we set the 
maximal document size to 10k for each iteration, starting 
with 50,000 documents and stop at 500,000 documents when 
the new tuples added is very small.  We repeated the 
experiments 5 times with different seed-pairs and took the 
average number of documents. The results are summarized 
in Table 3. 

TABLE II 
NUMBER OF MEDLINE ABSTRACTS USED IN KEY WORD BASED SEARCHING 

Keywords # of  
abstracts # of PPI # of  distinct 

PPI  
Protein Associate 8025 2526 760 
Protein Interact 33835 8457 2158 
Protein Bind 69981 12034 2664 
Protein Association 82767 9440 2093 
Protein Binding 83397 13854 3184 
Protein interaction 145857 19344 3795 
Protein complex 185157 24938 4300 
Protein acetylate 172 434 116 
Protein acetylation 5027 5622 827 
Protein conjugate 18770 225 92 
Protein destabilize 879 100 31 
Protein destabilization 2233 231 62 
Protein inhibit 124178 7690 1602 
Protein modulate 41727 2984 945 
Protein modulation 71159 2843 913 
Protein phosphorylate 3991 1186 315 
Protein phosphorylation 90475 15106 2249 
Protein regulate 58586 7991 2121 
Protein regulation 289940 32669 5915 
Protein stabilization 27349 1630 340 
Protein stabilize 5714 775 221 
Protein suppress 20069 2005 633 
Protein target 74714 10735 2433 
Total 1,444,002 183,119 37,769 
Total (elimination of 
redundant ones)  1,006,699 37769 9980 

 
TABLE III 

EXPERIMENTAL RESULTS (SPIE) 
# of abstracts # of PPI # of distinct PPI  

50k 2224 1749 
100k 4412 3100 
150k 8348 4400 
200k 10527 5300 
250k 12461 6040 
300k 15152 6500 
350k 16612 7200 
400k 18202 8420 
450k 19070 8900 

all 19461 9483 
 

While keyword based approach examined 1.4 millions 
abstracts from MedLine to extract 9980 distinct chromatin 
protein-protein interaction, SPIE examined only 500K 
abstracts from MedLine to extract 9483 distinct chromatin 
protein-protein interactions. It is very obvious that SPIE has a 
significant performance advantage over the key-word based 
approach. 

III. MINING THE SCALE-FREE PROTEIN-PROTEIN INTERACTION 
NETWORK: SFCLUSTER 

The extracted protein-protein interactions from MedLine 
through SPIE form a scale-free network. In a scale-free 
network, the nodes with the largest numbers of links play an 
important role on the dynamics of the system. It helps to 

understand the global structure of the network as well as its 
precise distribution of the number of links. Recently empirical 
studies report that the protein-protein interaction network [12], 
like many other network graphs generated either from the real 
world or the man-made world such as the Internet, the WWW, 
have scale-free properties [2], [13], [14], [15], [16] [17]. The 
scale-free property reveals that the number of incoming links 
and the outgoing links at a given vertex have distributions that 
decay with the power law tails [14].  A scale-free network has 
many vertices but few vertices of high degree. These networks 
are so complex that the topology is largely unknown. It is 
essential to mine the network graph to help understand the 
domain and the topology of the network structure. For 
example, a local cluster in a biological interaction network for 
proteins may represent a biological complex [2], [16] which is 
very important to help understand the protein functionality.  

Many graph-based clustering algorithms have been 
developed to analyze the network graphs [18], [19]. Most of 
these cluster algorithms rely on some properties such as 
connectivity of the graph in the context of a random graph 
model to find the clusters. When these types of clustering 
algorithms are applied in the scale-free network model, many 
meaningful clusters couldn’t be identified since the 
connectivity of a random graph has totally different behaviors 
from a scale-free network. Scale-free networks are known to 
have large clustering coefficients or clustered regions of the 
graph and there is a lot of useful information hidden in these 
graph networks. Based on this consideration, we propose a 
novel algorithm to find local clusters from a large scale-free 
network graph.  Our algorithm considers the characteristics of 
the scale-free network graph and finds the local clusters based 
on the local density of the vertex and its neighborhood 
vertices. 

A. Random Network Model Vs. Scale-Free Network Model  
Random network models assume that the probability that 

two vertices are connected is random and uniform [14], [20]. 
For a random graph, edges are chosen independently, and thus 
the distribution of degree decays exponentially. Therefore, for 
the power law degree distribution, the choice of edge must be 
correlated. Moreover, random network models also assume 
that the graph is static, meaning that the graph is never 
changed over time.  

In contrast, scale-free networks have two important 
properties: growth and preferential attachment, meaning that 
new vertices and edges are added over time and a new vertex 
is most likely to be attached to existing vertices with large 
connectivity. The probability that a new vertex connects to the 
existing vertices is not uniform, but there is a higher 
probability to be linked to a vertex that already has a large 
number of connections. These networks have the power law 
connectivity distribution P(k) ∝ k-r. That is, the probability 
that a vertex is connected to k other vertices is proportional to 
k-r, where r is a constant and varies for diverse networks. The 
power law concisely describes skewed distributions of graph 
properties such as the vertex outdegree. Besides, these power-
laws are used to estimate important parameters such as the 
average neighborhood size, and facilitate the design and the 
performance analysis of protocols.  
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B. Cluster Algorithm Based On Local Density And Vertex 
Neighborhood 

Clustering the graph corresponds to finding the cliques of 
the graph. In graph theory, a clique is a maximal connected 
subgraph, that is, there is an edge between any pair of vertices 
in the subgraph. There are two main barriers to finding cliques 
in the graph to determine clusters.  The first barrier is the 
computation issue, since the problem of finding the maximum 
clique in a graph is NP-hard. Even finding a good 
approximation to the maximum clique is also hard. The 
second barrier to using cliques to determine communities is 
that the connectivity required in a clique is too strong. It 
would be too much to expect all members of a community to 
be linked each other.  There are many heuristic algorithms to 
find clusters from a random graph. In these algorithms, a 
global path-finding strategy has been used, which cannot be 
applied in real system where only local information is 
available. Recent studies of the many network graphs suggest 
that the structure of the scale-free network graph is actually 
more complex than the random graph model, and thus cannot 
be modeled in the random graph model.  

Our approach is based on local density of the p-quasi graph 
[21] and vertex neighborhood information of the modified 
Gabriel influence region [22]. Our approach follows the 
similar algorithmic philosophy presented in [2].  The method 
is based on vertex weighting by local neighborhood density 
and outward traversal from a locally dense seed to isolate the 
dense regions according to given parameters. Dense regions of 
the networks can be found, based solely on connectivity data, 
many of which correspond to some domain information and 
knowledge.  

Before we discuss the algorithm in details, we cite some 
important definitions used in the algorithm to make the paper 
self content.  

P-quasi complete graph [21]: A p-quasi complete graph 
QC = (V,E) is a graph such that deg(v) >= [ p*(|V|- 1)] , for all 
v ∈ V, p is the connectivity ( 0<=p<=1). 

Curvature (or core clustering coefficient) on a graph 
[23]: Each vertex v has a curvature which is a function of the 
number n of neighbors (vertices to which it is linked) and the 
number t of triangles (pairs of adjacent neighbors), given by 
the formula: 

Curv(v) = t / ((n(n-1)/2)). 
Because n(n-1) /2 is the maximum number of triangles that 

can be drawn on v neighbors, Curv(v)  lies between 0 and 1 if 
n > 1 and is undefined otherwise. The Curv(v) amplifies the 
weighting of heavily interconnected graph regions while it 
removes the less connected vertices that are usually part of an 
interaction network.  A given highly connected vertex, v, in a 
dense region of a graph may be connected to many vertices of 
low degree. These low degree vertices do not interconnect 
with the neighborhood of v and thus removing them would not 
reduce the curvature of v. 

Modified Gabriel influence region [22]: For a non-
directed graph G(V,E), where V is a set of vertices 
corresponding to a data set and E is the set of edges, the 
modified Gabriel influence region of vertices p and q is 
defined as 

  Γp,q = B((p+q)/2,d(p,q)/2)∪B(p,αd(p,q))∪B(q,αd(p,q)), 
where B(x,r) = {y: d(x,y) <=r}, d(x,y) = |x-y| is the distance 

between the vertices x and y, and α is a constant. (p,q) ∈E if 
Γp,q ∩V=φ.. α= 0.30 and 0.50 are chosen in our experiments 
for constructing edges and discovering clusters, respectively.  

The modified Gabriel influence region has the local 
neighborhood information for each vertex. Given a Curvature 
threshold, the graph can be split into clusters that appear to be 
meaningful for the underlying domain. To find locally dense 
regions of a graph, we use a vertex-weighting scheme based 
on the local clustering coefficient Curv(v) which measures 
“cliquishness” of the neighborhood of a vertex v and the 
Gabriel influence region. There is no standard graph theoretic 
definition of density, but definitions are normally based on the 
connectivity level of a graph.  Our approach is based on the 
local density and modified Gabriel influence region (vertex 
neighborhood information) of the graph. The method starts 
with a seed with largest weight and outward traversal from a 
locally dense seed to isolate the dense regions according to the 
given parameters. Dense regions of a network graph can be 
found, based solely on connectivity data, many of which 
correspond to some domain information and knowledge.  

We define the weight of a vertex v as  
               W(v) = Curv(v) * |GR(v)| , 
     where GR(v) =   

Ewv ∈
∪

),(
 Γv,w. 

The weight of a vertex v is the product of the vertex 
curvature, Curv(v) and |GR(v)| , in the immediate 
neighborhood of the vertex v. This weighting scheme further 
boosts the weight of densely connected vertices.  This 
weighting function is based on the local network density. 

Our algorithm SFCluster for discovering clusters is 
described as follows.  We define clusters as connected regions 
of the graph with the high curvature, which is the local density 
of triangular relations. The clusters are the densest 
components of the corresponding graph.   

 

Algorithm: SFCluster (Scale-Free Cluster) 
Input: (1) D: a data set, (2) δ: the weight_threshold, (3) 

p: an integer, (4) Wpct: weight percentage 
Output: a list of clusters 
1. Construct a Graph G(V,E), where V corresponds to the 

data set D, and E is calculated based on the modified Gabriel 
influence region 

2. For all v in V Do  
 /* Calculate the weight of all vertices*/ 

 Find the highest p-quasi graph Gp containing v  
       Neb(v)  = vertices linked with  v in Gp 
       Calculate Curv(v) in Gp 
       GR(v) = φ 
       For all w in Neb(v)  Do 
       Gabriel Region GR(v) = GR(v) ∪ Γv,w 

           EndFor 
      Weight (v) = Curv(v) * |GR(v)| 
    EndFor 
3. AllNode  =  Sort the vertex in V in the decreasing order 

of Weight(v), ClusterList =  φ 
4. While Allnode  <> φ  Do  
       Pick up the first vertex v from AllNode 
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       If Weight(v) < δ  then break 
          Cluster(v)= {v} // start a new cluster 
          Boundary(Cluster(v))=Neb(v) 
          While Boundary(Cluster(v)) <> φ Do 
             W = remove a vertex from 

 Boundary(Cluster(v)) 
             if Weight(w) > = Weight(v) * Wpct  
             then Cluster (v) = Cluster(v) ∪ {w} 
                  Boundary(Cluster(v)) 

=Boundary(Cluster(v)) ∪ Neb(w) 
             remove w from AllNode 
          EndWhile 
          ClusterList = ClusterList ∪ {Cluster(v)} 
    EndWhile 
5. Return ClusterList 
  
The first step of the algorithm SFCluster is to construct a 

Gabriel graph based on the modified Gabriel influence region 
with α= 0.30.  

The second step of the algorithm SFCluster, vertex 
weighting, weights all vertices based on their local network 
density using the highest p-quasi graph of the vertex and the 
modified Gabriel influence region with α= 0.50. The highest 
p-quasi graph is the central of the most densely connected 
subgraph. We define here the term core-clustering coefficient 
of a vertex, v, to be the density of the highest p-quasi graph 
immediate neighborhood of v (vertices connected directly to 
v) including v.  The core-clustering coefficient is used here 
instead of the clustering coefficient because it amplifies the 
weighting of heavily interconnected graph regions while it 
removes the less connected vertices that are usually part of an 
interaction network. A given highly connected vertex, v, in a 
dense region of a graph may be connected to many vertices of 
degree one (single linked vertex) in the modified Gabriel 
influence region. These low degree vertices do not 
interconnect within the neighborhood of v and thus would 
reduce the clustering coefficient, but not the core-clustering 
coefficient. The final weight given to a vertex is the product of 
the vertex core-clustering coefficient and the number of 
vertices of the modified Gabriel influence region. This 
weighting scheme further boosts the weight of densely 
connected vertices.  

The third step of the algorithm SFCluster sorts all vertices 
in the graph in the decreasing order of the vertex weight and 
initializes the output to empty.  

Then, the fourth step is to discover a list of clusters. It takes 
as input the vertex-weighted graph, picks up the vertex with 
the maximum weight as a seed of a cluster, and recursively 
travels outward from the seed. At the beginning, the cluster 
includes v only, and all neighbors of v are on the boundary. 
Each vertex on the boundary is checked to see if its weight is 
above the given threshold, which is a given percentage away 
from the weight of the seed vertex. If yes, this vertex is 
included in the cluster and the cluster boundary is expended to 
cover its all neighbors. A vertex is taken with the probability 
proportional to its connectivity. This process stops once no 
more vertices can be added to the cluster based on the given 
threshold, and a cluster is found.  Then a new cluster is 

discovered for the next highest weight vertex in the graph. In 
this way, the densest regions of the network are identified. The 
vertex weight threshold parameter defines the density of the 
resulting complex. A threshold that is closer to the weight of 
the seed vertex identifies a smaller, denser network region 
around the seed vertex. 

The time complexity of the entire algorithm is polynomial 
O(nml3), where n is the number of vertices, m is the number of 
edges, and l is the vertex size of the average modified Gabriel 
influence region of the graph.  

We applied SFCluster on the protein-protein interaction 
network constructed by SPIE from MedLine based on the 
1600 chromatin proteins and it identified many local clusters 
which correspond to protein complex. Most of the protein 
complexes are evaluated to have a high agreement rate with 
the domain expert and 2 of these clusters are shown in Figure 
4. These studies will provide an ideal test bed for utilizing and 
assessing the SFCluster algorithm for clustering in scale-free 
biological networks. It will help to identify previously 
unknown links between clusters, or links to pathways and 
networks not considered “chromatin”, these clusters could 
represent communication between chromatin and other parts 
of the cells.  The figure was created using Pajek 
[http://vlado.fmf.uni-lj.si/pub/networks/pajek/default.htm]. 

 

 
 
Fig. 4.  Three Protein Clusters identified from the Chromatin Protein-

Protein Interaction Network 
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IV. CONCLUSION 
In this paper, we presented SPIE-DM system that integrates 

information extraction and data mining techniques to extract 
and mine protein-protein networks from biomedical literature.  
.First we presented a novel scalable and portable information 
extraction (SPIE) method to extract biological relationships 
from biomedical literature. Our method addresses portability 
and performance issues simultaneously. The SPIE is efficient 
to work in large online biomedical literature database because 
it takes an input a few seed examples and automatically 
iterates to retrieve more relevant documents. Therefore, SPIE 
is flexible to be applied in very complicated domains and 
works with little human intervention. SPIE can be used to 
extract many binary relationships such as protein–protein 
interactions, cell signaling or protein–DNA interactions from 
large collection of text files once the name dictionary of the 
studied object is provided.  Our cluster algorithm SFCluster 
mines dense regions of the large scale-free network graph. Our 
algorithm considers the characteristics of the scale-free 
network model and is based on the local connectivity and the 
modified Gabriel influence regions. Based on our scale-free 
network analysis, it would seem that real biological networks 
are organized differently than random graph models in that 
they have higher clustering coefficients around specific region 
(complexes) and the vertices in these regions are related to 
each other by biological function.  

Our future research work will be focusing on evaluation of 
the precision and recall of SPIE-DM.  For small biomedical 
documents sets, it is possible to manually inspect them and 
calculate the precision and recall. Unfortunately, this 
evaluation approach does not scale well and becomes 
infeasible for large collection of literature such as MedLine. 
Developing accurate evaluation metrics for this task is one of 
our future research plans.  
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